Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles

Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 4; no. 4
Main Authors Angelini, Megan M., Akhlaghpour, Marzieh, Neuman, Benjamin W., Buchmeier, Michael J.
Format Journal Article
LanguageEnglish
Published United States American Society of Microbiology 13.08.2013
American Society for Microbiology
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.00524-13

Cover

Abstract Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
AbstractList Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
ABSTRACT Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6.UNLABELLEDCoronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6.Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.IMPORTANCEAlthough the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. IMPORTANCE Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well. Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Author Akhlaghpour, Marzieh
Neuman, Benjamin W.
Buchmeier, Michael J.
Angelini, Megan M.
Author_xml – sequence: 1
  givenname: Megan M.
  surname: Angelini
  fullname: Angelini, Megan M.
  organization: University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, USA
– sequence: 2
  givenname: Marzieh
  surname: Akhlaghpour
  fullname: Akhlaghpour, Marzieh
  organization: University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, USA
– sequence: 3
  givenname: Benjamin W.
  surname: Neuman
  fullname: Neuman, Benjamin W.
  organization: School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
– sequence: 4
  givenname: Michael J.
  surname: Buchmeier
  fullname: Buchmeier, Michael J.
  organization: University of California Irvine, Departments of Molecular Biology and Biochemistry and Division of Infectious Disease, Department of Medicine, Irvine, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23943763$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAURiNUREvpki3ykkVT_Ha8QSrDa6TyEAW2luNcF1eJPdjJSPPvSTqlokgIb2zZx0ffte_j6iCmCFX1lOAzQmjzYngV0hnGgvKasAfVESUC10oQcrCsJakpofqwOinlGs-DMdIw_Kg6pExzpiQ7qjaXsIUM6NxNI6AvUDYh2zHlHbrcxS6nAdAq5RTtNuSpoI8pljFPbpyy7dHnnEYIsSB2ivgpsrFDEq1jNzlAr9PU9lB_gKHNNgL6DiW4HsqT6qG3fYGT2_m4-vb2zdfV-_ri07v16vyidkLQsXYtlVQzD1Zz77EHqqxsODRWY6-owkwyprRi3oJuNVbSuZYwwn0nHOWUHVfrvbdL9tpschhs3plkg7nZSPnK2DwukQz2pHNWg-iw4BJsw1pMWqxlixtg2s-ul3vXZmoH6BzEcS7_nvT-SQw_zFXaGqa4Eo2aBc9vBTn9nKCMZgjFQd_PL5OmYojikmPBmPg_yilnVGgsZ_TZn7Hu8vz-3Rmo94DLqZQM_g4h2CwNZJYGMjcNZMjCs794F0Y7hrRUFfp_3PoFcV3JmA
CitedBy_id crossref_primary_10_1038_s12276_021_00602_1
crossref_primary_10_1007_s00232_020_00135_0
crossref_primary_10_1371_journal_ppat_1009599
crossref_primary_10_1016_j_intimp_2020_107051
crossref_primary_10_1128_AAC_01206_18
crossref_primary_10_1038_s41579_020_00468_6
crossref_primary_10_1186_s12864_022_08652_z
crossref_primary_10_1016_j_virol_2020_07_008
crossref_primary_10_1007_s12104_021_10059_y
crossref_primary_10_1021_acsinfecdis_2c00204
crossref_primary_10_1128_jvi_00507_23
crossref_primary_10_3390_ijms21103689
crossref_primary_10_1515_dmpt_2022_0148
crossref_primary_10_1128_JVI_00021_14
crossref_primary_10_1371_journal_pone_0299440
crossref_primary_10_1016_j_ejphar_2020_173705
crossref_primary_10_1038_s41418_020_00633_7
crossref_primary_10_1002_rmv_2135
crossref_primary_10_1007_s11033_020_05980_9
crossref_primary_10_3389_fmicb_2022_854567
crossref_primary_10_1128_mmbr_00026_21
crossref_primary_10_1016_j_biochi_2020_10_010
crossref_primary_10_1007_s13337_021_00687_2
crossref_primary_10_1016_j_coviro_2015_02_005
crossref_primary_10_1128_mBio_01340_14
crossref_primary_10_21307_PM_2020_59_3_14
crossref_primary_10_18273_saluduis_54_e_22057
crossref_primary_10_1128_jvi_01193_23
crossref_primary_10_1016_j_abb_2023_109856
crossref_primary_10_3390_ijms25042428
crossref_primary_10_1007_s11010_022_04393_5
crossref_primary_10_1038_s41564_020_00846_z
crossref_primary_10_1128_JVI_01925_19
crossref_primary_10_1371_journal_ppat_1012987
crossref_primary_10_1002_cmdc_202000223
crossref_primary_10_3389_fcimb_2020_593170
crossref_primary_10_1016_j_ejps_2023_106673
crossref_primary_10_1134_S1022795421080056
crossref_primary_10_3389_fmolb_2020_605236
crossref_primary_10_1016_j_virusres_2014_09_016
crossref_primary_10_1038_srep27126
crossref_primary_10_3390_cimb44110384
crossref_primary_10_1186_s12985_023_01998_0
crossref_primary_10_2217_epi_2020_0349
crossref_primary_10_3390_v14112436
crossref_primary_10_18699_VJGB_22_15
crossref_primary_10_1074_jbc_RA120_014873
crossref_primary_10_1038_s41392_022_00884_5
crossref_primary_10_3389_fmicb_2023_1291761
crossref_primary_10_1128_mBio_00759_15
crossref_primary_10_1099_jgv_0_001558
crossref_primary_10_1128_JVI_01112_18
crossref_primary_10_3390_v14061317
crossref_primary_10_1002_jmv_26583
crossref_primary_10_1016_j_cytogfr_2021_10_005
crossref_primary_10_1016_j_virol_2017_07_019
crossref_primary_10_1039_D0SM01167C
crossref_primary_10_1080_15548627_2024_2414424
crossref_primary_10_1177_11779322211025876
crossref_primary_10_1016_j_isci_2022_105394
crossref_primary_10_1128_JVI_02776_14
crossref_primary_10_3390_v14030611
crossref_primary_10_3390_cells9051267
crossref_primary_10_1080_22221751_2021_1872353
crossref_primary_10_1128_mBio_01253_18
crossref_primary_10_3390_ijms24010720
crossref_primary_10_1016_j_jare_2020_11_012
crossref_primary_10_1128_jvi_01369_23
crossref_primary_10_1128_mbio_03331_24
crossref_primary_10_3390_pathogens10091218
crossref_primary_10_1016_j_antiviral_2014_12_015
crossref_primary_10_1002_jmv_70020
crossref_primary_10_3390_microorganisms11020445
crossref_primary_10_1007_s00018_025_05605_z
crossref_primary_10_1007_s11481_020_09944_5
crossref_primary_10_3390_v15020359
crossref_primary_10_1007_s00018_022_04469_x
crossref_primary_10_1186_s12863_022_01044_y
crossref_primary_10_1007_s00284_024_03671_3
crossref_primary_10_1016_j_chom_2023_06_002
crossref_primary_10_1016_j_jbc_2024_107834
crossref_primary_10_2174_2666796701999201026205553
crossref_primary_10_1083_jcb_202306101
crossref_primary_10_1016_j_virusres_2018_01_002
crossref_primary_10_1099_jgv_0_001773
crossref_primary_10_2222_jsv_70_155
crossref_primary_10_3390_v16081331
crossref_primary_10_3390_v14071349
crossref_primary_10_1016_j_cellin_2022_100031
crossref_primary_10_2147_IDR_S306441
crossref_primary_10_3390_v12050571
crossref_primary_10_4161_bioe_29323
crossref_primary_10_1016_j_molstruc_2025_141730
crossref_primary_10_1186_s13059_020_02191_0
crossref_primary_10_3390_idr13010013
crossref_primary_10_1016_j_jbc_2024_107549
crossref_primary_10_3390_v7082825
crossref_primary_10_3390_v12091039
crossref_primary_10_1016_j_vacune_2023_02_001
crossref_primary_10_1016_j_micpath_2020_104586
crossref_primary_10_1016_j_ijbiomac_2024_133401
crossref_primary_10_1128_jvi_00349_24
crossref_primary_10_1016_j_cell_2021_10_017
crossref_primary_10_1016_j_tim_2020_05_009
crossref_primary_10_1111_jcmm_17103
crossref_primary_10_3390_v13010090
crossref_primary_10_1586_14760584_2015_1095096
crossref_primary_10_3389_fmicb_2022_907422
crossref_primary_10_3390_v13050787
crossref_primary_10_1002_jmv_27225
crossref_primary_10_3390_ijms23126394
crossref_primary_10_1128_mBio_01658_17
crossref_primary_10_1038_s41598_020_74050_8
crossref_primary_10_3390_pathogens11020259
crossref_primary_10_1016_j_antiviral_2017_11_001
crossref_primary_10_1038_s41598_022_13373_0
crossref_primary_10_1002_path_5547
crossref_primary_10_1128_jvi_01575_23
crossref_primary_10_1126_science_abd3629
crossref_primary_10_3390_pathogens12091185
crossref_primary_10_2217_fmb_2021_0044
crossref_primary_10_1126_science_abm1208
crossref_primary_10_1016_j_isci_2023_108080
crossref_primary_10_1128_jvi_00878_23
crossref_primary_10_1016_j_gene_2022_147020
crossref_primary_10_3390_v14050861
crossref_primary_10_1016_j_celrep_2023_112286
crossref_primary_10_1016_j_jbc_2021_101548
crossref_primary_10_4014_jmb_2206_06064
crossref_primary_10_1093_jmcb_mjaa042
crossref_primary_10_2217_fvl_2018_0144
crossref_primary_10_1093_molbev_msaa231
crossref_primary_10_52586_4931
crossref_primary_10_3390_cells12020262
crossref_primary_10_1007_s00415_020_10197_8
crossref_primary_10_3390_v6072826
crossref_primary_10_1080_07391102_2024_2411523
crossref_primary_10_1111_boc_202000158
crossref_primary_10_1002_cbin_11400
crossref_primary_10_1038_s41579_022_00839_1
crossref_primary_10_1128_mBio_01107_13
crossref_primary_10_1016_j_celrep_2020_108234
crossref_primary_10_1038_s41467_023_43666_5
crossref_primary_10_1128_spectrum_01271_21
crossref_primary_10_1074_jbc_REV120_013930
crossref_primary_10_1007_s13205_020_02619_1
crossref_primary_10_7717_peerj_9576
crossref_primary_10_1016_j_tcb_2023_12_006
crossref_primary_10_1002_pro_3208
crossref_primary_10_1146_annurev_micro_020518_115759
crossref_primary_10_1089_mab_2020_0028
crossref_primary_10_1016_j_intimp_2020_107225
crossref_primary_10_1021_acs_chemrev_1c00965
crossref_primary_10_3390_v13081487
crossref_primary_10_1016_j_semcdb_2019_07_013
crossref_primary_10_1099_mgen_0_000734
crossref_primary_10_1002_mef2_29
crossref_primary_10_1038_s41421_021_00268_z
crossref_primary_10_1016_j_celrep_2021_109133
crossref_primary_10_1016_j_heliyon_2020_e04743
crossref_primary_10_1089_dna_2020_5703
crossref_primary_10_1016_j_chom_2023_05_003
crossref_primary_10_1016_j_gendis_2020_08_013
crossref_primary_10_1016_j_virol_2017_10_004
crossref_primary_10_1038_s41598_023_30045_9
crossref_primary_10_1111_tra_12738
crossref_primary_10_1016_j_jmb_2020_11_024
crossref_primary_10_2217_fvl_2018_0008
crossref_primary_10_1002_slct_202001709
crossref_primary_10_1016_j_antiviral_2023_105590
crossref_primary_10_3390_v8070184
crossref_primary_10_1073_pnas_2305674120
crossref_primary_10_1038_s41467_022_31097_7
crossref_primary_10_1021_acs_jmedchem_3c01238
crossref_primary_10_1126_sciadv_adq9580
crossref_primary_10_1007_s11427_021_1964_4
crossref_primary_10_1080_07391102_2020_1790426
crossref_primary_10_1080_07391102_2024_2328745
crossref_primary_10_3390_ijms22031308
crossref_primary_10_3906_biy_2005_111
crossref_primary_10_1016_j_chom_2020_11_003
crossref_primary_10_1089_hs_2023_0008
crossref_primary_10_1128_mbio_03054_22
crossref_primary_10_1016_j_virol_2014_04_027
crossref_primary_10_1016_j_virusres_2014_12_021
crossref_primary_10_1371_journal_pbio_3000715
crossref_primary_10_1080_23144599_2023_2222981
crossref_primary_10_3389_fgene_2021_626642
crossref_primary_10_1016_j_prp_2020_153222
crossref_primary_10_3390_membranes11010064
crossref_primary_10_1128_JVI_00401_15
crossref_primary_10_3389_fnhum_2021_656313
crossref_primary_10_1016_j_jare_2021_11_014
crossref_primary_10_1021_acs_jproteome_3c00600
crossref_primary_10_1016_j_antiviral_2016_10_005
crossref_primary_10_1016_j_mcpro_2021_100120
crossref_primary_10_1186_s11658_022_00341_9
crossref_primary_10_1590_1678_4685_gmb_2020_0212
crossref_primary_10_1002_jmv_29200
crossref_primary_10_1016_j_biopha_2021_112230
crossref_primary_10_1021_acschembio_3c00312
crossref_primary_10_1128_mbio_03358_23
crossref_primary_10_1371_journal_pcbi_1009147
crossref_primary_10_1016_j_intimp_2022_108531
crossref_primary_10_1016_j_vacun_2022_10_006
crossref_primary_10_1016_j_virusres_2016_04_001
crossref_primary_10_1128_JVI_01561_21
crossref_primary_10_3389_fimmu_2023_1268854
crossref_primary_10_1016_j_tim_2014_06_003
crossref_primary_10_1002_pro_4075
crossref_primary_10_1016_j_cytogfr_2017_05_007
crossref_primary_10_12688_f1000research_73170_3
crossref_primary_10_12688_f1000research_73170_2
crossref_primary_10_12688_f1000research_73170_1
crossref_primary_10_1074_jbc_M115_662130
crossref_primary_10_1146_annurev_virology_100114_055218
crossref_primary_10_1080_22221751_2023_2209208
crossref_primary_10_3389_fmicb_2022_895741
crossref_primary_10_1093_jleuko_qiae170
crossref_primary_10_1146_annurev_virology_092920_021307
crossref_primary_10_3389_fphys_2024_1406635
crossref_primary_10_1016_j_scr_2021_102219
crossref_primary_10_1128_JVI_00197_15
crossref_primary_10_1371_journal_ppat_1010832
crossref_primary_10_3390_v10090477
crossref_primary_10_1016_j_jlr_2021_100129
crossref_primary_10_3389_fmicb_2014_00296
crossref_primary_10_1089_dna_2013_2304
crossref_primary_10_1080_15548627_2024_2442849
crossref_primary_10_15252_msb_202110387
crossref_primary_10_1186_s12931_020_01581_z
crossref_primary_10_1007_s12033_024_01146_1
crossref_primary_10_1021_acs_chemrev_1c01062
crossref_primary_10_1128_JVI_01463_17
crossref_primary_10_1128_mbio_00688_23
crossref_primary_10_1128_mBio_02371_21
crossref_primary_10_1111_cei_13523
crossref_primary_10_3389_fcell_2022_1011221
crossref_primary_10_1016_j_micpath_2022_105699
crossref_primary_10_1146_annurev_biochem_072711_163501
crossref_primary_10_3389_fviro_2021_815388
crossref_primary_10_1016_j_jtbi_2021_110604
crossref_primary_10_3390_ijms241613002
crossref_primary_10_1016_j_jaut_2020_102468
crossref_primary_10_1134_S0006297921030020
crossref_primary_10_31857_S0320972521030027
crossref_primary_10_1194_jlr_R120000851
crossref_primary_10_3390_v13091880
crossref_primary_10_3389_fmicb_2022_789882
crossref_primary_10_1002_mco2_157
crossref_primary_10_2147_DDDT_S293216
crossref_primary_10_1016_j_virol_2015_02_029
crossref_primary_10_1080_07391102_2021_1897681
crossref_primary_10_12688_wellcomeopenres_16119_1
crossref_primary_10_1016_j_fmre_2021_01_013
crossref_primary_10_1080_15548627_2020_1817280
crossref_primary_10_1080_22221751_2022_2128434
crossref_primary_10_1083_jcb_202203060
crossref_primary_10_1111_cmi_12620
crossref_primary_10_3390_v14091991
crossref_primary_10_1128_mbio_03368_23
crossref_primary_10_1016_j_antiviral_2022_105270
crossref_primary_10_1371_journal_ppat_1005473
crossref_primary_10_1016_j_molstruc_2022_134642
crossref_primary_10_3389_fcell_2021_640456
crossref_primary_10_3389_fcell_2024_1386149
crossref_primary_10_1016_j_mib_2024_102466
crossref_primary_10_1080_15548627_2022_2099206
crossref_primary_10_1371_journal_pone_0290675
crossref_primary_10_3389_fimmu_2024_1340332
crossref_primary_10_3390_ijms24054523
crossref_primary_10_15407_ubj94_04_005
crossref_primary_10_1016_j_bbadis_2021_166154
crossref_primary_10_1038_s41586_022_04835_6
crossref_primary_10_1080_21505594_2021_1871823
crossref_primary_10_3390_biom14091061
crossref_primary_10_1002_jmv_25681
crossref_primary_10_1016_j_jtcme_2021_10_003
crossref_primary_10_1080_07391102_2021_2025149
crossref_primary_10_1128_mmbr_00016_23
crossref_primary_10_1128_jvi_00584_24
crossref_primary_10_1016_j_molcel_2020_07_027
crossref_primary_10_1002_iub_2380
crossref_primary_10_1038_s41586_024_07817_y
crossref_primary_10_1128_mBio_02320_16
crossref_primary_10_3390_cells11020302
crossref_primary_10_3389_fphar_2021_616993
crossref_primary_10_1016_j_ygeno_2020_04_016
crossref_primary_10_1128_mBio_02754_20
crossref_primary_10_2147_JIR_S267280
crossref_primary_10_1016_j_virol_2019_05_002
crossref_primary_10_3389_fmicb_2020_01576
crossref_primary_10_1099_jgv_0_001918
crossref_primary_10_3389_fcimb_2024_1383917
crossref_primary_10_1016_j_celrep_2021_109479
crossref_primary_10_1186_s12985_019_1182_0
crossref_primary_10_3390_v13091798
crossref_primary_10_1111_bph_15094
crossref_primary_10_1002_iid3_639
crossref_primary_10_1038_s41580_021_00432_z
crossref_primary_10_1073_pnas_2301689120
crossref_primary_10_1146_annurev_biochem_052521_115653
crossref_primary_10_1089_jir_2020_0214
crossref_primary_10_1016_j_virol_2020_12_010
crossref_primary_10_1097_CM9_0000000000002158
crossref_primary_10_1128_jvi_00264_23
crossref_primary_10_1186_s13578_021_00567_8
crossref_primary_10_3390_v13020197
crossref_primary_10_3390_pathogens9050367
crossref_primary_10_1016_j_virol_2020_12_007
crossref_primary_10_3390_pharmaceutics13091405
crossref_primary_10_1126_sciadv_adj1736
crossref_primary_10_1016_j_ebiom_2021_103381
crossref_primary_10_1128_mBio_00987_13
crossref_primary_10_1080_2162402X_2020_1807836
crossref_primary_10_1134_S0006297922120215
crossref_primary_10_1016_j_eng_2018_11_035
crossref_primary_10_1016_j_micpath_2020_104641
crossref_primary_10_1016_j_ijbiomac_2021_02_212
crossref_primary_10_1371_journal_ppat_1010113
crossref_primary_10_1016_j_micpath_2021_105236
crossref_primary_10_3390_v13091687
crossref_primary_10_3390_immuno1010004
crossref_primary_10_1016_j_virusres_2016_05_015
crossref_primary_10_32604_cmc_2022_023974
crossref_primary_10_1016_j_gpb_2021_09_007
crossref_primary_10_3390_v13102068
crossref_primary_10_1186_s12967_023_03996_w
crossref_primary_10_1007_s43440_020_00204_0
crossref_primary_10_1038_s41401_021_00851_w
crossref_primary_10_1007_s00018_020_03603_x
crossref_primary_10_1016_j_bsheal_2025_01_003
crossref_primary_10_1016_j_sjbs_2020_12_053
crossref_primary_10_3389_fmicb_2021_770656
crossref_primary_10_3390_v7062749
Cites_doi 10.1016/j.virol.2008.01.018
10.1128/JVI.01506-07
10.1091/mbc.e07-05-0415
10.1371/journal.pone.0003299
10.1038/nrmicro1890
10.1056/NEJMoa1211721
10.1146/annurev.micro.112408.134012
10.1128/JVI.01219-08
10.1074/jbc.M306124200
10.1371/journal.ppat.1002331
10.1128/JVI.78.24.13600-13612.2004
10.1371/journal.pone.0000459
10.1099/vir.0.81611-0
10.1038/nrmicro2147
10.1128/JVI.01826-09
10.1128/JVI.00403-11
10.1099/0022-1317-82-5-985
10.1128/mBio.00165-13
10.1371/journal.ppat.0010039
10.1016/S0022-2836(03)00865-9
10.1111/j.1462-5822.2010.01437.x
10.1016/j.chom.2010.06.010
10.1007/978-3-642-03683-5_6
10.3390/v3091610
10.1128/mBio.00473-12
10.1128/JVI.02756-07
10.1128/JVI.73.3.2016-2026.1999
10.1128/JVI.01244-13
10.1371/journal.ppat.1000054
10.1128/JVI.02631-07
10.1128/JVI.74.17.7911-7921.2000
10.1128/JVI.78.18.9977-9986.2004
10.1128/JVI.01257-07
10.1128/JVI.79.24.15189-15198.2005
10.1016/j.mib.2004.06.007
10.1128/JVI.00842-09
10.1056/NEJMoa030634
10.1016/j.jinf.2012.10.002
10.1016/j.virol.2006.12.009
10.1056/NEJMoa030747
10.1371/journal.ppat.1000088
10.1128/mBio.00002-13
10.1128/JVI.01358-06
10.1371/journal.pbio.0060226
10.1016/j.coviro.2011.09.008
10.1128/JVI.76.8.3697-3708.2002
10.1128/JVI.00254-09
10.1128/JVI.00042-11
10.1083/jcb.201202126
10.1128/JVI.02501-05
10.1128/JVI.01772-09
10.3390/v4113245
10.1016/j.virol.2006.11.027
10.4161/auto.7.11.16642
10.1016/j.virusres.2007.11.017
10.1128/JVI.74.19.8953-8965.2000
10.1128/JVI.01716-09
10.1016/j.virol.2012.10.001
ContentType Journal Article
Copyright Copyright © 2013 Angelini et al. 2013 Angelini et al.
Copyright_xml – notice: Copyright © 2013 Angelini et al. 2013 Angelini et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1128/mBio.00524-13
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate SARS-CoV nsp3, -4, and -6 Induce DMVs
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_0f1dca9e5d0546ea83b01b096b08e39f
PMC3747587
23943763
10_1128_mBio_00524_13
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI059799
– fundername: NIAID NIH HHS
  grantid: 5T32AI007319-23
– fundername: NIAID NIH HHS
  grantid: T32 AI007319
– fundername: NIAID NIH HHS
  grantid: R01 AI059799
– fundername: PHS HHS
  grantid: HHSN266200400058C
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c552t-cb26293fea94ff0fe27a684e8a90f727036337973fae9b9076ccb1314fd5c2423
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:14:28 EDT 2025
Thu Aug 21 13:44:08 EDT 2025
Fri Jul 11 15:47:25 EDT 2025
Fri Jul 11 12:33:38 EDT 2025
Wed Feb 19 02:31:34 EST 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 01:52:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-cb26293fea94ff0fe27a684e8a90f727036337973fae9b9076ccb1314fd5c2423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Editor Anne Moscona, Weill Medical College-Cornell
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00524-13
PMID 23943763
PQID 1424325906
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0f1dca9e5d0546ea83b01b096b08e39f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3747587
proquest_miscellaneous_1746405335
proquest_miscellaneous_1424325906
pubmed_primary_23943763
crossref_primary_10_1128_mBio_00524_13
crossref_citationtrail_10_1128_mBio_00524_13
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-13
PublicationDateYYYYMMDD 2013-08-13
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2013
Publisher American Society of Microbiology
American Society for Microbiology
Publisher_xml – name: American Society of Microbiology
– name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_47_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
Salonen A (e_1_3_2_24_2) 2005; 285
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Ksiazek TG (e_1_3_2_3_2) 2003
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Centers for Disease Control and Prevention (e_1_3_2_6_2) 2003; 52
References_xml – ident: e_1_3_2_51_2
  doi: 10.1016/j.virol.2008.01.018
– ident: e_1_3_2_53_2
  doi: 10.1128/JVI.01506-07
– ident: e_1_3_2_59_2
  doi: 10.1091/mbc.e07-05-0415
– ident: e_1_3_2_58_2
  doi: 10.1371/journal.pone.0003299
– volume-title: novel coronavirus associated with severe acute respiratory syndromeN. Engl. J. Med.
  year: 2003
  ident: e_1_3_2_3_2
– ident: e_1_3_2_23_2
  doi: 10.1038/nrmicro1890
– ident: e_1_3_2_9_2
  doi: 10.1056/NEJMoa1211721
– ident: e_1_3_2_26_2
  doi: 10.1146/annurev.micro.112408.134012
– ident: e_1_3_2_45_2
  doi: 10.1128/JVI.01219-08
– ident: e_1_3_2_37_2
  doi: 10.1074/jbc.M306124200
– ident: e_1_3_2_4_2
  doi: 10.1371/journal.ppat.1002331
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.78.24.13600-13612.2004
– ident: e_1_3_2_50_2
  doi: 10.1371/journal.pone.0000459
– ident: e_1_3_2_16_2
  doi: 10.1099/vir.0.81611-0
– ident: e_1_3_2_18_2
  doi: 10.1038/nrmicro2147
– ident: e_1_3_2_39_2
  doi: 10.1128/JVI.01826-09
– ident: e_1_3_2_40_2
  doi: 10.1128/JVI.00403-11
– ident: e_1_3_2_42_2
  doi: 10.1099/0022-1317-82-5-985
– ident: e_1_3_2_12_2
  doi: 10.1128/mBio.00165-13
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.ppat.0010039
– volume: 52
  start-page: 269
  year: 2003
  ident: e_1_3_2_6_2
  article-title: Update: outbreak of severe acute respiratory syndrome—worldwide, 2003
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_17_2
  doi: 10.1016/S0022-2836(03)00865-9
– ident: e_1_3_2_36_2
  doi: 10.1111/j.1462-5822.2010.01437.x
– ident: e_1_3_2_25_2
  doi: 10.1016/j.chom.2010.06.010
– ident: e_1_3_2_20_2
  doi: 10.1007/978-3-642-03683-5_6
– ident: e_1_3_2_38_2
  doi: 10.3390/v3091610
– ident: e_1_3_2_8_2
  doi: 10.1128/mBio.00473-12
– volume: 285
  start-page: 139
  year: 2005
  ident: e_1_3_2_24_2
  article-title: Viral RNA replication in association with cellular membranes
  publication-title: Curr. Top. Microbiol. Immunol.
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.02756-07
– ident: e_1_3_2_43_2
  doi: 10.1128/JVI.73.3.2016-2026.1999
– ident: e_1_3_2_11_2
  doi: 10.1128/JVI.01244-13
– ident: e_1_3_2_27_2
  doi: 10.1371/journal.ppat.1000054
– ident: e_1_3_2_49_2
  doi: 10.1128/JVI.02631-07
– ident: e_1_3_2_62_2
  doi: 10.1128/JVI.74.17.7911-7921.2000
– ident: e_1_3_2_22_2
  doi: 10.1128/JVI.78.18.9977-9986.2004
– ident: e_1_3_2_54_2
  doi: 10.1128/JVI.01257-07
– ident: e_1_3_2_46_2
  doi: 10.1128/JVI.79.24.15189-15198.2005
– ident: e_1_3_2_14_2
  doi: 10.1016/j.mib.2004.06.007
– ident: e_1_3_2_57_2
  doi: 10.1128/JVI.00842-09
– ident: e_1_3_2_5_2
  doi: 10.1056/NEJMoa030634
– ident: e_1_3_2_10_2
  doi: 10.1016/j.jinf.2012.10.002
– ident: e_1_3_2_48_2
  doi: 10.1016/j.virol.2006.12.009
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJMoa030747
– ident: e_1_3_2_61_2
  doi: 10.1371/journal.ppat.1000088
– ident: e_1_3_2_7_2
  doi: 10.1128/mBio.00002-13
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.01358-06
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pbio.0060226
– ident: e_1_3_2_28_2
  doi: 10.1016/j.coviro.2011.09.008
– ident: e_1_3_2_31_2
  doi: 10.1128/JVI.76.8.3697-3708.2002
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.00254-09
– ident: e_1_3_2_32_2
  doi: 10.1128/JVI.00042-11
– ident: e_1_3_2_60_2
  doi: 10.1083/jcb.201202126
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.02501-05
– ident: e_1_3_2_52_2
  doi: 10.1128/JVI.01772-09
– ident: e_1_3_2_15_2
  doi: 10.3390/v4113245
– ident: e_1_3_2_30_2
  doi: 10.1016/j.virol.2006.11.027
– ident: e_1_3_2_56_2
  doi: 10.4161/auto.7.11.16642
– ident: e_1_3_2_47_2
  doi: 10.1016/j.virusres.2007.11.017
– ident: e_1_3_2_29_2
  doi: 10.1128/JVI.74.19.8953-8965.2000
– ident: e_1_3_2_33_2
  doi: 10.1128/JVI.01716-09
– ident: e_1_3_2_55_2
  doi: 10.1016/j.virol.2012.10.001
SSID ssj0000331830
Score 2.5368361
Snippet Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and...
ABSTRACT Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Cell Line
Cell Membrane Structures - metabolism
cell membranes
genome
Host-Pathogen Interactions
Humans
microtubules
Middle East respiratory syndrome coronavirus
molecular biology
pathogens
plasmids
RNA
SARS Virus - physiology
Severe acute respiratory syndrome coronavirus
tissue culture
transcription (genetics)
transfection
viral nonstructural proteins
Viral Nonstructural Proteins - metabolism
Virus Replication
viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2nSVCh9LRuZOth-ZiEhlBIKE1TchOSdkQXEm_o7hby7zMjeze7pY9Lr_YcZM2nmW8s6RvG3hkShVKNKaXRWKCYUJU2AZTWGE9BU9tA_ztOz8zJhfp0qS_XWn3RmbBeHrifuH2RqnH0LegxkgsD3sogqoDEOwgLsk0UfUUr1oqpHIMlYVUsRTVru399OJl-oJ-gqqzkRhLKWv2_I5i_npNcSzzHT9jjgTHyg36kT9kD6J6xh30Pydvn7OYcEI3AD-JiDvzL_c45Px_ECPgRqRT4n5Mfixk_mw6SsSS3wT-TSsOkm3E54mrEfTfmhlM3jwgcqXW4gvIUrrGg7oB_g1k-QveCXRx__Hp0Ug5tFMqodT0vY6gNJvUEvlUpiQR1441VYH0rEtIX2sqVTdvI5KENWCybGEMlK5XGOhLdesm2umkHrxmnBipYsNQJSRamdhKXa72KGLwTJr06FGy0nFcXB41xanVx5XKtUVtHbnDZDa6SBXu_Mr_pxTX-ZHhITloZkSZ2foBIcQNS3L-QUrC3Sxc7XEO0MYKzN13MHN32k1gHCvMXm0YZRReXdcFe9bBYDYfay1OgLlizAZiN8W6-6Sbfs5a3xHJO22b7f3zgG_aozs06LEJ8h20hmmAXKdM87OXVcQdu-RSt
  priority: 102
  providerName: Directory of Open Access Journals
Title Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles
URI https://www.ncbi.nlm.nih.gov/pubmed/23943763
https://www.proquest.com/docview/1424325906
https://www.proquest.com/docview/1746405335
https://pubmed.ncbi.nlm.nih.gov/PMC3747587
https://doaj.org/article/0f1dca9e5d0546ea83b01b096b08e39f
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQERIXVL5DaWUkxGlTkthxnAOqKKJUSHCBlfYW2c6YrrSblM1u1f77zjjZLVsVxCWHxIosz9jznsd-w9hbRaJQslCxUDkSFGXTWHuAWCtlaNHMtaX9jm_f1elYfp3kkxtJoWEAuzupHdWTGi9mh5e_r45wwn_oL8Do9_PjaXtI-5sypvq190OqiE7xDUg_LMqCnJd2XDDGJXGBOGOtuHn7D1sRKgj534U-bx-i_CMqneyyRwOc5B97-z9m96B5wh70BSavnrLzH4CuCty41RL44iatztdKBdyRhIG5mC5WHW_aQU-WtDh4kHCYNh0XIy5H3DQ1VxwpPDoDr9uVnUE8hzmy7Qb4BXThfN0zNj75_PPTaTzUWIhdnmfL2NlMYcT3YErpfeIhK4zSErQpE4_YhvK8oigL4Q2UFpm0cs6mIpW-zh1hsedsBzsHLxmn6irIZjKPCAzjPinPlUY6XNk9RsTMRmy0HtfKDQLkVAdjVgUikumKzFAFM1SpiNi7TfPzXnnjbw2PyUibRiSYHV60i1_VMP-qxKe1MyXkNWJUBUYLm6QW-ZtNNIjSR-zN2sQVTjDKmuDotauuoquAAkliov7RppBK0q3mPGIverfYdIdqz9MqHrFiy2G2-rv9pZmeBaFvgVwv18Wr_-jbHnuYhUIdGj34NdtBZ4F9hEtLexC2GfD5ZZIehElxDakvFVc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+acute+respiratory+syndrome+coronavirus+nonstructural+proteins+3%2C+4%2C+and+6+induce+double-membrane+vesicles&rft.jtitle=mBio&rft.au=Angelini%2C+Megan+M&rft.au=Akhlaghpour%2C+Marzieh&rft.au=Neuman%2C+Benjamin+W&rft.au=Buchmeier%2C+Michael+J&rft.date=2013-08-13&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.00524-13&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon