Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles
Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double...
Saved in:
Published in | mBio Vol. 4; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Microbiology
13.08.2013
American Society for Microbiology |
Subjects | |
Online Access | Get full text |
ISSN | 2161-2129 2150-7511 2150-7511 |
DOI | 10.1128/mBio.00524-13 |
Cover
Abstract | Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6.
IMPORTANCE
Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. |
---|---|
AbstractList | Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. ABSTRACT Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6.UNLABELLEDCoronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6.Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.IMPORTANCEAlthough the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. |
Author | Akhlaghpour, Marzieh Neuman, Benjamin W. Buchmeier, Michael J. Angelini, Megan M. |
Author_xml | – sequence: 1 givenname: Megan M. surname: Angelini fullname: Angelini, Megan M. organization: University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, USA – sequence: 2 givenname: Marzieh surname: Akhlaghpour fullname: Akhlaghpour, Marzieh organization: University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, USA – sequence: 3 givenname: Benjamin W. surname: Neuman fullname: Neuman, Benjamin W. organization: School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom – sequence: 4 givenname: Michael J. surname: Buchmeier fullname: Buchmeier, Michael J. organization: University of California Irvine, Departments of Molecular Biology and Biochemistry and Division of Infectious Disease, Department of Medicine, Irvine, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23943763$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAURiNUREvpki3ykkVT_Ha8QSrDa6TyEAW2luNcF1eJPdjJSPPvSTqlokgIb2zZx0ffte_j6iCmCFX1lOAzQmjzYngV0hnGgvKasAfVESUC10oQcrCsJakpofqwOinlGs-DMdIw_Kg6pExzpiQ7qjaXsIUM6NxNI6AvUDYh2zHlHbrcxS6nAdAq5RTtNuSpoI8pljFPbpyy7dHnnEYIsSB2ivgpsrFDEq1jNzlAr9PU9lB_gKHNNgL6DiW4HsqT6qG3fYGT2_m4-vb2zdfV-_ri07v16vyidkLQsXYtlVQzD1Zz77EHqqxsODRWY6-owkwyprRi3oJuNVbSuZYwwn0nHOWUHVfrvbdL9tpschhs3plkg7nZSPnK2DwukQz2pHNWg-iw4BJsw1pMWqxlixtg2s-ul3vXZmoH6BzEcS7_nvT-SQw_zFXaGqa4Eo2aBc9vBTn9nKCMZgjFQd_PL5OmYojikmPBmPg_yilnVGgsZ_TZn7Hu8vz-3Rmo94DLqZQM_g4h2CwNZJYGMjcNZMjCs794F0Y7hrRUFfp_3PoFcV3JmA |
CitedBy_id | crossref_primary_10_1038_s12276_021_00602_1 crossref_primary_10_1007_s00232_020_00135_0 crossref_primary_10_1371_journal_ppat_1009599 crossref_primary_10_1016_j_intimp_2020_107051 crossref_primary_10_1128_AAC_01206_18 crossref_primary_10_1038_s41579_020_00468_6 crossref_primary_10_1186_s12864_022_08652_z crossref_primary_10_1016_j_virol_2020_07_008 crossref_primary_10_1007_s12104_021_10059_y crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1128_jvi_00507_23 crossref_primary_10_3390_ijms21103689 crossref_primary_10_1515_dmpt_2022_0148 crossref_primary_10_1128_JVI_00021_14 crossref_primary_10_1371_journal_pone_0299440 crossref_primary_10_1016_j_ejphar_2020_173705 crossref_primary_10_1038_s41418_020_00633_7 crossref_primary_10_1002_rmv_2135 crossref_primary_10_1007_s11033_020_05980_9 crossref_primary_10_3389_fmicb_2022_854567 crossref_primary_10_1128_mmbr_00026_21 crossref_primary_10_1016_j_biochi_2020_10_010 crossref_primary_10_1007_s13337_021_00687_2 crossref_primary_10_1016_j_coviro_2015_02_005 crossref_primary_10_1128_mBio_01340_14 crossref_primary_10_21307_PM_2020_59_3_14 crossref_primary_10_18273_saluduis_54_e_22057 crossref_primary_10_1128_jvi_01193_23 crossref_primary_10_1016_j_abb_2023_109856 crossref_primary_10_3390_ijms25042428 crossref_primary_10_1007_s11010_022_04393_5 crossref_primary_10_1038_s41564_020_00846_z crossref_primary_10_1128_JVI_01925_19 crossref_primary_10_1371_journal_ppat_1012987 crossref_primary_10_1002_cmdc_202000223 crossref_primary_10_3389_fcimb_2020_593170 crossref_primary_10_1016_j_ejps_2023_106673 crossref_primary_10_1134_S1022795421080056 crossref_primary_10_3389_fmolb_2020_605236 crossref_primary_10_1016_j_virusres_2014_09_016 crossref_primary_10_1038_srep27126 crossref_primary_10_3390_cimb44110384 crossref_primary_10_1186_s12985_023_01998_0 crossref_primary_10_2217_epi_2020_0349 crossref_primary_10_3390_v14112436 crossref_primary_10_18699_VJGB_22_15 crossref_primary_10_1074_jbc_RA120_014873 crossref_primary_10_1038_s41392_022_00884_5 crossref_primary_10_3389_fmicb_2023_1291761 crossref_primary_10_1128_mBio_00759_15 crossref_primary_10_1099_jgv_0_001558 crossref_primary_10_1128_JVI_01112_18 crossref_primary_10_3390_v14061317 crossref_primary_10_1002_jmv_26583 crossref_primary_10_1016_j_cytogfr_2021_10_005 crossref_primary_10_1016_j_virol_2017_07_019 crossref_primary_10_1039_D0SM01167C crossref_primary_10_1080_15548627_2024_2414424 crossref_primary_10_1177_11779322211025876 crossref_primary_10_1016_j_isci_2022_105394 crossref_primary_10_1128_JVI_02776_14 crossref_primary_10_3390_v14030611 crossref_primary_10_3390_cells9051267 crossref_primary_10_1080_22221751_2021_1872353 crossref_primary_10_1128_mBio_01253_18 crossref_primary_10_3390_ijms24010720 crossref_primary_10_1016_j_jare_2020_11_012 crossref_primary_10_1128_jvi_01369_23 crossref_primary_10_1128_mbio_03331_24 crossref_primary_10_3390_pathogens10091218 crossref_primary_10_1016_j_antiviral_2014_12_015 crossref_primary_10_1002_jmv_70020 crossref_primary_10_3390_microorganisms11020445 crossref_primary_10_1007_s00018_025_05605_z crossref_primary_10_1007_s11481_020_09944_5 crossref_primary_10_3390_v15020359 crossref_primary_10_1007_s00018_022_04469_x crossref_primary_10_1186_s12863_022_01044_y crossref_primary_10_1007_s00284_024_03671_3 crossref_primary_10_1016_j_chom_2023_06_002 crossref_primary_10_1016_j_jbc_2024_107834 crossref_primary_10_2174_2666796701999201026205553 crossref_primary_10_1083_jcb_202306101 crossref_primary_10_1016_j_virusres_2018_01_002 crossref_primary_10_1099_jgv_0_001773 crossref_primary_10_2222_jsv_70_155 crossref_primary_10_3390_v16081331 crossref_primary_10_3390_v14071349 crossref_primary_10_1016_j_cellin_2022_100031 crossref_primary_10_2147_IDR_S306441 crossref_primary_10_3390_v12050571 crossref_primary_10_4161_bioe_29323 crossref_primary_10_1016_j_molstruc_2025_141730 crossref_primary_10_1186_s13059_020_02191_0 crossref_primary_10_3390_idr13010013 crossref_primary_10_1016_j_jbc_2024_107549 crossref_primary_10_3390_v7082825 crossref_primary_10_3390_v12091039 crossref_primary_10_1016_j_vacune_2023_02_001 crossref_primary_10_1016_j_micpath_2020_104586 crossref_primary_10_1016_j_ijbiomac_2024_133401 crossref_primary_10_1128_jvi_00349_24 crossref_primary_10_1016_j_cell_2021_10_017 crossref_primary_10_1016_j_tim_2020_05_009 crossref_primary_10_1111_jcmm_17103 crossref_primary_10_3390_v13010090 crossref_primary_10_1586_14760584_2015_1095096 crossref_primary_10_3389_fmicb_2022_907422 crossref_primary_10_3390_v13050787 crossref_primary_10_1002_jmv_27225 crossref_primary_10_3390_ijms23126394 crossref_primary_10_1128_mBio_01658_17 crossref_primary_10_1038_s41598_020_74050_8 crossref_primary_10_3390_pathogens11020259 crossref_primary_10_1016_j_antiviral_2017_11_001 crossref_primary_10_1038_s41598_022_13373_0 crossref_primary_10_1002_path_5547 crossref_primary_10_1128_jvi_01575_23 crossref_primary_10_1126_science_abd3629 crossref_primary_10_3390_pathogens12091185 crossref_primary_10_2217_fmb_2021_0044 crossref_primary_10_1126_science_abm1208 crossref_primary_10_1016_j_isci_2023_108080 crossref_primary_10_1128_jvi_00878_23 crossref_primary_10_1016_j_gene_2022_147020 crossref_primary_10_3390_v14050861 crossref_primary_10_1016_j_celrep_2023_112286 crossref_primary_10_1016_j_jbc_2021_101548 crossref_primary_10_4014_jmb_2206_06064 crossref_primary_10_1093_jmcb_mjaa042 crossref_primary_10_2217_fvl_2018_0144 crossref_primary_10_1093_molbev_msaa231 crossref_primary_10_52586_4931 crossref_primary_10_3390_cells12020262 crossref_primary_10_1007_s00415_020_10197_8 crossref_primary_10_3390_v6072826 crossref_primary_10_1080_07391102_2024_2411523 crossref_primary_10_1111_boc_202000158 crossref_primary_10_1002_cbin_11400 crossref_primary_10_1038_s41579_022_00839_1 crossref_primary_10_1128_mBio_01107_13 crossref_primary_10_1016_j_celrep_2020_108234 crossref_primary_10_1038_s41467_023_43666_5 crossref_primary_10_1128_spectrum_01271_21 crossref_primary_10_1074_jbc_REV120_013930 crossref_primary_10_1007_s13205_020_02619_1 crossref_primary_10_7717_peerj_9576 crossref_primary_10_1016_j_tcb_2023_12_006 crossref_primary_10_1002_pro_3208 crossref_primary_10_1146_annurev_micro_020518_115759 crossref_primary_10_1089_mab_2020_0028 crossref_primary_10_1016_j_intimp_2020_107225 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_3390_v13081487 crossref_primary_10_1016_j_semcdb_2019_07_013 crossref_primary_10_1099_mgen_0_000734 crossref_primary_10_1002_mef2_29 crossref_primary_10_1038_s41421_021_00268_z crossref_primary_10_1016_j_celrep_2021_109133 crossref_primary_10_1016_j_heliyon_2020_e04743 crossref_primary_10_1089_dna_2020_5703 crossref_primary_10_1016_j_chom_2023_05_003 crossref_primary_10_1016_j_gendis_2020_08_013 crossref_primary_10_1016_j_virol_2017_10_004 crossref_primary_10_1038_s41598_023_30045_9 crossref_primary_10_1111_tra_12738 crossref_primary_10_1016_j_jmb_2020_11_024 crossref_primary_10_2217_fvl_2018_0008 crossref_primary_10_1002_slct_202001709 crossref_primary_10_1016_j_antiviral_2023_105590 crossref_primary_10_3390_v8070184 crossref_primary_10_1073_pnas_2305674120 crossref_primary_10_1038_s41467_022_31097_7 crossref_primary_10_1021_acs_jmedchem_3c01238 crossref_primary_10_1126_sciadv_adq9580 crossref_primary_10_1007_s11427_021_1964_4 crossref_primary_10_1080_07391102_2020_1790426 crossref_primary_10_1080_07391102_2024_2328745 crossref_primary_10_3390_ijms22031308 crossref_primary_10_3906_biy_2005_111 crossref_primary_10_1016_j_chom_2020_11_003 crossref_primary_10_1089_hs_2023_0008 crossref_primary_10_1128_mbio_03054_22 crossref_primary_10_1016_j_virol_2014_04_027 crossref_primary_10_1016_j_virusres_2014_12_021 crossref_primary_10_1371_journal_pbio_3000715 crossref_primary_10_1080_23144599_2023_2222981 crossref_primary_10_3389_fgene_2021_626642 crossref_primary_10_1016_j_prp_2020_153222 crossref_primary_10_3390_membranes11010064 crossref_primary_10_1128_JVI_00401_15 crossref_primary_10_3389_fnhum_2021_656313 crossref_primary_10_1016_j_jare_2021_11_014 crossref_primary_10_1021_acs_jproteome_3c00600 crossref_primary_10_1016_j_antiviral_2016_10_005 crossref_primary_10_1016_j_mcpro_2021_100120 crossref_primary_10_1186_s11658_022_00341_9 crossref_primary_10_1590_1678_4685_gmb_2020_0212 crossref_primary_10_1002_jmv_29200 crossref_primary_10_1016_j_biopha_2021_112230 crossref_primary_10_1021_acschembio_3c00312 crossref_primary_10_1128_mbio_03358_23 crossref_primary_10_1371_journal_pcbi_1009147 crossref_primary_10_1016_j_intimp_2022_108531 crossref_primary_10_1016_j_vacun_2022_10_006 crossref_primary_10_1016_j_virusres_2016_04_001 crossref_primary_10_1128_JVI_01561_21 crossref_primary_10_3389_fimmu_2023_1268854 crossref_primary_10_1016_j_tim_2014_06_003 crossref_primary_10_1002_pro_4075 crossref_primary_10_1016_j_cytogfr_2017_05_007 crossref_primary_10_12688_f1000research_73170_3 crossref_primary_10_12688_f1000research_73170_2 crossref_primary_10_12688_f1000research_73170_1 crossref_primary_10_1074_jbc_M115_662130 crossref_primary_10_1146_annurev_virology_100114_055218 crossref_primary_10_1080_22221751_2023_2209208 crossref_primary_10_3389_fmicb_2022_895741 crossref_primary_10_1093_jleuko_qiae170 crossref_primary_10_1146_annurev_virology_092920_021307 crossref_primary_10_3389_fphys_2024_1406635 crossref_primary_10_1016_j_scr_2021_102219 crossref_primary_10_1128_JVI_00197_15 crossref_primary_10_1371_journal_ppat_1010832 crossref_primary_10_3390_v10090477 crossref_primary_10_1016_j_jlr_2021_100129 crossref_primary_10_3389_fmicb_2014_00296 crossref_primary_10_1089_dna_2013_2304 crossref_primary_10_1080_15548627_2024_2442849 crossref_primary_10_15252_msb_202110387 crossref_primary_10_1186_s12931_020_01581_z crossref_primary_10_1007_s12033_024_01146_1 crossref_primary_10_1021_acs_chemrev_1c01062 crossref_primary_10_1128_JVI_01463_17 crossref_primary_10_1128_mbio_00688_23 crossref_primary_10_1128_mBio_02371_21 crossref_primary_10_1111_cei_13523 crossref_primary_10_3389_fcell_2022_1011221 crossref_primary_10_1016_j_micpath_2022_105699 crossref_primary_10_1146_annurev_biochem_072711_163501 crossref_primary_10_3389_fviro_2021_815388 crossref_primary_10_1016_j_jtbi_2021_110604 crossref_primary_10_3390_ijms241613002 crossref_primary_10_1016_j_jaut_2020_102468 crossref_primary_10_1134_S0006297921030020 crossref_primary_10_31857_S0320972521030027 crossref_primary_10_1194_jlr_R120000851 crossref_primary_10_3390_v13091880 crossref_primary_10_3389_fmicb_2022_789882 crossref_primary_10_1002_mco2_157 crossref_primary_10_2147_DDDT_S293216 crossref_primary_10_1016_j_virol_2015_02_029 crossref_primary_10_1080_07391102_2021_1897681 crossref_primary_10_12688_wellcomeopenres_16119_1 crossref_primary_10_1016_j_fmre_2021_01_013 crossref_primary_10_1080_15548627_2020_1817280 crossref_primary_10_1080_22221751_2022_2128434 crossref_primary_10_1083_jcb_202203060 crossref_primary_10_1111_cmi_12620 crossref_primary_10_3390_v14091991 crossref_primary_10_1128_mbio_03368_23 crossref_primary_10_1016_j_antiviral_2022_105270 crossref_primary_10_1371_journal_ppat_1005473 crossref_primary_10_1016_j_molstruc_2022_134642 crossref_primary_10_3389_fcell_2021_640456 crossref_primary_10_3389_fcell_2024_1386149 crossref_primary_10_1016_j_mib_2024_102466 crossref_primary_10_1080_15548627_2022_2099206 crossref_primary_10_1371_journal_pone_0290675 crossref_primary_10_3389_fimmu_2024_1340332 crossref_primary_10_3390_ijms24054523 crossref_primary_10_15407_ubj94_04_005 crossref_primary_10_1016_j_bbadis_2021_166154 crossref_primary_10_1038_s41586_022_04835_6 crossref_primary_10_1080_21505594_2021_1871823 crossref_primary_10_3390_biom14091061 crossref_primary_10_1002_jmv_25681 crossref_primary_10_1016_j_jtcme_2021_10_003 crossref_primary_10_1080_07391102_2021_2025149 crossref_primary_10_1128_mmbr_00016_23 crossref_primary_10_1128_jvi_00584_24 crossref_primary_10_1016_j_molcel_2020_07_027 crossref_primary_10_1002_iub_2380 crossref_primary_10_1038_s41586_024_07817_y crossref_primary_10_1128_mBio_02320_16 crossref_primary_10_3390_cells11020302 crossref_primary_10_3389_fphar_2021_616993 crossref_primary_10_1016_j_ygeno_2020_04_016 crossref_primary_10_1128_mBio_02754_20 crossref_primary_10_2147_JIR_S267280 crossref_primary_10_1016_j_virol_2019_05_002 crossref_primary_10_3389_fmicb_2020_01576 crossref_primary_10_1099_jgv_0_001918 crossref_primary_10_3389_fcimb_2024_1383917 crossref_primary_10_1016_j_celrep_2021_109479 crossref_primary_10_1186_s12985_019_1182_0 crossref_primary_10_3390_v13091798 crossref_primary_10_1111_bph_15094 crossref_primary_10_1002_iid3_639 crossref_primary_10_1038_s41580_021_00432_z crossref_primary_10_1073_pnas_2301689120 crossref_primary_10_1146_annurev_biochem_052521_115653 crossref_primary_10_1089_jir_2020_0214 crossref_primary_10_1016_j_virol_2020_12_010 crossref_primary_10_1097_CM9_0000000000002158 crossref_primary_10_1128_jvi_00264_23 crossref_primary_10_1186_s13578_021_00567_8 crossref_primary_10_3390_v13020197 crossref_primary_10_3390_pathogens9050367 crossref_primary_10_1016_j_virol_2020_12_007 crossref_primary_10_3390_pharmaceutics13091405 crossref_primary_10_1126_sciadv_adj1736 crossref_primary_10_1016_j_ebiom_2021_103381 crossref_primary_10_1128_mBio_00987_13 crossref_primary_10_1080_2162402X_2020_1807836 crossref_primary_10_1134_S0006297922120215 crossref_primary_10_1016_j_eng_2018_11_035 crossref_primary_10_1016_j_micpath_2020_104641 crossref_primary_10_1016_j_ijbiomac_2021_02_212 crossref_primary_10_1371_journal_ppat_1010113 crossref_primary_10_1016_j_micpath_2021_105236 crossref_primary_10_3390_v13091687 crossref_primary_10_3390_immuno1010004 crossref_primary_10_1016_j_virusres_2016_05_015 crossref_primary_10_32604_cmc_2022_023974 crossref_primary_10_1016_j_gpb_2021_09_007 crossref_primary_10_3390_v13102068 crossref_primary_10_1186_s12967_023_03996_w crossref_primary_10_1007_s43440_020_00204_0 crossref_primary_10_1038_s41401_021_00851_w crossref_primary_10_1007_s00018_020_03603_x crossref_primary_10_1016_j_bsheal_2025_01_003 crossref_primary_10_1016_j_sjbs_2020_12_053 crossref_primary_10_3389_fmicb_2021_770656 crossref_primary_10_3390_v7062749 |
Cites_doi | 10.1016/j.virol.2008.01.018 10.1128/JVI.01506-07 10.1091/mbc.e07-05-0415 10.1371/journal.pone.0003299 10.1038/nrmicro1890 10.1056/NEJMoa1211721 10.1146/annurev.micro.112408.134012 10.1128/JVI.01219-08 10.1074/jbc.M306124200 10.1371/journal.ppat.1002331 10.1128/JVI.78.24.13600-13612.2004 10.1371/journal.pone.0000459 10.1099/vir.0.81611-0 10.1038/nrmicro2147 10.1128/JVI.01826-09 10.1128/JVI.00403-11 10.1099/0022-1317-82-5-985 10.1128/mBio.00165-13 10.1371/journal.ppat.0010039 10.1016/S0022-2836(03)00865-9 10.1111/j.1462-5822.2010.01437.x 10.1016/j.chom.2010.06.010 10.1007/978-3-642-03683-5_6 10.3390/v3091610 10.1128/mBio.00473-12 10.1128/JVI.02756-07 10.1128/JVI.73.3.2016-2026.1999 10.1128/JVI.01244-13 10.1371/journal.ppat.1000054 10.1128/JVI.02631-07 10.1128/JVI.74.17.7911-7921.2000 10.1128/JVI.78.18.9977-9986.2004 10.1128/JVI.01257-07 10.1128/JVI.79.24.15189-15198.2005 10.1016/j.mib.2004.06.007 10.1128/JVI.00842-09 10.1056/NEJMoa030634 10.1016/j.jinf.2012.10.002 10.1016/j.virol.2006.12.009 10.1056/NEJMoa030747 10.1371/journal.ppat.1000088 10.1128/mBio.00002-13 10.1128/JVI.01358-06 10.1371/journal.pbio.0060226 10.1016/j.coviro.2011.09.008 10.1128/JVI.76.8.3697-3708.2002 10.1128/JVI.00254-09 10.1128/JVI.00042-11 10.1083/jcb.201202126 10.1128/JVI.02501-05 10.1128/JVI.01772-09 10.3390/v4113245 10.1016/j.virol.2006.11.027 10.4161/auto.7.11.16642 10.1016/j.virusres.2007.11.017 10.1128/JVI.74.19.8953-8965.2000 10.1128/JVI.01716-09 10.1016/j.virol.2012.10.001 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Angelini et al. 2013 Angelini et al. |
Copyright_xml | – notice: Copyright © 2013 Angelini et al. 2013 Angelini et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1128/mBio.00524-13 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | SARS-CoV nsp3, -4, and -6 Induce DMVs |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_0f1dca9e5d0546ea83b01b096b08e39f PMC3747587 23943763 10_1128_mBio_00524_13 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI059799 – fundername: NIAID NIH HHS grantid: 5T32AI007319-23 – fundername: NIAID NIH HHS grantid: T32 AI007319 – fundername: NIAID NIH HHS grantid: R01 AI059799 – fundername: PHS HHS grantid: HHSN266200400058C |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c552t-cb26293fea94ff0fe27a684e8a90f727036337973fae9b9076ccb1314fd5c2423 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:14:28 EDT 2025 Thu Aug 21 13:44:08 EDT 2025 Fri Jul 11 15:47:25 EDT 2025 Fri Jul 11 12:33:38 EDT 2025 Wed Feb 19 02:31:34 EST 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 01:52:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-cb26293fea94ff0fe27a684e8a90f727036337973fae9b9076ccb1314fd5c2423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Editor Anne Moscona, Weill Medical College-Cornell |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00524-13 |
PMID | 23943763 |
PQID | 1424325906 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f1dca9e5d0546ea83b01b096b08e39f pubmedcentral_primary_oai_pubmedcentral_nih_gov_3747587 proquest_miscellaneous_1746405335 proquest_miscellaneous_1424325906 pubmed_primary_23943763 crossref_primary_10_1128_mBio_00524_13 crossref_citationtrail_10_1128_mBio_00524_13 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-13 |
PublicationDateYYYYMMDD | 2013-08-13 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2013 |
Publisher | American Society of Microbiology American Society for Microbiology |
Publisher_xml | – name: American Society of Microbiology – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_47_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 Salonen A (e_1_3_2_24_2) 2005; 285 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Ksiazek TG (e_1_3_2_3_2) 2003 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Centers for Disease Control and Prevention (e_1_3_2_6_2) 2003; 52 |
References_xml | – ident: e_1_3_2_51_2 doi: 10.1016/j.virol.2008.01.018 – ident: e_1_3_2_53_2 doi: 10.1128/JVI.01506-07 – ident: e_1_3_2_59_2 doi: 10.1091/mbc.e07-05-0415 – ident: e_1_3_2_58_2 doi: 10.1371/journal.pone.0003299 – volume-title: novel coronavirus associated with severe acute respiratory syndromeN. Engl. J. Med. year: 2003 ident: e_1_3_2_3_2 – ident: e_1_3_2_23_2 doi: 10.1038/nrmicro1890 – ident: e_1_3_2_9_2 doi: 10.1056/NEJMoa1211721 – ident: e_1_3_2_26_2 doi: 10.1146/annurev.micro.112408.134012 – ident: e_1_3_2_45_2 doi: 10.1128/JVI.01219-08 – ident: e_1_3_2_37_2 doi: 10.1074/jbc.M306124200 – ident: e_1_3_2_4_2 doi: 10.1371/journal.ppat.1002331 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.78.24.13600-13612.2004 – ident: e_1_3_2_50_2 doi: 10.1371/journal.pone.0000459 – ident: e_1_3_2_16_2 doi: 10.1099/vir.0.81611-0 – ident: e_1_3_2_18_2 doi: 10.1038/nrmicro2147 – ident: e_1_3_2_39_2 doi: 10.1128/JVI.01826-09 – ident: e_1_3_2_40_2 doi: 10.1128/JVI.00403-11 – ident: e_1_3_2_42_2 doi: 10.1099/0022-1317-82-5-985 – ident: e_1_3_2_12_2 doi: 10.1128/mBio.00165-13 – ident: e_1_3_2_19_2 doi: 10.1371/journal.ppat.0010039 – volume: 52 start-page: 269 year: 2003 ident: e_1_3_2_6_2 article-title: Update: outbreak of severe acute respiratory syndrome—worldwide, 2003 publication-title: MMWR Morb. Mortal. Wkly. Rep. – ident: e_1_3_2_17_2 doi: 10.1016/S0022-2836(03)00865-9 – ident: e_1_3_2_36_2 doi: 10.1111/j.1462-5822.2010.01437.x – ident: e_1_3_2_25_2 doi: 10.1016/j.chom.2010.06.010 – ident: e_1_3_2_20_2 doi: 10.1007/978-3-642-03683-5_6 – ident: e_1_3_2_38_2 doi: 10.3390/v3091610 – ident: e_1_3_2_8_2 doi: 10.1128/mBio.00473-12 – volume: 285 start-page: 139 year: 2005 ident: e_1_3_2_24_2 article-title: Viral RNA replication in association with cellular membranes publication-title: Curr. Top. Microbiol. Immunol. – ident: e_1_3_2_41_2 doi: 10.1128/JVI.02756-07 – ident: e_1_3_2_43_2 doi: 10.1128/JVI.73.3.2016-2026.1999 – ident: e_1_3_2_11_2 doi: 10.1128/JVI.01244-13 – ident: e_1_3_2_27_2 doi: 10.1371/journal.ppat.1000054 – ident: e_1_3_2_49_2 doi: 10.1128/JVI.02631-07 – ident: e_1_3_2_62_2 doi: 10.1128/JVI.74.17.7911-7921.2000 – ident: e_1_3_2_22_2 doi: 10.1128/JVI.78.18.9977-9986.2004 – ident: e_1_3_2_54_2 doi: 10.1128/JVI.01257-07 – ident: e_1_3_2_46_2 doi: 10.1128/JVI.79.24.15189-15198.2005 – ident: e_1_3_2_14_2 doi: 10.1016/j.mib.2004.06.007 – ident: e_1_3_2_57_2 doi: 10.1128/JVI.00842-09 – ident: e_1_3_2_5_2 doi: 10.1056/NEJMoa030634 – ident: e_1_3_2_10_2 doi: 10.1016/j.jinf.2012.10.002 – ident: e_1_3_2_48_2 doi: 10.1016/j.virol.2006.12.009 – ident: e_1_3_2_2_2 doi: 10.1056/NEJMoa030747 – ident: e_1_3_2_61_2 doi: 10.1371/journal.ppat.1000088 – ident: e_1_3_2_7_2 doi: 10.1128/mBio.00002-13 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.01358-06 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pbio.0060226 – ident: e_1_3_2_28_2 doi: 10.1016/j.coviro.2011.09.008 – ident: e_1_3_2_31_2 doi: 10.1128/JVI.76.8.3697-3708.2002 – ident: e_1_3_2_44_2 doi: 10.1128/JVI.00254-09 – ident: e_1_3_2_32_2 doi: 10.1128/JVI.00042-11 – ident: e_1_3_2_60_2 doi: 10.1083/jcb.201202126 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.02501-05 – ident: e_1_3_2_52_2 doi: 10.1128/JVI.01772-09 – ident: e_1_3_2_15_2 doi: 10.3390/v4113245 – ident: e_1_3_2_30_2 doi: 10.1016/j.virol.2006.11.027 – ident: e_1_3_2_56_2 doi: 10.4161/auto.7.11.16642 – ident: e_1_3_2_47_2 doi: 10.1016/j.virusres.2007.11.017 – ident: e_1_3_2_29_2 doi: 10.1128/JVI.74.19.8953-8965.2000 – ident: e_1_3_2_33_2 doi: 10.1128/JVI.01716-09 – ident: e_1_3_2_55_2 doi: 10.1016/j.virol.2012.10.001 |
SSID | ssj0000331830 |
Score | 2.5368361 |
Snippet | Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and... ABSTRACT Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Cell Line Cell Membrane Structures - metabolism cell membranes genome Host-Pathogen Interactions Humans microtubules Middle East respiratory syndrome coronavirus molecular biology pathogens plasmids RNA SARS Virus - physiology Severe acute respiratory syndrome coronavirus tissue culture transcription (genetics) transfection viral nonstructural proteins Viral Nonstructural Proteins - metabolism Virus Replication viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2nSVCh9LRuZOth-ZiEhlBIKE1TchOSdkQXEm_o7hby7zMjeze7pY9Lr_YcZM2nmW8s6RvG3hkShVKNKaXRWKCYUJU2AZTWGE9BU9tA_ztOz8zJhfp0qS_XWn3RmbBeHrifuH2RqnH0LegxkgsD3sogqoDEOwgLsk0UfUUr1oqpHIMlYVUsRTVru399OJl-oJ-gqqzkRhLKWv2_I5i_npNcSzzHT9jjgTHyg36kT9kD6J6xh30Pydvn7OYcEI3AD-JiDvzL_c45Px_ECPgRqRT4n5Mfixk_mw6SsSS3wT-TSsOkm3E54mrEfTfmhlM3jwgcqXW4gvIUrrGg7oB_g1k-QveCXRx__Hp0Ug5tFMqodT0vY6gNJvUEvlUpiQR1441VYH0rEtIX2sqVTdvI5KENWCybGEMlK5XGOhLdesm2umkHrxmnBipYsNQJSRamdhKXa72KGLwTJr06FGy0nFcXB41xanVx5XKtUVtHbnDZDa6SBXu_Mr_pxTX-ZHhITloZkSZ2foBIcQNS3L-QUrC3Sxc7XEO0MYKzN13MHN32k1gHCvMXm0YZRReXdcFe9bBYDYfay1OgLlizAZiN8W6-6Sbfs5a3xHJO22b7f3zgG_aozs06LEJ8h20hmmAXKdM87OXVcQdu-RSt priority: 102 providerName: Directory of Open Access Journals |
Title | Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23943763 https://www.proquest.com/docview/1424325906 https://www.proquest.com/docview/1746405335 https://pubmed.ncbi.nlm.nih.gov/PMC3747587 https://doaj.org/article/0f1dca9e5d0546ea83b01b096b08e39f |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQERIXVL5DaWUkxGlTkthxnAOqKKJUSHCBlfYW2c6YrrSblM1u1f77zjjZLVsVxCWHxIosz9jznsd-w9hbRaJQslCxUDkSFGXTWHuAWCtlaNHMtaX9jm_f1elYfp3kkxtJoWEAuzupHdWTGi9mh5e_r45wwn_oL8Do9_PjaXtI-5sypvq190OqiE7xDUg_LMqCnJd2XDDGJXGBOGOtuHn7D1sRKgj534U-bx-i_CMqneyyRwOc5B97-z9m96B5wh70BSavnrLzH4CuCty41RL44iatztdKBdyRhIG5mC5WHW_aQU-WtDh4kHCYNh0XIy5H3DQ1VxwpPDoDr9uVnUE8hzmy7Qb4BXThfN0zNj75_PPTaTzUWIhdnmfL2NlMYcT3YErpfeIhK4zSErQpE4_YhvK8oigL4Q2UFpm0cs6mIpW-zh1hsedsBzsHLxmn6irIZjKPCAzjPinPlUY6XNk9RsTMRmy0HtfKDQLkVAdjVgUikumKzFAFM1SpiNi7TfPzXnnjbw2PyUibRiSYHV60i1_VMP-qxKe1MyXkNWJUBUYLm6QW-ZtNNIjSR-zN2sQVTjDKmuDotauuoquAAkliov7RppBK0q3mPGIverfYdIdqz9MqHrFiy2G2-rv9pZmeBaFvgVwv18Wr_-jbHnuYhUIdGj34NdtBZ4F9hEtLexC2GfD5ZZIehElxDakvFVc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+acute+respiratory+syndrome+coronavirus+nonstructural+proteins+3%2C+4%2C+and+6+induce+double-membrane+vesicles&rft.jtitle=mBio&rft.au=Angelini%2C+Megan+M&rft.au=Akhlaghpour%2C+Marzieh&rft.au=Neuman%2C+Benjamin+W&rft.au=Buchmeier%2C+Michael+J&rft.date=2013-08-13&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.00524-13&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |