Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation

Detailed characterization of all bona fide At4CL genes, and their corresponding recombinant proteins, together with that of an At4CL5 gene knockout, revealed that formation of syringyl lignin and sinapate ester does not occur via direct ligation of sinapic acid. A recent in silico analysis revealed...

Full description

Saved in:
Bibliographic Details
Published inPhytochemistry (Oxford) Vol. 66; no. 17; pp. 2072 - 2091
Main Authors Costa, Michael A., Bedgar, Diana L., Moinuddin, Syed G.A., Kim, Kye-Won, Cardenas, Claudia L., Cochrane, Fiona C., Shockey, Jay M., Helms, Gregory L., Amakura, Yoshiaki, Takahashi, Hironobu, Milhollan, Jessica K., Davin, Laurence B., Browse, John, Lewis, Norman G.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2005
Elsevier
Subjects
Online AccessGet full text
ISSN0031-9422
1873-3700
DOI10.1016/j.phytochem.2005.06.022

Cover

Abstract Detailed characterization of all bona fide At4CL genes, and their corresponding recombinant proteins, together with that of an At4CL5 gene knockout, revealed that formation of syringyl lignin and sinapate ester does not occur via direct ligation of sinapic acid. A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates ( p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His 6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His 6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with k enz ∼ 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at ∼100 μg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this “knockout” had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.
AbstractList A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with kenz approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.
Detailed characterization of all bona fide At4CL genes, and their corresponding recombinant proteins, together with that of an At4CL5 gene knockout, revealed that formation of syringyl lignin and sinapate ester does not occur via direct ligation of sinapic acid. A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates ( p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His 6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His 6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with k enz ∼ 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at ∼100 μg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this “knockout” had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with k(enz) approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microgram protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function.
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C- terminal His sub(6)-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His sub(6)-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p- coumaric, caffeic and ferulic acids into their CoA esters, whereas 5- hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with k sub(enz) 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at 100 kg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5- hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5- hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5- hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with kenz approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with kenz approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.
Author Takahashi, Hironobu
Bedgar, Diana L.
Kim, Kye-Won
Moinuddin, Syed G.A.
Helms, Gregory L.
Amakura, Yoshiaki
Lewis, Norman G.
Browse, John
Cardenas, Claudia L.
Davin, Laurence B.
Shockey, Jay M.
Milhollan, Jessica K.
Costa, Michael A.
Cochrane, Fiona C.
Author_xml – sequence: 1
  givenname: Michael A.
  surname: Costa
  fullname: Costa, Michael A.
– sequence: 2
  givenname: Diana L.
  surname: Bedgar
  fullname: Bedgar, Diana L.
– sequence: 3
  givenname: Syed G.A.
  surname: Moinuddin
  fullname: Moinuddin, Syed G.A.
– sequence: 4
  givenname: Kye-Won
  surname: Kim
  fullname: Kim, Kye-Won
– sequence: 5
  givenname: Claudia L.
  surname: Cardenas
  fullname: Cardenas, Claudia L.
– sequence: 6
  givenname: Fiona C.
  surname: Cochrane
  fullname: Cochrane, Fiona C.
– sequence: 7
  givenname: Jay M.
  surname: Shockey
  fullname: Shockey, Jay M.
– sequence: 8
  givenname: Gregory L.
  surname: Helms
  fullname: Helms, Gregory L.
– sequence: 9
  givenname: Yoshiaki
  surname: Amakura
  fullname: Amakura, Yoshiaki
– sequence: 10
  givenname: Hironobu
  surname: Takahashi
  fullname: Takahashi, Hironobu
– sequence: 11
  givenname: Jessica K.
  surname: Milhollan
  fullname: Milhollan, Jessica K.
– sequence: 12
  givenname: Laurence B.
  surname: Davin
  fullname: Davin, Laurence B.
– sequence: 13
  givenname: John
  surname: Browse
  fullname: Browse, John
– sequence: 14
  givenname: Norman G.
  surname: Lewis
  fullname: Lewis, Norman G.
  email: lewisn@wsu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17158563$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16099486$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhUeoiKaFV6DeAKtJ7fF4fip1EUX8SZVYQNeWY18nDjP2YHuCwlPxiDiZQCUWlJVt3e_ce-VzLrIz6yxk2RXBc4JJdb2dD5t9dHID_bzAmM1xNcdF8SSbkaamOa0xPstmGFOSt2VRnGcXIWxxAllVPcvOSYXbtmyqWfZzuRFeyAje_BDROIuMRTsTvUPCqumxc8hpFDeAhjEmaAeoH7to1mABlbl0Y596RLhZugXqzFoEQBbid-e_HhosvFgZ5YZgwg0Ke2_set8dOJuKhyHBWDEk_fXxkmqik27jOqTSVrtpoHa-P-73PHuqRRfgxem8zO7fvf2y_JDffXr_cbm4yyVjRcxbWZSCgKa6lG0tdbkSuqQrEFRWIBVrCdFK14qtBFWsxFhhUauWtUq1UkhJL7M3U9_Bu28jhMh7EyR0nbDgxsBrVjY1axuSyNf_JKuGNZi1xaNgWSerqqZJ4MsTOK56UHzwJv3wnv-2LQGvToAIUnTaCytNeOBqwhpW0cTVEye9C8GDfkAwPwSJb_mfIPFDkDiueApSUt7-pZQmHg2IXpjuP_RXk14Lx8Xap-3uPxeYUEwwLWnDErGYCEgu7gx4HqQBK0EZDzJy5cyjU34Bk3P4zw
CitedBy_id crossref_primary_10_1104_pp_108_125765
crossref_primary_10_3390_plants13182537
crossref_primary_10_1007_s10295_012_1165_2
crossref_primary_10_1021_acs_jnatprod_1c00054
crossref_primary_10_1105_tpc_114_125807
crossref_primary_10_1007_s00425_018_2965_z
crossref_primary_10_1021_acs_jafc_3c07379
crossref_primary_10_1111_j_1445_6664_2008_00315_x
crossref_primary_10_1007_s11103_022_01269_6
crossref_primary_10_1111_tpj_16528
crossref_primary_10_1093_jxb_ers306
crossref_primary_10_1016_j_indcrop_2022_115117
crossref_primary_10_1002_ps_1277
crossref_primary_10_1073_pnas_0708697104
crossref_primary_10_1016_j_abb_2013_10_019
crossref_primary_10_1104_pp_110_159269
crossref_primary_10_1016_j_plaphy_2024_108484
crossref_primary_10_1186_s12934_024_02592_x
crossref_primary_10_3390_ijms15022386
crossref_primary_10_1111_nph_20101
crossref_primary_10_1039_B605407B
crossref_primary_10_3390_genes7100089
crossref_primary_10_1111_j_1365_313X_2012_04933_x
crossref_primary_10_1128_aem_01149_22
crossref_primary_10_1016_j_bbalip_2015_04_004
crossref_primary_10_1105_tpc_108_062513
crossref_primary_10_1038_ng_2569
crossref_primary_10_1016_j_jarmap_2024_100552
crossref_primary_10_1186_s12870_020_2329_2
crossref_primary_10_1007_s11104_020_04625_x
crossref_primary_10_1111_j_1365_313X_2011_04512_x
crossref_primary_10_17660_ActaHortic_2018_1208_23
crossref_primary_10_1016_j_bbrc_2018_01_075
crossref_primary_10_1016_j_indcrop_2023_116798
crossref_primary_10_1016_j_plaphy_2024_108523
crossref_primary_10_1186_s12934_016_0415_9
crossref_primary_10_1007_s00253_022_11885_3
crossref_primary_10_1016_j_bbalip_2016_04_002
crossref_primary_10_1186_s13068_018_1257_y
crossref_primary_10_1016_j_synbio_2022_04_006
crossref_primary_10_1111_j_1365_3040_2010_02270_x
crossref_primary_10_3390_ijms140610958
crossref_primary_10_1016_j_bbrc_2024_150731
crossref_primary_10_1111_j_1365_3040_2007_01748_x
crossref_primary_10_1007_s11101_017_9544_y
crossref_primary_10_1093_pcp_pcu098
crossref_primary_10_1111_j_1469_8137_2008_02534_x
crossref_primary_10_1111_j_1759_6831_2012_00187_x
crossref_primary_10_1111_tpj_15387
crossref_primary_10_1007_s11101_006_9025_1
crossref_primary_10_3390_ijms252211891
crossref_primary_10_2174_2215083810666230822113623
crossref_primary_10_1186_s12870_019_1812_0
crossref_primary_10_1199_tab_0152
crossref_primary_10_1016_j_ydbio_2006_08_030
crossref_primary_10_1093_jxb_erm325
crossref_primary_10_1002_elsc_201700039
crossref_primary_10_3390_f12040451
crossref_primary_10_1016_j_plaphy_2010_10_004
crossref_primary_10_1016_j_gene_2023_147197
crossref_primary_10_1007_s00425_014_2212_1
crossref_primary_10_1038_srep26458
crossref_primary_10_1104_pp_111_179523
crossref_primary_10_1186_1475_2859_11_155
crossref_primary_10_1093_jxb_err416
crossref_primary_10_1016_j_phytochem_2008_06_014
crossref_primary_10_1186_s12870_020_02671_2
crossref_primary_10_1016_j_mec_2022_e00195
crossref_primary_10_2135_cropsci2017_08_0498
crossref_primary_10_1111_j_1469_8137_2008_02742_x
crossref_primary_10_1016_j_plgene_2025_100490
crossref_primary_10_1016_j_phytochem_2014_12_017
crossref_primary_10_1371_journal_pone_0114434
crossref_primary_10_1016_j_ymben_2020_01_007
crossref_primary_10_1093_plphys_kiae157
crossref_primary_10_1038_s41929_021_00631_z
crossref_primary_10_1071_CP23147
crossref_primary_10_1039_B819206E
crossref_primary_10_1042_BCJ20190527
crossref_primary_10_1002_ps_1404
crossref_primary_10_1021_acs_jafc_9b00413
crossref_primary_10_1007_s00299_018_2288_3
crossref_primary_10_1039_b510386j
crossref_primary_10_3390_agronomy12112650
crossref_primary_10_1016_j_indcrop_2024_119646
crossref_primary_10_3390_horticulturae8080701
crossref_primary_10_1093_jxb_eru260
crossref_primary_10_1111_ppl_12550
crossref_primary_10_1093_pcp_pcx037
crossref_primary_10_1104_pp_110_156224
crossref_primary_10_3390_genes6030901
crossref_primary_10_1186_s40064_016_2532_7
crossref_primary_10_1080_21655979_2024_2305029
crossref_primary_10_1590_S1415_47572007000500010
crossref_primary_10_1039_D2NP00028H
crossref_primary_10_1007_s11105_014_0803_4
crossref_primary_10_1093_treephys_tpu031
crossref_primary_10_1016_j_bmc_2018_04_006
crossref_primary_10_1007_s40011_017_0922_4
crossref_primary_10_1016_j_scienta_2021_110030
crossref_primary_10_1093_pcp_pcad089
crossref_primary_10_1016_j_bbrc_2012_12_019
crossref_primary_10_1002_cbdv_200590040
crossref_primary_10_1016_j_procbio_2008_02_001
crossref_primary_10_1016_j_biombioe_2018_05_005
crossref_primary_10_1104_pp_106_086405
crossref_primary_10_3390_pr7010045
crossref_primary_10_1371_journal_pone_0257478
crossref_primary_10_1007_s10265_016_0882_4
crossref_primary_10_1074_jbc_M607854200
crossref_primary_10_1590_1678_4685_gmb_2018_0355
crossref_primary_10_1093_pcp_pct073
crossref_primary_10_1186_s13020_020_00354_6
crossref_primary_10_1007_s12155_010_9085_3
Cites_doi 10.1016/S0031-9422(01)00460-5
10.1007/BF00042072
10.1104/pp.103.020552
10.1111/j.1432-1033.1982.tb06572.x
10.1093/oxfordjournals.pcp.a029045
10.1105/tpc.9.11.1985
10.1007/BF00211777
10.1104/pp.116.2.743
10.1046/j.1432-1033.2002.02775.x
10.1074/jbc.M112051200
10.1111/j.1432-1033.1988.tb14328.x
10.1515/hfsg.1986.40.2.113
10.1038/35048692
10.1016/S0021-9258(19)68741-7
10.1016/0014-5793(73)80123-1
10.1074/jbc.M413266200
10.1016/j.phytochem.2004.12.016
10.1002/jsfa.2740510405
10.1104/pp.010603
10.1016/S0031-9422(02)00211-X
10.1046/j.1365-313X.1999.00491.x
10.1104/pp.108.1.85
10.1006/abio.2001.5574
10.1016/0031-9422(77)80090-3
10.1073/pnas.95.9.5407
10.1002/j.1460-2075.1987.tb02353.x
10.1093/bioinformatics/16.2.111
10.1016/j.phytochem.2004.05.006
10.1073/pnas.0307987100
10.1016/S0031-9422(01)00150-9
10.1016/0031-9422(73)80443-1
10.1515/BC.2001.076
10.1016/B978-0-08-091283-7.00085-0
10.1104/pp.103.026484
10.1104/pp.102.4.1147
10.1016/0014-5793(70)80492-6
10.1074/jbc.M413578200
10.1093/jxb/21.4.887
10.1104/pp.113.1.65
10.1093/nar/18.20.6144
10.1111/j.1432-1033.1975.tb03999.x
10.1111/j.1432-1033.1974.tb03359.x
10.1016/S0015-3796(17)30101-4
10.1016/S0031-9422(03)00517-X
10.1073/pnas.0307307101
10.1016/0003-9861(77)90347-2
10.1002/recl.19911100512
10.1093/nar/25.24.4876
10.1073/pnas.1430550100
10.1093/nar/22.22.4673
10.1016/S0031-9422(00)91091-4
10.1016/S0021-9258(18)93010-3
10.1074/jbc.M308493200
10.1016/S0014-5793(00)01133-9
10.1104/pp.112.1.193
10.1093/nar/29.9.e45
10.1074/jbc.M100355200
10.1002/jsfa.2740510202
10.1074/jbc.M202632200
10.1016/S0044-328X(72)80063-1
10.1007/s00425-002-0865-7
10.1139/o59-004
ContentType Journal Article
Conference Proceeding
Copyright 2005 Elsevier Ltd
2005 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: 2005 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
8FD
FR3
P64
RC3
DOI 10.1016/j.phytochem.2005.06.022
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

AGRICOLA

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1873-3700
EndPage 2091
ExternalDocumentID 16099486
17158563
10_1016_j_phytochem_2005_06_022
US201301034385
S0031942205003110
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATCM
AATLK
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D0L
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMS
HMT
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LW9
LX3
M2Z
M34
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCB
SCC
SCU
SDF
SDG
SDP
SES
SEW
SOC
SPC
SPCBC
SPT
SSA
SSK
SSP
SSU
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
Y6R
YK3
ZKB
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7S9
L.6
7X8
8FD
FR3
P64
RC3
ID FETCH-LOGICAL-c552t-9c24a1ef3f4c97cf4baf43bea3c6ecd5911fdf7d5ba3d5400d0a7d959dd9cacc3
IEDL.DBID .~1
ISSN 0031-9422
IngestDate Sat Sep 27 21:52:28 EDT 2025
Fri Sep 05 14:39:55 EDT 2025
Sat Sep 27 16:22:44 EDT 2025
Wed Feb 19 01:37:10 EST 2025
Mon Jul 21 09:10:34 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Wed Oct 01 00:20:32 EDT 2025
Wed Dec 27 19:03:47 EST 2023
Fri Feb 23 02:24:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Lignin
4-Coumarate CoA ligase homologues
G
TIGR
Metabolic networks
H
Knockout analysis
Sinapate/sinapyl alcohol derivatives
Arabidopsis thaliana
TAIR
S
Cruciferae
RT-PCR
IPTG
4-Coumarate CoA ligases
4CL
WT
CWR
Cinnamic acid
Alcohol
Phylogeny
Stem
EC 6.2.1.12
Characterization
Ester
Gene
Dicotyledones
Substrate specificity
Angiospermae
Recombinant protein
Enzyme
In vitro
Caffeic acid
Screening
In vivo
DNA
Spermatophyta
Kinetics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName 4th Tannin Conference Plant polyphenols: chemistry, biology and function. Tannins and related polyphenols, Part 1
MergedId FETCHMERGED-LOGICAL-c552t-9c24a1ef3f4c97cf4baf43bea3c6ecd5911fdf7d5ba3d5400d0a7d959dd9cacc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16099486
PQID 47422688
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_754875981
proquest_miscellaneous_68580592
proquest_miscellaneous_47422688
pubmed_primary_16099486
pascalfrancis_primary_17158563
crossref_primary_10_1016_j_phytochem_2005_06_022
crossref_citationtrail_10_1016_j_phytochem_2005_06_022
fao_agris_US201301034385
elsevier_sciencedirect_doi_10_1016_j_phytochem_2005_06_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-09-01
PublicationDateYYYYMMDD 2005-09-01
PublicationDate_xml – month: 09
  year: 2005
  text: 2005-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: England
PublicationTitle Phytochemistry (Oxford)
PublicationTitleAlternate Phytochemistry
PublicationYear 2005
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Page (bib42) 1996; 12
Iiyama, Lam (bib23) 1990; 51
Cochrane, Davin, Lewis (bib9) 2004; 65
Iiyama, Wallis (bib24) 1990; 51
Lindermayr, Fliegmann, Ebel (bib34) 2003; 278
Harding, Leshkevich, Chiang, Tsai (bib21) 2002; 128
Wallis, Rhodes (bib60) 1977; 16
Allina, Pri-Hadash, Theilmann, Ellis, Douglas (bib1) 1998; 116
Becker-André, Schulze-Lefert, Hahlbrock (bib4) 1991; 266
Ragg, Kuhn, Hahlbrock (bib46) 1981; 256
Yamauchi, Yasuda, Hamada, Tsutsumi, Fukushima (bib63) 2003; 216
Lee, Meyer, Chapple, Douglas (bib32) 1997; 9
Rhodes, Wooltorton (bib48) 1975; 14
Beuerle, Pichersky (bib5) 2002; 302
Douglas, Hoffmann, Schulz, Hahlbrock (bib13) 1987; 6
Schneider, Kienow, Schmelzer, Colby, Bartsch, Miersch, Wasternack, Kombrink, Stuible (bib51) 2005; 280
Lindermayr, Möllers, Fliegmann, Uhlmann, Lottspeich, Meimberg, Ebel (bib35) 2002; 269
Patten, A.M., Cardenas, C.L., Cochrane, F.C., Laskar, D.D., Bedgar, D.L., Davin, L.B., Lewis, N.G., 2005. Reassessment of effects on lignification and vascular development in the
Costa, Collins, Anterola, Cochrane, Davin, Lewis (bib10) 2003; 64
Uhlmann, Ebel (bib58) 1993; 102
Mansell, Stöckigt, Zenk (bib39) 1972; 68
Shockey, Fulda, Browse (bib52) 2003; 132
mutant. Phytochemistry (in press).
Zhang, Chiang (bib65) 1997; 113
Cukovic, Ehlting, VanZiffle, Douglas (bib12) 2001; 382
Thompson, Gibson, Plewniak, Jeanmougin, Higgins (bib56) 1997; 25
Lewis, N.G., Davin, L.B., Sarkanen, S., 1999. The nature and function of lignins. In: Barton, Sir D.H.R., Nakanishi, K., Meth-Cohn, O. (Eds.), Comprehensive Natural Products Chemistry, vol. 3. Pergamon Press, Oxford, pp. 617–745.
Schneider, Hövel, Witzel, Hamberger, Schomburg, Kombrink, Stuible (bib50) 2003; 100
Lee, Douglas (bib30) 1996; 112
Thompson, Higgins, Gibson (bib57) 1994; 22
Cuff, Birney, Clamp, Barton (bib11) 2000; 16
Wishart, Bigam, Yao, Abildgaard, Dyson, Oldfield, Markley, Sykes (bib62) 1995; 6
Bloor, Abrahams (bib7) 2002; 59
Hahlbrock, Grisenbach (bib19) 1970; 11
Hamberger, Hahlbrock (bib20) 2004; 101
Gross, Stöckigt, Mansell, Zenk (bib16) 1973; 31
Lindl, Kreuzaler, Hahlbrock (bib36) 1973; 302
Walton, Butt (bib61) 1970; 21
Brown, Wright, Neish (bib8) 1959; 37
Kajita, Katayama, Omori (bib25) 1996; 37
Lee, Ellard, Wanner, Davis, Douglas (bib31) 1995; 28
The Arabidopsis Genome Initiative (bib55) 2000; 408
Rhodes, Wooltorton (bib47) 1973; 12
Pabsch, Petersen, Rao, Alfermann, Wandrey (bib41) 1991; 110
Rolando, Monties, Lapierre (bib49) 1992
Anterola, Jeon, Davin, Lewis (bib2) 2002; 277
Kim, Kim, Bedgar, Moinuddin, Cardenas, Davin, Kang, Lewis (bib26) 2004; 101
Min, Kasahara, Bedgar, Youn, Lawrence, Gang, Halls, Park, Hilsenbeck, Davin, Lewis, Kang (bib40) 2003; 278
Youn, Moinuddin, Davin, Lewis, Kang (bib64) 2005; 280
Raes, Rohde, Christensen, Van de Peer, Boerjan (bib45) 2003; 133
Lüderitz, Schatz, Grisebach (bib38) 1982; 123
Anterola, Lewis (bib3) 2002; 61
Ehlting, Büttner, Wang, Douglas, Somssich, Kombrink (bib14) 1999; 19
Knobloch, Hahlbrock (bib27) 1975; 52
Blee, Choi, O’Connell, Jupe, Schuch, Lewis, Bolwell (bib6) 2001; 57
Knobloch, Hahlbrock (bib28) 1977; 184
Stuible, Kombrink (bib54) 2001; 276
Gross, Mansell, Zenk (bib15) 1975; 168
Lapierre, Monties, Rolando (bib29) 1986; 40
Gross, Zenk (bib18) 1974; 42
Stuible, Büttner, Ehlting, Hahlbrock, Kombrink (bib53) 2000; 467
Voo, Whetten, O’Malley, Sederoff (bib59) 1995; 108
Lozoya, Hoffmann, Douglas, Schulz, Scheel, Hahlbrock (bib37) 1988; 176
Pfaffl (bib44) 2001; 29
Gross, Zenk (bib17) 1966; 21b
Zhao, Kung, Dube (bib66) 1990; 18
Hu, Kawaoka, Tsai, Lung, Osakabe, Ebinuma, Chiang (bib22) 1998; 95
Becker-André (10.1016/j.phytochem.2005.06.022_bib4) 1991; 266
Thompson (10.1016/j.phytochem.2005.06.022_bib56) 1997; 25
Lindermayr (10.1016/j.phytochem.2005.06.022_bib35) 2002; 269
Lee (10.1016/j.phytochem.2005.06.022_bib31) 1995; 28
Mansell (10.1016/j.phytochem.2005.06.022_bib39) 1972; 68
10.1016/j.phytochem.2005.06.022_bib33
Raes (10.1016/j.phytochem.2005.06.022_bib45) 2003; 133
Thompson (10.1016/j.phytochem.2005.06.022_bib57) 1994; 22
Iiyama (10.1016/j.phytochem.2005.06.022_bib24) 1990; 51
Uhlmann (10.1016/j.phytochem.2005.06.022_bib58) 1993; 102
Rhodes (10.1016/j.phytochem.2005.06.022_bib48) 1975; 14
Lee (10.1016/j.phytochem.2005.06.022_bib30) 1996; 112
Gross (10.1016/j.phytochem.2005.06.022_bib16) 1973; 31
Cuff (10.1016/j.phytochem.2005.06.022_bib11) 2000; 16
Schneider (10.1016/j.phytochem.2005.06.022_bib51) 2005; 280
Knobloch (10.1016/j.phytochem.2005.06.022_bib27) 1975; 52
Schneider (10.1016/j.phytochem.2005.06.022_bib50) 2003; 100
Walton (10.1016/j.phytochem.2005.06.022_bib61) 1970; 21
Hahlbrock (10.1016/j.phytochem.2005.06.022_bib19) 1970; 11
Lindermayr (10.1016/j.phytochem.2005.06.022_bib34) 2003; 278
Ehlting (10.1016/j.phytochem.2005.06.022_bib14) 1999; 19
Zhang (10.1016/j.phytochem.2005.06.022_bib65) 1997; 113
Wishart (10.1016/j.phytochem.2005.06.022_bib62) 1995; 6
Youn (10.1016/j.phytochem.2005.06.022_bib64) 2005; 280
Wallis (10.1016/j.phytochem.2005.06.022_bib60) 1977; 16
Beuerle (10.1016/j.phytochem.2005.06.022_bib5) 2002; 302
Cochrane (10.1016/j.phytochem.2005.06.022_bib9) 2004; 65
Min (10.1016/j.phytochem.2005.06.022_bib40) 2003; 278
Hu (10.1016/j.phytochem.2005.06.022_bib22) 1998; 95
Rhodes (10.1016/j.phytochem.2005.06.022_bib47) 1973; 12
Stuible (10.1016/j.phytochem.2005.06.022_bib53) 2000; 467
Allina (10.1016/j.phytochem.2005.06.022_bib1) 1998; 116
Voo (10.1016/j.phytochem.2005.06.022_bib59) 1995; 108
Yamauchi (10.1016/j.phytochem.2005.06.022_bib63) 2003; 216
Gross (10.1016/j.phytochem.2005.06.022_bib18) 1974; 42
Zhao (10.1016/j.phytochem.2005.06.022_bib66) 1990; 18
Costa (10.1016/j.phytochem.2005.06.022_bib10) 2003; 64
Page (10.1016/j.phytochem.2005.06.022_bib42) 1996; 12
Lee (10.1016/j.phytochem.2005.06.022_bib32) 1997; 9
Lozoya (10.1016/j.phytochem.2005.06.022_bib37) 1988; 176
Lüderitz (10.1016/j.phytochem.2005.06.022_bib38) 1982; 123
Kajita (10.1016/j.phytochem.2005.06.022_bib25) 1996; 37
Pfaffl (10.1016/j.phytochem.2005.06.022_bib44) 2001; 29
Anterola (10.1016/j.phytochem.2005.06.022_bib3) 2002; 61
Blee (10.1016/j.phytochem.2005.06.022_bib6) 2001; 57
Gross (10.1016/j.phytochem.2005.06.022_bib17) 1966; 21b
Kim (10.1016/j.phytochem.2005.06.022_bib26) 2004; 101
Gross (10.1016/j.phytochem.2005.06.022_bib15) 1975; 168
Douglas (10.1016/j.phytochem.2005.06.022_bib13) 1987; 6
Bloor (10.1016/j.phytochem.2005.06.022_bib7) 2002; 59
Ragg (10.1016/j.phytochem.2005.06.022_bib46) 1981; 256
Shockey (10.1016/j.phytochem.2005.06.022_bib52) 2003; 132
Anterola (10.1016/j.phytochem.2005.06.022_bib2) 2002; 277
Brown (10.1016/j.phytochem.2005.06.022_bib8) 1959; 37
Hamberger (10.1016/j.phytochem.2005.06.022_bib20) 2004; 101
Cukovic (10.1016/j.phytochem.2005.06.022_bib12) 2001; 382
Harding (10.1016/j.phytochem.2005.06.022_bib21) 2002; 128
Knobloch (10.1016/j.phytochem.2005.06.022_bib28) 1977; 184
Lapierre (10.1016/j.phytochem.2005.06.022_bib29) 1986; 40
Stuible (10.1016/j.phytochem.2005.06.022_bib54) 2001; 276
The Arabidopsis Genome Initiative (10.1016/j.phytochem.2005.06.022_bib55) 2000; 408
10.1016/j.phytochem.2005.06.022_bib43
Pabsch (10.1016/j.phytochem.2005.06.022_bib41) 1991; 110
Iiyama (10.1016/j.phytochem.2005.06.022_bib23) 1990; 51
Lindl (10.1016/j.phytochem.2005.06.022_bib36) 1973; 302
Rolando (10.1016/j.phytochem.2005.06.022_bib49) 1992
References_xml – volume: 14
  start-page: 2161
  year: 1975
  end-page: 2164
  ident: bib48
  article-title: The
  publication-title: Phytochemistry
– volume: 116
  start-page: 743
  year: 1998
  end-page: 754
  ident: bib1
  article-title: 4-Coumarate:coenzyme A ligase in hybrid poplar. Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes
  publication-title: Plant Physiol.
– volume: 176
  start-page: 661
  year: 1988
  end-page: 667
  ident: bib37
  article-title: Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley
  publication-title: Eur. J. Biochem.
– volume: 110
  start-page: 199
  year: 1991
  end-page: 205
  ident: bib41
  article-title: Chemo-enzymatic synthesis of rosmarinic acid
  publication-title: Recl. Trav. Chim. Pays-Bas
– volume: 9
  start-page: 1985
  year: 1997
  end-page: 1998
  ident: bib32
  article-title: Antisense suppression of 4-coumarate:coenzyme A ligase activity in
  publication-title: Plant Cell
– volume: 280
  start-page: 12917
  year: 2005
  end-page: 12926
  ident: bib64
  article-title: Crystal structures of apo-form, and binary/ternary complexes of
  publication-title: J. Biol. Chem.
– volume: 102
  start-page: 1147
  year: 1993
  end-page: 1156
  ident: bib58
  article-title: Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean (
  publication-title: Plant Physiol.
– volume: 168
  start-page: S41
  year: 1975
  end-page: S51
  ident: bib15
  article-title: Hydroxycinnamate: coenzyme A ligase from lignifying tissue of higher plants
  publication-title: Biochem. Physiol. Pflanzen
– volume: 12
  start-page: 2381
  year: 1973
  end-page: 2387
  ident: bib47
  article-title: Formation of CoA esters of cinnamic acid derivatives by extracts of
  publication-title: Phytochemistry
– volume: 269
  start-page: 1304
  year: 2002
  end-page: 1315
  ident: bib35
  article-title: Divergent members of a soybean (
  publication-title: Eur. J. Biochem.
– volume: 11
  start-page: 62
  year: 1970
  end-page: 64
  ident: bib19
  article-title: Formation of coenzyme A esters of cinnamic acids with an enzyme preparation from cell suspension cultures of parsley
  publication-title: FEBS Lett.
– volume: 51
  start-page: 481
  year: 1990
  end-page: 491
  ident: bib23
  article-title: Lignin in wheat internodes. Part I: the reactivities of lignin units during alkaline nitrobenzene oxidation
  publication-title: J. Sci. Food Agric.
– volume: 278
  start-page: 2781
  year: 2003
  end-page: 2786
  ident: bib34
  article-title: Deletion of a single amino acid residue from different 4-coumarate:CoA ligases from soybean results in the generation of new substrate specificities
  publication-title: J. Biol. Chem.
– volume: 467
  start-page: 117
  year: 2000
  end-page: 122
  ident: bib53
  article-title: Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes
  publication-title: FEBS Lett.
– volume: 28
  start-page: 871
  year: 1995
  end-page: 884
  ident: bib31
  article-title: The
  publication-title: Plant Mol. Biol.
– volume: 12
  start-page: 357
  year: 1996
  end-page: 358
  ident: bib42
  article-title: TreeView: an application to display phylogenetic trees on personal computers
  publication-title: Comput. Appl. Biosci.
– volume: 68
  start-page: S286
  year: 1972
  end-page: S288
  ident: bib39
  article-title: Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant
  publication-title: Z. Pflanzenphysiol.
– volume: 40
  start-page: 113
  year: 1986
  end-page: 118
  ident: bib29
  article-title: Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions
  publication-title: Holzforschung
– volume: 277
  start-page: 18272
  year: 2002
  end-page: 18280
  ident: bib2
  article-title: Transcriptional control of monolignol biosynthesis in
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 4673
  year: 1994
  end-page: 4680
  ident: bib57
  article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res.
– volume: 123
  start-page: 583
  year: 1982
  end-page: 586
  ident: bib38
  article-title: Enzymic synthesis of lignin precursors. Purification and properties of 4-coumarate:CoA ligase from cambial sap of spruce (
  publication-title: Eur. J. Biochem.
– volume: 37
  start-page: 957
  year: 1996
  end-page: 965
  ident: bib25
  article-title: Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:coenzyme A ligase
  publication-title: Plant Cell Physiol.
– volume: 100
  start-page: 8601
  year: 2003
  end-page: 8606
  ident: bib50
  article-title: The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21b
  start-page: 683
  year: 1966
  end-page: 690
  ident: bib17
  article-title: Darstellung und Eigenschaften von Coenzym A-Thiolestern substituierter Zimtsäuren
  publication-title: Z. Naturforsch.
– volume: 108
  start-page: 85
  year: 1995
  end-page: 97
  ident: bib59
  article-title: 4-Coumarate:coenzyme A ligase from loblolly pine xylem. Isolation, characterization, and complementary DNA cloning
  publication-title: Plant Physiol.
– reference: Patten, A.M., Cardenas, C.L., Cochrane, F.C., Laskar, D.D., Bedgar, D.L., Davin, L.B., Lewis, N.G., 2005. Reassessment of effects on lignification and vascular development in the
– volume: 21
  start-page: 887
  year: 1970
  end-page: 891
  ident: bib61
  article-title: The activation of cinnamate by an enzyme from leaves of spinach beet (
  publication-title: J. Exp. Bot.
– volume: 133
  start-page: 1051
  year: 2003
  end-page: 1071
  ident: bib45
  article-title: Genome-wide characterization of the lignification toolbox in
  publication-title: Plant Physiol.
– volume: 6
  start-page: 135
  year: 1995
  end-page: 140
  ident: bib62
  publication-title: J. Biomol. NMR
– volume: 408
  start-page: 796
  year: 2000
  end-page: 815
  ident: bib55
  article-title: Analysis of the genome sequence of the flowering plant
  publication-title: Nature
– volume: 61
  start-page: 221
  year: 2002
  end-page: 294
  ident: bib3
  article-title: Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity
  publication-title: Phytochemistry
– volume: 65
  start-page: 1557
  year: 2004
  end-page: 1564
  ident: bib9
  article-title: The
  publication-title: Phytochemistry
– volume: 51
  start-page: 145
  year: 1990
  end-page: 161
  ident: bib24
  article-title: Determination of lignin in herbaceous plants by an improved acetyl bromide procedure
  publication-title: J. Sci. Food Agric.
– volume: 25
  start-page: 4876
  year: 1997
  end-page: 4882
  ident: bib56
  article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
  publication-title: Nucleic Acids Res.
– volume: 52
  start-page: 311
  year: 1975
  end-page: 320
  ident: bib27
  article-title: Isoenzymes of
  publication-title: Eur. J. Biochem.
– volume: 112
  start-page: 193
  year: 1996
  end-page: 205
  ident: bib30
  article-title: Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (
  publication-title: Plant Physiol.
– volume: 184
  start-page: 237
  year: 1977
  end-page: 248
  ident: bib28
  article-title: 4-Coumarate:CoA ligase from cell suspension cultures of
  publication-title: Arch. Biochem. Biophys.
– volume: 280
  start-page: 13962
  year: 2005
  end-page: 13972
  ident: bib51
  article-title: A new type of peroxisomal acyl-coenzyme A synthetase from
  publication-title: J. Biol. Chem.
– volume: 113
  start-page: 65
  year: 1997
  end-page: 74
  ident: bib65
  article-title: Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood
  publication-title: Plant Physiol.
– volume: 31
  start-page: 283
  year: 1973
  end-page: 286
  ident: bib16
  article-title: Three novel enzymes involved in the reduction of ferulic acid to coniferyl alcohol in higher plants: ferulate:CoA ligase, feruloyl-CoA reductase and coniferyl alcohol oxidoreductase
  publication-title: FEBS Lett.
– volume: 59
  start-page: 343
  year: 2002
  end-page: 346
  ident: bib7
  article-title: The structure of the major anthocyanin in
  publication-title: Phytochemistry
– volume: 278
  start-page: 50714
  year: 2003
  end-page: 50723
  ident: bib40
  article-title: Crystal structures of pinoresinol–lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases
  publication-title: J. Biol. Chem.
– volume: 132
  start-page: 1065
  year: 2003
  end-page: 1076
  ident: bib52
  publication-title: Plant Physiol.
– volume: 266
  start-page: 8551
  year: 1991
  end-page: 8559
  ident: bib4
  article-title: Structural comparison, modes of expression, and putative
  publication-title: J. Biol. Chem.
– reference: Lewis, N.G., Davin, L.B., Sarkanen, S., 1999. The nature and function of lignins. In: Barton, Sir D.H.R., Nakanishi, K., Meth-Cohn, O. (Eds.), Comprehensive Natural Products Chemistry, vol. 3. Pergamon Press, Oxford, pp. 617–745.
– volume: 29
  start-page: 2002
  year: 2001
  end-page: 2007
  ident: bib44
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res.
– volume: 216
  start-page: 496
  year: 2003
  end-page: 501
  ident: bib63
  article-title: Multiform biosynthetic pathway of syringyl lignin in angiosperms
  publication-title: Planta
– volume: 6
  start-page: 1189
  year: 1987
  end-page: 1195
  ident: bib13
  article-title: Structure and elicitor or UV-light-stimulated expression of two 4-coumarate:CoA ligase genes in parsley
  publication-title: EMBO J.
– volume: 101
  start-page: 2209
  year: 2004
  end-page: 2214
  ident: bib20
  article-title: The
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 95
  start-page: 5407
  year: 1998
  end-page: 5412
  ident: bib22
  article-title: Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 256
  start-page: 10061
  year: 1981
  end-page: 10065
  ident: bib46
  article-title: Coordinated regulation of 4-coumarate:CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured plant cells
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: 453
  year: 1974
  end-page: 459
  ident: bib18
  article-title: Isolation and properties of hydroxycinnamate:CoA ligase from lignifying tissue of
  publication-title: Eur. J. Biochem.
– reference: mutant. Phytochemistry (in press).
– volume: 16
  start-page: 1891
  year: 1977
  end-page: 1894
  ident: bib60
  article-title: Multiple forms of hydroxycinnamate:CoA ligase in etiolated pea seedlings
  publication-title: Phytochemistry
– volume: 16
  start-page: 111
  year: 2000
  end-page: 116
  ident: bib11
  article-title: ProtEST: protein multiple sequence alignments from expressed sequence tags
  publication-title: Bioinformatics
– volume: 19
  start-page: 9
  year: 1999
  end-page: 20
  ident: bib14
  article-title: Three 4-coumarate:coenzyme A ligases in
  publication-title: Plant J.
– volume: 37
  start-page: 25
  year: 1959
  end-page: 34
  ident: bib8
  article-title: Studies of lignin biosynthesis using isotopic carbon. VII. The role of
  publication-title: Can. J. Biochem. Physiol.
– volume: 128
  start-page: 428
  year: 2002
  end-page: 438
  ident: bib21
  article-title: Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in quaking aspen
  publication-title: Plant Physiol.
– start-page: 334
  year: 1992
  end-page: 349
  ident: bib49
  article-title: Thioacidolysis
  publication-title: Methods in Lignin Chemistry
– volume: 276
  start-page: 26893
  year: 2001
  end-page: 26897
  ident: bib54
  article-title: Identification of the substrate specificity-conferring amino acid residues of 4-coumarate:coenzyme A ligase allows the rational design of mutant enzymes with new catalytic properties
  publication-title: J. Biol. Chem.
– volume: 302
  start-page: 457
  year: 1973
  end-page: 464
  ident: bib36
  article-title: Synthesis of
  publication-title: Biochem. Biophys. Acta
– volume: 64
  start-page: 1097
  year: 2003
  end-page: 1112
  ident: bib10
  article-title: An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in
  publication-title: Phytochemistry
– volume: 382
  start-page: 645
  year: 2001
  end-page: 654
  ident: bib12
  article-title: Structure and evolution of 4-coumarate:coenzyme A ligase (
  publication-title: Biol. Chem.
– volume: 101
  start-page: 1455
  year: 2004
  end-page: 1460
  ident: bib26
  article-title: Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 6144
  year: 1990
  ident: bib66
  article-title: Nucleotide sequence of rice 4-coumarate:CoA ligase gene, 4-CL1
  publication-title: Nucleic Acids Res.
– volume: 302
  start-page: 305
  year: 2002
  end-page: 312
  ident: bib5
  article-title: Enzymatic synthesis and purification of aromatic coenzyme A esters
  publication-title: Anal. Biochem.
– volume: 57
  start-page: 1159
  year: 2001
  end-page: 1166
  ident: bib6
  article-title: Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco
  publication-title: Phytochemistry
– volume: 59
  start-page: 343
  year: 2002
  ident: 10.1016/j.phytochem.2005.06.022_bib7
  article-title: The structure of the major anthocyanin in Arabidopsis thaliana
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(01)00460-5
– volume: 28
  start-page: 871
  year: 1995
  ident: 10.1016/j.phytochem.2005.06.022_bib31
  article-title: The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00042072
– volume: 132
  start-page: 1065
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib52
  article-title: Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.020552
– volume: 123
  start-page: 583
  year: 1982
  ident: 10.1016/j.phytochem.2005.06.022_bib38
  article-title: Enzymic synthesis of lignin precursors. Purification and properties of 4-coumarate:CoA ligase from cambial sap of spruce (Picea abies L.)
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1982.tb06572.x
– volume: 37
  start-page: 957
  year: 1996
  ident: 10.1016/j.phytochem.2005.06.022_bib25
  article-title: Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:coenzyme A ligase
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029045
– volume: 9
  start-page: 1985
  year: 1997
  ident: 10.1016/j.phytochem.2005.06.022_bib32
  article-title: Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.11.1985
– volume: 6
  start-page: 135
  year: 1995
  ident: 10.1016/j.phytochem.2005.06.022_bib62
  article-title: 1H, 13C and 15N chemical shift referencing in biomolecular NMR
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00211777
– volume: 116
  start-page: 743
  year: 1998
  ident: 10.1016/j.phytochem.2005.06.022_bib1
  article-title: 4-Coumarate:coenzyme A ligase in hybrid poplar. Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.116.2.743
– volume: 269
  start-page: 1304
  year: 2002
  ident: 10.1016/j.phytochem.2005.06.022_bib35
  article-title: Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. Primary structures, catalytic properties, and differential expression
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2002.02775.x
– volume: 277
  start-page: 18272
  year: 2002
  ident: 10.1016/j.phytochem.2005.06.022_bib2
  article-title: Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112051200
– volume: 176
  start-page: 661
  year: 1988
  ident: 10.1016/j.phytochem.2005.06.022_bib37
  article-title: Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1988.tb14328.x
– volume: 40
  start-page: 113
  year: 1986
  ident: 10.1016/j.phytochem.2005.06.022_bib29
  article-title: Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1986.40.2.113
– volume: 408
  start-page: 796
  year: 2000
  ident: 10.1016/j.phytochem.2005.06.022_bib55
  article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
  publication-title: Nature
  doi: 10.1038/35048692
– volume: 256
  start-page: 10061
  year: 1981
  ident: 10.1016/j.phytochem.2005.06.022_bib46
  article-title: Coordinated regulation of 4-coumarate:CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured plant cells
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)68741-7
– volume: 31
  start-page: 283
  year: 1973
  ident: 10.1016/j.phytochem.2005.06.022_bib16
  article-title: Three novel enzymes involved in the reduction of ferulic acid to coniferyl alcohol in higher plants: ferulate:CoA ligase, feruloyl-CoA reductase and coniferyl alcohol oxidoreductase
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(73)80123-1
– volume: 21b
  start-page: 683
  year: 1966
  ident: 10.1016/j.phytochem.2005.06.022_bib17
  article-title: Darstellung und Eigenschaften von Coenzym A-Thiolestern substituierter Zimtsäuren
  publication-title: Z. Naturforsch.
– volume: 280
  start-page: 12917
  year: 2005
  ident: 10.1016/j.phytochem.2005.06.022_bib64
  article-title: Crystal structures of apo-form, and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413266200
– ident: 10.1016/j.phytochem.2005.06.022_bib43
  doi: 10.1016/j.phytochem.2004.12.016
– volume: 51
  start-page: 481
  year: 1990
  ident: 10.1016/j.phytochem.2005.06.022_bib23
  article-title: Lignin in wheat internodes. Part I: the reactivities of lignin units during alkaline nitrobenzene oxidation
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2740510405
– volume: 128
  start-page: 428
  year: 2002
  ident: 10.1016/j.phytochem.2005.06.022_bib21
  article-title: Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in quaking aspen
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010603
– volume: 61
  start-page: 221
  year: 2002
  ident: 10.1016/j.phytochem.2005.06.022_bib3
  article-title: Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(02)00211-X
– volume: 19
  start-page: 9
  year: 1999
  ident: 10.1016/j.phytochem.2005.06.022_bib14
  article-title: Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00491.x
– volume: 108
  start-page: 85
  year: 1995
  ident: 10.1016/j.phytochem.2005.06.022_bib59
  article-title: 4-Coumarate:coenzyme A ligase from loblolly pine xylem. Isolation, characterization, and complementary DNA cloning
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.1.85
– volume: 302
  start-page: 305
  year: 2002
  ident: 10.1016/j.phytochem.2005.06.022_bib5
  article-title: Enzymatic synthesis and purification of aromatic coenzyme A esters
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5574
– volume: 16
  start-page: 1891
  year: 1977
  ident: 10.1016/j.phytochem.2005.06.022_bib60
  article-title: Multiple forms of hydroxycinnamate:CoA ligase in etiolated pea seedlings
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(77)80090-3
– volume: 95
  start-page: 5407
  year: 1998
  ident: 10.1016/j.phytochem.2005.06.022_bib22
  article-title: Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.9.5407
– volume: 302
  start-page: 457
  year: 1973
  ident: 10.1016/j.phytochem.2005.06.022_bib36
  article-title: Synthesis of p-coumaroyl coenzyme A with a partially purified p-coumarate:CoA ligase from cell suspension cultures of soybean (Glycine max)
  publication-title: Biochem. Biophys. Acta
– volume: 6
  start-page: 1189
  year: 1987
  ident: 10.1016/j.phytochem.2005.06.022_bib13
  article-title: Structure and elicitor or UV-light-stimulated expression of two 4-coumarate:CoA ligase genes in parsley
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1987.tb02353.x
– volume: 16
  start-page: 111
  year: 2000
  ident: 10.1016/j.phytochem.2005.06.022_bib11
  article-title: ProtEST: protein multiple sequence alignments from expressed sequence tags
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.2.111
– volume: 65
  start-page: 1557
  year: 2004
  ident: 10.1016/j.phytochem.2005.06.022_bib9
  article-title: The Arabidopsis phenylalanine ammonia-lyase multigene family: kinetic characterization of the four PAL isoforms
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2004.05.006
– volume: 101
  start-page: 1455
  year: 2004
  ident: 10.1016/j.phytochem.2005.06.022_bib26
  article-title: Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307987100
– volume: 57
  start-page: 1159
  year: 2001
  ident: 10.1016/j.phytochem.2005.06.022_bib6
  article-title: Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(01)00150-9
– volume: 12
  start-page: 2381
  year: 1973
  ident: 10.1016/j.phytochem.2005.06.022_bib47
  article-title: Formation of CoA esters of cinnamic acid derivatives by extracts of Brassica napobrassica root tissue
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(73)80443-1
– volume: 382
  start-page: 645
  year: 2001
  ident: 10.1016/j.phytochem.2005.06.022_bib12
  article-title: Structure and evolution of 4-coumarate:coenzyme A ligase (4CL) gene families
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2001.076
– ident: 10.1016/j.phytochem.2005.06.022_bib33
  doi: 10.1016/B978-0-08-091283-7.00085-0
– volume: 133
  start-page: 1051
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib45
  article-title: Genome-wide characterization of the lignification toolbox in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.026484
– volume: 102
  start-page: 1147
  year: 1993
  ident: 10.1016/j.phytochem.2005.06.022_bib58
  article-title: Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean (Glycine max L.) against pathogen attack
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.4.1147
– start-page: 334
  year: 1992
  ident: 10.1016/j.phytochem.2005.06.022_bib49
  article-title: Thioacidolysis
– volume: 11
  start-page: 62
  year: 1970
  ident: 10.1016/j.phytochem.2005.06.022_bib19
  article-title: Formation of coenzyme A esters of cinnamic acids with an enzyme preparation from cell suspension cultures of parsley
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(70)80492-6
– volume: 280
  start-page: 13962
  year: 2005
  ident: 10.1016/j.phytochem.2005.06.022_bib51
  article-title: A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413578200
– volume: 21
  start-page: 887
  year: 1970
  ident: 10.1016/j.phytochem.2005.06.022_bib61
  article-title: The activation of cinnamate by an enzyme from leaves of spinach beet (Beta vulgaris L. ssp. vulgaris)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/21.4.887
– volume: 113
  start-page: 65
  year: 1997
  ident: 10.1016/j.phytochem.2005.06.022_bib65
  article-title: Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.1.65
– volume: 12
  start-page: 357
  year: 1996
  ident: 10.1016/j.phytochem.2005.06.022_bib42
  article-title: TreeView: an application to display phylogenetic trees on personal computers
  publication-title: Comput. Appl. Biosci.
– volume: 18
  start-page: 6144
  year: 1990
  ident: 10.1016/j.phytochem.2005.06.022_bib66
  article-title: Nucleotide sequence of rice 4-coumarate:CoA ligase gene, 4-CL1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.20.6144
– volume: 52
  start-page: 311
  year: 1975
  ident: 10.1016/j.phytochem.2005.06.022_bib27
  article-title: Isoenzymes of p-coumarate:CoA ligase from cell suspension cultures of Glycine max
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1975.tb03999.x
– volume: 42
  start-page: 453
  year: 1974
  ident: 10.1016/j.phytochem.2005.06.022_bib18
  article-title: Isolation and properties of hydroxycinnamate:CoA ligase from lignifying tissue of Forsythia
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1974.tb03359.x
– volume: 168
  start-page: S41
  year: 1975
  ident: 10.1016/j.phytochem.2005.06.022_bib15
  article-title: Hydroxycinnamate: coenzyme A ligase from lignifying tissue of higher plants
  publication-title: Biochem. Physiol. Pflanzen
  doi: 10.1016/S0015-3796(17)30101-4
– volume: 64
  start-page: 1097
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib10
  article-title: An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(03)00517-X
– volume: 101
  start-page: 2209
  year: 2004
  ident: 10.1016/j.phytochem.2005.06.022_bib20
  article-title: The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307307101
– volume: 184
  start-page: 237
  year: 1977
  ident: 10.1016/j.phytochem.2005.06.022_bib28
  article-title: 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(77)90347-2
– volume: 110
  start-page: 199
  year: 1991
  ident: 10.1016/j.phytochem.2005.06.022_bib41
  article-title: Chemo-enzymatic synthesis of rosmarinic acid
  publication-title: Recl. Trav. Chim. Pays-Bas
  doi: 10.1002/recl.19911100512
– volume: 25
  start-page: 4876
  year: 1997
  ident: 10.1016/j.phytochem.2005.06.022_bib56
  article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.24.4876
– volume: 100
  start-page: 8601
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib50
  article-title: The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1430550100
– volume: 22
  start-page: 4673
  year: 1994
  ident: 10.1016/j.phytochem.2005.06.022_bib57
  article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.22.4673
– volume: 14
  start-page: 2161
  year: 1975
  ident: 10.1016/j.phytochem.2005.06.022_bib48
  article-title: The p-coumaryl CoA ligase of potato tubers
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)91091-4
– volume: 266
  start-page: 8551
  year: 1991
  ident: 10.1016/j.phytochem.2005.06.022_bib4
  article-title: Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate:CoA ligase genes in potato
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)93010-3
– volume: 278
  start-page: 50714
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib40
  article-title: Crystal structures of pinoresinol–lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308493200
– volume: 467
  start-page: 117
  year: 2000
  ident: 10.1016/j.phytochem.2005.06.022_bib53
  article-title: Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)01133-9
– volume: 112
  start-page: 193
  year: 1996
  ident: 10.1016/j.phytochem.2005.06.022_bib30
  article-title: Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.1.193
– volume: 29
  start-page: 2002
  year: 2001
  ident: 10.1016/j.phytochem.2005.06.022_bib44
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.9.e45
– volume: 276
  start-page: 26893
  year: 2001
  ident: 10.1016/j.phytochem.2005.06.022_bib54
  article-title: Identification of the substrate specificity-conferring amino acid residues of 4-coumarate:coenzyme A ligase allows the rational design of mutant enzymes with new catalytic properties
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100355200
– volume: 51
  start-page: 145
  year: 1990
  ident: 10.1016/j.phytochem.2005.06.022_bib24
  article-title: Determination of lignin in herbaceous plants by an improved acetyl bromide procedure
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2740510202
– volume: 278
  start-page: 2781
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib34
  article-title: Deletion of a single amino acid residue from different 4-coumarate:CoA ligases from soybean results in the generation of new substrate specificities
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202632200
– volume: 68
  start-page: S286
  year: 1972
  ident: 10.1016/j.phytochem.2005.06.022_bib39
  article-title: Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant
  publication-title: Z. Pflanzenphysiol.
  doi: 10.1016/S0044-328X(72)80063-1
– volume: 216
  start-page: 496
  year: 2003
  ident: 10.1016/j.phytochem.2005.06.022_bib63
  article-title: Multiform biosynthetic pathway of syringyl lignin in angiosperms
  publication-title: Planta
  doi: 10.1007/s00425-002-0865-7
– volume: 37
  start-page: 25
  year: 1959
  ident: 10.1016/j.phytochem.2005.06.022_bib8
  article-title: Studies of lignin biosynthesis using isotopic carbon. VII. The role of p-hydroxyphenylpyruvic acid
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/o59-004
SSID ssj0005566
Score 2.192713
Snippet Detailed characterization of all bona fide At4CL genes, and their corresponding recombinant proteins, together with that of an At4CL5 gene knockout, revealed...
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2072
SubjectTerms 4-Coumarate CoA ligase homologues
4-Coumarate CoA ligases
Alcohols
Alcohols - chemistry
Alcohols - metabolism
amino acid sequences
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis thaliana
Base Sequence
Biological and medical sciences
biosynthesis
Chemical constitution
chemical synthesis
chemistry
chromosomes
Coenzyme A Ligases
Coenzyme A Ligases - genetics
Coenzyme A Ligases - metabolism
coumarate-CoA ligase
Coumaric Acids
Coumaric Acids - chemistry
Cruciferae
DNA Primers
enzymology
Fundamental and applied biological sciences. Psychology
Genes, Plant
genetics
genome
Knockout analysis
Lignin
Lignin - chemical synthesis
Lignin - metabolism
Metabolic networks
Metabolism
Metabolism. Physicochemical requirements
Molecular Sequence Data
multigene family
nucleotide sequences
plant biochemistry
Plant physiology and development
plant proteins
recombinant fusion proteins
Sinapate/sinapyl alcohol derivatives
sinapic acid
sinapyl alcohol
syringyl lignin
Title Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation
URI https://dx.doi.org/10.1016/j.phytochem.2005.06.022
https://www.ncbi.nlm.nih.gov/pubmed/16099486
https://www.proquest.com/docview/47422688
https://www.proquest.com/docview/68580592
https://www.proquest.com/docview/754875981
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3700
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005566
  issn: 0031-9422
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3700
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005566
  issn: 0031-9422
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3700
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005566
  issn: 0031-9422
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3700
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005566
  issn: 0031-9422
  databaseCode: AKRWK
  dateStart: 19611001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbStEOXou-oD5dDV8WyREqUN9do4NZohrZGswkUH4EKVzIs2YCX_Kb8xN6JklMPRoZOeh1FUjzeHcXv7gj5qANuwpSlvogkLFBCEfhiZKxvQflEgqtkZNA5-dtlPFuwr1f86oRMe18YhFV2st_J9FZad3eG3dccrooCfXyBfRg6iuJZ62aF0b-Ap89v_oF5cLdfCSQ-Uh9gvKAnDSam-tP9XInPgzA8pqEeWFkhdFLW8PWsS3tx3C5t9dPFU_KkMyzpxLX9GTkx5XPy6FMFxt_uBbmd7gMzO79LWpR0WzTrispSu4ttRStLwSCkq03TxgOnLdwQWMxQ5qsK0dhgmo6n1YQui2vQf7R0KHJ8wWQt80JXq7qox7Te4f_C3RLpSniIldRFCZq5McP2BJ5Jl56XamjV1lW496V8SRYXn39OZ36XrMFXnIeNn6qQSRjlyDKVJsqyXFoW5UZGKjZKcxCqVttE81xGGszEQAcy0SlPtU6VVCp6RU7LqjRnhIYiz7lSIk8wm5bNhRxxYVikrIDXWeaRuB-gTHWRzDGhxjLrIWu_s_3IYp5NniF4Lww9EuwLrlwwj_uLjHsOyA74MgOVc3_hM-CZTF6DvM4WP0LcJR4FEYNJ4JHBASPdtSeBzvI48siHnrMymPG4jSNLU23qjCXo_SzEcQrMKQBmM9RPj1Ak7UI1FSOPvHZce9eAGBYNTMRv_qfnb8njNsZtC8Z7R06b9ca8B-utyQft9ByQh5Mv89klHufff83_AkAwSzE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSp0C7FH1HfSQcuqqWJVKivLlGA6dJvDQGsgkUH4ECVzIs2YD_VX9i70TZhgcjQzdK4lM83h3J7-4I-aYDbsKUpb6IJGxQQhH4YmCsb0H4RIKrZGDQOPl2Gk9m7Nc9vz8h460tDMIqO97veHrLrbs3_e5v9hdFgTa-QD4MDUUxhWZWp4wDT-6R09HV9WS6R3pwd2UJuXwscADzgsE0GJvqT3e-En8PwvCYkHpmZYXoSVnDD7Qu8sVx1bQVUZevyatOt6Qj1_035MSUb8nzHxXof5t35O9455vZmV7SoqTrollWVJbaPawrWlkKOiFdrJrWJThtEYdAZYYyX1UIyAbtdDiuRnRePIAIpKUDkmMFo6XMC10t6qIe0nqDR4abOeYr4SM2UhclCOfG9NsEfJMuQi_V0Ku1a3BnTvmezC5_3o0nfhevwVech42fqpBJmOjIMpUmyrJcWhblRkYqNkpz4KtW20TzXEYaNMVABzLRKU-1TpVUKvpAemVVmjNCQ5HnXCmRJxhQy-ZCDrgwLFJWQHWWeSTeTlCmOmfmGFNjnm1Ra4_ZbmYx1CbPEL8Xhh4JdgUXzp_H00WGWwrIDkgzA6nzdOEzoJlMPgDLzma_Q7woHgQRg3XgkfMDQtr3J4HB8jjyyMWWsjJY9HiTI0tTreqMJWgALcTxHBhWADRnaJ8eyZG0e9VUDDzy0VHtvgMx7BuYiD_9z8gvyIvJ3e1NdnM1vf5MXrYub1ts3hfSa5Yr8xWUuSY_7xbrP-zeTDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Phytochemistry+%28Oxford%29&rft.atitle=Characterization+in+vitro+and+in+vivo+of+the+putative+multigene+4-coumarate%3ACoA+ligase+network+in+Arabidopsis+%3A+syringyl+lignin+and+sinapate%2Fsinapyl+alcohol+derivative+formation&rft.au=COSTA%2C+Michael+A&rft.au=BEDGAR%2C+Diana+L&rft.au=MILHOLLAN%2C+Jessica+K&rft.au=DAVIN%2C+Laurence+B&rft.date=2005-09-01&rft.pub=Elsevier&rft.issn=0031-9422&rft.volume=66&rft.issue=17&rft.spage=2072&rft.epage=2091&rft_id=info:doi/10.1016%2Fj.phytochem.2005.06.022&rft.externalDBID=n%2Fa&rft.externalDocID=17158563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9422&client=summon