A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space

We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional s...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 238; p. 118200
Main Authors Ghosal, Sayan, Chen, Qiang, Pergola, Giulio, Goldman, Aaron L., Ulrich, William, Berman, Karen F., Blasi, Giuseppe, Fazio, Leonardo, Rampino, Antonio, Bertolino, Alessandro, Weinberger, Daniel R., Mattay, Venkata S., Venkataraman, Archana
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.09.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118200

Cover

Abstract We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.
AbstractList We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.
We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.
ArticleNumber 118200
Author Rampino, Antonio
Chen, Qiang
Goldman, Aaron L.
Bertolino, Alessandro
Fazio, Leonardo
Mattay, Venkata S.
Venkataraman, Archana
Pergola, Giulio
Ghosal, Sayan
Berman, Karen F.
Ulrich, William
Blasi, Giuseppe
Weinberger, Daniel R.
Author_xml – sequence: 1
  givenname: Sayan
  surname: Ghosal
  fullname: Ghosal, Sayan
  email: sghosal3@jhu.edu
  organization: Department of Electrical and Computer Engineering, Johns Hopkins University, USA
– sequence: 2
  givenname: Qiang
  surname: Chen
  fullname: Chen, Qiang
  organization: Lieber Institute for Brain Development, USA
– sequence: 3
  givenname: Giulio
  surname: Pergola
  fullname: Pergola, Giulio
  organization: Lieber Institute for Brain Development, USA
– sequence: 4
  givenname: Aaron L.
  surname: Goldman
  fullname: Goldman, Aaron L.
  organization: Lieber Institute for Brain Development, USA
– sequence: 5
  givenname: William
  surname: Ulrich
  fullname: Ulrich, William
  organization: Lieber Institute for Brain Development, USA
– sequence: 6
  givenname: Karen F.
  surname: Berman
  fullname: Berman, Karen F.
  organization: Clinical and Translational Neuroscience Branch, NIMH, NIH, USA
– sequence: 7
  givenname: Giuseppe
  surname: Blasi
  fullname: Blasi, Giuseppe
  organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
– sequence: 8
  givenname: Leonardo
  surname: Fazio
  fullname: Fazio, Leonardo
  organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
– sequence: 9
  givenname: Antonio
  surname: Rampino
  fullname: Rampino, Antonio
  organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
– sequence: 10
  givenname: Alessandro
  surname: Bertolino
  fullname: Bertolino, Alessandro
  organization: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
– sequence: 11
  givenname: Daniel R.
  surname: Weinberger
  fullname: Weinberger, Daniel R.
  organization: Lieber Institute for Brain Development, USA
– sequence: 12
  givenname: Venkata S.
  surname: Mattay
  fullname: Mattay, Venkata S.
  organization: Lieber Institute for Brain Development, USA
– sequence: 13
  givenname: Archana
  surname: Venkataraman
  fullname: Venkataraman, Archana
  organization: Department of Electrical and Computer Engineering, Johns Hopkins University, USA
BookMark eNqVkc2O0zAUhSM0SMwMvEMkNiwmxXbsNtkghhE_I43EBtbW7fVNcMe1i51M6dvjNAikrsrKdnzO55x7rooLHzwVRcnZgjO-fLtZeBpjsFvoaSGY4AvOG8HYs-KSs1ZVrVqJi2mv6qrhvH1RXKW0YYy1XDaXxa_bsidPEQb7RJWxCaPdWn88ll2ELe1DfCyHHzCU1g_UZyWlcnrO-v7maB4s3pTgTWks9D4kmyZpKDGMO0emdGGfr7bkkw0eXJl2gPSyeN6BS_Tqz3pdfP_08dvdl-rh6-f7u9uHCpUSQyVwWbemywYArrgiyYAYCYJmbVZSIpqV4pIZWIHMUdcoSDTAcS14u1Smvi7uZ64JsNG7nA7iQQew-vghxF5DzAkcaewYb9b1ynCJ0qyx7ZpOSINSGbFEWmZWO7NGv4PDHpz7C-RMT3Xojf5Xh57q0HMd2ftm9u5i-DlSGvQ2D5ucA09hTFooyXKQphZZ-vpEugljzJObVErWdS5TZtW7WYUxpBSp02iH3FvwQwTrzvmj5gTwH2E-zFbKzT1ZijqhJY9kbCQc8mjtOZD3JxB01lsE90iH8xC_ASP_9cU
CitedBy_id crossref_primary_10_1109_TCBB_2023_3294413
crossref_primary_10_3389_fnins_2023_1227491
crossref_primary_10_1109_JBHI_2023_3337661
crossref_primary_10_1109_TMI_2024_3419041
crossref_primary_10_1111_pcn_13736
crossref_primary_10_1111_pcn_13625
crossref_primary_10_1016_j_patcog_2024_110845
Cites_doi 10.1038/npp.2009.192
10.1002/hbm.20074
10.1002/hbm.1048
10.1017/S0033291712002413
10.1038/tp.2016.272
10.1001/jamapsychiatry.2013.3911
10.1176/appi.ajp.160.4.709
10.1109/TBME.2014.2372011
10.1093/cercor/bhw157
10.1002/ajmg.b.32349
10.1080/0952813X.2018.1563636
10.1038/ng.2653
10.1073/pnas.111134598
10.1093/brain/awy004
10.1017/S0033291715002639
10.1007/s10555-017-9718-5
10.4103/0972-6748.77625
10.1001/jamanetworkopen.2019.14645
10.1002/cjs.11487
10.1016/j.neuroimage.2007.03.072
10.1109/TMI.2016.2527784
10.1093/bioinformatics/btz369
10.1186/s40537-014-0007-7
10.1093/bioinformatics/btr649
10.1515/sagmb-2013-0040
10.1007/s10915-013-9740-x
10.1038/s41576-019-0122-6
10.1172/JCI200319010
10.1038/s41588-017-0013-8
10.1186/s12888-016-1146-5
10.1007/BF02289451
10.1038/s41598-017-13930-y
10.1109/RBME.2012.2211076
10.1080/10485252.2012.715161
10.3389/conf.fninf.2011.08.00058
10.1093/nar/gky399
10.1093/schbul/sbq018
10.1016/j.jneumeth.2017.03.008
10.1038/nature13595
10.1016/j.neuropsychologia.2010.11.019
10.1016/j.ebiom.2018.03.017
10.1007/978-1-60327-241-4_13
ContentType Journal Article
Copyright 2021
Copyright Elsevier Limited Sep 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Limited Sep 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOA
DOI 10.1016/j.neuroimage.2021.118200
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest One Psychology

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_cf018b37d14c4dbc9f8f24dc45d26ce6
10.1016/j.neuroimage.2021.118200
10_1016_j_neuroimage_2021_118200
S1053811921004778
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c552t-2c639dfaceaa1515e40ae0e2ea8bd744ccd75140da7a4572bc2e28a1cb21965d3
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 14 18:57:16 EDT 2025
Sun Oct 26 04:14:21 EDT 2025
Sat Sep 27 23:41:56 EDT 2025
Tue Oct 07 06:51:16 EDT 2025
Sat Oct 25 04:56:24 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Fri Feb 23 02:40:27 EST 2024
Tue Oct 14 19:40:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graph regularization
Imaging-genetics
Clinical diagnosis
Low dimensional subspace
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-2c639dfaceaa1515e40ae0e2ea8bd744ccd75140da7a4572bc2e28a1cb21965d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921004778
PQID 2554331054
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_cf018b37d14c4dbc9f8f24dc45d26ce6
unpaywall_primary_10_1016_j_neuroimage_2021_118200
proquest_miscellaneous_2540514832
proquest_journals_2554331054
crossref_citationtrail_10_1016_j_neuroimage_2021_118200
crossref_primary_10_1016_j_neuroimage_2021_118200
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118200
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118200
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Dayem Ullah (bib0012) 2018; 46
Eavani (bib0016) 2012
Fan (bib0020) 2016; 26
Dickinson (bib0014) 2011; 37
Pearlson (bib0037) 2015; 6
Rasetti (bib0040) 2014; 71
Stram (bib0047) 2004; Vol. 27
Egan (bib0017) 2001; 98
Liu (bib0031) 2015; 62
Xie, Douglas, Wu, Brody, Anderson (bib0054) 2017; 282
Wang (bib0052) 2012; 28
Chong (bib0011) 2015
Chen (bib0010) 2018; 141
Roy, Larocque (bib0042) 2012; 24
Schönemann (bib0044) 1966; 31
Ghosal (bib0022) 2019
Pergola (bib0038) 2016; 46
Srinivasagopalan (bib0046) 2019; 31
Callicott (bib0007) 2003; 160
Chaudhury (bib0009) 2010; 19
Di Giorgio (bib0013) 2013; 43
Gutschner (bib0026) 2018; 37
Rachakonda, Liu, Calhoun (bib0039) 2012
Calhoun, Adali (bib0005) 2012; 5
Wang, others. (bib0053) 2007; 36
Tomita (bib0048) 2019; 2
Sambataro (bib0043) 2010; 35
Liu, Calhoun (bib0030) 2014
Lai, Osher (bib0028) 2014; 58
Vereczkei (bib0050) 2011
Ripke (bib0041) 2014; 511
Batmanghelich, others. (bib0001) 2016; 35
Zeng (bib0056) 2018; 30
Cannon (bib0008) 2015
Friston (bib0021) 1995; 2
Breton (bib0004) 2011; 49
Nathoo (bib0035) 2019; 47
Sim, Tsagkrasoulis, Montana (bib0045) 2013; 12
Calhoun (bib0006) 2001; 14
Grippo, Sciandrone (bib0025) 2000; 26
Zhu (bib0057) 2017; 17
Gore (bib0024) 2003; 112
Lonsdale (bib0032) 2013; 45
Belger (bib0002) 2011
Viviani (bib0051) 2005; 24
Najafabadi (bib0034) 2015; 2
Yin (bib0055) 2019; 35
Ben-Hur, Weston (bib0003) 2010; 609
Eraslan (bib0018) 2019; 20
Orellana, Slachevsky (bib0036) 2013
Du (bib0015) 2017; 7
Erk (bib0019) 2017; 7
Li, Zhu, Tang (bib0029) 2019
Tor D. (bib0049) 2011; 5
Luciano (bib0033) 2018; 50
Kolmogorov–Smirnov Test (bib0027) 2008
Goes (bib0023) 2015; 168
Chong (10.1016/j.neuroimage.2021.118200_bib0011) 2015
Liu (10.1016/j.neuroimage.2021.118200_bib0030) 2014
Sambataro (10.1016/j.neuroimage.2021.118200_bib0043) 2010; 35
Calhoun (10.1016/j.neuroimage.2021.118200_bib0005) 2012; 5
Goes (10.1016/j.neuroimage.2021.118200_bib0023) 2015; 168
Dayem Ullah (10.1016/j.neuroimage.2021.118200_bib0012) 2018; 46
Tor D. (10.1016/j.neuroimage.2021.118200_bib0049) 2011; 5
Callicott (10.1016/j.neuroimage.2021.118200_bib0007) 2003; 160
Di Giorgio (10.1016/j.neuroimage.2021.118200_bib0013) 2013; 43
Chen (10.1016/j.neuroimage.2021.118200_bib0010) 2018; 141
Kolmogorov–Smirnov Test (10.1016/j.neuroimage.2021.118200_bib0027) 2008
Grippo (10.1016/j.neuroimage.2021.118200_bib0025) 2000; 26
Calhoun (10.1016/j.neuroimage.2021.118200_bib0006) 2001; 14
Ghosal (10.1016/j.neuroimage.2021.118200_bib0022) 2019
Zhu (10.1016/j.neuroimage.2021.118200_bib0057) 2017; 17
Liu (10.1016/j.neuroimage.2021.118200_bib0031) 2015; 62
Wang (10.1016/j.neuroimage.2021.118200_bib0052) 2012; 28
Luciano (10.1016/j.neuroimage.2021.118200_bib0033) 2018; 50
Stram (10.1016/j.neuroimage.2021.118200_bib0047) 2004; Vol. 27
Yin (10.1016/j.neuroimage.2021.118200_bib0055) 2019; 35
Dickinson (10.1016/j.neuroimage.2021.118200_bib0014) 2011; 37
Batmanghelich (10.1016/j.neuroimage.2021.118200_bib0001) 2016; 35
Gore (10.1016/j.neuroimage.2021.118200_bib0024) 2003; 112
Chaudhury (10.1016/j.neuroimage.2021.118200_bib0009) 2010; 19
Eraslan (10.1016/j.neuroimage.2021.118200_bib0018) 2019; 20
Rasetti (10.1016/j.neuroimage.2021.118200_bib0040) 2014; 71
Vereczkei (10.1016/j.neuroimage.2021.118200_bib0050) 2011
Du (10.1016/j.neuroimage.2021.118200_bib0015) 2017; 7
Viviani (10.1016/j.neuroimage.2021.118200_bib0051) 2005; 24
Eavani (10.1016/j.neuroimage.2021.118200_bib0016) 2012
Nathoo (10.1016/j.neuroimage.2021.118200_bib0035) 2019; 47
Najafabadi (10.1016/j.neuroimage.2021.118200_bib0034) 2015; 2
Egan (10.1016/j.neuroimage.2021.118200_bib0017) 2001; 98
Sim (10.1016/j.neuroimage.2021.118200_bib0045) 2013; 12
Lai (10.1016/j.neuroimage.2021.118200_bib0028) 2014; 58
Zeng (10.1016/j.neuroimage.2021.118200_bib0056) 2018; 30
Cannon (10.1016/j.neuroimage.2021.118200_bib0008) 2015
Orellana (10.1016/j.neuroimage.2021.118200_bib0036) 2013
Pergola (10.1016/j.neuroimage.2021.118200_bib0038) 2016; 46
Srinivasagopalan (10.1016/j.neuroimage.2021.118200_bib0046) 2019; 31
Fan (10.1016/j.neuroimage.2021.118200_bib0020) 2016; 26
Roy (10.1016/j.neuroimage.2021.118200_bib0042) 2012; 24
Ripke (10.1016/j.neuroimage.2021.118200_bib0041) 2014; 511
Friston (10.1016/j.neuroimage.2021.118200_bib0021) 1995; 2
Li (10.1016/j.neuroimage.2021.118200_bib0029) 2019
Rachakonda (10.1016/j.neuroimage.2021.118200_sbref0039) 2012
Schönemann (10.1016/j.neuroimage.2021.118200_bib0044) 1966; 31
Wang (10.1016/j.neuroimage.2021.118200_bib0053) 2007; 36
Xie (10.1016/j.neuroimage.2021.118200_bib0054) 2017; 282
Gutschner (10.1016/j.neuroimage.2021.118200_bib0026) 2018; 37
Lonsdale (10.1016/j.neuroimage.2021.118200_bib0032) 2013; 45
Ben-Hur (10.1016/j.neuroimage.2021.118200_bib0003) 2010; 609
Breton (10.1016/j.neuroimage.2021.118200_bib0004) 2011; 49
Tomita (10.1016/j.neuroimage.2021.118200_bib0048) 2019; 2
Erk (10.1016/j.neuroimage.2021.118200_bib0019) 2017; 7
Pearlson (10.1016/j.neuroimage.2021.118200_bib0037) 2015; 6
Belger (10.1016/j.neuroimage.2021.118200_bib0002) 2011
References_xml – volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  ident: bib0005
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 36
  start-page: 1139
  year: 2007
  end-page: 1151
  ident: bib0053
  article-title: Support vector machine learning-based fMRI data group analysis
  publication-title: Neuroimage
– volume: 20
  start-page: 389
  year: 2019
  end-page: 403
  ident: bib0018
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
– start-page: 744
  year: 2015
  end-page: 756
  ident: bib0008
  article-title: How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis
  publication-title: Trends in Cognitive Sciences
– volume: 98
  start-page: 6917
  year: 2001
  end-page: 6922
  ident: bib0017
  article-title: Effect of COMT Val108/158 Met-genotype on frontal lobe function and risk for schizophrenia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 205
  year: 2011
  end-page: 210
  ident: bib0050
  article-title: Genetic predisposition to schizophrenia: what did we learn and what does the future hold?
  publication-title: Neuropsychopharmacologia Hungarica
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: bib0031
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  year: 2015
  ident: bib0037
  article-title: An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathw ays and systems in common complex disorders
– volume: 50
  start-page: 6
  year: 2018
  end-page: 11
  ident: bib0033
  article-title: Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism
  publication-title: Nat. Genet.
– volume: 35
  year: 2019
  ident: bib0055
  article-title: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype.
  publication-title: Bioinformatics
– volume: 7
  start-page: 14052
  year: 2017
  ident: bib0015
  article-title: Pattern discovery in brain imaging genetics via SCCA modeling with a generic non-convex penalty
  publication-title: Sci. Rep.
– volume: 282
  start-page: 81
  year: 2017
  end-page: 94
  ident: bib0054
  article-title: Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms
  publication-title: J. Neurosci. Methods
– start-page: 201
  year: 2011
  end-page: 214
  ident: bib0002
  article-title: The neural circuitry of autism
  publication-title: Neurotoxicity Research
– start-page: 283
  year: 2008
  end-page: 287
  ident: bib0027
  publication-title: The Concise Encyclopedia of Statistics
– year: 2012
  ident: bib0039
  article-title: Fusion ICA Toolbox (FIT) Manual
  publication-title: Technical Report
– volume: 26
  year: 2016
  ident: bib0020
  article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture.
  publication-title: Cereb. Cortex
– start-page: 647
  year: 2019
  end-page: 655
  ident: bib0022
  article-title: Bridging imaging, genetics, and diagnosis in a coupled low-dimensional framework
  publication-title: MICCAI: Medical Image Computing and Computer Assisted Intervention
– start-page: 29
  year: 2014
  ident: bib0030
  article-title: A review of multivariate analyses in imaging genetics
  publication-title: Frontiers in Neuroinformatics
– volume: 609
  start-page: 223
  year: 2010
  end-page: 239
  ident: bib0003
  article-title: A user’s guide to support vector machines.
  publication-title: Methods Mol. Biol.
– volume: 58
  start-page: 431
  year: 2014
  end-page: 449
  ident: bib0028
  article-title: A splitting method for orthogonality constrained problems
  publication-title: J. Sci. Comput.
– volume: 30
  year: 2018
  ident: bib0056
  article-title: Multi-Site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
– year: 2013
  ident: bib0036
  article-title: Executive functioning in schizophrenia
  publication-title: Frontiers in Psychiatry
– volume: 71
  start-page: 236
  year: 2014
  end-page: 247
  ident: bib0040
  article-title: Altered hippocampal-parahippocampal function during stimulus encoding:a potential indicator of genetic liability for schizophrenia
  publication-title: JAMA Psychiatry
– start-page: 3935
  year: 2019
  end-page: 3943
  ident: bib0029
  article-title: Alternating minimizations converge to second-order optimal solutions
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– volume: 37
  start-page: 1157
  year: 2011
  end-page: 1167
  ident: bib0014
  article-title: Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls
  publication-title: Schizophr. Bull.
– volume: 7
  start-page: e997
  year: 2017
  ident: bib0019
  article-title: Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains
  publication-title: Transl. Psychiatry
– start-page: 199
  year: 2015
  end-page: 215
  ident: bib0011
  article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities
  publication-title: American Journal of Human Genetics
– volume: 49
  year: 2011
  ident: bib0004
  article-title: The executive control of attention differentiates patients with schizophrenia, their first-degree relatives and healthy controls
  publication-title: Neuropsychologia
– volume: 112
  start-page: 4
  year: 2003
  end-page: 9
  ident: bib0024
  article-title: Principles and practice of functional MRI of the human brain.
  publication-title: J. Clin. Invest.
– volume: 160
  start-page: 709
  year: 2003
  end-page: 719
  ident: bib0007
  article-title: Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 37
  year: 2018
  ident: bib0026
  article-title: From biomarkers to therapeutic targets-the promises and perils of long non-coding RNAs in cancer
  publication-title: Cancer Metastasis Rev.
– volume: 45
  start-page: 580
  year: 2013
  end-page: 585
  ident: bib0032
  article-title: The genotype-Tissue expression (GTEx) project
  publication-title: Nat. Genet.
– start-page: 73
  year: 2012
  end-page: 76
  ident: bib0016
  article-title: Sparse dictionary learning of resting state fMRI networks
  publication-title: Proceedings - 2012 2nd International Workshop on Pattern Recognition in NeuroImaging, PRNI 2012
– volume: 46
  start-page: 109
  year: 2018
  end-page: 113
  ident: bib0012
  article-title: SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine
  publication-title: Nucleic Acids Res.
– volume: 31
  year: 2019
  ident: bib0046
  article-title: A deep learning approach for diagnosing schizophrenic patients
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 19
  start-page: 5
  year: 2010
  ident: bib0009
  article-title: Hallucinations: clinical aspects and management
  publication-title: Ind. Psychiatry J.
– volume: 5
  year: 2011
  ident: bib0049
  article-title: NeuroSynth: a new platform for large-scale automated synthesis of human functional neuroimaging data
  publication-title: Front. Neuroinform.
– volume: 2
  year: 1995
  ident: bib0021
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 141
  year: 2018
  ident: bib0010
  article-title: Schizophrenia polygenic risk score predicts mnemonic hippocampal activity
  publication-title: Brain
– volume: 47
  start-page: 108
  year: 2019
  end-page: 131
  ident: bib0035
  article-title: A review of statistical methods in imaging genetics
  publication-title: Can. J. Stat.
– volume: 28
  start-page: 229
  year: 2012
  end-page: 237
  ident: bib0052
  article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort
  publication-title: Bioinformatics
– volume: Vol. 27
  start-page: 365
  year: 2004
  end-page: 374
  ident: bib0047
  article-title: Tag SNP selection for association studies
  publication-title: Genetic Epidemiology
– volume: 17
  year: 2017
  ident: bib0057
  article-title: Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder
  publication-title: BMC Psychiatry
– volume: 511
  start-page: 421
  year: 2014
  end-page: 427
  ident: bib0041
  article-title: Biological insights from 108 schizophrenia-associated genetic loci
  publication-title: Nature
– volume: 168
  start-page: 649
  year: 2015
  end-page: 659
  ident: bib0023
  article-title: Genome-wide association study of schizophrenia in Ashkenazi Jews
  publication-title: Am. J. Med. Genet. Part B
– volume: 26
  start-page: 127
  year: 2000
  end-page: 136
  ident: bib0025
  article-title: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
– volume: 46
  year: 2016
  ident: bib0038
  article-title: Combined effect of genetic variants in the GluN2B coding gene (GRIN2B) on prefrontal function during working memory performance
  publication-title: Psychol. Med.
– volume: 2
  start-page: 1
  year: 2015
  ident: bib0034
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 24
  start-page: 109
  year: 2005
  end-page: 129
  ident: bib0051
  article-title: Functional principal component analysis of fMRI data
  publication-title: Hum. Brain Mapp.
– volume: 35
  start-page: 1765
  year: 2016
  end-page: 1779
  ident: bib0001
  article-title: Probabilistic modeling of imaging, genetics and diagnosis HHS public access index terms Bayesian models; imaging genetics; probabilistic graphical model; variational inference
  publication-title: IEEE Trans. Med. Imaging
– volume: 24
  start-page: 993
  year: 2012
  end-page: 1006
  ident: bib0042
  article-title: Robustness of random forests for regression
  publication-title: J. Nonparametr. Stat.
– volume: 14
  year: 2001
  ident: bib0006
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 35
  start-page: 904
  year: 2010
  end-page: 912
  ident: bib0043
  article-title: Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia
  publication-title: Neuropsychopharmacology
– volume: 31
  start-page: 1
  year: 1966
  end-page: 10
  ident: bib0044
  article-title: A generalized solution of the orthogonal procrustes problem
  publication-title: Psychometrika
– volume: 43
  start-page: 1661
  year: 2013
  end-page: 1671
  ident: bib0013
  article-title: Evidence that hippocampal-parahippocampal dysfunction is related to genetic risk for schizophrenia.
  publication-title: Psychol. Med.
– volume: 2
  year: 2019
  ident: bib0048
  article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides
  publication-title: JAMA Netw. Open
– volume: 12
  start-page: 757
  year: 2013
  end-page: 786
  ident: bib0045
  article-title: Random forests on distance matrices for imaging genetics studies
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 2
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118200_bib0021
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 35
  start-page: 904
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118200_bib0043
  article-title: Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.192
– start-page: 29
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118200_bib0030
  article-title: A review of multivariate analyses in imaging genetics
– volume: 24
  start-page: 109
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118200_bib0051
  article-title: Functional principal component analysis of fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20074
– volume: 14
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118200_bib0006
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– start-page: 647
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0022
  article-title: Bridging imaging, genetics, and diagnosis in a coupled low-dimensional framework
– volume: 43
  start-page: 1661
  issue: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118200_bib0013
  article-title: Evidence that hippocampal-parahippocampal dysfunction is related to genetic risk for schizophrenia.
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291712002413
– volume: 7
  start-page: e997
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118200_bib0019
  article-title: Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.272
– volume: 71
  start-page: 236
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118200_bib0040
  article-title: Altered hippocampal-parahippocampal function during stimulus encoding:a potential indicator of genetic liability for schizophrenia
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.3911
– volume: 160
  start-page: 709
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118200_bib0007
  article-title: Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.160.4.709
– volume: Vol. 27
  start-page: 365
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118200_bib0047
  article-title: Tag SNP selection for association studies
– start-page: 205
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118200_bib0050
  article-title: Genetic predisposition to schizophrenia: what did we learn and what does the future hold?
– volume: 62
  start-page: 1132
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118200_bib0031
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– volume: 26
  issue: 8
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118200_bib0020
  article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw157
– volume: 168
  start-page: 649
  issue: 8
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118200_bib0023
  article-title: Genome-wide association study of schizophrenia in Ashkenazi Jews
  publication-title: Am. J. Med. Genet. Part B
  doi: 10.1002/ajmg.b.32349
– volume: 26
  start-page: 127
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118200_bib0025
  article-title: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
– start-page: 3935
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0029
  article-title: Alternating minimizations converge to second-order optimal solutions
– start-page: 201
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118200_bib0002
  article-title: The neural circuitry of autism
– volume: 31
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0046
  article-title: A deep learning approach for diagnosing schizophrenic patients
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2018.1563636
– volume: 45
  start-page: 580
  issue: 6
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118200_bib0032
  article-title: The genotype-Tissue expression (GTEx) project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2653
– year: 2013
  ident: 10.1016/j.neuroimage.2021.118200_bib0036
  article-title: Executive functioning in schizophrenia
– volume: 98
  start-page: 6917
  issue: 12
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118200_bib0017
  article-title: Effect of COMT Val108/158 Met-genotype on frontal lobe function and risk for schizophrenia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.111134598
– volume: 141
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118200_bib0010
  article-title: Schizophrenia polygenic risk score predicts mnemonic hippocampal activity
  publication-title: Brain
  doi: 10.1093/brain/awy004
– volume: 46
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118200_bib0038
  article-title: Combined effect of genetic variants in the GluN2B coding gene (GRIN2B) on prefrontal function during working memory performance
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291715002639
– volume: 37
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118200_bib0026
  article-title: From biomarkers to therapeutic targets-the promises and perils of long non-coding RNAs in cancer
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-017-9718-5
– volume: 19
  start-page: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118200_bib0009
  article-title: Hallucinations: clinical aspects and management
  publication-title: Ind. Psychiatry J.
  doi: 10.4103/0972-6748.77625
– volume: 2
  issue: 11
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0048
  article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.14645
– volume: 47
  start-page: 108
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0035
  article-title: A review of statistical methods in imaging genetics
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.11487
– volume: 36
  start-page: 1139
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118200_bib0053
  article-title: Support vector machine learning-based fMRI data group analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.072
– volume: 35
  start-page: 1765
  issue: 7
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118200_bib0001
  article-title: Probabilistic modeling of imaging, genetics and diagnosis HHS public access index terms Bayesian models; imaging genetics; probabilistic graphical model; variational inference
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2527784
– volume: 35
  issue: 14
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0055
  article-title: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz369
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118200_bib0034
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 28
  start-page: 229
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118200_bib0052
  article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr649
– volume: 12
  start-page: 757
  issue: 6
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118200_bib0045
  article-title: Random forests on distance matrices for imaging genetics studies
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.1515/sagmb-2013-0040
– year: 2012
  ident: 10.1016/j.neuroimage.2021.118200_sbref0039
  article-title: Fusion ICA Toolbox (FIT) Manual
– start-page: 199
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118200_bib0011
  article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities
– volume: 58
  start-page: 431
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118200_bib0028
  article-title: A splitting method for orthogonality constrained problems
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9740-x
– volume: 20
  start-page: 389
  issue: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118200_bib0018
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
– start-page: 283
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118200_bib0027
– volume: 112
  start-page: 4
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118200_bib0024
  article-title: Principles and practice of functional MRI of the human brain.
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200319010
– volume: 50
  start-page: 6
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118200_bib0033
  article-title: Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0013-8
– volume: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118200_bib0057
  article-title: Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-016-1146-5
– volume: 31
  start-page: 1
  issue: 1
  year: 1966
  ident: 10.1016/j.neuroimage.2021.118200_bib0044
  article-title: A generalized solution of the orthogonal procrustes problem
  publication-title: Psychometrika
  doi: 10.1007/BF02289451
– volume: 7
  start-page: 14052
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118200_bib0015
  article-title: Pattern discovery in brain imaging genetics via SCCA modeling with a generic non-convex penalty
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13930-y
– volume: 5
  start-page: 60
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118200_bib0005
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2211076
– volume: 24
  start-page: 993
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118200_bib0042
  article-title: Robustness of random forests for regression
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485252.2012.715161
– volume: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118200_bib0049
  article-title: NeuroSynth: a new platform for large-scale automated synthesis of human functional neuroimaging data
  publication-title: Front. Neuroinform.
  doi: 10.3389/conf.fninf.2011.08.00058
– volume: 46
  start-page: 109
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118200_bib0012
  article-title: SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky399
– volume: 37
  start-page: 1157
  issue: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118200_bib0014
  article-title: Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbq018
– volume: 282
  start-page: 81
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118200_bib0054
  article-title: Decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.03.008
– volume: 511
  start-page: 421
  issue: 7510
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118200_bib0041
  article-title: Biological insights from 108 schizophrenia-associated genetic loci
  publication-title: Nature
  doi: 10.1038/nature13595
– volume: 49
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118200_bib0004
  article-title: The executive control of attention differentiates patients with schizophrenia, their first-degree relatives and healthy controls
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2010.11.019
– volume: 30
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118200_bib0056
  article-title: Multi-Site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.017
– start-page: 73
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118200_bib0016
  article-title: Sparse dictionary learning of resting state fMRI networks
– volume: 6
  issue: SEP
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118200_bib0037
  article-title: An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathw ays and systems in common complex disorders
– volume: 609
  start-page: 223
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118200_bib0003
  article-title: A user’s guide to support vector machines.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-241-4_13
– start-page: 744
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118200_bib0008
  article-title: How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis
SSID ssj0009148
Score 2.4176288
Snippet We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118200
SubjectTerms Biomarkers
Brain mapping
Classification
Clinical diagnosis
Correlation analysis
Deep learning
Diagnosis
Dictionaries
Functional magnetic resonance imaging
Gene polymorphism
Generalized linear models
Genetic diversity
Genetics
Genotype & phenotype
Graph regularization
Health risk assessment
Imaging-genetics
Low dimensional subspace
Mental disorders
Neuroimaging
Population studies
Principal components analysis
Schizophrenia
Single-nucleotide polymorphism
Sparsity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD8AFAQWRtlRG6rEpiWNvbHEqqFWFBCcq9Wb5K7AoTVbdrAr_nhk7SZcTe-CYxGNZnvHMs_L8TMhJVVgHpQUWEiS-nKvAcmUKl4cKcqItlWp8ZPl-XVxd88834mbrqi_khCV54DRx711TlNJWtS-549461ciGce-48GzhQhTbLqSaNlOT3C6g_JG3k9hcUR1yeQtrFPaErDxDXI2n2raKUdTs_6smbWHOJ5tuZX7fm7bdKj-Xz8mzETfS8zTeF-RR6F6Sx1_GP-P75Nc5_R4VpDF95XjWNt3XhY-0mRhYdPhhBjpLRKwpjhWK12k0hq5Pqek89Yl_t1xj0566frNqg6dtfw-fbpHyjvidQjJy4RW5vrz49ukqH29VyJ0QbMiZA1DiG2hgDKKZwAsTisCCkdbXnDvna0BRhTe14aJm1rHApCmdZag-6KvXZK_ru_CG0Fo2hZNioYSSnAsJubKKGnlMNsJWKiP1NL3ajZLjePNFqydu2U_94BiNjtHJMRkpZ8tVkt3YweYjenBuj8LZ8QWEkx7DSf8rnDKiJv_r6WwqZFPoaLnDAD7MtiN-SbhkR-ujKdz0mEfWGjZ8eKQNcHVG3s2fIQPgbx3ThX6DbTiK2ENqzgibw3TnaTv4H9N2SJ5il4l8d0T2hrtNeAtobbDHcWH-AfKHQTM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHoAL4lMECjISx6abOPbGFqdSUVVIcIFKvVmO7ZSgNFl1syq99LczEzvp9rYSxyQzkeWx30yUN8-EfCqyykJqgY0EwJdy5VmqTGZTXwAmVrlStRtZvj-WZ-f824W42CMnUy8M0ioj9gdMH9E63lnE2VysmmbxEyoDSDeo54WShyU2_HJe4ikGR3f3NA-V89AOJ4oUrSObJ3C8Rs3I5gp2LnwpsvwIq23sddtKUaOS_4NMtVWJPt50K3N7Y9p2KymdPiNPYzVJj8OAn5M9370gj77H_-Uvyd9jejnqSiOopdiBG07xwktaT7wsOvw2A52FI9YUxwop7XB0hlcfUtM56gIrr1mjaU9tv1m13tG2v4FHV0iEx6qeAkRZ_4qcn379dXKWxrMWUisEG1JmoVRxNRgYgzWO55nxmWfeyMqVnFvrSqitMmdKw0XJKss8kya3FUNNQle8Jvtd3_k3hJayzqwUSyWU5FxIQNBiVM5jshZVoRJSTtOrbRQix_MwWj0xzv7o-8BoDIwOgUlIPnuughjHDj5fMIKzPcppjzf660sd15O2dZbLqihdzi13lVW1rBl3lgvHltYvE6Km-OupYxUwFl7U7DCAz7Pvg5W9o_fBtNx0RJe1hs9AbHSDajshH-fHgAv4s8d0vt-gDUdpewDshLB5me48bW__a9TvyBO8Cly8A7I_XG_8eyjehurDuDv_AW_9RHY
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamToInGDcRtCEj8bhUjmMnjvZUpk0TEhNIVBpPlm-BQpZUNNEGv55j58LKAyo8tvFxU_v4O5_l4-8g9Dol2kBogYUEwBezwtG4UMTELgVM1ElRlDZk-V5mF0v29opf7SEy3oXZOr8PeVhB13F1DasLdnM0mXtGTGCTvp9xYN8ztL-8fL_4FA41eRqLJNTySIgvQcjzMXnnb11tRaQg3L8VmO4Qz_tdvVY_blRV3YlB5w_Rh_Ht-9STb_Ou1XPz8w9hx3_5ewfowUBI8aL3oEdoz9WP0b13w5H7E3S7wJ-DNLXHxdhf4u0LgfmPuBxTu3D7RbV40p7YYP9bEBWPgzF0fYxVbbHtE_tWG9-0wabp1pWzuGpu4NG1z6X3GwMMKGfcU7Q8P_t4ehEP5RpiwzltY2qA7dgSGijlaZJjRDniqFNC25wxY2wO9IxYlSsGU6MNdVSoxGjqZQ1t-gzN6qZ2zxHORUmM4FnBC8EYFwDCaRDfo6LkOi0ilI9TJs2gZe5LalRyTFr7Kn8PrPQDK_uBjVAyWa57PY8dbN54r5jae0Xu8AXMpBwWuDQlSYROc5sww6w2RSlKyqxh3NLMuCxCxehTcrz0CjANHa12eIGTyXYgRj3h2dH6cHRhOQDURsJO0t-VA8IeoVfTY4AWf16katd0vg3z6viA-RGik-vvPGwv_sfoEM3a7507AqbX6pfD4v4FSuBSWQ
  priority: 102
  providerName: Unpaywall
Title A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921004778
https://dx.doi.org/10.1016/j.neuroimage.2021.118200
https://www.proquest.com/docview/2554331054
https://www.proquest.com/docview/2540514832
https://doi.org/10.1016/j.neuroimage.2021.118200
https://doaj.org/article/cf018b37d14c4dbc9f8f24dc45d26ce6
UnpaywallVersion publishedVersion
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trQS8IH5qgVEZicdlJI7TJEIIdWhTARFNiErlyXJsZxRlSVlbDV7427nLr5YX1JdISc5p5LM_f43vvgN4FXiZxqUFJxICnysSy91Eedq1AWJi5idJbuoo33Q8nYmP83B-AGmXC0NhlR0m1kBtKk3fyF8j9aXkHmQY75Y_XaoaRburXQkN1ZZWMG9ribFDGHJSxhrA8Ow8vfyyleH1RZMcFwZu7PtJG9vTRHzVCpKLa5zH-L-R-6fEvSnzbWfBqnX9_1m3dnjp3U25VL9vVVHsLFEXD-B-yy3ZpBkMD-HAlo_gzud29_wx_Jqwq1plmiDOpXzcpqYXnbK8i9Ji6-9qzXoZiRWjd8UF7qRujI8-Yao0zDQxeosVmVYMO2ZZWMOK6hZvXVNYPHF8hoCl7ROYXZx_fT9128oLrg5Dvna5RuJicjRQihiPFZ6ynuVWxZmJhNDaRMi0PKMiJcKIZ5pbHitfZ5wUCk3wFAZlVdojYFGcezoOx0mYxEKEMeJpUOvo8TgPsyBxIOq6V-pWlpyqYxSyiz_7IbeOkeQY2TjGAb9vuWykOfZoc0Ye7O1JXLu-UN1cyXauSp17fpwFkfGFFibTSR7nXBgtQsPH2o4dSDr_yy5_FREXH7TY4wXe9G1bjtNwlz1bH3fDTbZYs5LbmeHAy_42ogRt_ajSVhuyESR0j_DtAO-H6d7d9uz_v_sc7pFxE3p3DIP1zca-QK62zkZwePrHx2M0j0YwnHz4NE1H7aQc1d8_8GyWXk6-_QWQwUXU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKK1EuiE8RKGAkuDWQOM4mFqpQC622tF0h1Eq9uY7tlEVpsnSzWvrn-G3MJE52uaC99JjE41gZ-804nnlDyNsoyDSYFlhIAHw-F5b5QgXatxFgYhYKkZsmync0GJ7xr-fx-Rr50-XCYFhlh4kNUJtK4z_yD-D6YnIPeBifJr98rBqFp6tdCQ3lSiuYnYZizCV2HNmbOWzhpjuHX0Df7xg72D_9PPRdlQFfxzGrfabBSJtcaasUWnfLA2UDy6xKM5NwrrVJwKsIjEoUjxOWaWZZqkKdMWTjMxH0e4ds8IgL2Pxt7O2Pvn1f0P6GvE3GiyM_DUPhYonaCLOGsXJ8BbgB-1QWvkdfHzPtlgxkU0fgHzu55AdvzsqJupmrolgyiQcPyH3ny9LddvI9JGu2fETunrjT-sfk9y69bFitEVJ9zP9ta4jhJc27qDBa_1A17WkrphTHCgZ1uxGGrrepKg01bUzgeIpNKwqKmBTW0KKaw6MrDMPHPQUFgNT2CTm7FR08JetlVdpnhCZpHug0HohYpJzHKeB31PD2sTSPs0h4JOk-r9SOBh2rcRSyi3f7KReKkagY2SrGI2EvOWmpQFaQ2UMN9u2RzLu5UV1fSocNUudBmGZRYkKuucm0yNOccaN5bNhA24FHRKd_2eXLAsJDR-MVBvCxl3U-VesrrSi91U036bBtKhcr0SNv-seASnjUpEpbzbANR2J9MBceYf00XfmzPf__e1-TzeHpybE8PhwdvSD3ULAN-9si6_X1zL4EP7HOXrnFSMnFba__vye5fhY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkAYviJ9a2QAjwdvCEsepYyGEBqPaGEw8MKlvxrGdUZQl3Zqq7F_jr-MuTtLygvqyxzQ-J8r5vjvX390R8ioOMwOuBQwJgC_g0rFA6tAELgZMzCIpc9uwfE-HR2f88zgZb5A_XS4M0io7TGyA2lYG_yPfh9AXk3sgwtjPW1rEt8PR--llgB2k8KS1a6fhl8iJu17A9m327vgQdP2asdGn7x-PgrbDQGCShNUBM-Cgba6N0xo9u-OhdqFjTqeZFZwbYwVEFKHVQvNEsMwwx1IdmYxhJT4bw7y3yG0RxxLphGIslgV_I-7T8JI4SKNItiwizy1ralVOLgAxYIfKojcY5WOO3YprbDoI_OMhVyLgO_Nyqq8XuihWnOHoPrnXRrH0wC-7B2TDlQ_J1tf2nP4R-X1Az5t61gimAWb--u5heEnzjg9G65-6pn3BihnFdwVXutcIw9R7VJeWWs8GnMxwaEVNNZ8WztKiWsCtCyTg426CAjQa95ic3YgGnpDNsirdNqEizUOTJkOZyJTzJAXkjpuKfSzNkyyWAyK6z6tMWwAd-3AUqmO6_VJLxShUjPKKGZCol5z6IiBryHxADfbjsYx380N1da5aVFAmD6M0i4WNuOE2MzJPc8at4YllQ-OGAyI7_asuUxawHSaarPECb3vZNpryUdKa0rvdclMtqs3U0gYH5GV_G_AID5l06ao5juFYUh8cxYCwfpmu_dme_v-5L8gWWL36cnx6skPuopzn--2Szfpq7p5BgFhnzxtLpOTHTZv-X8NWe7A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamToInGDcRtCEj8bhUjmMnjvZUpk0TEhNIVBpPlm-BQpZUNNEGv55j58LKAyo8tvFxU_v4O5_l4-8g9Dol2kBogYUEwBezwtG4UMTELgVM1ElRlDZk-V5mF0v29opf7SEy3oXZOr8PeVhB13F1DasLdnM0mXtGTGCTvp9xYN8ztL-8fL_4FA41eRqLJNTySIgvQcjzMXnnb11tRaQg3L8VmO4Qz_tdvVY_blRV3YlB5w_Rh_Ht-9STb_Ou1XPz8w9hx3_5ewfowUBI8aL3oEdoz9WP0b13w5H7E3S7wJ-DNLXHxdhf4u0LgfmPuBxTu3D7RbV40p7YYP9bEBWPgzF0fYxVbbHtE_tWG9-0wabp1pWzuGpu4NG1z6X3GwMMKGfcU7Q8P_t4ehEP5RpiwzltY2qA7dgSGijlaZJjRDniqFNC25wxY2wO9IxYlSsGU6MNdVSoxGjqZQ1t-gzN6qZ2zxHORUmM4FnBC8EYFwDCaRDfo6LkOi0ilI9TJs2gZe5LalRyTFr7Kn8PrPQDK_uBjVAyWa57PY8dbN54r5jae0Xu8AXMpBwWuDQlSYROc5sww6w2RSlKyqxh3NLMuCxCxehTcrz0CjANHa12eIGTyXYgRj3h2dH6cHRhOQDURsJO0t-VA8IeoVfTY4AWf16katd0vg3z6viA-RGik-vvPGwv_sfoEM3a7507AqbX6pfD4v4FSuBSWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generative-discriminative+framework+that+integrates+imaging%2C+genetic%2C+and+diagnosis+into+coupled+low+dimensional+space&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ghosal%2C+Sayan&rft.au=Chen%2C+Qiang&rft.au=Pergola%2C+Giulio&rft.au=Goldman%2C+Aaron+L&rft.date=2021-09-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=238&rft.spage=118200&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon