Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface
Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencep...
Saved in:
Published in | Journal of neural engineering Vol. 10; no. 4; pp. 46003 - 1-15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.08.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2560/10/4/046003 |
Cover
Abstract | Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s−1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics. |
---|---|
AbstractList | At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task.
Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone.
Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1).
Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics. Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s super(-1). Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain--computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplishing complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics. Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s−1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task.OBJECTIVEAt the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task.Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone.APPROACHFive human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone.Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1).MAIN RESULTSIndividual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1).Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.SIGNIFICANCEFreely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics. |
Author | Rogin, Eitan Shades, Kaleb Doud, Alexander He, Bin Cassady, Kaitlin LaFleur, Karl |
AuthorAffiliation | 2 Institute for Engineering in Medicine, University of Minnesota 1 Department of Biomedical Engineering, University of Minnesota |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, University of Minnesota – name: 2 Institute for Engineering in Medicine, University of Minnesota |
Author_xml | – sequence: 1 givenname: Karl surname: LaFleur fullname: LaFleur, Karl organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA – sequence: 2 givenname: Kaitlin surname: Cassady fullname: Cassady, Kaitlin organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA – sequence: 3 givenname: Alexander surname: Doud fullname: Doud, Alexander organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA – sequence: 4 givenname: Kaleb surname: Shades fullname: Shades, Kaleb organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA – sequence: 5 givenname: Eitan surname: Rogin fullname: Rogin, Eitan organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA – sequence: 6 givenname: Bin surname: He fullname: He, Bin email: binhe@umn.edu organization: University of Minnesota Institute for Engineering in Medicine, 725 Mayo, 420 Delaware Ave SE, Minneapolis, MN 55455, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23735712$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3DAUhUVJaB7tT2jRsht39LZMoVBC2wQCoZC9kOXriYItuZI9kH8fmZmENptkI4mrc46O-M7QUYgBEPpEyVdKtN7QWtCKSUU2lGzEhghFCH-HTg9zyY6ez4qcoLOc74uA1g15j04Yr7msKTtF4c9iOxenGRJ2McwpDtgHPN8lgKrzI4TsY7ADzpN1gJfswxZbXMr4sLPZ7wCPcY4J-9FuIT1Urc3Q4TZZHyoXx2lZk30oa18CPqDj3g4ZPh72c3T76-ftxWV1ffP76uLHdeVK87mS0AppVU8ApGNAuNU9KFeDZa4VVnHe6564tmOS9y0VDWFcKtF1RHPRcn6Ovu9jp6UdoXNQPmYHM6XSMj2YaL35_yb4O7ONO8M1b5QmJeDLISDFvwvk2Yw-OxgGGyAu2VDBm1pyLcQbpJRTxbRoivTzv7We-zzhKIJve4FLMecEvXF-trNfwVg_GErMCt-sYM0Kdp0Is4df3PKF--mB13x07_NxMvdxSYV3fsXzCOcJw2o |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1002_anie_201307495 crossref_primary_10_1038_s41597_021_00883_1 crossref_primary_10_1109_JPROC_2015_2407272 crossref_primary_10_1109_TNSRE_2023_3321640 crossref_primary_10_1016_j_bspc_2024_106215 crossref_primary_10_1109_TNSRE_2023_3257319 crossref_primary_10_1186_s12938_023_01102_1 crossref_primary_10_1109_JIOT_2024_3367690 crossref_primary_10_1115_1_4051596 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1109_JBHI_2019_2892379 crossref_primary_10_1109_TBME_2023_3298957 crossref_primary_10_3389_fnins_2018_00217 crossref_primary_10_1109_ACCESS_2024_3392008 crossref_primary_10_1007_s11427_020_1675_x crossref_primary_10_1109_ACCESS_2022_3215639 crossref_primary_10_1142_S233954781450023X crossref_primary_10_1155_2018_2695106 crossref_primary_10_1007_s11571_021_09779_7 crossref_primary_10_1038_mp_2016_83 crossref_primary_10_1016_j_imu_2022_101141 crossref_primary_10_3390_app112411876 crossref_primary_10_1088_1741_2552_aa8ce3 crossref_primary_10_1109_ACCESS_2020_3019978 crossref_primary_10_1016_j_cortex_2015_10_008 crossref_primary_10_1016_j_autcon_2023_105011 crossref_primary_10_1080_10447318_2024_2443268 crossref_primary_10_1371_journal_pone_0123727 crossref_primary_10_3389_fnins_2014_00415 crossref_primary_10_3389_fnins_2020_584971 crossref_primary_10_1016_j_aei_2021_101499 crossref_primary_10_1109_TNNLS_2019_2946869 crossref_primary_10_1088_1741_2552_adbcda crossref_primary_10_1371_journal_pone_0172578 crossref_primary_10_1371_journal_pone_0168766 crossref_primary_10_3389_fnins_2018_00680 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1080_02564602_2019_1620138 crossref_primary_10_3390_brainsci12070833 crossref_primary_10_1088_1741_2552_ac9861 crossref_primary_10_1016_j_cogsys_2019_09_013 crossref_primary_10_1016_j_bbe_2020_12_004 crossref_primary_10_1080_27706710_2024_2425299 crossref_primary_10_5937_PoljTeh1804029O crossref_primary_10_1109_ACCESS_2020_3003056 crossref_primary_10_3390_s25010154 crossref_primary_10_1088_1741_2560_13_5_056012 crossref_primary_10_1109_TBME_2018_2868759 crossref_primary_10_1109_ACCESS_2019_2934018 crossref_primary_10_3390_electronics12030604 crossref_primary_10_1016_j_engappai_2024_108294 crossref_primary_10_1109_TNSRE_2016_2601240 crossref_primary_10_1016_j_iot_2025_101562 crossref_primary_10_3389_fnbot_2017_00035 crossref_primary_10_1109_ACCESS_2023_3339647 crossref_primary_10_1088_1741_2552_ac0584 crossref_primary_10_1117_1_NPh_5_1_011008 crossref_primary_10_1142_S0129065721500040 crossref_primary_10_1109_TNSRE_2022_3154369 crossref_primary_10_1007_s10514_020_09916_x crossref_primary_10_3389_fnins_2020_559858 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_1155_2017_1742862 crossref_primary_10_1016_j_vrih_2021_10_002 crossref_primary_10_1080_2326263X_2017_1292721 crossref_primary_10_1109_ACCESS_2019_2934928 crossref_primary_10_3390_s140814601 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_3389_fnins_2018_00227 crossref_primary_10_1146_annurev_control_012720_093904 crossref_primary_10_1371_journal_pone_0150667 crossref_primary_10_3390_s17091937 crossref_primary_10_1109_TBME_2016_2543662 crossref_primary_10_1080_2326263X_2020_1782124 crossref_primary_10_14326_abe_10_58 crossref_primary_10_1155_2017_5491296 crossref_primary_10_1016_j_compbiomed_2019_05_024 crossref_primary_10_3389_fninf_2022_758537 crossref_primary_10_1177_1550059414560397 crossref_primary_10_1109_TBME_2015_2478695 crossref_primary_10_1016_j_neucom_2019_02_006 crossref_primary_10_3389_fnbot_2017_00006 crossref_primary_10_1109_ACCESS_2023_3321067 crossref_primary_10_1109_TBME_2024_3487133 crossref_primary_10_1371_journal_pone_0178410 crossref_primary_10_1109_ACCESS_2021_3100700 crossref_primary_10_1016_j_bspc_2022_104114 crossref_primary_10_1088_1741_2552_abca17 crossref_primary_10_1016_j_bspc_2020_101991 crossref_primary_10_1088_1741_2552_abc0b4 crossref_primary_10_1360_TB_2022_0338 crossref_primary_10_1371_journal_pone_0149654 crossref_primary_10_3389_fnhum_2022_951591 crossref_primary_10_1109_TBME_2015_2467312 crossref_primary_10_1016_j_eswa_2022_117417 crossref_primary_10_1088_1741_2560_12_6_066019 crossref_primary_10_3389_fncom_2022_882290 crossref_primary_10_1126_scirobotics_aaw6844 crossref_primary_10_1017_S0022029916000261 crossref_primary_10_1088_1741_2552_ab2706 crossref_primary_10_3389_fnins_2023_1124089 crossref_primary_10_3390_s22093413 crossref_primary_10_1088_1741_2552_ac1ed2 crossref_primary_10_1109_TNSRE_2022_3198041 crossref_primary_10_1088_1741_2552_aab2f2 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_1109_RBME_2022_3165062 crossref_primary_10_1109_TAFFC_2019_2916015 crossref_primary_10_1109_TBME_2014_2366554 crossref_primary_10_1088_1741_2560_11_4_046014 crossref_primary_10_1016_j_bspc_2020_101884 crossref_primary_10_1088_1741_2560_12_4_046021 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_1016_j_jneumeth_2018_11_017 crossref_primary_10_1080_2326263X_2024_2334558 crossref_primary_10_1142_S0129065716500015 crossref_primary_10_1080_2326263X_2019_1651570 crossref_primary_10_1109_COMST_2022_3232576 crossref_primary_10_1126_scitranslmed_3007303 crossref_primary_10_3389_fnhum_2022_1019279 crossref_primary_10_1007_s00521_021_06202_4 crossref_primary_10_1109_TNSRE_2022_3198970 crossref_primary_10_1016_j_cogsys_2022_11_008 crossref_primary_10_1016_j_eswa_2021_115968 crossref_primary_10_1088_1741_2552_aaf12e crossref_primary_10_1109_TE_2016_2558163 crossref_primary_10_3389_fnhum_2020_597864 crossref_primary_10_1371_journal_pone_0121896 crossref_primary_10_3390_s24185875 crossref_primary_10_1080_17489725_2018_1564845 crossref_primary_10_1109_TNSRE_2018_2837003 crossref_primary_10_1080_10447318_2021_1921482 crossref_primary_10_1145_3458930 crossref_primary_10_1109_TSMC_2024_3478113 crossref_primary_10_1007_s11571_018_9481_5 crossref_primary_10_1109_TASE_2020_3034826 crossref_primary_10_1080_27706710_2024_2438050 crossref_primary_10_1109_TMC_2023_3283022 crossref_primary_10_1109_TBME_2015_2487738 crossref_primary_10_3390_s22155802 crossref_primary_10_1016_j_compbiomed_2019_103441 crossref_primary_10_1109_THMS_2020_2968411 crossref_primary_10_3390_app14146347 crossref_primary_10_1152_physrev_00027_2016 crossref_primary_10_1038_s41598_018_31472_9 crossref_primary_10_1109_ACCESS_2019_2953900 crossref_primary_10_1109_JBHI_2014_2327635 crossref_primary_10_3389_fninf_2019_00074 crossref_primary_10_1109_ACCESS_2019_2915533 crossref_primary_10_1016_j_ifacol_2018_09_072 crossref_primary_10_1063_1_5006461 crossref_primary_10_1145_3457950 crossref_primary_10_3390_s23052798 crossref_primary_10_1088_1741_2552_ab4dc6 crossref_primary_10_3390_s23094277 crossref_primary_10_1073_pnas_1718648115 crossref_primary_10_1186_s12938_018_0534_0 crossref_primary_10_1016_j_procs_2020_04_261 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_1016_j_brs_2016_07_003 crossref_primary_10_1016_j_tics_2013_08_004 crossref_primary_10_1109_TBME_2015_2402283 crossref_primary_10_1007_s41315_018_0049_7 crossref_primary_10_1109_TBME_2017_2732479 crossref_primary_10_1007_s12559_017_9478_0 crossref_primary_10_1109_JETCAS_2016_2620474 crossref_primary_10_1016_j_bspc_2023_105486 crossref_primary_10_1016_j_bspc_2023_104944 crossref_primary_10_1109_MSMC_2016_2576638 crossref_primary_10_1109_TAES_2024_3368402 crossref_primary_10_1155_2022_3987494 crossref_primary_10_1109_TNSRE_2016_2597863 crossref_primary_10_3389_fnhum_2019_00128 crossref_primary_10_1016_j_measurement_2019_07_070 crossref_primary_10_1088_1741_2552_14_1_011001 crossref_primary_10_3389_fnhum_2024_1412307 crossref_primary_10_3390_electronics10050560 crossref_primary_10_1038_s41598_020_59222_w crossref_primary_10_3389_fnins_2019_01243 crossref_primary_10_1016_j_neunet_2021_06_022 crossref_primary_10_1007_s11042_017_4458_7 crossref_primary_10_1016_j_measurement_2016_05_054 crossref_primary_10_1016_j_bspc_2021_102993 crossref_primary_10_1109_TNSRE_2022_3185262 crossref_primary_10_1016_j_cmpb_2019_04_023 crossref_primary_10_1016_j_jneumeth_2023_109953 crossref_primary_10_1016_j_plrev_2018_10_001 crossref_primary_10_1371_journal_pone_0282268 crossref_primary_10_1109_TNSRE_2018_2817924 crossref_primary_10_1186_s12984_022_01073_9 crossref_primary_10_1088_1741_2552_aa8065 crossref_primary_10_1109_TBME_2018_2872855 crossref_primary_10_1155_2017_1463512 crossref_primary_10_3390_bioengineering10060664 crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_1139_juvs_2018_0005 crossref_primary_10_15302_J_ENG_2015078 crossref_primary_10_3390_bioengineering11070695 crossref_primary_10_1109_TBME_2024_3361716 crossref_primary_10_3389_fnbot_2019_00094 crossref_primary_10_1109_TBME_2014_2312397 crossref_primary_10_26599_BSA_2023_9050011 crossref_primary_10_3389_fnhum_2018_00059 crossref_primary_10_3390_s21175746 crossref_primary_10_1109_ACCESS_2023_3258969 crossref_primary_10_1080_2326263X_2021_1968633 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1109_TNSRE_2023_3257261 crossref_primary_10_1007_s11760_017_1193_5 crossref_primary_10_1109_TNSRE_2019_2895064 crossref_primary_10_1155_2022_1635672 crossref_primary_10_3390_mi13091485 crossref_primary_10_1016_j_cirp_2023_05_005 crossref_primary_10_3390_app13116364 crossref_primary_10_1109_TMRB_2024_3387092 crossref_primary_10_3390_s23115064 crossref_primary_10_1016_j_eswa_2016_08_007 crossref_primary_10_1016_j_vrih_2022_01_002 crossref_primary_10_1016_j_bspc_2022_103496 crossref_primary_10_1038_s41598_022_15813_3 crossref_primary_10_3389_fnhum_2016_00187 crossref_primary_10_3389_fnsys_2015_00011 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_1007_s10916_015_0402_4 crossref_primary_10_3389_fnins_2017_00756 crossref_primary_10_1177_1729881418767310 crossref_primary_10_1109_TBME_2014_2311071 crossref_primary_10_1109_JPROC_2015_2419736 crossref_primary_10_1142_S0129065718500144 crossref_primary_10_1016_j_irbm_2018_08_001 crossref_primary_10_1007_s10916_018_1106_3 crossref_primary_10_1109_TNSRE_2016_2646763 crossref_primary_10_1109_TNSRE_2025_3526950 crossref_primary_10_1109_TBME_2019_2942974 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1016_j_eswa_2020_113285 crossref_primary_10_1109_TBME_2018_2865941 crossref_primary_10_1007_s10548_018_00696_3 crossref_primary_10_1016_j_compbiomed_2014_04_020 crossref_primary_10_1109_TBME_2017_2785412 crossref_primary_10_1109_ACCESS_2018_2825378 crossref_primary_10_1109_TNSRE_2023_3307814 crossref_primary_10_3390_brainsci14050498 crossref_primary_10_3389_fnins_2018_00130 crossref_primary_10_1109_TCYB_2020_3031667 crossref_primary_10_1109_TBME_2018_2852755 crossref_primary_10_1016_j_ins_2017_08_005 crossref_primary_10_1093_cercor_bhaa234 crossref_primary_10_1109_THMS_2018_2830647 crossref_primary_10_1016_j_jneumeth_2019_03_018 crossref_primary_10_1109_LRA_2018_2856271 crossref_primary_10_1145_2808228 crossref_primary_10_1371_journal_pone_0184785 crossref_primary_10_1038_nature_2013_13139 crossref_primary_10_3389_fnbot_2019_00023 crossref_primary_10_1038_s41598_021_86215_0 crossref_primary_10_1038_srep38565 crossref_primary_10_1016_j_bspc_2014_12_007 crossref_primary_10_1109_ACCESS_2020_3012918 crossref_primary_10_1109_TFUZZ_2016_2637403 crossref_primary_10_1007_s13347_018_0308_4 crossref_primary_10_1016_j_cogr_2021_02_001 crossref_primary_10_1016_j_robot_2020_103515 crossref_primary_10_1088_1741_2552_abfaaa crossref_primary_10_1109_JIOT_2024_3406837 crossref_primary_10_1016_j_array_2019_100003 crossref_primary_10_3389_fnins_2022_892794 crossref_primary_10_1109_TNSRE_2018_2848883 crossref_primary_10_12677_CSA_2019_91006 crossref_primary_10_1038_s41597_024_04090_6 crossref_primary_10_1007_s11517_018_1883_3 crossref_primary_10_1186_s12938_015_0087_4 crossref_primary_10_1109_TNSRE_2018_2877620 crossref_primary_10_1109_TNSRE_2019_2953121 crossref_primary_10_1177_10775463211009373 crossref_primary_10_3389_fnins_2020_611130 crossref_primary_10_1038_s41597_020_0535_2 crossref_primary_10_1109_TNSRE_2022_3179971 crossref_primary_10_1038_s41591_024_03341_8 crossref_primary_10_1007_s44174_023_00082_z crossref_primary_10_1111_tran_12232 crossref_primary_10_1088_1741_2552_ab85b2 crossref_primary_10_1016_j_neuroscience_2023_08_032 crossref_primary_10_1109_ACCESS_2017_2751069 crossref_primary_10_1109_TCDS_2017_2766258 crossref_primary_10_2200_S01090ED1V01Y202104ARH017 crossref_primary_10_1109_TNSRE_2022_3184402 crossref_primary_10_1080_27706710_2023_2258938 crossref_primary_10_1109_ACCESS_2019_2961246 crossref_primary_10_1016_j_paerosci_2017_04_003 crossref_primary_10_3389_fnins_2017_00028 crossref_primary_10_3389_fnins_2018_00272 crossref_primary_10_1109_ACCESS_2019_2921375 crossref_primary_10_1016_j_heliyon_2024_e37343 crossref_primary_10_1186_s12984_017_0307_1 crossref_primary_10_1002_ange_201307495 crossref_primary_10_2139_ssrn_4162650 crossref_primary_10_3390_s18061779 crossref_primary_10_1109_TNSRE_2015_2494378 crossref_primary_10_18100_ijamec_995022 crossref_primary_10_3390_e25030464 crossref_primary_10_1145_3550334 crossref_primary_10_1109_TCDS_2021_3082648 crossref_primary_10_1109_TRO_2019_2943072 crossref_primary_10_1177_1553350615587992 crossref_primary_10_1109_TNSRE_2023_3299350 |
Cites_doi | 10.1109/TBME.2007.903709 10.1016/j.ijhcs.2004.09.001 10.1016/j.clinph.2008.06.001 10.1088/1741-2560/1/3/002 10.1109/TNSRE.2012.2214789 10.1088/1741-2560/7/2/026001 10.1038/nature06996 10.1371/journal.pone.0026322 10.1109/TNSRE.2005.847386 10.1038/nature04970 10.1126/science.1070291 10.1088/1741-2560/7/3/036007 10.1016/j.brainresbull.2008.01.007 10.1109/IEMBS.2011.6091046. 10.1016/j.clinph.2004.06.022 10.1126/science.1097938 10.1016/S1388-2457(02)00057-3 10.1016/j.clinph.2010.02.157 10.1073/pnas.0403504101 10.1088/1741-2560/10/2/026014 10.1523/JNEUROSCI.02-11-01527.1982 10.1109/TNSRE.2008.2003384 10.3109/17482968.2011.572978 10.1038/nature11076 10.1088/1741-2560/6/1/016005 10.1109/86.712231 10.1016/0304-3940(93)90886-P 10.1088/1741-2560/1/1/001 10.1109/TNSRE.2010.2077654 10.1038/nature04968 10.1016/j.neuroimage.2009.10.028 10.1016/S0301-0511(03)00073-5 10.1088/1741-2560/2/4/001 10.1109/TBME.2004.827072 |
ContentType | Journal Article |
Copyright | 2013 IOP Publishing Ltd |
Copyright_xml | – notice: 2013 IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D 5PM |
DOI | 10.1088/1741-2560/10/4/046003 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles (WRLC) url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain--computer interface |
EISSN | 1741-2552 |
EndPage | 1-15 |
ExternalDocumentID | PMC3839680 23735712 10_1088_1741_2560_10_4_046003 jne466351 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY011374 – fundername: NIBIB NIH HHS grantid: EB006433 – fundername: NIBIB NIH HHS grantid: R01 EB006433 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB006433 || EB |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. O3W P2P PJBAE RIN RO9 ROL RPA S3P SY9 TSCCA W28 XPP AAYXX ADEQX AERVB CITATION 02O 1WK ACARI AGQPQ AHSEE ARNYC BBWZM CGR CUY CVF ECM EIF FEDTE HVGLF NPM Q02 RNS 7X8 AEINN 7SC 8FD JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c552t-5eb45a6f0ee5c2e03a8fe6c7ea2cb4a633f8f0cbd253fb149023564dd0834b33 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Thu Aug 21 14:12:55 EDT 2025 Tue Aug 05 10:05:21 EDT 2025 Fri Sep 05 07:30:55 EDT 2025 Mon Jul 21 05:48:38 EDT 2025 Tue Jul 01 01:58:35 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Aug 21 03:33:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-5eb45a6f0ee5c2e03a8fe6c7ea2cb4a633f8f0cbd253fb149023564dd0834b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2560/10/4/046003 |
PMID | 23735712 |
PQID | 1413162849 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1413162849 pubmed_primary_23735712 crossref_citationtrail_10_1088_1741_2560_10_4_046003 crossref_primary_10_1088_1741_2560_10_4_046003 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3839680 proquest_miscellaneous_1439753844 iop_journals_10_1088_1741_2560_10_4_046003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2013 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 23 24 25 Wang T (32) 2004; 1 27 28 Kronegg J Voloshynovskiy S Pun T (12) 2005 Vallabhaneni A (29) 2005 Shannon C E (26) 1964 Yuan P (39) 2013; 10 Qin L (18) 2004; 1 30 Doud A J LaFleur K Shades K Rogin E Cassady K He B (3) 2012 31 10 11 33 34 13 Qin L (19) 2005; 2 35 Georgopoulos A P (6) 1982; 2 14 Royer A (22) 2009; 6 36 16 38 17 1 2 4 5 8 9 McFarland D J (15) 2010; 7 He B (7) 2013 20 Yuan H (37) 2010; 7 21 15876616 - J Neural Eng. 2004 Mar;1(1):1-7 20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9 15876632 - J Neural Eng. 2004 Sep;1(3):135-41 18394526 - Brain Res Bull. 2008 Apr 15;75(6):796-803 23033330 - IEEE Trans Neural Syst Rehabil Eng. 2012 Nov;20(6):823-35 20168002 - J Neural Eng. 2010 Apr;7(2):26001 12853169 - Biol Psychol. 2003 Jul;63(3):237-51 22596161 - Nature. 2012 May 17;485(7398):372-5 19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606 12052948 - Science. 2002 Jun 7;296(5574):1829-32 15247483 - Science. 2004 Jul 9;305(5681):258-62 16838014 - Nature. 2006 Jul 13;442(7099):164-71 22046274 - PLoS One. 2011;6(10):e26322 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31 10896178 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):164-73 16317229 - J Neural Eng. 2005 Dec;2(4):65-72 9749910 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):326-33 18270004 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):675-82 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 23953939 - Trends Cogn Sci. 2013 Oct;17(10):490-2 7143039 - J Neurosci. 1982 Nov;2(11):1527-37 19121977 - Clin Neurophysiol. 2009 Feb;120(2):239-47 20460690 - J Neural Eng. 2010 Jun;7(3):036007 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 21534845 - Amyotroph Lateral Scler. 2011 Sep;12(5):318-24 16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71 16838020 - Nature. 2006 Jul 13;442(7099):195-8 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 20347612 - Clin Neurophysiol. 2010 Aug;121(8):1293-303 23448963 - J Neural Eng. 2013 Apr;10(2):026014 15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53 |
References_xml | – ident: 25 doi: 10.1109/TBME.2007.903709 – ident: 27 doi: 10.1016/j.ijhcs.2004.09.001 – ident: 5 doi: 10.1016/j.clinph.2008.06.001 – volume: 1 start-page: 135 issn: 1741-2560 year: 2004 ident: 18 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/1/3/002 – ident: 13 doi: 10.1109/TNSRE.2012.2214789 – volume: 7 issn: 1741-2552 year: 2010 ident: 37 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/2/026001 – ident: 30 doi: 10.1038/nature06996 – ident: 4 doi: 10.1371/journal.pone.0026322 – ident: 11 doi: 10.1109/TNSRE.2005.847386 – year: 1964 ident: 26 publication-title: The Mathematical Theory of Communication – ident: 8 doi: 10.1038/nature04970 – year: 2005 ident: 12 – ident: 28 doi: 10.1126/science.1070291 – volume: 7 issn: 1741-2552 year: 2010 ident: 15 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/3/036007 – ident: 2 doi: 10.1016/j.brainresbull.2008.01.007 – ident: 20 doi: 10.1109/IEMBS.2011.6091046. – ident: 31 doi: 10.1016/j.clinph.2004.06.022 – ident: 16 doi: 10.1126/science.1097938 – ident: 33 doi: 10.1016/S1388-2457(02)00057-3 – ident: 1 doi: 10.1016/j.clinph.2010.02.157 – ident: 34 doi: 10.1073/pnas.0403504101 – volume: 10 issn: 1741-2552 year: 2013 ident: 39 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/2/026014 – volume: 2 start-page: 1527 year: 1982 ident: 6 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.02-11-01527.1982 – ident: 36 doi: 10.1109/TNSRE.2008.2003384 – year: 2012 ident: 3 publication-title: World Congress 2012 on Medical Physics and Biomedical Engineering – ident: 10 doi: 10.3109/17482968.2011.572978 – ident: 9 doi: 10.1038/nature11076 – volume: 6 issn: 1741-2552 year: 2009 ident: 22 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/1/016005 – ident: 35 doi: 10.1109/86.712231 – ident: 17 doi: 10.1016/0304-3940(93)90886-P – start-page: 87 year: 2013 ident: 7 publication-title: Brain computer interface Neural Engineering – volume: 1 start-page: 1 issn: 1741-2560 year: 2004 ident: 32 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/1/1/001 – ident: 21 doi: 10.1109/TNSRE.2010.2077654 – ident: 23 doi: 10.1038/nature04968 – ident: 38 doi: 10.1016/j.neuroimage.2009.10.028 – ident: 14 doi: 10.1016/S0301-0511(03)00073-5 – volume: 2 start-page: 65 issn: 1741-2560 year: 2005 ident: 19 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/001 – ident: 24 doi: 10.1109/TBME.2004.827072 – year: 2005 ident: 29 publication-title: Brain–Computer Interface – reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 – reference: 21534845 - Amyotroph Lateral Scler. 2011 Sep;12(5):318-24 – reference: 16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71 – reference: 23953939 - Trends Cogn Sci. 2013 Oct;17(10):490-2 – reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 – reference: 22046274 - PLoS One. 2011;6(10):e26322 – reference: 15247483 - Science. 2004 Jul 9;305(5681):258-62 – reference: 20347612 - Clin Neurophysiol. 2010 Aug;121(8):1293-303 – reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 – reference: 20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9 – reference: 19121977 - Clin Neurophysiol. 2009 Feb;120(2):239-47 – reference: 22596161 - Nature. 2012 May 17;485(7398):372-5 – reference: 20168002 - J Neural Eng. 2010 Apr;7(2):26001 – reference: 15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53 – reference: 18394526 - Brain Res Bull. 2008 Apr 15;75(6):796-803 – reference: 10896178 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):164-73 – reference: 18270004 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):675-82 – reference: 12052948 - Science. 2002 Jun 7;296(5574):1829-32 – reference: 20460690 - J Neural Eng. 2010 Jun;7(3):036007 – reference: 19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606 – reference: 23448963 - J Neural Eng. 2013 Apr;10(2):026014 – reference: 7143039 - J Neurosci. 1982 Nov;2(11):1527-37 – reference: 12853169 - Biol Psychol. 2003 Jul;63(3):237-51 – reference: 15876632 - J Neural Eng. 2004 Sep;1(3):135-41 – reference: 15876616 - J Neural Eng. 2004 Mar;1(1):1-7 – reference: 16317229 - J Neural Eng. 2005 Dec;2(4):65-72 – reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 – reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 – reference: 16838014 - Nature. 2006 Jul 13;442(7099):164-71 – reference: 18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69 – reference: 16838020 - Nature. 2006 Jul 13;442(7099):195-8 – reference: 18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31 – reference: 9749910 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):326-33 – reference: 23033330 - IEEE Trans Neural Syst Rehabil Eng. 2012 Nov;20(6):823-35 |
SSID | ssj0031790 |
Score | 2.559817 |
Snippet | Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we... At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a... |
SourceID | pubmedcentral proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 46003 |
SubjectTerms | 3D control Adult Aircraft - instrumentation Algorithms BCI Biofeedback, Psychology - instrumentation Biofeedback, Psychology - physiology Brain-computer interface Brain-Computer Interfaces Control systems Devices EEG Evoked Potentials - physiology Female Human Human-computer interface Humans Imagination - physiology Male Man-Machine Systems Motor Cortex - physiology motor imagery Movement - physiology Robot control Robotics Robots Task Performance and Analysis telepresence robotics Three dimensional Young Adult |
Title | Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface |
URI | https://iopscience.iop.org/article/10.1088/1741-2560/10/4/046003 https://www.ncbi.nlm.nih.gov/pubmed/23735712 https://www.proquest.com/docview/1413162849 https://www.proquest.com/docview/1439753844 https://pubmed.ncbi.nlm.nih.gov/PMC3839680 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aX_qi1qo9bSWC9EHI3e7mY3OPpbQUQavQYt-WfNqj7d5x7gn1r3dms3v0im0RX5ZlNwn5mGR-SWZ-Q8iHceYBGFvLjIJhEDYLTI9VzrQQNihZ2iJDb-TPX9TRqfh0Js9uePFPprNu6R_CayIKTl3YGcTpEWDonKGmhi8jMcKbPaT7fMIxnBK68B1_7ddijvxTySUyZel9eO4qZkU7PYYa_A143rafvKGQDp8R0zcl2aFcDBeNHbrft1ge_6etz8nTDq3SvZR-gzwK9QuyuVfDTv3qmu7S1n60PZjfJPW3hfFuOoOBop0BPJ3UtAFhCcxjEIFEAEJhDXOBosH9D2pojefBvwxa0VMQm-mcTq6QV-OaoYL11GIMC-a64BMU6S3mEQp4SU4OD072j1gXzYE5KYuGyWCFNCpmIUhXhIwbHYNyZTCFs8IozqOOmbO-kDxa2LghE48S3gNIFJbzV2QNahS2CPW2jCZXTpg4FsobHXwQWsYgDGhbpQdE9INYuY7pHANuXFbtjbvWFXZrhd2KX0SVunVAhstss0T18VCGjzBuVTfpfz6U-H0vSBXMYLyWMXWYLiAb4IhcAUwY35eGowc0zKABeZ2Eb1nHgpdclnkxIOWKWC4TIIP46p96ct4yiXOAx0pnb_6lIW_JetGGBEEjyG2y1swXYQeAWWPftXMPnsf8-x8uyi07 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF61RUK8lKPQplyLhHhA2sTxHt48VpSo5ShFKlLfrD0hautEqYNUfj0zXjsiFVAh3ix7x9pjZuezd-YbQl6OMg_A2FpmFCyDsFlgeqSGTAthg5KFzTPMRv54pA6-iHen8nSN7C9zYaazduvvw2UiCk5T2AbE6QFg6CFDTw13BmKAJ3sZH8x8XCe3JJcFmufhp-NuP-bIQZXSIpNYl8fzp1eteKh16MXvwOf1GMpfnNL4LgndcFIsyll_Udu--3GN6fF_x3uPbLaole4lmftkLVQPyNZeBV_sF1f0FW3iSJsf9Fuk-rww3k1nsGC0DYSnk4rWoDSBeSwmkIhAKOxlLlAMvP9KDa3wv_B3g9H0FNRnOqeTC-TXuGLoaD21WMuCubYIBUWai3mEFzwkJ-O3J28OWFvVgTkp85rJYIU0KmYhSJeHjBsdg3JFMLmzwijOo46Zsz6XPFr4gENGHiW8B7AoLOePyAb0KOwQ6m0RzVA5YeJIKG908EFoGYMw4HWV7hHRLWTpWsZzLLxxXjYn71qXOLUlTi3eEWWa2h7pL8VmifLjJoHXsHZla_yXNzV-0SlTCZaMxzOmCtMFiAGeGCqAC6O_teGYCQ2W1CPbSQGXfcx5gdqf90ixoprLBsgkvvqkmnxrGMU5wGSls91_Gchzcvt4f1x-ODx6_5jcyZsqIRgX-YRs1PNFeApYrbbPGlP8CQv5Mas |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadcopter+control+in+three-dimensional+space+using+a+noninvasive+motor+imagery-based+brain-computer+interface&rft.jtitle=Journal+of+neural+engineering&rft.au=LaFleur%2C+Karl&rft.au=Cassady%2C+Kaitlin&rft.au=Doud%2C+Alexander&rft.au=Shades%2C+Kaleb&rft.date=2013-08-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=10&rft.issue=4&rft.spage=046003&rft_id=info:doi/10.1088%2F1741-2560%2F10%2F4%2F046003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |