Link Prediction on Complex Networks: An Experimental Survey
Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had a huge impact on various complex networks in the real world, for example global trade networks, air transport networks, and even social networks, known as racial equality issues caused b...
Saved in:
Published in | Data Science and Engineering Vol. 7; no. 3; pp. 253 - 278 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.09.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2364-1185 2364-1541 2364-1541 |
DOI | 10.1007/s41019-022-00188-2 |
Cover
Abstract | Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had a huge impact on various complex networks in the real world, for example global trade networks, air transport networks, and even social networks, known as racial equality issues caused by the spread of the epidemic. Link prediction plays an important role in complex network analysis in that it can find missing links or predict the links which will arise in the future in the network by analyzing the existing network structures. Therefore, it is extremely important to study the link prediction problem on complex networks. There are a variety of techniques for link prediction based on the topology of the network and the properties of entities. In this work, a new taxonomy is proposed to divide the link prediction methods into five categories and a comprehensive overview of these methods is provided. The network embedding-based methods, especially graph neural network-based methods, which have attracted increasing attention in recent years, have been creatively investigated as well. Moreover, we analyze thirty-six datasets and divide them into seven types of networks according to their topological features shown in real networks and perform comprehensive experiments on these networks. We further analyze the results of experiments in detail, aiming to discover the most suitable approach for each kind of network. |
---|---|
AbstractList | Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had a huge impact on various complex networks in the real world, for example global trade networks, air transport networks, and even social networks, known as racial equality issues caused by the spread of the epidemic. Link prediction plays an important role in complex network analysis in that it can find missing links or predict the links which will arise in the future in the network by analyzing the existing network structures. Therefore, it is extremely important to study the link prediction problem on complex networks. There are a variety of techniques for link prediction based on the topology of the network and the properties of entities. In this work, a new taxonomy is proposed to divide the link prediction methods into five categories and a comprehensive overview of these methods is provided. The network embedding-based methods, especially graph neural network-based methods, which have attracted increasing attention in recent years, have been creatively investigated as well. Moreover, we analyze thirty-six datasets and divide them into seven types of networks according to their topological features shown in real networks and perform comprehensive experiments on these networks. We further analyze the results of experiments in detail, aiming to discover the most suitable approach for each kind of network. Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had a huge impact on various complex networks in the real world, for example global trade networks, air transport networks, and even social networks, known as racial equality issues caused by the spread of the epidemic. Link prediction plays an important role in complex network analysis in that it can find missing links or predict the links which will arise in the future in the network by analyzing the existing network structures. Therefore, it is extremely important to study the link prediction problem on complex networks. There are a variety of techniques for link prediction based on the topology of the network and the properties of entities. In this work, a new taxonomy is proposed to divide the link prediction methods into five categories and a comprehensive overview of these methods is provided. The network embedding-based methods, especially graph neural network-based methods, which have attracted increasing attention in recent years, have been creatively investigated as well. Moreover, we analyze thirty-six datasets and divide them into seven types of networks according to their topological features shown in real networks and perform comprehensive experiments on these networks. We further analyze the results of experiments in detail, aiming to discover the most suitable approach for each kind of network.Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had a huge impact on various complex networks in the real world, for example global trade networks, air transport networks, and even social networks, known as racial equality issues caused by the spread of the epidemic. Link prediction plays an important role in complex network analysis in that it can find missing links or predict the links which will arise in the future in the network by analyzing the existing network structures. Therefore, it is extremely important to study the link prediction problem on complex networks. There are a variety of techniques for link prediction based on the topology of the network and the properties of entities. In this work, a new taxonomy is proposed to divide the link prediction methods into five categories and a comprehensive overview of these methods is provided. The network embedding-based methods, especially graph neural network-based methods, which have attracted increasing attention in recent years, have been creatively investigated as well. Moreover, we analyze thirty-six datasets and divide them into seven types of networks according to their topological features shown in real networks and perform comprehensive experiments on these networks. We further analyze the results of experiments in detail, aiming to discover the most suitable approach for each kind of network. |
Audience | Academic |
Author | Song, Chunyao Ge, Yao Ge, Tingjian Wu, Haixia |
Author_xml | – sequence: 1 givenname: Haixia surname: Wu fullname: Wu, Haixia organization: College of Computer Science, Tianjin Key Laboratory of Network and Data Security Technology, Nankai University – sequence: 2 givenname: Chunyao orcidid: 0000-0002-5715-5092 surname: Song fullname: Song, Chunyao email: chunyao.song@nankai.edu.cn organization: College of Computer Science, Tianjin Key Laboratory of Network and Data Security Technology, Nankai University – sequence: 3 givenname: Yao surname: Ge fullname: Ge, Yao organization: College of Computer Science, Tianjin Key Laboratory of Network and Data Security Technology, Nankai University – sequence: 4 givenname: Tingjian surname: Ge fullname: Ge, Tingjian organization: University of Massachusetts Lowell |
BookMark | eNp9kltrFDEUxwep2Fr7BXwa8EUfpp6Ty0yiICxLrYVFxepzSDOZNe1ssiYzdfvtm3FbyhYpCeT2-59bzstizwdvi-I1wjECNO8TQ0BZASEVAApRkWfFAaE1q5Az3Lvfo-D7xVFKlwBA8omx-kWxT3nDmajxoPi4cP6q_B5t68zggi_znIfVureb8qsd_oZ4lT6UM1-ebNY2upX1g-7L8zFe25tXxfNO98ke3a2Hxa_PJz_nX6rFt9Oz-WxRGc7JUOkcL3LKTGuBsq4BK4ExjY1EaaRgndZ4gaCFyME2FCStSUtBCCqJpVTQw-LT1u56vFjZ1uQYou7VOoej440K2qndF-9-q2W4VjJn3MjJwNs7AzH8GW0a1MolY_teexvGpEgtkDFeA8_om0foZRijz-kpIiQAJ8jwgVrq3irnu5D9msmomjVY17XEZqKO_0Pl0dqVM_k7O5fvdwTvdgSZGexmWOoxJXV2_mOXFVvWxJBStJ0ybtDTF2YnrlcIauoTte0TlftE_esTRbKUPJLel_JJEd2KUob90saHwjyhugWOwMr1 |
CitedBy_id | crossref_primary_10_7717_peerj_17975 crossref_primary_10_1016_j_cie_2024_110631 crossref_primary_10_1016_j_csbj_2024_06_022 crossref_primary_10_1080_08839514_2024_2427545 crossref_primary_10_1007_s10462_024_10801_7 crossref_primary_10_1093_comjnl_bxae079 crossref_primary_10_14778_3681954_3681976 crossref_primary_10_1007_s11042_024_20123_z crossref_primary_10_3390_app14083221 crossref_primary_10_1007_s12065_024_00958_z crossref_primary_10_1016_j_asoc_2024_112616 crossref_primary_10_1016_j_ins_2024_121698 crossref_primary_10_3390_modelling5030063 crossref_primary_10_32604_cmes_2023_031513 crossref_primary_10_1016_j_eswa_2024_123304 crossref_primary_10_1007_s00607_023_01238_x crossref_primary_10_1007_s10489_025_06394_5 crossref_primary_10_1142_S0129183124502425 crossref_primary_10_1007_s41019_022_00201_8 crossref_primary_10_1016_j_chaos_2024_115683 crossref_primary_10_1016_j_ipm_2025_104073 crossref_primary_10_1016_j_adhoc_2025_103755 crossref_primary_10_1109_ACCESS_2024_3450506 crossref_primary_10_1016_j_physa_2023_128490 crossref_primary_10_1145_3589291 crossref_primary_10_1109_TNSE_2025_3526340 crossref_primary_10_1016_j_eswa_2024_124570 crossref_primary_10_1007_s10462_024_10998_7 |
Cites_doi | 10.1109/MC.2009.263 10.1038/nature06830 10.1016/S0378-8733(03)00009-1 10.1109/72.363450 10.1126/science.1073374 10.1109/TBDATA.2018.2850013 10.1002/asi.20591 10.1126/science.1116869 10.1016/S0378-8733(97)00016-6 10.1080/00107510500052444 10.1148/radiology.143.1.7063747 10.1145/1961189.1961194 10.1016/S0378-8733(01)00042-9 10.1140/epjb/e2011-10979-2 10.1140/epjb/e2004-00110-5 10.1093/nar/gku1003 10.1016/j.physa.2010.11.027 10.1038/nbt1116 10.1109/TKDE.2017.2730207 10.1145/1217299.1217301 10.1016/j.socnet.2010.03.006 10.1209/0295-5075/96/48007 10.1007/BF03181690 10.1109/21.97458 10.21136/CMJ.1973.101168 10.2307/2785979 10.1016/j.socnet.2011.07.001 10.1093/bioinformatics/bts688 10.1109/TKDE.2018.2849727 10.1089/cmb.2007.0069 10.1007/BF02289026 10.18637/jss.v024.i01 10.1137/S003614450342480 10.1016/j.procs.2016.04.102 10.1142/S0219525903001067 10.1093/comnet/cnu038 10.1016/j.jtbi.2010.11.033 10.1109/TSMC.1985.6313426 10.1038/nature04209 10.1038/30918 10.1007/s10470-018-1306-2 10.1371/journal.pone.0182968 10.1080/15427951.2004.10129088 10.1016/j.cell.2005.08.029 10.1140/epjb/e2009-00335-8 10.1038/msb4100134 10.1209/0295-5075/89/58007 10.1109/TKDE.2012.225 10.1109/ICDM.2007.108 10.1145/1401890.1401906 10.1109/ICCCI.2016.7479983 10.1145/2380718.2380741 10.1609/aaai.v29i1.9277 10.1137/1.9781611972795.94 10.1093/nar/gkw937 10.1007/978-1-4419-8462-3_9 10.1109/DASC.2009.130 10.1145/2939672.2939753 10.1145/2487788.2488173 10.1145/3097983.3097996 10.1073/pnas.0908366106 10.1145/2623330.2623732 10.1109/ICDE.2016.7498270 10.1103/PhysRevE.73.026120 10.1093/nar/gks1094 10.1145/1835804.1835837 10.1016/j.eswa.2021.115991 10.7551/mitpress/7432.003.0008 10.1145/3292500.3330925 10.1007/978-3-642-15939-8_9 10.1007/3-540-45748-8_8 10.1109/IJCNN.2011.6033513 10.1109/ICDM.2015.91 10.1007/978-3-642-23783-6_28 10.1103/PhysRevE.80.046122 10.1063/1.5120724 10.1103/PhysRevE.70.056122 10.1103/PhysRevE.64.025102 10.1109/JSAC.2011.111002 10.1002/9781118548387 10.1109/ICACI.2013.6748516 10.1016/j.eswa.2021.116033 10.1145/2939672.2939754 10.1103/PhysRevE.80.017101 10.1007/978-3-540-39718-2_23 10.1103/PhysRevLett.89.208701 10.1109/ICDE51399.2021.00051 10.1145/2736277.2741093 10.1145/3488560.3498531 10.1145/3178876.3186120 10.1515/crll.1882.92.1 10.1016/j.aiopen.2021.01.001 10.1016/S0169-7552(98)00110-X 10.1609/icwsm.v3i1.13937 10.1145/2020408.2020579 10.1073/pnas.0307545100 10.1609/aaai.v34i04.5731 10.1145/775047.775126 10.1016/j.jnca.2020.102716 10.1093/biomet/57.1.97 10.1007/978-3-662-04599-2_13 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022. |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022. |
DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1007/s41019-022-00188-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Computer Science |
EISSN | 2364-1541 |
EndPage | 278 |
ExternalDocumentID | PMC9211798 A716669171 10_1007_s41019_022_00188_2 |
GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1633271 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: National Natural Science Foundation of China grantid: 62172237 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: New England Transportation Consortium grantid: 20-2 – fundername: ; grantid: 62172237 – fundername: ; grantid: 20-2 – fundername: ; grantid: IIS-1633271 |
GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX CITATION PHGZM PHGZT ADMLS ARCSS 7SC 8FD 8FE 8FG ABJCF ABUWG ARAPS AZQEC BGLVJ DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c552t-a1001534cde034f70e9044a17919c984faa1b10a881857309362d3088392e3383 |
IEDL.DBID | 8FG |
ISSN | 2364-1185 2364-1541 |
IngestDate | Thu Aug 21 18:33:59 EDT 2025 Thu Sep 04 20:55:50 EDT 2025 Sat Sep 06 07:32:12 EDT 2025 Tue Feb 18 23:05:24 EST 2025 Wed Feb 12 06:40:05 EST 2025 Fri Feb 14 03:07:15 EST 2025 Thu Apr 24 22:55:04 EDT 2025 Tue Jul 01 04:35:57 EDT 2025 Fri Feb 21 02:45:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Link prediction 99-00 00-01 Data mining Network analysis Complex networks |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-a1001534cde034f70e9044a17919c984faa1b10a881857309362d3088392e3383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5715-5092 |
OpenAccessLink | https://www.proquest.com/docview/2890052141?pq-origsite=%requestingapplication% |
PMID | 35754861 |
PQID | 2890052141 |
PQPubID | 4402891 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9211798 proquest_miscellaneous_2681445605 proquest_journals_2890052141 gale_infotracmisc_A716669171 gale_infotracacademiconefile_A716669171 gale_incontextgauss_ISR_A716669171 crossref_citationtrail_10_1007_s41019_022_00188_2 crossref_primary_10_1007_s41019_022_00188_2 springer_journals_10_1007_s41019_022_00188_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Berlin |
PublicationTitle | Data Science and Engineering |
PublicationTitleAbbrev | Data Sci. Eng |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V |
References | Hanley, McNeil (CR144) 1982; 143 Zhou, Lü, Zhang (CR29) 2009; 71 Amaral, Ottino (CR1) 2004; 38 Katz (CR35) 1953; 18 CR39 CR38 CR37 CR36 Ravasz, Somera, Mongru, Oltvai, Barabási (CR28) 2002; 297 CR34 CR30 Opsahl, Agneessens, Skvoretz (CR104) 2010; 3 Neville, Jensen (CR46) 2001; 8 Jaccard (CR26) 1901; 37 Hamilton, Ying, Leskovec (CR77) 2017; 30 CR49 Adamic, Adar (CR13) 2003; 25 CR48 CR45 CR44 CR43 Gleiser, Danon (CR115) 2003; 6 CR42 Nandi, Das (CR16) 2013; 10 Mitzenmacher (CR31) 2004; 1 CR41 Isella, Stehlé, Barrat, Cattuto, Pinton, Van den Broeck (CR114) 2011; 271 Uchida, Shirayama (CR4) 2007; 10 Mahjoub, Atri (CR79) 2019; 99 CR59 CR58 CR57 CR55 CR137 CR54 CR138 CR135 CR136 Handcock, Hunter, Butts, Goodreau, Morris (CR141) 2008; 24 CR133 CR50 Ewing, Chu, Elisma, Li, Taylor, Climie, McBroom-Cerajewski, Robinson, O’Connor, Li (CR109) 2007; 3 CR134 CR131 Martínez, Berzal, Cubero (CR20) 2016; 49 CR132 Szklarczyk, Franceschini, Wyder, Forslund, Heller, Huerta-Cepas, Simonovic, Roth, Santos, Tsafou (CR9) 2015; 43 CR139 Moody (CR113) 2001; 23 Fiedler (CR127) 1973; 23 Bonchi, Castillo, Gionis, Jaimes (CR12) 2011; 2 Chen, Li, Chen, Hu, Chen (CR68) 2017; 12 Koren, Bell, Volinsky (CR66) 2009; 42 Duan, Ma, Aggarwal, Ma, Huai (CR71) 2017; 29 Sorensen (CR27) 1948; 5 CR69 Opsahl (CR108) 2011; 35 CR67 Keller, Gray, Givens (CR52) 1985; 4 CR63 CR147 CR62 Mitra, Pal (CR56) 1995; 6 CR61 CR145 CR60 CR142 Clauset, Moore, Newman (CR47) 2008; 453 CR78 Cui, Wang, Pei, Zhu (CR64) 2019; 31 CR76 CR75 CR74 CR73 CR72 CR70 CR119 CR118 CR3 Salton, McGill (CR25) 1986 CR5 Lei, Ruan (CR7) 2012; 29 Stojmirović, Yu (CR33) 2007; 14 CR8 Chebotarev, Shamis (CR40) 1997; 58 Lü, Zhou (CR2) 2011; 390 CR89 CR88 CR126 CR87 CR86 CR124 Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (CR146) 2013; 26 CR85 CR125 CR84 CR122 CR83 Newman (CR98) 2005; 46 CR123 CR82 CR120 Kossinets, Watts (CR6) 2006; 311 CR81 CR121 CR80 Leskovec, Kleinberg, Faloutsos (CR100) 2007; 1 CR128 Rual, Venkatesan, Hao, Hirozane-Kishikawa, Dricot, Li, Berriz, Gibbons, Dreze, Ayivi-Guedehoussou (CR111) 2005; 437 CR129 CR18 CR17 CR15 CR14 Han, Dupuy, Bertin, Cusick, Vidal (CR112) 2005; 23 CR99 CR10 CR97 CR96 CR93 CR92 Zhang, Yin, Zhu, Zhang (CR65) 2020; 6 CR91 CR90 Cortes, Vapnik (CR51) 1995; 20 Heemakshi Malhi (CR19) 2016; 5 Safavian, Landgrebe (CR53) 1991; 21 Yao, Wang, Pan, Yao (CR24) 2016; 83 Liu, Zhang, Lü, Zhou (CR32) 2011; 96 Stelzl, Worm, Lalowski, Haenig, Brembeck, Goehler, Stroedicke, Zenkner, Schoenherr, Koeppen (CR110) 2005; 122 Šubelj, Bajec (CR130) 2011; 81 CR23 CR22 Coleman, Katz, Menzel (CR116) 1957; 20 CR21 CR105 CR102 Watts, Strogatz (CR95) 1998; 393 CR103 CR101 Liben-Nowell, Kleinberg (CR11) 2007; 58 Csardi, Nepusz (CR140) 2006; 1695 De Domenico, Porter, Arenas (CR143) 2015; 3 Freeman, Webster, Kirke (CR117) 1998; 20 CR106 Newman (CR94) 2003; 45 CR107 188_CR14 188_CR15 188_CR17 188_CR18 E Ravasz (188_CR28) 2002; 297 A Stojmirović (188_CR33) 2007; 14 J-DJ Han (188_CR112) 2005; 23 188_CR139 M Mitzenmacher (188_CR31) 2004; 1 188_CR137 188_CR138 188_CR131 188_CR132 188_CR21 188_CR135 188_CR22 188_CR136 188_CR23 188_CR133 188_CR134 C Cortes (188_CR51) 1995; 20 MS Handcock (188_CR141) 2008; 24 J Neville (188_CR46) 2001; 8 J Leskovec (188_CR100) 2007; 1 M Fiedler (188_CR127) 1973; 23 188_CR128 188_CR129 188_CR126 188_CR90 188_CR91 188_CR92 ME Newman (188_CR94) 2003; 45 T Opsahl (188_CR108) 2011; 35 188_CR93 188_CR120 188_CR121 188_CR96 188_CR97 C Lei (188_CR7) 2012; 29 188_CR10 188_CR124 188_CR99 188_CR125 188_CR122 188_CR123 P Jaccard (188_CR26) 1901; 37 L Šubelj (188_CR130) 2011; 81 D Liben-Nowell (188_CR11) 2007; 58 SR Safavian (188_CR53) 1991; 21 LA Amaral (188_CR1) 2004; 38 F Bonchi (188_CR12) 2011; 2 188_CR80 188_CR81 188_CR82 188_CR83 188_CR84 188_CR85 188_CR86 188_CR87 188_CR88 188_CR89 188_CR69 A Bordes (188_CR146) 2013; 26 L Isella (188_CR114) 2011; 271 L Yao (188_CR24) 2016; 83 B Chen (188_CR68) 2017; 12 D Szklarczyk (188_CR9) 2015; 43 V Martínez (188_CR20) 2016; 49 188_CR70 T Opsahl (188_CR104) 2010; 3 188_CR72 188_CR142 188_CR73 188_CR74 188_CR75 188_CR76 188_CR147 G Kossinets (188_CR6) 2006; 311 188_CR78 188_CR145 188_CR58 188_CR59 P Chebotarev (188_CR40) 1997; 58 LA Adamic (188_CR13) 2003; 25 Z Liu (188_CR32) 2011; 96 M De Domenico (188_CR143) 2015; 3 D Zhang (188_CR65) 2020; 6 188_CR60 188_CR61 L Katz (188_CR35) 1953; 18 188_CR62 188_CR63 188_CR67 188_CR48 188_CR49 TA Sorensen (188_CR27) 1948; 5 A Clauset (188_CR47) 2008; 453 M Uchida (188_CR4) 2007; 10 L Lü (188_CR2) 2011; 390 G Salton (188_CR25) 1986 188_CR3 J-F Rual (188_CR111) 2005; 437 188_CR50 188_CR8 188_CR5 T Zhou (188_CR29) 2009; 71 DJ Watts (188_CR95) 1998; 393 188_CR54 188_CR55 188_CR57 AB Mahjoub (188_CR79) 2019; 99 J Moody (188_CR113) 2001; 23 G Csardi (188_CR140) 2006; 1695 188_CR36 188_CR37 188_CR38 188_CR39 LC Freeman (188_CR117) 1998; 20 S Mitra (188_CR56) 1995; 6 P Cui (188_CR64) 2019; 31 188_CR118 MA Heemakshi Malhi (188_CR19) 2016; 5 188_CR119 188_CR41 188_CR42 188_CR43 188_CR44 JM Keller (188_CR52) 1985; 4 188_CR45 JA Hanley (188_CR144) 1982; 143 PM Gleiser (188_CR115) 2003; 6 W Hamilton (188_CR77) 2017; 30 ME Newman (188_CR98) 2005; 46 U Stelzl (188_CR110) 2005; 122 Y Koren (188_CR66) 2009; 42 G Nandi (188_CR16) 2013; 10 L Duan (188_CR71) 2017; 29 188_CR106 188_CR107 188_CR105 188_CR30 J Coleman (188_CR116) 1957; 20 188_CR102 188_CR103 RM Ewing (188_CR109) 2007; 3 188_CR34 188_CR101 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR97 – ident: CR74 – ident: CR39 – volume: 42 start-page: 30 issue: 8 year: 2009 end-page: 37 ident: CR66 article-title: Matrix factorization techniques for recommender systems publication-title: Computer doi: 10.1109/MC.2009.263 – volume: 453 start-page: 98 issue: 7191 year: 2008 ident: CR47 article-title: Hierarchical sturcture and the prediction of missing links in networks publication-title: Nature doi: 10.1038/nature06830 – volume: 10 start-page: 162 issue: 6 year: 2013 ident: CR16 article-title: A survey on using data mining techniques for online social network analysis publication-title: Int J Comput Sci Iss – volume: 25 start-page: 211 issue: 3 year: 2003 end-page: 230 ident: CR13 article-title: Friends and neighbors on the web publication-title: Soc Netw doi: 10.1016/S0378-8733(03)00009-1 – volume: 5 start-page: 244 issue: 6 year: 2016 end-page: 250 ident: CR19 article-title: A survey of various link prediction algorithms in complex networks publication-title: Int J Comput Sci Mob Comput – volume: 6 start-page: 51 issue: 1 year: 1995 end-page: 63 ident: CR56 article-title: Fuzzy multi-layer perceptron, inferencing and rule generation publication-title: IEEE Trans Neural Networks doi: 10.1109/72.363450 – ident: CR138 – ident: CR135 – ident: CR54 – ident: CR80 – ident: CR8 – volume: 297 start-page: 1551 issue: 5586 year: 2002 end-page: 1555 ident: CR28 article-title: Hierarchical organization of modularity in metabolic networks publication-title: Science doi: 10.1126/science.1073374 – ident: CR106 – ident: CR121 – ident: CR42 – volume: 6 start-page: 3 issue: 1 year: 2020 end-page: 28 ident: CR65 article-title: Network representation learning: a survey publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2018.2850013 – ident: CR129 – ident: CR101 – ident: CR92 – volume: 58 start-page: 1019 issue: 7 year: 2007 end-page: 1031 ident: CR11 article-title: The link-prediction problem for social networks publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi.20591 – ident: CR88 – ident: CR132 – volume: 311 start-page: 88 issue: 5757 year: 2006 end-page: 90 ident: CR6 article-title: Empirical analysis of an evolving social network publication-title: Science doi: 10.1126/science.1116869 – volume: 20 start-page: 109 issue: 2 year: 1998 end-page: 118 ident: CR117 article-title: Exploring social structure using dynamic three-dimensional color images publication-title: Soc Networks doi: 10.1016/S0378-8733(97)00016-6 – volume: 46 start-page: 323 issue: 5 year: 2005 end-page: 351 ident: CR98 article-title: Power laws, pareto distributions and Zipf’s law publication-title: Contemp Phys doi: 10.1080/00107510500052444 – ident: CR57 – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 ident: CR144 article-title: The meaning and use of the area under a receiver operating characteristic (roc) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 58 start-page: 1505 issue: 9 year: 1997 end-page: 1514 ident: CR40 article-title: The matrix-forest theorem and measuring relations in small social groups publication-title: Autom Rem Control – ident: CR60 – ident: CR36 – ident: CR85 – ident: CR5 – ident: CR147 – ident: CR126 – ident: CR18 – volume: 37 start-page: 547 issue: 142 year: 1901 end-page: 579 ident: CR26 article-title: Étude comparative de la distribution florale dans une portion des alpes et des jura publication-title: Bulletin de la Societe Vaudoise des Science Naturelles – ident: CR91 – ident: CR72 – year: 1986 ident: CR25 publication-title: Introduction to modern information retrieval – ident: CR89 – ident: CR30 – volume: 2 start-page: 22 issue: 3 year: 2011 ident: CR12 article-title: Social network analysis and mining for business applications publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961194 – ident: CR10 – ident: CR137 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR51 article-title: Support-vector networks publication-title: Mach Learn – ident: CR86 – volume: 30 start-page: 1 year: 2017 ident: CR77 article-title: Inductive representation learning on large graphs publication-title: Adv Neural Inf Process Syst – volume: 23 start-page: 261 issue: 4 year: 2001 end-page: 283 ident: CR113 article-title: Peer influence groups: identifying dense clusters in large networks publication-title: Soc Netw doi: 10.1016/S0378-8733(01)00042-9 – ident: CR63 – volume: 81 start-page: 353 issue: 3 year: 2011 end-page: 362 ident: CR130 article-title: Robust network community detection using balanced propagation publication-title: Eur Phys J B doi: 10.1140/epjb/e2011-10979-2 – ident: CR123 – volume: 38 start-page: 147 issue: 2 year: 2004 end-page: 162 ident: CR1 article-title: Complex networks publication-title: Eur Phys J B doi: 10.1140/epjb/e2004-00110-5 – volume: 43 start-page: D447 issue: D1 year: 2015 end-page: D452 ident: CR9 article-title: String v10: protein-protein interaction networks, integrated over the tree of life publication-title: Nucl Acids Res doi: 10.1093/nar/gku1003 – ident: CR142 – ident: CR69 – ident: CR44 – ident: CR103 – volume: 390 start-page: 1150 issue: 6 year: 2011 end-page: 1170 ident: CR2 article-title: Link prediction in complex networks: A survey publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – ident: CR3 – ident: CR38 – ident: CR134 – volume: 23 start-page: 839 issue: 7 year: 2005 end-page: 844 ident: CR112 article-title: Effect of sampling on topology predictions of protein–protein interaction networks publication-title: Nat Biotechnol doi: 10.1038/nbt1116 – ident: CR139 – volume: 29 start-page: 2402 issue: 11 year: 2017 end-page: 2416 ident: CR71 article-title: An ensemble approach to link prediction publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2730207 – ident: CR55 – volume: 1 start-page: 1 issue: 1 year: 2007 end-page: 40 ident: CR100 article-title: Graph evolution: densification and shrinking diameters publication-title: ACM Trans Knowl Discov Data doi: 10.1145/1217299.1217301 – ident: CR83 – volume: 3 start-page: 245 issue: 32 year: 2010 end-page: 251 ident: CR104 article-title: Node centrality in weighted networks: generalizing degree and shortest paths publication-title: Soc Networks doi: 10.1016/j.socnet.2010.03.006 – ident: CR41 – ident: CR120 – ident: CR128 – ident: CR145 – ident: CR70 – ident: CR125 – ident: CR102 – volume: 96 start-page: 48007 issue: 4 year: 2011 ident: CR32 article-title: Link prediction in complex networks: a local naïve bayes model publication-title: Europhys Lett doi: 10.1209/0295-5075/96/48007 – ident: CR49 – ident: CR93 – ident: CR87 – ident: CR131 – volume: 10 start-page: 253 issue: 3 year: 2007 end-page: 255 ident: CR4 article-title: Formation of patterns from complex networks publication-title: J Visual doi: 10.1007/BF03181690 – volume: 21 start-page: 660 issue: 3 year: 1991 end-page: 674 ident: CR53 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.97458 – volume: 23 start-page: 298 issue: 2 year: 1973 end-page: 305 ident: CR127 article-title: Algebraic connectivity of graphs publication-title: Czechoslov Math J doi: 10.21136/CMJ.1973.101168 – volume: 5 start-page: 1 year: 1948 end-page: 34 ident: CR27 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons publication-title: Biologiske Skrifter – volume: 20 start-page: 253 issue: 4 year: 1957 end-page: 270 ident: CR116 article-title: The diffusion of an innovation among physicians publication-title: Sociometry doi: 10.2307/2785979 – ident: CR119 – ident: CR61 – volume: 35 start-page: 159 issue: 2 year: 2011 end-page: 167 ident: CR108 article-title: Triadic closure in two-mode networks: redefining the global and local clustering coefficients publication-title: Soc Networks doi: 10.1016/j.socnet.2011.07.001 – volume: 29 start-page: 355 issue: 3 year: 2012 end-page: 364 ident: CR7 article-title: A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts688 – ident: CR58 – ident: CR84 – volume: 31 start-page: 833 issue: 5 year: 2019 end-page: 852 ident: CR64 article-title: A survey on network embedding publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2849727 – volume: 14 start-page: 1115 issue: 8 year: 2007 end-page: 1143 ident: CR33 article-title: Information flow in interaction networks publication-title: J Comput Biol doi: 10.1089/cmb.2007.0069 – volume: 18 start-page: 39 issue: 1 year: 1953 end-page: 43 ident: CR35 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 – ident: CR21 – ident: CR96 – ident: CR67 – ident: CR75 – ident: CR15 – ident: CR50 – volume: 24 start-page: 1548 issue: 1 year: 2008 ident: CR141 article-title: statnet: Software tools for the representation, visualization, analysis and simulation of network data publication-title: J Stat Softw doi: 10.18637/jss.v024.i01 – ident: CR136 – volume: 45 start-page: 167 issue: 2 year: 2003 end-page: 256 ident: CR94 article-title: The structure and function of complex networks publication-title: SIAM Rev doi: 10.1137/S003614450342480 – volume: 8 start-page: 653 issue: 2 year: 2001 end-page: 692 ident: CR46 article-title: Relational dependency networks publication-title: J Mach Learn Res – ident: CR78 – ident: CR81 – volume: 83 start-page: 82 year: 2016 end-page: 89 ident: CR24 article-title: Link prediction based on common-neighbors for dynamic social network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.102 – ident: CR105 – ident: CR99 – volume: 6 start-page: 565 issue: 4 year: 2003 end-page: 573 ident: CR115 article-title: Community structure in Jazz publication-title: Adv Complex Syst doi: 10.1142/S0219525903001067 – ident: CR122 – volume: 3 start-page: 159 issue: 2 year: 2015 end-page: 176 ident: CR143 article-title: Muxviz: a tool for multilayer analysis and visualization of networks publication-title: J Complex Netw doi: 10.1093/comnet/cnu038 – ident: CR43 – ident: CR14 – ident: CR37 – volume: 271 start-page: 166 issue: 1 year: 2011 end-page: 180 ident: CR114 article-title: What’s in a crowd? Analysis of face-to-face behavioral networks publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.11.033 – volume: 4 start-page: 580 year: 1985 end-page: 585 ident: CR52 article-title: A fuzzy k-nearest neighbor algorithm publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313426 – volume: 437 start-page: 1173 issue: 7062 year: 2005 end-page: 1178 ident: CR111 article-title: Towards a proteome-scale map of the human protein–protein interaction network publication-title: Nature doi: 10.1038/nature04209 – ident: CR133 – ident: CR82 – ident: CR23 – volume: 393 start-page: 440 issue: 6684 year: 1998 end-page: 442 ident: CR95 article-title: Collective dynamics of small-world networks publication-title: Nature doi: 10.1038/30918 – volume: 99 start-page: 23 year: 2019 end-page: 32 ident: CR79 article-title: An efficient end-to-end deep learning architecture for activity classification publication-title: Analog Integrated Circuits Signal Process doi: 10.1007/s10470-018-1306-2 – ident: CR124 – volume: 1695 start-page: 1 issue: 5 year: 2006 end-page: 9 ident: CR140 article-title: The igraph software package for complex network research publication-title: InterJ Complex Syst – volume: 26 start-page: 1 year: 2013 ident: CR146 article-title: Translating embeddings for modeling multi-relational data publication-title: Adv Neural Inf Process Syst – ident: CR48 – ident: CR73 – ident: CR90 – volume: 12 issue: 8 year: 2017 ident: CR68 article-title: Link prediction based on non-negative matirx factorization publication-title: PLoS ONE doi: 10.1371/journal.pone.0182968 – ident: CR17 – volume: 1 start-page: 226 issue: 2 year: 2004 end-page: 251 ident: CR31 article-title: A brief history of generative models for power law and lognormal distributions publication-title: Internet Math doi: 10.1080/15427951.2004.10129088 – volume: 122 start-page: 957 issue: 6 year: 2005 end-page: 968 ident: CR110 article-title: A human protein-protein interaction network: a resource for annotating the proteome publication-title: Cell doi: 10.1016/j.cell.2005.08.029 – ident: CR118 – ident: CR34 – volume: 71 start-page: 623 issue: 4 year: 2009 end-page: 630 ident: CR29 article-title: Predicting missing links via local information publication-title: Eur Phys J B doi: 10.1140/epjb/e2009-00335-8 – volume: 3 start-page: 89 issue: 1 year: 2007 ident: CR109 article-title: Large-scale mapping of human protein-protein interactions by mass spectrometry publication-title: Mol Syst Biol doi: 10.1038/msb4100134 – ident: CR59 – ident: CR76 – ident: CR107 – ident: CR62 – volume: 49 start-page: 69 issue: 4 year: 2016 ident: CR20 article-title: A survey of link prediction in complex networks publication-title: ACM Comput Surv (CSUR) – ident: 188_CR37 doi: 10.1209/0295-5075/89/58007 – volume: 10 start-page: 253 issue: 3 year: 2007 ident: 188_CR4 publication-title: J Visual doi: 10.1007/BF03181690 – volume: 35 start-page: 159 issue: 2 year: 2011 ident: 188_CR108 publication-title: Soc Networks doi: 10.1016/j.socnet.2011.07.001 – ident: 188_CR131 doi: 10.1109/TKDE.2012.225 – ident: 188_CR73 – volume: 37 start-page: 547 issue: 142 year: 1901 ident: 188_CR26 publication-title: Bulletin de la Societe Vaudoise des Science Naturelles – volume: 71 start-page: 623 issue: 4 year: 2009 ident: 188_CR29 publication-title: Eur Phys J B doi: 10.1140/epjb/e2009-00335-8 – ident: 188_CR50 doi: 10.1109/ICDM.2007.108 – ident: 188_CR145 doi: 10.1145/1401890.1401906 – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: 188_CR2 publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – ident: 188_CR18 doi: 10.1109/ICCCI.2016.7479983 – ident: 188_CR82 – ident: 188_CR126 doi: 10.1145/2380718.2380741 – ident: 188_CR137 doi: 10.1609/aaai.v29i1.9277 – volume: 3 start-page: 159 issue: 2 year: 2015 ident: 188_CR143 publication-title: J Complex Netw doi: 10.1093/comnet/cnu038 – volume: 311 start-page: 88 issue: 5757 year: 2006 ident: 188_CR6 publication-title: Science doi: 10.1126/science.1116869 – ident: 188_CR44 – ident: 188_CR21 – ident: 188_CR61 doi: 10.1137/1.9781611972795.94 – ident: 188_CR10 doi: 10.1093/nar/gkw937 – ident: 188_CR121 – ident: 188_CR17 doi: 10.1007/978-1-4419-8462-3_9 – ident: 188_CR118 doi: 10.1109/DASC.2009.130 – volume: 453 start-page: 98 issue: 7191 year: 2008 ident: 188_CR47 publication-title: Nature doi: 10.1038/nature06830 – ident: 188_CR89 doi: 10.1145/2939672.2939753 – volume: 96 start-page: 48007 issue: 4 year: 2011 ident: 188_CR32 publication-title: Europhys Lett doi: 10.1209/0295-5075/96/48007 – ident: 188_CR120 doi: 10.1145/2487788.2488173 – ident: 188_CR78 doi: 10.1145/3097983.3097996 – ident: 188_CR41 doi: 10.1073/pnas.0908366106 – ident: 188_CR22 doi: 10.1145/2623330.2623732 – ident: 188_CR23 doi: 10.1109/ICDE.2016.7498270 – volume: 83 start-page: 82 year: 2016 ident: 188_CR24 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.102 – volume: 1695 start-page: 1 issue: 5 year: 2006 ident: 188_CR140 publication-title: InterJ Complex Syst – volume: 20 start-page: 253 issue: 4 year: 1957 ident: 188_CR116 publication-title: Sociometry doi: 10.2307/2785979 – ident: 188_CR69 – volume: 99 start-page: 23 year: 2019 ident: 188_CR79 publication-title: Analog Integrated Circuits Signal Process doi: 10.1007/s10470-018-1306-2 – volume: 21 start-page: 660 issue: 3 year: 1991 ident: 188_CR53 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.97458 – ident: 188_CR139 – volume: 49 start-page: 69 issue: 4 year: 2016 ident: 188_CR20 publication-title: ACM Comput Surv (CSUR) – volume: 122 start-page: 957 issue: 6 year: 2005 ident: 188_CR110 publication-title: Cell doi: 10.1016/j.cell.2005.08.029 – volume: 10 start-page: 162 issue: 6 year: 2013 ident: 188_CR16 publication-title: Int J Comput Sci Iss – ident: 188_CR30 doi: 10.1103/PhysRevE.73.026120 – ident: 188_CR102 – ident: 188_CR88 – volume: 6 start-page: 565 issue: 4 year: 2003 ident: 188_CR115 publication-title: Adv Complex Syst doi: 10.1142/S0219525903001067 – ident: 188_CR8 doi: 10.1093/nar/gks1094 – volume: 23 start-page: 298 issue: 2 year: 1973 ident: 188_CR127 publication-title: Czechoslov Math J doi: 10.21136/CMJ.1973.101168 – volume: 5 start-page: 1 year: 1948 ident: 188_CR27 publication-title: Biologiske Skrifter – ident: 188_CR57 doi: 10.1145/1835804.1835837 – ident: 188_CR80 – ident: 188_CR70 doi: 10.1016/j.eswa.2021.115991 – ident: 188_CR45 doi: 10.7551/mitpress/7432.003.0008 – ident: 188_CR81 doi: 10.1145/3292500.3330925 – ident: 188_CR62 doi: 10.1007/978-3-642-15939-8_9 – ident: 188_CR101 doi: 10.1007/3-540-45748-8_8 – volume: 23 start-page: 261 issue: 4 year: 2001 ident: 188_CR113 publication-title: Soc Netw doi: 10.1016/S0378-8733(01)00042-9 – ident: 188_CR58 doi: 10.1109/IJCNN.2011.6033513 – ident: 188_CR60 doi: 10.1109/ICDM.2015.91 – ident: 188_CR106 doi: 10.1145/2487788.2488173 – ident: 188_CR49 – ident: 188_CR67 doi: 10.1007/978-3-642-23783-6_28 – ident: 188_CR133 doi: 10.1145/2487788.2488173 – ident: 188_CR136 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 188_CR144 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 6 start-page: 3 issue: 1 year: 2020 ident: 188_CR65 publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2018.2850013 – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 188_CR66 publication-title: Computer doi: 10.1109/MC.2009.263 – ident: 188_CR3 doi: 10.1103/PhysRevE.80.046122 – ident: 188_CR105 – volume: 38 start-page: 147 issue: 2 year: 2004 ident: 188_CR1 publication-title: Eur Phys J B doi: 10.1140/epjb/e2004-00110-5 – volume: 45 start-page: 167 issue: 2 year: 2003 ident: 188_CR94 publication-title: SIAM Rev doi: 10.1137/S003614450342480 – ident: 188_CR147 – ident: 188_CR48 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 188_CR51 publication-title: Mach Learn – ident: 188_CR90 doi: 10.1063/1.5120724 – ident: 188_CR54 – ident: 188_CR125 doi: 10.1103/PhysRevE.70.056122 – volume: 2 start-page: 22 issue: 3 year: 2011 ident: 188_CR12 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961194 – ident: 188_CR92 doi: 10.1103/PhysRevE.64.025102 – ident: 188_CR138 doi: 10.1109/JSAC.2011.111002 – ident: 188_CR55 doi: 10.1002/9781118548387 – volume: 31 start-page: 833 issue: 5 year: 2019 ident: 188_CR64 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2849727 – ident: 188_CR5 – ident: 188_CR63 doi: 10.1109/ICACI.2013.6748516 – volume: 3 start-page: 245 issue: 32 year: 2010 ident: 188_CR104 publication-title: Soc Networks doi: 10.1016/j.socnet.2010.03.006 – ident: 188_CR93 doi: 10.1016/j.eswa.2021.116033 – ident: 188_CR134 – ident: 188_CR72 doi: 10.1145/2939672.2939754 – volume: 29 start-page: 355 issue: 3 year: 2012 ident: 188_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts688 – volume: 20 start-page: 109 issue: 2 year: 1998 ident: 188_CR117 publication-title: Soc Networks doi: 10.1016/S0378-8733(97)00016-6 – volume: 23 start-page: 839 issue: 7 year: 2005 ident: 188_CR112 publication-title: Nat Biotechnol doi: 10.1038/nbt1116 – volume: 297 start-page: 1551 issue: 5586 year: 2002 ident: 188_CR28 publication-title: Science doi: 10.1126/science.1073374 – volume: 6 start-page: 51 issue: 1 year: 1995 ident: 188_CR56 publication-title: IEEE Trans Neural Networks doi: 10.1109/72.363450 – ident: 188_CR103 doi: 10.1145/2487788.2488173 – ident: 188_CR34 doi: 10.1103/PhysRevE.80.017101 – ident: 188_CR107 doi: 10.1145/2487788.2488173 – ident: 188_CR122 doi: 10.1007/978-3-540-39718-2_23 – volume: 12 issue: 8 year: 2017 ident: 188_CR68 publication-title: PLoS ONE doi: 10.1371/journal.pone.0182968 – volume: 8 start-page: 653 issue: 2 year: 2001 ident: 188_CR46 publication-title: J Mach Learn Res – volume: 4 start-page: 580 year: 1985 ident: 188_CR52 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313426 – volume: 26 start-page: 1 year: 2013 ident: 188_CR146 publication-title: Adv Neural Inf Process Syst – ident: 188_CR97 doi: 10.1103/PhysRevLett.89.208701 – ident: 188_CR74 doi: 10.1109/ICDE51399.2021.00051 – volume: 46 start-page: 323 issue: 5 year: 2005 ident: 188_CR98 publication-title: Contemp Phys doi: 10.1080/00107510500052444 – volume: 29 start-page: 2402 issue: 11 year: 2017 ident: 188_CR71 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2730207 – ident: 188_CR86 doi: 10.1145/2736277.2741093 – ident: 188_CR128 – volume: 81 start-page: 353 issue: 3 year: 2011 ident: 188_CR130 publication-title: Eur Phys J B doi: 10.1140/epjb/e2011-10979-2 – volume-title: Introduction to modern information retrieval year: 1986 ident: 188_CR25 – volume: 3 start-page: 89 issue: 1 year: 2007 ident: 188_CR109 publication-title: Mol Syst Biol doi: 10.1038/msb4100134 – volume: 437 start-page: 1173 issue: 7062 year: 2005 ident: 188_CR111 publication-title: Nature doi: 10.1038/nature04209 – volume: 58 start-page: 1505 issue: 9 year: 1997 ident: 188_CR40 publication-title: Autom Rem Control – volume: 271 start-page: 166 issue: 1 year: 2011 ident: 188_CR114 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.11.033 – volume: 14 start-page: 1115 issue: 8 year: 2007 ident: 188_CR33 publication-title: J Comput Biol doi: 10.1089/cmb.2007.0069 – ident: 188_CR85 doi: 10.1145/3488560.3498531 – ident: 188_CR91 doi: 10.1145/3178876.3186120 – ident: 188_CR135 – volume: 30 start-page: 1 year: 2017 ident: 188_CR77 publication-title: Adv Neural Inf Process Syst – ident: 188_CR124 doi: 10.1145/2487788.2488173 – ident: 188_CR36 doi: 10.1515/crll.1882.92.1 – ident: 188_CR75 doi: 10.1016/j.aiopen.2021.01.001 – ident: 188_CR84 – ident: 188_CR132 – ident: 188_CR96 doi: 10.1145/2487788.2488173 – volume: 43 start-page: D447 issue: D1 year: 2015 ident: 188_CR9 publication-title: Nucl Acids Res doi: 10.1093/nar/gku1003 – ident: 188_CR38 doi: 10.1016/S0169-7552(98)00110-X – ident: 188_CR142 doi: 10.1609/icwsm.v3i1.13937 – ident: 188_CR99 doi: 10.1145/2487788.2488173 – ident: 188_CR119 doi: 10.1145/2020408.2020579 – ident: 188_CR129 doi: 10.1073/pnas.0307545100 – ident: 188_CR83 doi: 10.1609/aaai.v34i04.5731 – ident: 188_CR123 – ident: 188_CR39 doi: 10.1145/775047.775126 – ident: 188_CR76 – volume: 18 start-page: 39 issue: 1 year: 1953 ident: 188_CR35 publication-title: Psychometrika doi: 10.1007/BF02289026 – ident: 188_CR15 doi: 10.1016/j.jnca.2020.102716 – volume: 58 start-page: 1019 issue: 7 year: 2007 ident: 188_CR11 publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi.20591 – ident: 188_CR14 – ident: 188_CR59 – volume: 1 start-page: 226 issue: 2 year: 2004 ident: 188_CR31 publication-title: Internet Math doi: 10.1080/15427951.2004.10129088 – volume: 393 start-page: 440 issue: 6684 year: 1998 ident: 188_CR95 publication-title: Nature doi: 10.1038/30918 – volume: 24 start-page: 1548 issue: 1 year: 2008 ident: 188_CR141 publication-title: J Stat Softw doi: 10.18637/jss.v024.i01 – volume: 25 start-page: 211 issue: 3 year: 2003 ident: 188_CR13 publication-title: Soc Netw doi: 10.1016/S0378-8733(03)00009-1 – ident: 188_CR42 doi: 10.1093/biomet/57.1.97 – ident: 188_CR87 – ident: 188_CR43 doi: 10.1007/978-3-662-04599-2_13 – volume: 5 start-page: 244 issue: 6 year: 2016 ident: 188_CR19 publication-title: Int J Comput Sci Mob Comput – volume: 1 start-page: 1 issue: 1 year: 2007 ident: 188_CR100 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/1217299.1217301 |
SSID | ssj0002118446 ssib044734210 ssib048876940 |
Score | 2.4191875 |
SecondaryResourceType | review_article |
Snippet | Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had a huge impact on various complex networks in... |
SourceID | pubmedcentral proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 253 |
SubjectTerms | Air transportation Algorithm Analysis and Problem Complexity Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Database Management Epidemics Experiments Graph neural networks Graph representations International trade Network analysis Neural networks Physics Proteins Review/Survey Papers Social networks Statistics for Engineering Surveys Systems and Data Security Taxonomy Topology |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdbx2Av_bh2NGtXvDHoyhZIHDsf69MxWrrBSmlX6JvxOU5bOHLjcjfW_76Sz8k13QcM8pJYiYkl2RKSfgJ4Z7i2ZWZFOLJUksNNHOZVyQkJM0NzRJeVoeLkb6fpyaX4eiWvfFFY02a7tyFJt1N3xW4CpacIKfucOskhf5_CM0kCRCHaJea4EFki-PJQQwnN0hYkjvZndHlyIRZd51IR4p301TR_nqZ3Yj3et3_PpXwUUHXn1PE6rHoDkw0XErEBT2w9gLW2eQPzujyA5y730zQD2PDPGvbeg1AfbMIhOansbEpxHOIdw4s-Mra_2Okidbz5xIY1O3rQIoBdzKc_7d0WXB4fff98EvpGC6GRks9CTUBMMhGmtFEiqiyyBS6jJuTSwhS5qLSOR3Gkc4ccRbHTlJcJ7k9oXFnycV_CSj2p7TYwnegqio3UuTWCwLSMTdHoLNHKSmSeRgHE7WIq41HIqRnGWHX4yY4BChmgHAMUD-BD986PBQbHP6nfEo8UgVvUlD1zredNo75cnKthRkFSdFDjAPY9UTXB6Y32xQj4E4SH1aPc7VGi9pn-cCsKymt_oyh4S0XRAoffdMP0JmW01XYyR5o0R18W7U0ZQNYToe4fCfm7P1Lf3jgE8IITkl8ewMdW2JaT_31lXv0f-Q684E4NKKFuF1Zm07l9jRbYbLTnFO4eiGsejg priority: 102 providerName: Springer Nature |
Title | Link Prediction on Complex Networks: An Experimental Survey |
URI | https://link.springer.com/article/10.1007/s41019-022-00188-2 https://www.proquest.com/docview/2890052141 https://www.proquest.com/docview/2681445605 https://pubmed.ncbi.nlm.nih.gov/PMC9211798 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB9afelLUWtpqh7bUqilDU02my99KOdxVxU8RCv4tuxtNlWQnF7uxL70b3dmby8aS4UjcOyEJLMzuzM7M78B-KS5MkVqhD8yVJLDdehnZcEJCTNFc0QVpabi5KNhsn8mDs_jc3fgVru0ysWaaBfqYqzpjPw7BcSo0FSEP65vfOoaRdFV10LjJSyHHPdaqhQf_GzOWNC5ydDdcbUytmJOoAjmPqWwUzs6FJLWfvR0Vf43U_JJuNTuQoMVeO3MR9adz_cqvDDVGqw6Ba3ZtkOR_vIGdsnLZMcTCsQQ8xn-SPmvzB0bznO_6x3WrVj_EcY_O51Nbs2fdTgb9H_19n3XKcHXccynviIkpTgSujBBJMo0MHkghCLo0VznmSiVCkdhoDIL_UTBz4QXES4waB0ZclLfwlI1rsw7YCpSZRDqWGVGC0LD0iZBq7FAMymKsyTwIFzwS2oHI07dLK5kA4BseSyRx9LyWHIPvjb3XM9BNJ6l_kjTIAmdoqL0l99qVtfy4PREdlOKcqKHGXrw2RGVY3y8Vq6aAD-CAK1alJstSlQf3R5ezLZ06lvLB2Hz4EMzTHdSSlplxjOkSTJ0RtFgjD1IW1LSfCNBd7dHqssLC-Gdc4Liyzz4tpCnh4f_nzPvn3_XDXjFrWRTBtwmLE0nM7OFJtN01LF60YHlvf7w-AT_9biga9Lr2EMIvB797d8D-nEU6Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfG7QFepo0P0bGNgECAWEWbpl-gCR1w0x3bTtM-pL2FXJoC0tTbrnfA_jn-Nuxe2tEh9japb0m_HNuxY_tngGeaK5PFRrgjQyU5XPtukmeckDBjNEdUlmsqTt4bRv1j8fkkPFmA33UtDKVV1jqxUtTZWNMZ-RsKiFGhqfDfn5271DWKoqt1Cw1lWytkWxXEmC3s2DEXP9GFK7cGn3C9n3O-3Tv62HdtlwFXhyGfuopQiMJA6Mx4gchjz6SeEIpgO1OdJiJXyh_5nkoq2CQKHEY8C1A40bIw5ODhc2_BoqADlA4sfugN9w-aUx50rxJ0uGy1TlWzJ1AIUpeS6KkhHrJpa0e8ui_8m6t5JWBb7YPby7BkDVjWnXPcCiyY4i6sWBVRspcWx_rVPXhHfi7bn1AoiJaf4UXq59T8YsN59nn5lnUL1vurywA7nE1-mIv7cHwjVHwAnWJcmIfAVKByz9ehSowWhMelTYR2a4aGWhAmkeeAX9NLagtkTv00TmUDwVzRWCKNZUVjyR143dxzNofxuHb2U1oGSfgYBSXgfFWzspSDwwPZjSnOij6u78ALOykf4-u1svUM-BMEqdWaudaaiQKs28P1akurQEp5ye4OPGmG6U5KiivMeIZzogTdYTRZQwfiFpc0_0jg4e2R4vu3CkQ85QQGmDiwWfPT5cv_T5nV67_1MdzuH-3tyt3BcOcR3OEVl1M-3hp0ppOZWUcDbjrasFLC4MtNC-YfmUxPSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTaC9ACugBQYzCAnQiJY4zhc8VWXVxkc1MSbtzXIdB5CmdGraafz33DlOtmyAhNSX1pda8Z3tO93vfgfwUnNlitQIf2qoJIfr0M_KghMTZoruiCpKTcXJXybJ_rH4eBKfXKnit2j3NiXZ1DQQS1O12D0ryt2u8E2gJeU-IdGpqxzq-hasEVcXgfpGyai1KCHSSPDLCw6tNU1awjg6qzH8yYRoOtAlwsdvsaus-fM0vdvr-hl-E1d5Lblq76zxfbjrnE02bKxjA1ZMNYB7bSMH5vb1AG5bHKiuB7DhfqvZa0dI_eYBvKeAlR3OKadDemT4oT85NRds0sDI63dsWLG9K-0C2NFyfm5-PYTj8d630b7vmi74Oo75wldEyhRHQhcmiESZBibHZVTEYprrPBOlUuE0DFRmWaQoj5rwIsKzCh0tQ_HuI1itZpXZBKYiVQahjlVmtCBiLW0SdEAL9LiiOEsCD8J2MaV2jOTUGONUdlzKVgESFSCtAiT3YKd75qzh4_in9AvSkSSii4qQNN_Vsq7lwdFXOUwpYYrBaujBKydUznB6rVxhAr4EcWP1JLd6krgTdX-4NQXpToJaUiKXCqQFDj_vhulJQrdVZrZEmSTDuBZ9z9iDtGdC3TsSC3h_pPr5w7KB55xY_TIP3rbGdjn531fm8f-Jb8Odww9j-flg8ukJrHO7IwhntwWri_nSPEXHbDF9ZvfebzcOJd8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Link+Prediction+on+Complex+Networks%3A+An+Experimental+Survey&rft.jtitle=Data+science+and+engineering&rft.au=Wu%2C+Haixia&rft.au=Song%2C+Chunyao&rft.au=Ge%2C+Yao&rft.au=Ge%2C+Tingjian&rft.date=2022-09-01&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=7&rft.issue=3&rft.spage=253&rft.epage=278&rft_id=info:doi/10.1007%2Fs41019-022-00188-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41019_022_00188_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |