A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space
We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional s...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 238; p. 118200 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Inc
01.09.2021
Elsevier Limited Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2021.118200 |
Cover
| Abstract | We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia. |
|---|---|
| AbstractList | We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia. We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia. |
| ArticleNumber | 118200 |
| Author | Rampino, Antonio Chen, Qiang Goldman, Aaron L. Bertolino, Alessandro Fazio, Leonardo Mattay, Venkata S. Venkataraman, Archana Pergola, Giulio Ghosal, Sayan Berman, Karen F. Ulrich, William Blasi, Giuseppe Weinberger, Daniel R. |
| Author_xml | – sequence: 1 givenname: Sayan surname: Ghosal fullname: Ghosal, Sayan email: sghosal3@jhu.edu organization: Department of Electrical and Computer Engineering, Johns Hopkins University, USA – sequence: 2 givenname: Qiang surname: Chen fullname: Chen, Qiang organization: Lieber Institute for Brain Development, USA – sequence: 3 givenname: Giulio surname: Pergola fullname: Pergola, Giulio organization: Lieber Institute for Brain Development, USA – sequence: 4 givenname: Aaron L. surname: Goldman fullname: Goldman, Aaron L. organization: Lieber Institute for Brain Development, USA – sequence: 5 givenname: William surname: Ulrich fullname: Ulrich, William organization: Lieber Institute for Brain Development, USA – sequence: 6 givenname: Karen F. surname: Berman fullname: Berman, Karen F. organization: Clinical and Translational Neuroscience Branch, NIMH, NIH, USA – sequence: 7 givenname: Giuseppe surname: Blasi fullname: Blasi, Giuseppe organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy – sequence: 8 givenname: Leonardo surname: Fazio fullname: Fazio, Leonardo organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy – sequence: 9 givenname: Antonio surname: Rampino fullname: Rampino, Antonio organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy – sequence: 10 givenname: Alessandro surname: Bertolino fullname: Bertolino, Alessandro organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy – sequence: 11 givenname: Daniel R. surname: Weinberger fullname: Weinberger, Daniel R. organization: Lieber Institute for Brain Development, USA – sequence: 12 givenname: Venkata S. surname: Mattay fullname: Mattay, Venkata S. organization: Lieber Institute for Brain Development, USA – sequence: 13 givenname: Archana surname: Venkataraman fullname: Venkataraman, Archana organization: Department of Electrical and Computer Engineering, Johns Hopkins University, USA |
| BookMark | eNqVkc2O0zAUhSM0SMwMvEMkNiwmxXbsNtkghhE_I43EBtbW7fVNcMe1i51M6dvjNAikrsrKdnzO55x7rooLHzwVRcnZgjO-fLtZeBpjsFvoaSGY4AvOG8HYs-KSs1ZVrVqJi2mv6qrhvH1RXKW0YYy1XDaXxa_bsidPEQb7RJWxCaPdWn88ll2ELe1DfCyHHzCU1g_UZyWlcnrO-v7maB4s3pTgTWks9D4kmyZpKDGMO0emdGGfr7bkkw0eXJl2gPSyeN6BS_Tqz3pdfP_08dvdl-rh6-f7u9uHCpUSQyVwWbemywYArrgiyYAYCYJmbVZSIpqV4pIZWIHMUdcoSDTAcS14u1Smvi7uZ64JsNG7nA7iQQew-vghxF5DzAkcaewYb9b1ynCJ0qyx7ZpOSINSGbFEWmZWO7NGv4PDHpz7C-RMT3Xojf5Xh57q0HMd2ftm9u5i-DlSGvQ2D5ucA09hTFooyXKQphZZ-vpEugljzJObVErWdS5TZtW7WYUxpBSp02iH3FvwQwTrzvmj5gTwH2E-zFbKzT1ZijqhJY9kbCQc8mjtOZD3JxB01lsE90iH8xC_ASP_9cU |
| CitedBy_id | crossref_primary_10_1109_TCBB_2023_3294413 crossref_primary_10_3389_fnins_2023_1227491 crossref_primary_10_1109_JBHI_2023_3337661 crossref_primary_10_1109_TMI_2024_3419041 crossref_primary_10_1111_pcn_13736 crossref_primary_10_1111_pcn_13625 crossref_primary_10_1016_j_patcog_2024_110845 |
| Cites_doi | 10.1038/npp.2009.192 10.1002/hbm.20074 10.1002/hbm.1048 10.1017/S0033291712002413 10.1038/tp.2016.272 10.1001/jamapsychiatry.2013.3911 10.1176/appi.ajp.160.4.709 10.1109/TBME.2014.2372011 10.1093/cercor/bhw157 10.1002/ajmg.b.32349 10.1080/0952813X.2018.1563636 10.1038/ng.2653 10.1073/pnas.111134598 10.1093/brain/awy004 10.1017/S0033291715002639 10.1007/s10555-017-9718-5 10.4103/0972-6748.77625 10.1001/jamanetworkopen.2019.14645 10.1002/cjs.11487 10.1016/j.neuroimage.2007.03.072 10.1109/TMI.2016.2527784 10.1093/bioinformatics/btz369 10.1186/s40537-014-0007-7 10.1093/bioinformatics/btr649 10.1515/sagmb-2013-0040 10.1007/s10915-013-9740-x 10.1038/s41576-019-0122-6 10.1172/JCI200319010 10.1038/s41588-017-0013-8 10.1186/s12888-016-1146-5 10.1007/BF02289451 10.1038/s41598-017-13930-y 10.1109/RBME.2012.2211076 10.1080/10485252.2012.715161 10.3389/conf.fninf.2011.08.00058 10.1093/nar/gky399 10.1093/schbul/sbq018 10.1016/j.jneumeth.2017.03.008 10.1038/nature13595 10.1016/j.neuropsychologia.2010.11.019 10.1016/j.ebiom.2018.03.017 10.1007/978-1-60327-241-4_13 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Limited Sep 2021 Copyright © 2021. Published by Elsevier Inc. |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Limited Sep 2021 – notice: Copyright © 2021. Published by Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY DOA |
| DOI | 10.1016/j.neuroimage.2021.118200 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_cf018b37d14c4dbc9f8f24dc45d26ce6 10.1016/j.neuroimage.2021.118200 10_1016_j_neuroimage_2021_118200 S1053811921004778 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c552t-2c639dfaceaa1515e40ae0e2ea8bd744ccd75140da7a4572bc2e28a1cb21965d3 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Oct 14 18:57:16 EDT 2025 Sun Oct 26 04:14:21 EDT 2025 Sat Sep 27 23:41:56 EDT 2025 Tue Oct 07 06:51:16 EDT 2025 Sat Oct 25 04:56:24 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Fri Feb 23 02:40:27 EST 2024 Tue Oct 14 19:40:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Graph regularization Imaging-genetics Clinical diagnosis Low dimensional subspace |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c552t-2c639dfaceaa1515e40ae0e2ea8bd744ccd75140da7a4572bc2e28a1cb21965d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921004778 |
| PQID | 2554331054 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cf018b37d14c4dbc9f8f24dc45d26ce6 unpaywall_primary_10_1016_j_neuroimage_2021_118200 proquest_miscellaneous_2540514832 proquest_journals_2554331054 crossref_citationtrail_10_1016_j_neuroimage_2021_118200 crossref_primary_10_1016_j_neuroimage_2021_118200 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118200 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118200 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 20210901 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Dayem Ullah (bib0012) 2018; 46 Eavani (bib0016) 2012 Fan (bib0020) 2016; 26 Dickinson (bib0014) 2011; 37 Pearlson (bib0037) 2015; 6 Rasetti (bib0040) 2014; 71 Stram (bib0047) 2004; Vol. 27 Egan (bib0017) 2001; 98 Liu (bib0031) 2015; 62 Xie, Douglas, Wu, Brody, Anderson (bib0054) 2017; 282 Wang (bib0052) 2012; 28 Chong (bib0011) 2015 Chen (bib0010) 2018; 141 Roy, Larocque (bib0042) 2012; 24 Schönemann (bib0044) 1966; 31 Ghosal (bib0022) 2019 Pergola (bib0038) 2016; 46 Srinivasagopalan (bib0046) 2019; 31 Callicott (bib0007) 2003; 160 Chaudhury (bib0009) 2010; 19 Di Giorgio (bib0013) 2013; 43 Gutschner (bib0026) 2018; 37 Rachakonda, Liu, Calhoun (bib0039) 2012 Calhoun, Adali (bib0005) 2012; 5 Wang, others. (bib0053) 2007; 36 Tomita (bib0048) 2019; 2 Sambataro (bib0043) 2010; 35 Liu, Calhoun (bib0030) 2014 Lai, Osher (bib0028) 2014; 58 Vereczkei (bib0050) 2011 Ripke (bib0041) 2014; 511 Batmanghelich, others. (bib0001) 2016; 35 Zeng (bib0056) 2018; 30 Cannon (bib0008) 2015 Friston (bib0021) 1995; 2 Breton (bib0004) 2011; 49 Nathoo (bib0035) 2019; 47 Sim, Tsagkrasoulis, Montana (bib0045) 2013; 12 Calhoun (bib0006) 2001; 14 Grippo, Sciandrone (bib0025) 2000; 26 Zhu (bib0057) 2017; 17 Gore (bib0024) 2003; 112 Lonsdale (bib0032) 2013; 45 Belger (bib0002) 2011 Viviani (bib0051) 2005; 24 Najafabadi (bib0034) 2015; 2 Yin (bib0055) 2019; 35 Ben-Hur, Weston (bib0003) 2010; 609 Eraslan (bib0018) 2019; 20 Orellana, Slachevsky (bib0036) 2013 Du (bib0015) 2017; 7 Erk (bib0019) 2017; 7 Li, Zhu, Tang (bib0029) 2019 Tor D. (bib0049) 2011; 5 Luciano (bib0033) 2018; 50 Kolmogorov–Smirnov Test (bib0027) 2008 Goes (bib0023) 2015; 168 Chong (10.1016/j.neuroimage.2021.118200_bib0011) 2015 Liu (10.1016/j.neuroimage.2021.118200_bib0030) 2014 Sambataro (10.1016/j.neuroimage.2021.118200_bib0043) 2010; 35 Calhoun (10.1016/j.neuroimage.2021.118200_bib0005) 2012; 5 Goes (10.1016/j.neuroimage.2021.118200_bib0023) 2015; 168 Dayem Ullah (10.1016/j.neuroimage.2021.118200_bib0012) 2018; 46 Tor D. (10.1016/j.neuroimage.2021.118200_bib0049) 2011; 5 Callicott (10.1016/j.neuroimage.2021.118200_bib0007) 2003; 160 Di Giorgio (10.1016/j.neuroimage.2021.118200_bib0013) 2013; 43 Chen (10.1016/j.neuroimage.2021.118200_bib0010) 2018; 141 Kolmogorov–Smirnov Test (10.1016/j.neuroimage.2021.118200_bib0027) 2008 Grippo (10.1016/j.neuroimage.2021.118200_bib0025) 2000; 26 Calhoun (10.1016/j.neuroimage.2021.118200_bib0006) 2001; 14 Ghosal (10.1016/j.neuroimage.2021.118200_bib0022) 2019 Zhu (10.1016/j.neuroimage.2021.118200_bib0057) 2017; 17 Liu (10.1016/j.neuroimage.2021.118200_bib0031) 2015; 62 Wang (10.1016/j.neuroimage.2021.118200_bib0052) 2012; 28 Luciano (10.1016/j.neuroimage.2021.118200_bib0033) 2018; 50 Stram (10.1016/j.neuroimage.2021.118200_bib0047) 2004; Vol. 27 Yin (10.1016/j.neuroimage.2021.118200_bib0055) 2019; 35 Dickinson (10.1016/j.neuroimage.2021.118200_bib0014) 2011; 37 Batmanghelich (10.1016/j.neuroimage.2021.118200_bib0001) 2016; 35 Gore (10.1016/j.neuroimage.2021.118200_bib0024) 2003; 112 Chaudhury (10.1016/j.neuroimage.2021.118200_bib0009) 2010; 19 Eraslan (10.1016/j.neuroimage.2021.118200_bib0018) 2019; 20 Rasetti (10.1016/j.neuroimage.2021.118200_bib0040) 2014; 71 Vereczkei (10.1016/j.neuroimage.2021.118200_bib0050) 2011 Du (10.1016/j.neuroimage.2021.118200_bib0015) 2017; 7 Viviani (10.1016/j.neuroimage.2021.118200_bib0051) 2005; 24 Eavani (10.1016/j.neuroimage.2021.118200_bib0016) 2012 Nathoo (10.1016/j.neuroimage.2021.118200_bib0035) 2019; 47 Najafabadi (10.1016/j.neuroimage.2021.118200_bib0034) 2015; 2 Egan (10.1016/j.neuroimage.2021.118200_bib0017) 2001; 98 Sim (10.1016/j.neuroimage.2021.118200_bib0045) 2013; 12 Lai (10.1016/j.neuroimage.2021.118200_bib0028) 2014; 58 Zeng (10.1016/j.neuroimage.2021.118200_bib0056) 2018; 30 Cannon (10.1016/j.neuroimage.2021.118200_bib0008) 2015 Orellana (10.1016/j.neuroimage.2021.118200_bib0036) 2013 Pergola (10.1016/j.neuroimage.2021.118200_bib0038) 2016; 46 Srinivasagopalan (10.1016/j.neuroimage.2021.118200_bib0046) 2019; 31 Fan (10.1016/j.neuroimage.2021.118200_bib0020) 2016; 26 Roy (10.1016/j.neuroimage.2021.118200_bib0042) 2012; 24 Ripke (10.1016/j.neuroimage.2021.118200_bib0041) 2014; 511 Friston (10.1016/j.neuroimage.2021.118200_bib0021) 1995; 2 Li (10.1016/j.neuroimage.2021.118200_bib0029) 2019 Rachakonda (10.1016/j.neuroimage.2021.118200_sbref0039) 2012 Schönemann (10.1016/j.neuroimage.2021.118200_bib0044) 1966; 31 Wang (10.1016/j.neuroimage.2021.118200_bib0053) 2007; 36 Xie (10.1016/j.neuroimage.2021.118200_bib0054) 2017; 282 Gutschner (10.1016/j.neuroimage.2021.118200_bib0026) 2018; 37 Lonsdale (10.1016/j.neuroimage.2021.118200_bib0032) 2013; 45 Ben-Hur (10.1016/j.neuroimage.2021.118200_bib0003) 2010; 609 Breton (10.1016/j.neuroimage.2021.118200_bib0004) 2011; 49 Tomita (10.1016/j.neuroimage.2021.118200_bib0048) 2019; 2 Erk (10.1016/j.neuroimage.2021.118200_bib0019) 2017; 7 Pearlson (10.1016/j.neuroimage.2021.118200_bib0037) 2015; 6 Belger (10.1016/j.neuroimage.2021.118200_bib0002) 2011 |
| References_xml | – volume: 5 start-page: 60 year: 2012 end-page: 73 ident: bib0005 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. – volume: 36 start-page: 1139 year: 2007 end-page: 1151 ident: bib0053 article-title: Support vector machine learning-based fMRI data group analysis publication-title: Neuroimage – volume: 20 start-page: 389 year: 2019 end-page: 403 ident: bib0018 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat. Rev. Genet. – start-page: 744 year: 2015 end-page: 756 ident: bib0008 article-title: How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis publication-title: Trends in Cognitive Sciences – volume: 98 start-page: 6917 year: 2001 end-page: 6922 ident: bib0017 article-title: Effect of COMT Val108/158 Met-genotype on frontal lobe function and risk for schizophrenia publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 205 year: 2011 end-page: 210 ident: bib0050 article-title: Genetic predisposition to schizophrenia: what did we learn and what does the future hold? publication-title: Neuropsychopharmacologia Hungarica – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: bib0031 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. – volume: 6 year: 2015 ident: bib0037 article-title: An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathw ays and systems in common complex disorders – volume: 50 start-page: 6 year: 2018 end-page: 11 ident: bib0033 article-title: Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism publication-title: Nat. Genet. – volume: 35 year: 2019 ident: bib0055 article-title: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype. publication-title: Bioinformatics – volume: 7 start-page: 14052 year: 2017 ident: bib0015 article-title: Pattern discovery in brain imaging genetics via SCCA modeling with a generic non-convex penalty publication-title: Sci. Rep. – volume: 282 start-page: 81 year: 2017 end-page: 94 ident: bib0054 article-title: Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms publication-title: J. Neurosci. Methods – start-page: 201 year: 2011 end-page: 214 ident: bib0002 article-title: The neural circuitry of autism publication-title: Neurotoxicity Research – start-page: 283 year: 2008 end-page: 287 ident: bib0027 publication-title: The Concise Encyclopedia of Statistics – year: 2012 ident: bib0039 article-title: Fusion ICA Toolbox (FIT) Manual publication-title: Technical Report – volume: 26 year: 2016 ident: bib0020 article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture. publication-title: Cereb. Cortex – start-page: 647 year: 2019 end-page: 655 ident: bib0022 article-title: Bridging imaging, genetics, and diagnosis in a coupled low-dimensional framework publication-title: MICCAI: Medical Image Computing and Computer Assisted Intervention – start-page: 29 year: 2014 ident: bib0030 article-title: A review of multivariate analyses in imaging genetics publication-title: Frontiers in Neuroinformatics – volume: 609 start-page: 223 year: 2010 end-page: 239 ident: bib0003 article-title: A user’s guide to support vector machines. publication-title: Methods Mol. Biol. – volume: 58 start-page: 431 year: 2014 end-page: 449 ident: bib0028 article-title: A splitting method for orthogonality constrained problems publication-title: J. Sci. Comput. – volume: 30 year: 2018 ident: bib0056 article-title: Multi-Site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine – year: 2013 ident: bib0036 article-title: Executive functioning in schizophrenia publication-title: Frontiers in Psychiatry – volume: 71 start-page: 236 year: 2014 end-page: 247 ident: bib0040 article-title: Altered hippocampal-parahippocampal function during stimulus encoding:a potential indicator of genetic liability for schizophrenia publication-title: JAMA Psychiatry – start-page: 3935 year: 2019 end-page: 3943 ident: bib0029 article-title: Alternating minimizations converge to second-order optimal solutions publication-title: Proceedings of the 36th International Conference on Machine Learning – volume: 37 start-page: 1157 year: 2011 end-page: 1167 ident: bib0014 article-title: Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls publication-title: Schizophr. Bull. – volume: 7 start-page: e997 year: 2017 ident: bib0019 article-title: Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains publication-title: Transl. Psychiatry – start-page: 199 year: 2015 end-page: 215 ident: bib0011 article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities publication-title: American Journal of Human Genetics – volume: 49 year: 2011 ident: bib0004 article-title: The executive control of attention differentiates patients with schizophrenia, their first-degree relatives and healthy controls publication-title: Neuropsychologia – volume: 112 start-page: 4 year: 2003 end-page: 9 ident: bib0024 article-title: Principles and practice of functional MRI of the human brain. publication-title: J. Clin. Invest. – volume: 160 start-page: 709 year: 2003 end-page: 719 ident: bib0007 article-title: Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia publication-title: Am. J. Psychiatry – volume: 37 year: 2018 ident: bib0026 article-title: From biomarkers to therapeutic targets-the promises and perils of long non-coding RNAs in cancer publication-title: Cancer Metastasis Rev. – volume: 45 start-page: 580 year: 2013 end-page: 585 ident: bib0032 article-title: The genotype-Tissue expression (GTEx) project publication-title: Nat. Genet. – start-page: 73 year: 2012 end-page: 76 ident: bib0016 article-title: Sparse dictionary learning of resting state fMRI networks publication-title: Proceedings - 2012 2nd International Workshop on Pattern Recognition in NeuroImaging, PRNI 2012 – volume: 46 start-page: 109 year: 2018 end-page: 113 ident: bib0012 article-title: SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine publication-title: Nucleic Acids Res. – volume: 31 year: 2019 ident: bib0046 article-title: A deep learning approach for diagnosing schizophrenic patients publication-title: J. Exp. Theor. Artif. Intell. – volume: 19 start-page: 5 year: 2010 ident: bib0009 article-title: Hallucinations: clinical aspects and management publication-title: Ind. Psychiatry J. – volume: 5 year: 2011 ident: bib0049 article-title: NeuroSynth: a new platform for large-scale automated synthesis of human functional neuroimaging data publication-title: Front. Neuroinform. – volume: 2 year: 1995 ident: bib0021 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 141 year: 2018 ident: bib0010 article-title: Schizophrenia polygenic risk score predicts mnemonic hippocampal activity publication-title: Brain – volume: 47 start-page: 108 year: 2019 end-page: 131 ident: bib0035 article-title: A review of statistical methods in imaging genetics publication-title: Can. J. Stat. – volume: 28 start-page: 229 year: 2012 end-page: 237 ident: bib0052 article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort publication-title: Bioinformatics – volume: Vol. 27 start-page: 365 year: 2004 end-page: 374 ident: bib0047 article-title: Tag SNP selection for association studies publication-title: Genetic Epidemiology – volume: 17 year: 2017 ident: bib0057 article-title: Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder publication-title: BMC Psychiatry – volume: 511 start-page: 421 year: 2014 end-page: 427 ident: bib0041 article-title: Biological insights from 108 schizophrenia-associated genetic loci publication-title: Nature – volume: 168 start-page: 649 year: 2015 end-page: 659 ident: bib0023 article-title: Genome-wide association study of schizophrenia in Ashkenazi Jews publication-title: Am. J. Med. Genet. Part B – volume: 26 start-page: 127 year: 2000 end-page: 136 ident: bib0025 article-title: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints – volume: 46 year: 2016 ident: bib0038 article-title: Combined effect of genetic variants in the GluN2B coding gene (GRIN2B) on prefrontal function during working memory performance publication-title: Psychol. Med. – volume: 2 start-page: 1 year: 2015 ident: bib0034 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data – volume: 24 start-page: 109 year: 2005 end-page: 129 ident: bib0051 article-title: Functional principal component analysis of fMRI data publication-title: Hum. Brain Mapp. – volume: 35 start-page: 1765 year: 2016 end-page: 1779 ident: bib0001 article-title: Probabilistic modeling of imaging, genetics and diagnosis HHS public access index terms Bayesian models; imaging genetics; probabilistic graphical model; variational inference publication-title: IEEE Trans. Med. Imaging – volume: 24 start-page: 993 year: 2012 end-page: 1006 ident: bib0042 article-title: Robustness of random forests for regression publication-title: J. Nonparametr. Stat. – volume: 14 year: 2001 ident: bib0006 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 35 start-page: 904 year: 2010 end-page: 912 ident: bib0043 article-title: Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia publication-title: Neuropsychopharmacology – volume: 31 start-page: 1 year: 1966 end-page: 10 ident: bib0044 article-title: A generalized solution of the orthogonal procrustes problem publication-title: Psychometrika – volume: 43 start-page: 1661 year: 2013 end-page: 1671 ident: bib0013 article-title: Evidence that hippocampal-parahippocampal dysfunction is related to genetic risk for schizophrenia. publication-title: Psychol. Med. – volume: 2 year: 2019 ident: bib0048 article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides publication-title: JAMA Netw. Open – volume: 12 start-page: 757 year: 2013 end-page: 786 ident: bib0045 article-title: Random forests on distance matrices for imaging genetics studies publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 2 year: 1995 ident: 10.1016/j.neuroimage.2021.118200_bib0021 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 35 start-page: 904 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2021.118200_bib0043 article-title: Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.192 – start-page: 29 year: 2014 ident: 10.1016/j.neuroimage.2021.118200_bib0030 article-title: A review of multivariate analyses in imaging genetics – volume: 24 start-page: 109 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2021.118200_bib0051 article-title: Functional principal component analysis of fMRI data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20074 – volume: 14 year: 2001 ident: 10.1016/j.neuroimage.2021.118200_bib0006 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – start-page: 647 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0022 article-title: Bridging imaging, genetics, and diagnosis in a coupled low-dimensional framework – volume: 43 start-page: 1661 issue: 8 year: 2013 ident: 10.1016/j.neuroimage.2021.118200_bib0013 article-title: Evidence that hippocampal-parahippocampal dysfunction is related to genetic risk for schizophrenia. publication-title: Psychol. Med. doi: 10.1017/S0033291712002413 – volume: 7 start-page: e997 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118200_bib0019 article-title: Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.272 – volume: 71 start-page: 236 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2021.118200_bib0040 article-title: Altered hippocampal-parahippocampal function during stimulus encoding:a potential indicator of genetic liability for schizophrenia publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.3911 – volume: 160 start-page: 709 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2021.118200_bib0007 article-title: Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.160.4.709 – volume: Vol. 27 start-page: 365 year: 2004 ident: 10.1016/j.neuroimage.2021.118200_bib0047 article-title: Tag SNP selection for association studies – start-page: 205 year: 2011 ident: 10.1016/j.neuroimage.2021.118200_bib0050 article-title: Genetic predisposition to schizophrenia: what did we learn and what does the future hold? – volume: 62 start-page: 1132 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2021.118200_bib0031 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2372011 – volume: 26 issue: 8 year: 2016 ident: 10.1016/j.neuroimage.2021.118200_bib0020 article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw157 – volume: 168 start-page: 649 issue: 8 year: 2015 ident: 10.1016/j.neuroimage.2021.118200_bib0023 article-title: Genome-wide association study of schizophrenia in Ashkenazi Jews publication-title: Am. J. Med. Genet. Part B doi: 10.1002/ajmg.b.32349 – volume: 26 start-page: 127 year: 2000 ident: 10.1016/j.neuroimage.2021.118200_bib0025 article-title: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints – start-page: 3935 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0029 article-title: Alternating minimizations converge to second-order optimal solutions – start-page: 201 year: 2011 ident: 10.1016/j.neuroimage.2021.118200_bib0002 article-title: The neural circuitry of autism – volume: 31 issue: 6 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0046 article-title: A deep learning approach for diagnosing schizophrenic patients publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2018.1563636 – volume: 45 start-page: 580 issue: 6 year: 2013 ident: 10.1016/j.neuroimage.2021.118200_bib0032 article-title: The genotype-Tissue expression (GTEx) project publication-title: Nat. Genet. doi: 10.1038/ng.2653 – year: 2013 ident: 10.1016/j.neuroimage.2021.118200_bib0036 article-title: Executive functioning in schizophrenia – volume: 98 start-page: 6917 issue: 12 year: 2001 ident: 10.1016/j.neuroimage.2021.118200_bib0017 article-title: Effect of COMT Val108/158 Met-genotype on frontal lobe function and risk for schizophrenia publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.111134598 – volume: 141 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2021.118200_bib0010 article-title: Schizophrenia polygenic risk score predicts mnemonic hippocampal activity publication-title: Brain doi: 10.1093/brain/awy004 – volume: 46 year: 2016 ident: 10.1016/j.neuroimage.2021.118200_bib0038 article-title: Combined effect of genetic variants in the GluN2B coding gene (GRIN2B) on prefrontal function during working memory performance publication-title: Psychol. Med. doi: 10.1017/S0033291715002639 – volume: 37 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118200_bib0026 article-title: From biomarkers to therapeutic targets-the promises and perils of long non-coding RNAs in cancer publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-017-9718-5 – volume: 19 start-page: 5 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2021.118200_bib0009 article-title: Hallucinations: clinical aspects and management publication-title: Ind. Psychiatry J. doi: 10.4103/0972-6748.77625 – volume: 2 issue: 11 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0048 article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.14645 – volume: 47 start-page: 108 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0035 article-title: A review of statistical methods in imaging genetics publication-title: Can. J. Stat. doi: 10.1002/cjs.11487 – volume: 36 start-page: 1139 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2021.118200_bib0053 article-title: Support vector machine learning-based fMRI data group analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.072 – volume: 35 start-page: 1765 issue: 7 year: 2016 ident: 10.1016/j.neuroimage.2021.118200_bib0001 article-title: Probabilistic modeling of imaging, genetics and diagnosis HHS public access index terms Bayesian models; imaging genetics; probabilistic graphical model; variational inference publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2527784 – volume: 35 issue: 14 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0055 article-title: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz369 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2021.118200_bib0034 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 28 start-page: 229 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118200_bib0052 article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr649 – volume: 12 start-page: 757 issue: 6 year: 2013 ident: 10.1016/j.neuroimage.2021.118200_bib0045 article-title: Random forests on distance matrices for imaging genetics studies publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.1515/sagmb-2013-0040 – year: 2012 ident: 10.1016/j.neuroimage.2021.118200_sbref0039 article-title: Fusion ICA Toolbox (FIT) Manual – start-page: 199 year: 2015 ident: 10.1016/j.neuroimage.2021.118200_bib0011 article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities – volume: 58 start-page: 431 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2021.118200_bib0028 article-title: A splitting method for orthogonality constrained problems publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9740-x – volume: 20 start-page: 389 issue: 7 year: 2019 ident: 10.1016/j.neuroimage.2021.118200_bib0018 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 – start-page: 283 year: 2008 ident: 10.1016/j.neuroimage.2021.118200_bib0027 – volume: 112 start-page: 4 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2021.118200_bib0024 article-title: Principles and practice of functional MRI of the human brain. publication-title: J. Clin. Invest. doi: 10.1172/JCI200319010 – volume: 50 start-page: 6 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118200_bib0033 article-title: Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism publication-title: Nat. Genet. doi: 10.1038/s41588-017-0013-8 – volume: 17 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118200_bib0057 article-title: Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder publication-title: BMC Psychiatry doi: 10.1186/s12888-016-1146-5 – volume: 31 start-page: 1 issue: 1 year: 1966 ident: 10.1016/j.neuroimage.2021.118200_bib0044 article-title: A generalized solution of the orthogonal procrustes problem publication-title: Psychometrika doi: 10.1007/BF02289451 – volume: 7 start-page: 14052 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118200_bib0015 article-title: Pattern discovery in brain imaging genetics via SCCA modeling with a generic non-convex penalty publication-title: Sci. Rep. doi: 10.1038/s41598-017-13930-y – volume: 5 start-page: 60 year: 2012 ident: 10.1016/j.neuroimage.2021.118200_bib0005 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2211076 – volume: 24 start-page: 993 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.118200_bib0042 article-title: Robustness of random forests for regression publication-title: J. Nonparametr. Stat. doi: 10.1080/10485252.2012.715161 – volume: 5 year: 2011 ident: 10.1016/j.neuroimage.2021.118200_bib0049 article-title: NeuroSynth: a new platform for large-scale automated synthesis of human functional neuroimaging data publication-title: Front. Neuroinform. doi: 10.3389/conf.fninf.2011.08.00058 – volume: 46 start-page: 109 year: 2018 ident: 10.1016/j.neuroimage.2021.118200_bib0012 article-title: SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky399 – volume: 37 start-page: 1157 issue: 6 year: 2011 ident: 10.1016/j.neuroimage.2021.118200_bib0014 article-title: Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbq018 – volume: 282 start-page: 81 year: 2017 ident: 10.1016/j.neuroimage.2021.118200_bib0054 article-title: Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.03.008 – volume: 511 start-page: 421 issue: 7510 year: 2014 ident: 10.1016/j.neuroimage.2021.118200_bib0041 article-title: Biological insights from 108 schizophrenia-associated genetic loci publication-title: Nature doi: 10.1038/nature13595 – volume: 49 year: 2011 ident: 10.1016/j.neuroimage.2021.118200_bib0004 article-title: The executive control of attention differentiates patients with schizophrenia, their first-degree relatives and healthy controls publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.11.019 – volume: 30 year: 2018 ident: 10.1016/j.neuroimage.2021.118200_bib0056 article-title: Multi-Site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.03.017 – start-page: 73 year: 2012 ident: 10.1016/j.neuroimage.2021.118200_bib0016 article-title: Sparse dictionary learning of resting state fMRI networks – volume: 6 issue: SEP year: 2015 ident: 10.1016/j.neuroimage.2021.118200_bib0037 article-title: An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathw ays and systems in common complex disorders – volume: 609 start-page: 223 year: 2010 ident: 10.1016/j.neuroimage.2021.118200_bib0003 article-title: A user’s guide to support vector machines. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-241-4_13 – start-page: 744 year: 2015 ident: 10.1016/j.neuroimage.2021.118200_bib0008 article-title: How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis |
| SSID | ssj0009148 |
| Score | 2.4176288 |
| Snippet | We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The... |
| SourceID | doaj unpaywall proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118200 |
| SubjectTerms | Biomarkers Brain mapping Classification Clinical diagnosis Correlation analysis Deep learning Diagnosis Dictionaries Functional magnetic resonance imaging Gene polymorphism Generalized linear models Genetic diversity Genetics Genotype & phenotype Graph regularization Health risk assessment Imaging-genetics Low dimensional subspace Mental disorders Neuroimaging Population studies Principal components analysis Schizophrenia Single-nucleotide polymorphism Sparsity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD8AFAQWRtlRG6rEpiWNvbHEqqFWFBCcq9Wb5K7AoTVbdrAr_nhk7SZcTe-CYxGNZnvHMs_L8TMhJVVgHpQUWEiS-nKvAcmUKl4cKcqItlWp8ZPl-XVxd88834mbrqi_khCV54DRx711TlNJWtS-549461ciGce-48GzhQhTbLqSaNlOT3C6g_JG3k9hcUR1yeQtrFPaErDxDXI2n2raKUdTs_6smbWHOJ5tuZX7fm7bdKj-Xz8mzETfS8zTeF-RR6F6Sx1_GP-P75Nc5_R4VpDF95XjWNt3XhY-0mRhYdPhhBjpLRKwpjhWK12k0hq5Pqek89Yl_t1xj0566frNqg6dtfw-fbpHyjvidQjJy4RW5vrz49ukqH29VyJ0QbMiZA1DiG2hgDKKZwAsTisCCkdbXnDvna0BRhTe14aJm1rHApCmdZag-6KvXZK_ru_CG0Fo2hZNioYSSnAsJubKKGnlMNsJWKiP1NL3ajZLjePNFqydu2U_94BiNjtHJMRkpZ8tVkt3YweYjenBuj8LZ8QWEkx7DSf8rnDKiJv_r6WwqZFPoaLnDAD7MtiN-SbhkR-ujKdz0mEfWGjZ8eKQNcHVG3s2fIQPgbx3ThX6DbTiK2ENqzgibw3TnaTv4H9N2SJ5il4l8d0T2hrtNeAtobbDHcWH-AfKHQTM priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHoAL4lMECjISx6abOPbGFqdSUVVIcIFKvVmO7ZSgNFl1syq99LczEzvp9rYSxyQzkeWx30yUN8-EfCqyykJqgY0EwJdy5VmqTGZTXwAmVrlStRtZvj-WZ-f824W42CMnUy8M0ioj9gdMH9E63lnE2VysmmbxEyoDSDeo54WShyU2_HJe4ikGR3f3NA-V89AOJ4oUrSObJ3C8Rs3I5gp2LnwpsvwIq23sddtKUaOS_4NMtVWJPt50K3N7Y9p2KymdPiNPYzVJj8OAn5M9370gj77H_-Uvyd9jejnqSiOopdiBG07xwktaT7wsOvw2A52FI9YUxwop7XB0hlcfUtM56gIrr1mjaU9tv1m13tG2v4FHV0iEx6qeAkRZ_4qcn379dXKWxrMWUisEG1JmoVRxNRgYgzWO55nxmWfeyMqVnFvrSqitMmdKw0XJKss8kya3FUNNQle8Jvtd3_k3hJayzqwUSyWU5FxIQNBiVM5jshZVoRJSTtOrbRQix_MwWj0xzv7o-8BoDIwOgUlIPnuughjHDj5fMIKzPcppjzf660sd15O2dZbLqihdzi13lVW1rBl3lgvHltYvE6Km-OupYxUwFl7U7DCAz7Pvg5W9o_fBtNx0RJe1hs9AbHSDajshH-fHgAv4s8d0vt-gDUdpewDshLB5me48bW__a9TvyBO8Cly8A7I_XG_8eyjehurDuDv_AW_9RHY priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamToInGDcRtCEj8bhUjmMnjvZUpk0TEhNIVBpPlm-BQpZUNNEGv55j58LKAyo8tvFxU_v4O5_l4-8g9Dol2kBogYUEwBezwtG4UMTELgVM1ElRlDZk-V5mF0v29opf7SEy3oXZOr8PeVhB13F1DasLdnM0mXtGTGCTvp9xYN8ztL-8fL_4FA41eRqLJNTySIgvQcjzMXnnb11tRaQg3L8VmO4Qz_tdvVY_blRV3YlB5w_Rh_Ht-9STb_Ou1XPz8w9hx3_5ewfowUBI8aL3oEdoz9WP0b13w5H7E3S7wJ-DNLXHxdhf4u0LgfmPuBxTu3D7RbV40p7YYP9bEBWPgzF0fYxVbbHtE_tWG9-0wabp1pWzuGpu4NG1z6X3GwMMKGfcU7Q8P_t4ehEP5RpiwzltY2qA7dgSGijlaZJjRDniqFNC25wxY2wO9IxYlSsGU6MNdVSoxGjqZQ1t-gzN6qZ2zxHORUmM4FnBC8EYFwDCaRDfo6LkOi0ilI9TJs2gZe5LalRyTFr7Kn8PrPQDK_uBjVAyWa57PY8dbN54r5jae0Xu8AXMpBwWuDQlSYROc5sww6w2RSlKyqxh3NLMuCxCxehTcrz0CjANHa12eIGTyXYgRj3h2dH6cHRhOQDURsJO0t-VA8IeoVfTY4AWf16katd0vg3z6viA-RGik-vvPGwv_sfoEM3a7507AqbX6pfD4v4FSuBSWQ priority: 102 providerName: Unpaywall |
| Title | A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921004778 https://dx.doi.org/10.1016/j.neuroimage.2021.118200 https://www.proquest.com/docview/2554331054 https://www.proquest.com/docview/2540514832 https://doi.org/10.1016/j.neuroimage.2021.118200 https://doaj.org/article/cf018b37d14c4dbc9f8f24dc45d26ce6 |
| UnpaywallVersion | publishedVersion |
| Volume | 238 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trQS8IH5qgVEZicdlJI7TJEIIdWhTARFNiErlyXJsZxRlSVlbDV7427nLr5YX1JdISc5p5LM_f43vvgN4FXiZxqUFJxICnysSy91Eedq1AWJi5idJbuoo33Q8nYmP83B-AGmXC0NhlR0m1kBtKk3fyF8j9aXkHmQY75Y_XaoaRburXQkN1ZZWMG9ribFDGHJSxhrA8Ow8vfyyleH1RZMcFwZu7PtJG9vTRHzVCpKLa5zH-L-R-6fEvSnzbWfBqnX9_1m3dnjp3U25VL9vVVHsLFEXD-B-yy3ZpBkMD-HAlo_gzud29_wx_Jqwq1plmiDOpXzcpqYXnbK8i9Ji6-9qzXoZiRWjd8UF7qRujI8-Yao0zDQxeosVmVYMO2ZZWMOK6hZvXVNYPHF8hoCl7ROYXZx_fT9128oLrg5Dvna5RuJicjRQihiPFZ6ynuVWxZmJhNDaRMi0PKMiJcKIZ5pbHitfZ5wUCk3wFAZlVdojYFGcezoOx0mYxEKEMeJpUOvo8TgPsyBxIOq6V-pWlpyqYxSyiz_7IbeOkeQY2TjGAb9vuWykOfZoc0Ye7O1JXLu-UN1cyXauSp17fpwFkfGFFibTSR7nXBgtQsPH2o4dSDr_yy5_FREXH7TY4wXe9G1bjtNwlz1bH3fDTbZYs5LbmeHAy_42ogRt_ajSVhuyESR0j_DtAO-H6d7d9uz_v_sc7pFxE3p3DIP1zca-QK62zkZwePrHx2M0j0YwnHz4NE1H7aQc1d8_8GyWXk6-_QWQwUXU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKK1EuiE8RKGAkuDWQOM4mFqpQC622tF0h1Eq9uY7tlEVpsnSzWvrn-G3MJE52uaC99JjE41gZ-804nnlDyNsoyDSYFlhIAHw-F5b5QgXatxFgYhYKkZsmync0GJ7xr-fx-Rr50-XCYFhlh4kNUJtK4z_yD-D6YnIPeBifJr98rBqFp6tdCQ3lSiuYnYZizCV2HNmbOWzhpjuHX0Df7xg72D_9PPRdlQFfxzGrfabBSJtcaasUWnfLA2UDy6xKM5NwrrVJwKsIjEoUjxOWaWZZqkKdMWTjMxH0e4ds8IgL2Pxt7O2Pvn1f0P6GvE3GiyM_DUPhYonaCLOGsXJ8BbgB-1QWvkdfHzPtlgxkU0fgHzu55AdvzsqJupmrolgyiQcPyH3ny9LddvI9JGu2fETunrjT-sfk9y69bFitEVJ9zP9ta4jhJc27qDBa_1A17WkrphTHCgZ1uxGGrrepKg01bUzgeIpNKwqKmBTW0KKaw6MrDMPHPQUFgNT2CTm7FR08JetlVdpnhCZpHug0HohYpJzHKeB31PD2sTSPs0h4JOk-r9SOBh2rcRSyi3f7KReKkagY2SrGI2EvOWmpQFaQ2UMN9u2RzLu5UV1fSocNUudBmGZRYkKuucm0yNOccaN5bNhA24FHRKd_2eXLAsJDR-MVBvCxl3U-VesrrSi91U036bBtKhcr0SNv-seASnjUpEpbzbANR2J9MBceYf00XfmzPf__e1-TzeHpybE8PhwdvSD3ULAN-9si6_X1zL4EP7HOXrnFSMnFba__vye5fhY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkAYviJ9a2QAjwdvCEsepYyGEBqPaGEw8MKlvxrGdUZQl3Zqq7F_jr-MuTtLygvqyxzQ-J8r5vjvX390R8ioOMwOuBQwJgC_g0rFA6tAELgZMzCIpc9uwfE-HR2f88zgZb5A_XS4M0io7TGyA2lYG_yPfh9AXk3sgwtjPW1rEt8PR--llgB2k8KS1a6fhl8iJu17A9m327vgQdP2asdGn7x-PgrbDQGCShNUBM-Cgba6N0xo9u-OhdqFjTqeZFZwbYwVEFKHVQvNEsMwwx1IdmYxhJT4bw7y3yG0RxxLphGIslgV_I-7T8JI4SKNItiwizy1ralVOLgAxYIfKojcY5WOO3YprbDoI_OMhVyLgO_Nyqq8XuihWnOHoPrnXRrH0wC-7B2TDlQ_J1tf2nP4R-X1Az5t61gimAWb--u5heEnzjg9G65-6pn3BihnFdwVXutcIw9R7VJeWWs8GnMxwaEVNNZ8WztKiWsCtCyTg426CAjQa95ic3YgGnpDNsirdNqEizUOTJkOZyJTzJAXkjpuKfSzNkyyWAyK6z6tMWwAd-3AUqmO6_VJLxShUjPKKGZCol5z6IiBryHxADfbjsYx380N1da5aVFAmD6M0i4WNuOE2MzJPc8at4YllQ-OGAyI7_asuUxawHSaarPECb3vZNpryUdKa0rvdclMtqs3U0gYH5GV_G_AID5l06ao5juFYUh8cxYCwfpmu_dme_v-5L8gWWL36cnx6skPuopzn--2Szfpq7p5BgFhnzxtLpOTHTZv-X8NWe7A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamToInGDcRtCEj8bhUjmMnjvZUpk0TEhNIVBpPlm-BQpZUNNEGv55j58LKAyo8tvFxU_v4O5_l4-8g9Dol2kBogYUEwBezwtG4UMTELgVM1ElRlDZk-V5mF0v29opf7SEy3oXZOr8PeVhB13F1DasLdnM0mXtGTGCTvp9xYN8ztL-8fL_4FA41eRqLJNTySIgvQcjzMXnnb11tRaQg3L8VmO4Qz_tdvVY_blRV3YlB5w_Rh_Ht-9STb_Ou1XPz8w9hx3_5ewfowUBI8aL3oEdoz9WP0b13w5H7E3S7wJ-DNLXHxdhf4u0LgfmPuBxTu3D7RbV40p7YYP9bEBWPgzF0fYxVbbHtE_tWG9-0wabp1pWzuGpu4NG1z6X3GwMMKGfcU7Q8P_t4ehEP5RpiwzltY2qA7dgSGijlaZJjRDniqFNC25wxY2wO9IxYlSsGU6MNdVSoxGjqZQ1t-gzN6qZ2zxHORUmM4FnBC8EYFwDCaRDfo6LkOi0ilI9TJs2gZe5LalRyTFr7Kn8PrPQDK_uBjVAyWa57PY8dbN54r5jae0Xu8AXMpBwWuDQlSYROc5sww6w2RSlKyqxh3NLMuCxCxehTcrz0CjANHa12eIGTyXYgRj3h2dH6cHRhOQDURsJO0t-VA8IeoVfTY4AWf16katd0vg3z6viA-RGik-vvPGwv_sfoEM3a7507AqbX6pfD4v4FSuBSWQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generative-discriminative+framework+that+integrates+imaging%2C+genetic%2C+and+diagnosis+into+coupled+low+dimensional+space&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ghosal%2C+Sayan&rft.au=Chen%2C+Qiang&rft.au=Pergola%2C+Giulio&rft.au=Goldman%2C+Aaron+L&rft.date=2021-09-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=238&rft.spage=118200&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118200&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |