Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencep...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 10; no. 4; pp. 46003 - 1-15
Main Authors LaFleur, Karl, Cassady, Kaitlin, Doud, Alexander, Shades, Kaleb, Rogin, Eitan, He, Bin
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.2013
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2560/10/4/046003

Cover

Abstract Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s−1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.
AbstractList At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.
Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s super(-1). Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain--computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplishing complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.
Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s−1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.
At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task.OBJECTIVEAt the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task.Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone.APPROACHFive human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone.Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1).MAIN RESULTSIndividual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1).Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.SIGNIFICANCEFreely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.
Author Rogin, Eitan
Shades, Kaleb
Doud, Alexander
He, Bin
Cassady, Kaitlin
LaFleur, Karl
AuthorAffiliation 2 Institute for Engineering in Medicine, University of Minnesota
1 Department of Biomedical Engineering, University of Minnesota
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, University of Minnesota
– name: 2 Institute for Engineering in Medicine, University of Minnesota
Author_xml – sequence: 1
  givenname: Karl
  surname: LaFleur
  fullname: LaFleur, Karl
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA
– sequence: 2
  givenname: Kaitlin
  surname: Cassady
  fullname: Cassady, Kaitlin
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA
– sequence: 3
  givenname: Alexander
  surname: Doud
  fullname: Doud, Alexander
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA
– sequence: 4
  givenname: Kaleb
  surname: Shades
  fullname: Shades, Kaleb
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA
– sequence: 5
  givenname: Eitan
  surname: Rogin
  fullname: Rogin, Eitan
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA
– sequence: 6
  givenname: Bin
  surname: He
  fullname: He, Bin
  email: binhe@umn.edu
  organization: University of Minnesota Institute for Engineering in Medicine, 725 Mayo, 420 Delaware Ave SE, Minneapolis, MN 55455, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23735712$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaB7tT2jRsht39LZMoVBC2wQCoZC9kOXriYItuZI9kH8fmZmENptkI4mrc46O-M7QUYgBEPpEyVdKtN7QWtCKSUU2lGzEhghFCH-HTg9zyY6ez4qcoLOc74uA1g15j04Yr7msKTtF4c9iOxenGRJ2McwpDtgHPN8lgKrzI4TsY7ADzpN1gJfswxZbXMr4sLPZ7wCPcY4J-9FuIT1Urc3Q4TZZHyoXx2lZk30oa18CPqDj3g4ZPh72c3T76-ftxWV1ffP76uLHdeVK87mS0AppVU8ApGNAuNU9KFeDZa4VVnHe6564tmOS9y0VDWFcKtF1RHPRcn6Ovu9jp6UdoXNQPmYHM6XSMj2YaL35_yb4O7ONO8M1b5QmJeDLISDFvwvk2Yw-OxgGGyAu2VDBm1pyLcQbpJRTxbRoivTzv7We-zzhKIJve4FLMecEvXF-trNfwVg_GErMCt-sYM0Kdp0Is4df3PKF--mB13x07_NxMvdxSYV3fsXzCOcJw2o
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1002_anie_201307495
crossref_primary_10_1038_s41597_021_00883_1
crossref_primary_10_1109_JPROC_2015_2407272
crossref_primary_10_1109_TNSRE_2023_3321640
crossref_primary_10_1016_j_bspc_2024_106215
crossref_primary_10_1109_TNSRE_2023_3257319
crossref_primary_10_1186_s12938_023_01102_1
crossref_primary_10_1109_JIOT_2024_3367690
crossref_primary_10_1115_1_4051596
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1109_JBHI_2019_2892379
crossref_primary_10_1109_TBME_2023_3298957
crossref_primary_10_3389_fnins_2018_00217
crossref_primary_10_1109_ACCESS_2024_3392008
crossref_primary_10_1007_s11427_020_1675_x
crossref_primary_10_1109_ACCESS_2022_3215639
crossref_primary_10_1142_S233954781450023X
crossref_primary_10_1155_2018_2695106
crossref_primary_10_1007_s11571_021_09779_7
crossref_primary_10_1038_mp_2016_83
crossref_primary_10_1016_j_imu_2022_101141
crossref_primary_10_3390_app112411876
crossref_primary_10_1088_1741_2552_aa8ce3
crossref_primary_10_1109_ACCESS_2020_3019978
crossref_primary_10_1016_j_cortex_2015_10_008
crossref_primary_10_1016_j_autcon_2023_105011
crossref_primary_10_1080_10447318_2024_2443268
crossref_primary_10_1371_journal_pone_0123727
crossref_primary_10_3389_fnins_2014_00415
crossref_primary_10_3389_fnins_2020_584971
crossref_primary_10_1016_j_aei_2021_101499
crossref_primary_10_1109_TNNLS_2019_2946869
crossref_primary_10_1088_1741_2552_adbcda
crossref_primary_10_1371_journal_pone_0172578
crossref_primary_10_1371_journal_pone_0168766
crossref_primary_10_3389_fnins_2018_00680
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1080_02564602_2019_1620138
crossref_primary_10_3390_brainsci12070833
crossref_primary_10_1088_1741_2552_ac9861
crossref_primary_10_1016_j_cogsys_2019_09_013
crossref_primary_10_1016_j_bbe_2020_12_004
crossref_primary_10_1080_27706710_2024_2425299
crossref_primary_10_5937_PoljTeh1804029O
crossref_primary_10_1109_ACCESS_2020_3003056
crossref_primary_10_3390_s25010154
crossref_primary_10_1088_1741_2560_13_5_056012
crossref_primary_10_1109_TBME_2018_2868759
crossref_primary_10_1109_ACCESS_2019_2934018
crossref_primary_10_3390_electronics12030604
crossref_primary_10_1016_j_engappai_2024_108294
crossref_primary_10_1109_TNSRE_2016_2601240
crossref_primary_10_1016_j_iot_2025_101562
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_1109_ACCESS_2023_3339647
crossref_primary_10_1088_1741_2552_ac0584
crossref_primary_10_1117_1_NPh_5_1_011008
crossref_primary_10_1142_S0129065721500040
crossref_primary_10_1109_TNSRE_2022_3154369
crossref_primary_10_1007_s10514_020_09916_x
crossref_primary_10_3389_fnins_2020_559858
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1155_2017_1742862
crossref_primary_10_1016_j_vrih_2021_10_002
crossref_primary_10_1080_2326263X_2017_1292721
crossref_primary_10_1109_ACCESS_2019_2934928
crossref_primary_10_3390_s140814601
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_3389_fnins_2018_00227
crossref_primary_10_1146_annurev_control_012720_093904
crossref_primary_10_1371_journal_pone_0150667
crossref_primary_10_3390_s17091937
crossref_primary_10_1109_TBME_2016_2543662
crossref_primary_10_1080_2326263X_2020_1782124
crossref_primary_10_14326_abe_10_58
crossref_primary_10_1155_2017_5491296
crossref_primary_10_1016_j_compbiomed_2019_05_024
crossref_primary_10_3389_fninf_2022_758537
crossref_primary_10_1177_1550059414560397
crossref_primary_10_1109_TBME_2015_2478695
crossref_primary_10_1016_j_neucom_2019_02_006
crossref_primary_10_3389_fnbot_2017_00006
crossref_primary_10_1109_ACCESS_2023_3321067
crossref_primary_10_1109_TBME_2024_3487133
crossref_primary_10_1371_journal_pone_0178410
crossref_primary_10_1109_ACCESS_2021_3100700
crossref_primary_10_1016_j_bspc_2022_104114
crossref_primary_10_1088_1741_2552_abca17
crossref_primary_10_1016_j_bspc_2020_101991
crossref_primary_10_1088_1741_2552_abc0b4
crossref_primary_10_1360_TB_2022_0338
crossref_primary_10_1371_journal_pone_0149654
crossref_primary_10_3389_fnhum_2022_951591
crossref_primary_10_1109_TBME_2015_2467312
crossref_primary_10_1016_j_eswa_2022_117417
crossref_primary_10_1088_1741_2560_12_6_066019
crossref_primary_10_3389_fncom_2022_882290
crossref_primary_10_1126_scirobotics_aaw6844
crossref_primary_10_1017_S0022029916000261
crossref_primary_10_1088_1741_2552_ab2706
crossref_primary_10_3389_fnins_2023_1124089
crossref_primary_10_3390_s22093413
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_1109_TNSRE_2022_3198041
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1093_pnasnexus_pgae145
crossref_primary_10_1109_RBME_2022_3165062
crossref_primary_10_1109_TAFFC_2019_2916015
crossref_primary_10_1109_TBME_2014_2366554
crossref_primary_10_1088_1741_2560_11_4_046014
crossref_primary_10_1016_j_bspc_2020_101884
crossref_primary_10_1088_1741_2560_12_4_046021
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_1016_j_jneumeth_2018_11_017
crossref_primary_10_1080_2326263X_2024_2334558
crossref_primary_10_1142_S0129065716500015
crossref_primary_10_1080_2326263X_2019_1651570
crossref_primary_10_1109_COMST_2022_3232576
crossref_primary_10_1126_scitranslmed_3007303
crossref_primary_10_3389_fnhum_2022_1019279
crossref_primary_10_1007_s00521_021_06202_4
crossref_primary_10_1109_TNSRE_2022_3198970
crossref_primary_10_1016_j_cogsys_2022_11_008
crossref_primary_10_1016_j_eswa_2021_115968
crossref_primary_10_1088_1741_2552_aaf12e
crossref_primary_10_1109_TE_2016_2558163
crossref_primary_10_3389_fnhum_2020_597864
crossref_primary_10_1371_journal_pone_0121896
crossref_primary_10_3390_s24185875
crossref_primary_10_1080_17489725_2018_1564845
crossref_primary_10_1109_TNSRE_2018_2837003
crossref_primary_10_1080_10447318_2021_1921482
crossref_primary_10_1145_3458930
crossref_primary_10_1109_TSMC_2024_3478113
crossref_primary_10_1007_s11571_018_9481_5
crossref_primary_10_1109_TASE_2020_3034826
crossref_primary_10_1080_27706710_2024_2438050
crossref_primary_10_1109_TMC_2023_3283022
crossref_primary_10_1109_TBME_2015_2487738
crossref_primary_10_3390_s22155802
crossref_primary_10_1016_j_compbiomed_2019_103441
crossref_primary_10_1109_THMS_2020_2968411
crossref_primary_10_3390_app14146347
crossref_primary_10_1152_physrev_00027_2016
crossref_primary_10_1038_s41598_018_31472_9
crossref_primary_10_1109_ACCESS_2019_2953900
crossref_primary_10_1109_JBHI_2014_2327635
crossref_primary_10_3389_fninf_2019_00074
crossref_primary_10_1109_ACCESS_2019_2915533
crossref_primary_10_1016_j_ifacol_2018_09_072
crossref_primary_10_1063_1_5006461
crossref_primary_10_1145_3457950
crossref_primary_10_3390_s23052798
crossref_primary_10_1088_1741_2552_ab4dc6
crossref_primary_10_3390_s23094277
crossref_primary_10_1073_pnas_1718648115
crossref_primary_10_1186_s12938_018_0534_0
crossref_primary_10_1016_j_procs_2020_04_261
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1016_j_brs_2016_07_003
crossref_primary_10_1016_j_tics_2013_08_004
crossref_primary_10_1109_TBME_2015_2402283
crossref_primary_10_1007_s41315_018_0049_7
crossref_primary_10_1109_TBME_2017_2732479
crossref_primary_10_1007_s12559_017_9478_0
crossref_primary_10_1109_JETCAS_2016_2620474
crossref_primary_10_1016_j_bspc_2023_105486
crossref_primary_10_1016_j_bspc_2023_104944
crossref_primary_10_1109_MSMC_2016_2576638
crossref_primary_10_1109_TAES_2024_3368402
crossref_primary_10_1155_2022_3987494
crossref_primary_10_1109_TNSRE_2016_2597863
crossref_primary_10_3389_fnhum_2019_00128
crossref_primary_10_1016_j_measurement_2019_07_070
crossref_primary_10_1088_1741_2552_14_1_011001
crossref_primary_10_3389_fnhum_2024_1412307
crossref_primary_10_3390_electronics10050560
crossref_primary_10_1038_s41598_020_59222_w
crossref_primary_10_3389_fnins_2019_01243
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_1007_s11042_017_4458_7
crossref_primary_10_1016_j_measurement_2016_05_054
crossref_primary_10_1016_j_bspc_2021_102993
crossref_primary_10_1109_TNSRE_2022_3185262
crossref_primary_10_1016_j_cmpb_2019_04_023
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_1016_j_plrev_2018_10_001
crossref_primary_10_1371_journal_pone_0282268
crossref_primary_10_1109_TNSRE_2018_2817924
crossref_primary_10_1186_s12984_022_01073_9
crossref_primary_10_1088_1741_2552_aa8065
crossref_primary_10_1109_TBME_2018_2872855
crossref_primary_10_1155_2017_1463512
crossref_primary_10_3390_bioengineering10060664
crossref_primary_10_1109_TCYB_2021_3122969
crossref_primary_10_1139_juvs_2018_0005
crossref_primary_10_15302_J_ENG_2015078
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_1109_TBME_2024_3361716
crossref_primary_10_3389_fnbot_2019_00094
crossref_primary_10_1109_TBME_2014_2312397
crossref_primary_10_26599_BSA_2023_9050011
crossref_primary_10_3389_fnhum_2018_00059
crossref_primary_10_3390_s21175746
crossref_primary_10_1109_ACCESS_2023_3258969
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1109_TNSRE_2023_3257261
crossref_primary_10_1007_s11760_017_1193_5
crossref_primary_10_1109_TNSRE_2019_2895064
crossref_primary_10_1155_2022_1635672
crossref_primary_10_3390_mi13091485
crossref_primary_10_1016_j_cirp_2023_05_005
crossref_primary_10_3390_app13116364
crossref_primary_10_1109_TMRB_2024_3387092
crossref_primary_10_3390_s23115064
crossref_primary_10_1016_j_eswa_2016_08_007
crossref_primary_10_1016_j_vrih_2022_01_002
crossref_primary_10_1016_j_bspc_2022_103496
crossref_primary_10_1038_s41598_022_15813_3
crossref_primary_10_3389_fnhum_2016_00187
crossref_primary_10_3389_fnsys_2015_00011
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_1007_s10916_015_0402_4
crossref_primary_10_3389_fnins_2017_00756
crossref_primary_10_1177_1729881418767310
crossref_primary_10_1109_TBME_2014_2311071
crossref_primary_10_1109_JPROC_2015_2419736
crossref_primary_10_1142_S0129065718500144
crossref_primary_10_1016_j_irbm_2018_08_001
crossref_primary_10_1007_s10916_018_1106_3
crossref_primary_10_1109_TNSRE_2016_2646763
crossref_primary_10_1109_TNSRE_2025_3526950
crossref_primary_10_1109_TBME_2019_2942974
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1016_j_eswa_2020_113285
crossref_primary_10_1109_TBME_2018_2865941
crossref_primary_10_1007_s10548_018_00696_3
crossref_primary_10_1016_j_compbiomed_2014_04_020
crossref_primary_10_1109_TBME_2017_2785412
crossref_primary_10_1109_ACCESS_2018_2825378
crossref_primary_10_1109_TNSRE_2023_3307814
crossref_primary_10_3390_brainsci14050498
crossref_primary_10_3389_fnins_2018_00130
crossref_primary_10_1109_TCYB_2020_3031667
crossref_primary_10_1109_TBME_2018_2852755
crossref_primary_10_1016_j_ins_2017_08_005
crossref_primary_10_1093_cercor_bhaa234
crossref_primary_10_1109_THMS_2018_2830647
crossref_primary_10_1016_j_jneumeth_2019_03_018
crossref_primary_10_1109_LRA_2018_2856271
crossref_primary_10_1145_2808228
crossref_primary_10_1371_journal_pone_0184785
crossref_primary_10_1038_nature_2013_13139
crossref_primary_10_3389_fnbot_2019_00023
crossref_primary_10_1038_s41598_021_86215_0
crossref_primary_10_1038_srep38565
crossref_primary_10_1016_j_bspc_2014_12_007
crossref_primary_10_1109_ACCESS_2020_3012918
crossref_primary_10_1109_TFUZZ_2016_2637403
crossref_primary_10_1007_s13347_018_0308_4
crossref_primary_10_1016_j_cogr_2021_02_001
crossref_primary_10_1016_j_robot_2020_103515
crossref_primary_10_1088_1741_2552_abfaaa
crossref_primary_10_1109_JIOT_2024_3406837
crossref_primary_10_1016_j_array_2019_100003
crossref_primary_10_3389_fnins_2022_892794
crossref_primary_10_1109_TNSRE_2018_2848883
crossref_primary_10_12677_CSA_2019_91006
crossref_primary_10_1038_s41597_024_04090_6
crossref_primary_10_1007_s11517_018_1883_3
crossref_primary_10_1186_s12938_015_0087_4
crossref_primary_10_1109_TNSRE_2018_2877620
crossref_primary_10_1109_TNSRE_2019_2953121
crossref_primary_10_1177_10775463211009373
crossref_primary_10_3389_fnins_2020_611130
crossref_primary_10_1038_s41597_020_0535_2
crossref_primary_10_1109_TNSRE_2022_3179971
crossref_primary_10_1038_s41591_024_03341_8
crossref_primary_10_1007_s44174_023_00082_z
crossref_primary_10_1111_tran_12232
crossref_primary_10_1088_1741_2552_ab85b2
crossref_primary_10_1016_j_neuroscience_2023_08_032
crossref_primary_10_1109_ACCESS_2017_2751069
crossref_primary_10_1109_TCDS_2017_2766258
crossref_primary_10_2200_S01090ED1V01Y202104ARH017
crossref_primary_10_1109_TNSRE_2022_3184402
crossref_primary_10_1080_27706710_2023_2258938
crossref_primary_10_1109_ACCESS_2019_2961246
crossref_primary_10_1016_j_paerosci_2017_04_003
crossref_primary_10_3389_fnins_2017_00028
crossref_primary_10_3389_fnins_2018_00272
crossref_primary_10_1109_ACCESS_2019_2921375
crossref_primary_10_1016_j_heliyon_2024_e37343
crossref_primary_10_1186_s12984_017_0307_1
crossref_primary_10_1002_ange_201307495
crossref_primary_10_2139_ssrn_4162650
crossref_primary_10_3390_s18061779
crossref_primary_10_1109_TNSRE_2015_2494378
crossref_primary_10_18100_ijamec_995022
crossref_primary_10_3390_e25030464
crossref_primary_10_1145_3550334
crossref_primary_10_1109_TCDS_2021_3082648
crossref_primary_10_1109_TRO_2019_2943072
crossref_primary_10_1177_1553350615587992
crossref_primary_10_1109_TNSRE_2023_3299350
Cites_doi 10.1109/TBME.2007.903709
10.1016/j.ijhcs.2004.09.001
10.1016/j.clinph.2008.06.001
10.1088/1741-2560/1/3/002
10.1109/TNSRE.2012.2214789
10.1088/1741-2560/7/2/026001
10.1038/nature06996
10.1371/journal.pone.0026322
10.1109/TNSRE.2005.847386
10.1038/nature04970
10.1126/science.1070291
10.1088/1741-2560/7/3/036007
10.1016/j.brainresbull.2008.01.007
10.1109/IEMBS.2011.6091046.
10.1016/j.clinph.2004.06.022
10.1126/science.1097938
10.1016/S1388-2457(02)00057-3
10.1016/j.clinph.2010.02.157
10.1073/pnas.0403504101
10.1088/1741-2560/10/2/026014
10.1523/JNEUROSCI.02-11-01527.1982
10.1109/TNSRE.2008.2003384
10.3109/17482968.2011.572978
10.1038/nature11076
10.1088/1741-2560/6/1/016005
10.1109/86.712231
10.1016/0304-3940(93)90886-P
10.1088/1741-2560/1/1/001
10.1109/TNSRE.2010.2077654
10.1038/nature04968
10.1016/j.neuroimage.2009.10.028
10.1016/S0301-0511(03)00073-5
10.1088/1741-2560/2/4/001
10.1109/TBME.2004.827072
ContentType Journal Article
Copyright 2013 IOP Publishing Ltd
Copyright_xml – notice: 2013 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
DOI 10.1088/1741-2560/10/4/046003
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
Computer and Information Systems Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles (WRLC)
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain--computer interface
EISSN 1741-2552
EndPage 1-15
ExternalDocumentID PMC3839680
23735712
10_1088_1741_2560_10_4_046003
jne466351
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: P30 EY011374
– fundername: NIBIB NIH HHS
  grantid: EB006433
– fundername: NIBIB NIH HHS
  grantid: R01 EB006433
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB006433 || EB
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
S3P
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
AERVB
CITATION
02O
1WK
ACARI
AGQPQ
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
NPM
Q02
RNS
7X8
AEINN
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c552t-5eb45a6f0ee5c2e03a8fe6c7ea2cb4a633f8f0cbd253fb149023564dd0834b33
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Aug 21 14:12:55 EDT 2025
Tue Aug 05 10:05:21 EDT 2025
Fri Sep 05 07:30:55 EDT 2025
Mon Jul 21 05:48:38 EDT 2025
Tue Jul 01 01:58:35 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-5eb45a6f0ee5c2e03a8fe6c7ea2cb4a633f8f0cbd253fb149023564dd0834b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2560/10/4/046003
PMID 23735712
PQID 1413162849
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1413162849
pubmed_primary_23735712
crossref_citationtrail_10_1088_1741_2560_10_4_046003
crossref_primary_10_1088_1741_2560_10_4_046003
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3839680
proquest_miscellaneous_1439753844
iop_journals_10_1088_1741_2560_10_4_046003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2013
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 23
24
25
Wang T (32) 2004; 1
27
28
Kronegg J Voloshynovskiy S Pun T (12) 2005
Vallabhaneni A (29) 2005
Shannon C E (26) 1964
Yuan P (39) 2013; 10
Qin L (18) 2004; 1
30
Doud A J LaFleur K Shades K Rogin E Cassady K He B (3) 2012
31
10
11
33
34
13
Qin L (19) 2005; 2
35
Georgopoulos A P (6) 1982; 2
14
Royer A (22) 2009; 6
36
16
38
17
1
2
4
5
8
9
McFarland D J (15) 2010; 7
He B (7) 2013
20
Yuan H (37) 2010; 7
21
15876616 - J Neural Eng. 2004 Mar;1(1):1-7
20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9
15876632 - J Neural Eng. 2004 Sep;1(3):135-41
18394526 - Brain Res Bull. 2008 Apr 15;75(6):796-803
23033330 - IEEE Trans Neural Syst Rehabil Eng. 2012 Nov;20(6):823-35
20168002 - J Neural Eng. 2010 Apr;7(2):26001
12853169 - Biol Psychol. 2003 Jul;63(3):237-51
22596161 - Nature. 2012 May 17;485(7398):372-5
19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606
12052948 - Science. 2002 Jun 7;296(5574):1829-32
15247483 - Science. 2004 Jul 9;305(5681):258-62
16838014 - Nature. 2006 Jul 13;442(7099):164-71
22046274 - PLoS One. 2011;6(10):e26322
15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31
10896178 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):164-73
16317229 - J Neural Eng. 2005 Dec;2(4):65-72
9749910 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):326-33
18270004 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):675-82
15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
23953939 - Trends Cogn Sci. 2013 Oct;17(10):490-2
7143039 - J Neurosci. 1982 Nov;2(11):1527-37
19121977 - Clin Neurophysiol. 2009 Feb;120(2):239-47
20460690 - J Neural Eng. 2010 Jun;7(3):036007
12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91
21534845 - Amyotroph Lateral Scler. 2011 Sep;12(5):318-24
16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71
16838020 - Nature. 2006 Jul 13;442(7099):195-8
10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69
18509337 - Nature. 2008 Jun 19;453(7198):1098-101
20347612 - Clin Neurophysiol. 2010 Aug;121(8):1293-303
23448963 - J Neural Eng. 2013 Apr;10(2):026014
15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53
References_xml – ident: 25
  doi: 10.1109/TBME.2007.903709
– ident: 27
  doi: 10.1016/j.ijhcs.2004.09.001
– ident: 5
  doi: 10.1016/j.clinph.2008.06.001
– volume: 1
  start-page: 135
  issn: 1741-2560
  year: 2004
  ident: 18
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/3/002
– ident: 13
  doi: 10.1109/TNSRE.2012.2214789
– volume: 7
  issn: 1741-2552
  year: 2010
  ident: 37
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026001
– ident: 30
  doi: 10.1038/nature06996
– ident: 4
  doi: 10.1371/journal.pone.0026322
– ident: 11
  doi: 10.1109/TNSRE.2005.847386
– year: 1964
  ident: 26
  publication-title: The Mathematical Theory of Communication
– ident: 8
  doi: 10.1038/nature04970
– year: 2005
  ident: 12
– ident: 28
  doi: 10.1126/science.1070291
– volume: 7
  issn: 1741-2552
  year: 2010
  ident: 15
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/3/036007
– ident: 2
  doi: 10.1016/j.brainresbull.2008.01.007
– ident: 20
  doi: 10.1109/IEMBS.2011.6091046.
– ident: 31
  doi: 10.1016/j.clinph.2004.06.022
– ident: 16
  doi: 10.1126/science.1097938
– ident: 33
  doi: 10.1016/S1388-2457(02)00057-3
– ident: 1
  doi: 10.1016/j.clinph.2010.02.157
– ident: 34
  doi: 10.1073/pnas.0403504101
– volume: 10
  issn: 1741-2552
  year: 2013
  ident: 39
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/2/026014
– volume: 2
  start-page: 1527
  year: 1982
  ident: 6
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.02-11-01527.1982
– ident: 36
  doi: 10.1109/TNSRE.2008.2003384
– year: 2012
  ident: 3
  publication-title: World Congress 2012 on Medical Physics and Biomedical Engineering
– ident: 10
  doi: 10.3109/17482968.2011.572978
– ident: 9
  doi: 10.1038/nature11076
– volume: 6
  issn: 1741-2552
  year: 2009
  ident: 22
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/1/016005
– ident: 35
  doi: 10.1109/86.712231
– ident: 17
  doi: 10.1016/0304-3940(93)90886-P
– start-page: 87
  year: 2013
  ident: 7
  publication-title: Brain computer interface Neural Engineering
– volume: 1
  start-page: 1
  issn: 1741-2560
  year: 2004
  ident: 32
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/1/001
– ident: 21
  doi: 10.1109/TNSRE.2010.2077654
– ident: 23
  doi: 10.1038/nature04968
– ident: 38
  doi: 10.1016/j.neuroimage.2009.10.028
– ident: 14
  doi: 10.1016/S0301-0511(03)00073-5
– volume: 2
  start-page: 65
  issn: 1741-2560
  year: 2005
  ident: 19
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/001
– ident: 24
  doi: 10.1109/TBME.2004.827072
– year: 2005
  ident: 29
  publication-title: Brain–Computer Interface
– reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101
– reference: 21534845 - Amyotroph Lateral Scler. 2011 Sep;12(5):318-24
– reference: 16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71
– reference: 23953939 - Trends Cogn Sci. 2013 Oct;17(10):490-2
– reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91
– reference: 22046274 - PLoS One. 2011;6(10):e26322
– reference: 15247483 - Science. 2004 Jul 9;305(5681):258-62
– reference: 20347612 - Clin Neurophysiol. 2010 Aug;121(8):1293-303
– reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
– reference: 20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9
– reference: 19121977 - Clin Neurophysiol. 2009 Feb;120(2):239-47
– reference: 22596161 - Nature. 2012 May 17;485(7398):372-5
– reference: 20168002 - J Neural Eng. 2010 Apr;7(2):26001
– reference: 15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53
– reference: 18394526 - Brain Res Bull. 2008 Apr 15;75(6):796-803
– reference: 10896178 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):164-73
– reference: 18270004 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):675-82
– reference: 12052948 - Science. 2002 Jun 7;296(5574):1829-32
– reference: 20460690 - J Neural Eng. 2010 Jun;7(3):036007
– reference: 19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606
– reference: 23448963 - J Neural Eng. 2013 Apr;10(2):026014
– reference: 7143039 - J Neurosci. 1982 Nov;2(11):1527-37
– reference: 12853169 - Biol Psychol. 2003 Jul;63(3):237-51
– reference: 15876632 - J Neural Eng. 2004 Sep;1(3):135-41
– reference: 15876616 - J Neural Eng. 2004 Mar;1(1):1-7
– reference: 16317229 - J Neural Eng. 2005 Dec;2(4):65-72
– reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
– reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
– reference: 16838014 - Nature. 2006 Jul 13;442(7099):164-71
– reference: 18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69
– reference: 16838020 - Nature. 2006 Jul 13;442(7099):195-8
– reference: 18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31
– reference: 9749910 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):326-33
– reference: 23033330 - IEEE Trans Neural Syst Rehabil Eng. 2012 Nov;20(6):823-35
SSID ssj0031790
Score 2.559817
Snippet Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we...
At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a...
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46003
SubjectTerms 3D control
Adult
Aircraft - instrumentation
Algorithms
BCI
Biofeedback, Psychology - instrumentation
Biofeedback, Psychology - physiology
Brain-computer interface
Brain-Computer Interfaces
Control systems
Devices
EEG
Evoked Potentials - physiology
Female
Human
Human-computer interface
Humans
Imagination - physiology
Male
Man-Machine Systems
Motor Cortex - physiology
motor imagery
Movement - physiology
Robot control
Robotics
Robots
Task Performance and Analysis
telepresence robotics
Three dimensional
Young Adult
Title Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface
URI https://iopscience.iop.org/article/10.1088/1741-2560/10/4/046003
https://www.ncbi.nlm.nih.gov/pubmed/23735712
https://www.proquest.com/docview/1413162849
https://www.proquest.com/docview/1439753844
https://pubmed.ncbi.nlm.nih.gov/PMC3839680
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aX_qi1qo9bSWC9EHI3e7mY3OPpbQUQavQYt-WfNqj7d5x7gn1r3dms3v0im0RX5ZlNwn5mGR-SWZ-Q8iHceYBGFvLjIJhEDYLTI9VzrQQNihZ2iJDb-TPX9TRqfh0Js9uePFPprNu6R_CayIKTl3YGcTpEWDonKGmhi8jMcKbPaT7fMIxnBK68B1_7ddijvxTySUyZel9eO4qZkU7PYYa_A143rafvKGQDp8R0zcl2aFcDBeNHbrft1ge_6etz8nTDq3SvZR-gzwK9QuyuVfDTv3qmu7S1n60PZjfJPW3hfFuOoOBop0BPJ3UtAFhCcxjEIFEAEJhDXOBosH9D2pojefBvwxa0VMQm-mcTq6QV-OaoYL11GIMC-a64BMU6S3mEQp4SU4OD072j1gXzYE5KYuGyWCFNCpmIUhXhIwbHYNyZTCFs8IozqOOmbO-kDxa2LghE48S3gNIFJbzV2QNahS2CPW2jCZXTpg4FsobHXwQWsYgDGhbpQdE9INYuY7pHANuXFbtjbvWFXZrhd2KX0SVunVAhstss0T18VCGjzBuVTfpfz6U-H0vSBXMYLyWMXWYLiAb4IhcAUwY35eGowc0zKABeZ2Eb1nHgpdclnkxIOWKWC4TIIP46p96ct4yiXOAx0pnb_6lIW_JetGGBEEjyG2y1swXYQeAWWPftXMPnsf8-x8uyi07
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF61RUK8lKPQplyLhHhA2sTxHt48VpSo5ShFKlLfrD0hautEqYNUfj0zXjsiFVAh3ix7x9pjZuezd-YbQl6OMg_A2FpmFCyDsFlgeqSGTAthg5KFzTPMRv54pA6-iHen8nSN7C9zYaazduvvw2UiCk5T2AbE6QFg6CFDTw13BmKAJ3sZH8x8XCe3JJcFmufhp-NuP-bIQZXSIpNYl8fzp1eteKh16MXvwOf1GMpfnNL4LgndcFIsyll_Udu--3GN6fF_x3uPbLaole4lmftkLVQPyNZeBV_sF1f0FW3iSJsf9Fuk-rww3k1nsGC0DYSnk4rWoDSBeSwmkIhAKOxlLlAMvP9KDa3wv_B3g9H0FNRnOqeTC-TXuGLoaD21WMuCubYIBUWai3mEFzwkJ-O3J28OWFvVgTkp85rJYIU0KmYhSJeHjBsdg3JFMLmzwijOo46Zsz6XPFr4gENGHiW8B7AoLOePyAb0KOwQ6m0RzVA5YeJIKG908EFoGYMw4HWV7hHRLWTpWsZzLLxxXjYn71qXOLUlTi3eEWWa2h7pL8VmifLjJoHXsHZla_yXNzV-0SlTCZaMxzOmCtMFiAGeGCqAC6O_teGYCQ2W1CPbSQGXfcx5gdqf90ixoprLBsgkvvqkmnxrGMU5wGSls91_Gchzcvt4f1x-ODx6_5jcyZsqIRgX-YRs1PNFeApYrbbPGlP8CQv5Mas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadcopter+control+in+three-dimensional+space+using+a+noninvasive+motor+imagery-based+brain-computer+interface&rft.jtitle=Journal+of+neural+engineering&rft.au=LaFleur%2C+Karl&rft.au=Cassady%2C+Kaitlin&rft.au=Doud%2C+Alexander&rft.au=Shades%2C+Kaleb&rft.date=2013-08-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=10&rft.issue=4&rft.spage=046003&rft_id=info:doi/10.1088%2F1741-2560%2F10%2F4%2F046003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon