Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models

Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 37; no. 8; pp. 808 - 812
Main Authors Chen, G., Wu, F.Y., Liu, Z.C., Yang, K., Cui, F.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2015
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2015.05.006

Cover

Abstract Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. •Develops a node-based approach that assigns bone material properties onto subject-specific finite element models.•It is the simplest and most powerful assignment approach, which completely avoids complex programming.•It is applicable to many types of analyses and elements; it has been tested on both linear and non-linear analyses and different types of elements.•Its accuracy has been verified by comparing with the element-based approach in the literature.
AbstractList Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. •Develops a node-based approach that assigns bone material properties onto subject-specific finite element models.•It is the simplest and most powerful assignment approach, which completely avoids complex programming.•It is applicable to many types of analyses and elements; it has been tested on both linear and non-linear analyses and different types of elements.•Its accuracy has been verified by comparing with the element-based approach in the literature.
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.
Abstract Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.
Author Yang, K.
Chen, G.
Liu, Z.C.
Wu, F.Y.
Cui, F.
Author_xml – sequence: 1
  givenname: G.
  surname: Chen
  fullname: Chen, G.
  email: gongfa.chen@gdut.edu.cn
  organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 2
  givenname: F.Y.
  surname: Wu
  fullname: Wu, F.Y.
  organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 3
  givenname: Z.C.
  surname: Liu
  fullname: Liu, Z.C.
  organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 4
  givenname: K.
  surname: Yang
  fullname: Yang, K.
  organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 5
  givenname: F.
  surname: Cui
  fullname: Cui, F.
  organization: Institute of High Performance Computing, ASTAR, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26054803$$D View this record in MEDLINE/PubMed
BookMark eNqNUsuO1DAQjNAi9gG_ADlyydBObCc5AFqNeEkrcQDOltPuzDokdrAzSPMHfDYOs8NhJcRKLdmyqqrbVX2ZnTnvKMteMNgwYPLVsJnIkNvNt4dNCUxsIBXIR9kFa-qq4FDBWbpXAgouquo8u4xxAADOZfUkOy8lCN5AdZH92vpp1sFG72Lu-9x5Q0WnI5lcO5PTSBO55fQyz8FrvKU_UB2j3TnrdnmXhssnvVCweswTZqaw2BXlFp_HfTcQLkWcCW1vMe-tswudtPMptRzj0-xxr8dIz-7Oq-zb-3dftx-Lm88fPm2vbwoUolyKUmBb8kYy0zNs64ajFIIz0wiBTVujpN6UDa-xFwhgELsGNBhOoEkKY6qr7OVRN435Y09xUZONSOOoHfl9VEy2TStrIcsEfX4H3XfJbjUHO-lwUCf3EuD1EYDBxxioV2gXvdj07aDtqBioNS01qL9pqTUtBalAJn59j39q8X_m9ZGZnKOfloKKaMkhGRuS18p4-wCNN_c0cEzJoB6_04Hi4PfBpSQUU7FUoL6s27QuExMArOQsCbz9t8CDRvgNbwbh2w
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105319
crossref_primary_10_1002_jbm4_10349
crossref_primary_10_1080_10255842_2019_1615481
crossref_primary_10_1016_j_matpr_2022_01_222
crossref_primary_10_1016_j_medengphy_2021_07_012
crossref_primary_10_3390_ma13010106
crossref_primary_10_1016_j_heliyon_2024_e40668
crossref_primary_10_1016_j_jmbbm_2023_106299
crossref_primary_10_1115_1_4047991
crossref_primary_10_1080_10255842_2017_1291805
crossref_primary_10_1016_j_procir_2020_05_142
crossref_primary_10_1080_10255842_2019_1661386
crossref_primary_10_1186_s41747_020_00172_3
crossref_primary_10_1016_j_clinbiomech_2022_105704
crossref_primary_10_1016_j_jmbbm_2019_03_009
crossref_primary_10_1080_10255842_2020_1789863
Cites_doi 10.1016/j.cmpb.2009.01.004
10.1080/10255842.2012.731594
10.1115/1.4004190
10.1007/s10278-006-0771-9
10.1016/0021-9290(94)00087-K
10.1016/S0021-9290(01)00069-0
10.1016/j.jbiomech.2009.04.002
10.1016/j.jbiomech.2009.10.040
10.1016/S1350-4533(98)00054-X
10.1080/10255842.2014.920831
10.1243/09544119JEIM285
10.1016/j.jbiomech.2005.07.018
10.1243/0954411011533760
10.1002/jor.1100080507
10.1016/j.medengphy.2005.12.008
10.1016/S1350-4533(03)00138-3
10.1016/S1350-4533(98)00081-2
10.1016/j.jbiomech.2006.02.005
10.1115/1.2720906
10.1016/S0021-9290(96)00149-2
10.1016/j.jbiomech.2008.10.039
10.1016/j.medengphy.2007.05.006
10.1016/0021-9290(95)00084-4
10.1007/s10439-012-0514-7
10.1080/10255840801930728
ContentType Journal Article
Copyright 2015 IPEM
IPEM
Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 IPEM
– notice: IPEM
– notice: Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2015.05.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 812
ExternalDocumentID 26054803
10_1016_j_medengphy_2015_05_006
S1350453315001241
1_s2_0_S1350453315001241
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c552t-25c924861df1c9784c65541d855c897c6efd2847cf5c00dccb80a0d4e0ae65dd3
IEDL.DBID AIKHN
ISSN 1350-4533
1873-4030
IngestDate Wed Oct 01 17:26:16 EDT 2025
Thu Apr 03 07:07:59 EDT 2025
Wed Oct 01 05:03:26 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Sun Feb 23 10:19:58 EST 2025
Tue Aug 26 16:31:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Finite element models
Element-based approaches
Bone
Node-based approaches
Computed tomography
Material assignment
Language English
License Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-25c924861df1c9784c65541d855c897c6efd2847cf5c00dccb80a0d4e0ae65dd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 26054803
PQID 1698967562
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1698967562
pubmed_primary_26054803
crossref_citationtrail_10_1016_j_medengphy_2015_05_006
crossref_primary_10_1016_j_medengphy_2015_05_006
elsevier_sciencedirect_doi_10_1016_j_medengphy_2015_05_006
elsevier_clinicalkeyesjournals_1_s2_0_S1350453315001241
elsevier_clinicalkey_doi_10_1016_j_medengphy_2015_05_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beaupre, Orr, Carter (bib0019) 1990; 8
Cristofolini, Viceconti, Cappello, Toni (bib0017) 1996; 29
Unnikrishnan, Morgan (bib0010) 2011; 133
Kim, Kim, Eberhardt (bib0012) 2014; 17
Chen, Pettet, Pearcy, McElwain (bib0020) 2007; 29
Yosibash, Padan, Joskowicz, Milgrom (bib0025) 2007; 129
Sharma, Debski, McMahon, Robertson (bib0021) 2009; 42
Shim, Battley, Anderson, Munro (bib0011) 2014; 18
Jacobs, Levenston, Beaupre, Simo, Carter (bib0022) 1995; 28
Levenston (bib0023) 1997; 30
Lengsfeld, Schmitt, Alter, Kaminsky, Leppek (bib0001) 1998; 20
Cattaneo, Dalstra, Frich (bib0013) 2001; 215
Gong, Zhang, Fan, Kwok, Leung (bib0015) 2012; 40
Wilcox (bib0024) 2007; 40
Zannoni, Mantovani, Viceconti (bib0006) 1998; 20
Wijayathunga, Jones, Oakland, Furtado, Hall, Wilcox (bib0014) 2008; 222
Taddei, Cristofolini, Martelli, Gill, Viceconti (bib0003) 2006; 39
Trabelsi, Yosibash, Milgrom (bib0026) 2009; 42
Chen, Schmutz, Epari, Rathnayaka, Ibrahim, Schuetz (bib0009) 2010; 43
Zienkiewicz, Taylor (bib0016) 2000
Messmer, Matthews, Jacob, Kikinis, Regazzoni, Noser (bib0005) 2007; 20
Kluess, Souffrant, Mittelmeier, Wree, Schmitz, Bader (bib0004) 2009; 95
Helgason, Taddei, Pálsson, Schileo, Cristofolini, Viceconti (bib0008) 2008; 30
Taddei, Pancanti, Viceconti (bib0007) 2004; 26
Kourtis, Carter, Kesari, Beaupre (bib0002) 2008; 11
Doblare, Garcia (bib0018) 2001; 34
Sharma (10.1016/j.medengphy.2015.05.006_bib0021) 2009; 42
Kluess (10.1016/j.medengphy.2015.05.006_bib0004) 2009; 95
Levenston (10.1016/j.medengphy.2015.05.006_bib0023) 1997; 30
Gong (10.1016/j.medengphy.2015.05.006_bib0015) 2012; 40
Helgason (10.1016/j.medengphy.2015.05.006_bib0008) 2008; 30
Taddei (10.1016/j.medengphy.2015.05.006_bib0007) 2004; 26
Beaupre (10.1016/j.medengphy.2015.05.006_bib0019) 1990; 8
Kim (10.1016/j.medengphy.2015.05.006_bib0012) 2014; 17
Lengsfeld (10.1016/j.medengphy.2015.05.006_bib0001) 1998; 20
Doblare (10.1016/j.medengphy.2015.05.006_bib0018) 2001; 34
Chen (10.1016/j.medengphy.2015.05.006_bib0020) 2007; 29
Cristofolini (10.1016/j.medengphy.2015.05.006_bib0017) 1996; 29
Kourtis (10.1016/j.medengphy.2015.05.006_bib0002) 2008; 11
Wilcox (10.1016/j.medengphy.2015.05.006_bib0024) 2007; 40
Cattaneo (10.1016/j.medengphy.2015.05.006_bib0013) 2001; 215
Zienkiewicz (10.1016/j.medengphy.2015.05.006_bib0016) 2000
Unnikrishnan (10.1016/j.medengphy.2015.05.006_bib0010) 2011; 133
Zannoni (10.1016/j.medengphy.2015.05.006_bib0006) 1998; 20
Jacobs (10.1016/j.medengphy.2015.05.006_bib0022) 1995; 28
Taddei (10.1016/j.medengphy.2015.05.006_bib0003) 2006; 39
Chen (10.1016/j.medengphy.2015.05.006_bib0009) 2010; 43
Shim (10.1016/j.medengphy.2015.05.006_bib0011) 2014; 18
Messmer (10.1016/j.medengphy.2015.05.006_bib0005) 2007; 20
Yosibash (10.1016/j.medengphy.2015.05.006_bib0025) 2007; 129
Trabelsi (10.1016/j.medengphy.2015.05.006_bib0026) 2009; 42
Wijayathunga (10.1016/j.medengphy.2015.05.006_bib0014) 2008; 222
References_xml – volume: 28
  start-page: 449
  year: 1995
  end-page: 459
  ident: bib0022
  article-title: Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach
  publication-title: J Biomech
– volume: 20
  start-page: 735
  year: 1998
  end-page: 740
  ident: bib0006
  article-title: Material properties assignment to finite element models of bone structures: a new method
  publication-title: Med Eng Phys
– volume: 30
  start-page: 444
  year: 2008
  end-page: 453
  ident: bib0008
  article-title: A modified method for assigning material properties to FE models of bones
  publication-title: Med Eng Phys
– volume: 11
  start-page: 463
  year: 2008
  end-page: 476
  ident: bib0002
  article-title: A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 29
  start-page: 525
  year: 1996
  end-page: 535
  ident: bib0017
  article-title: Mechanical validation of whole bone composite femur models
  publication-title: J Biomech
– volume: 40
  start-page: 1575
  year: 2012
  end-page: 1585
  ident: bib0015
  article-title: Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology
  publication-title: Ann Biomed Eng
– volume: 29
  start-page: 134
  year: 2007
  end-page: 139
  ident: bib0020
  article-title: Comparison of two numerical approaches for bone remodelling
  publication-title: Med Eng Phys
– volume: 34
  start-page: 1157
  year: 2001
  end-page: 1170
  ident: bib0018
  article-title: Application of an anisotropic bone-remodelling model based on a damage–repair theory to the analysis of the proximal femur before and after total hip replacement
  publication-title: J Biomech
– volume: 129
  start-page: 297
  year: 2007
  end-page: 309
  ident: bib0025
  article-title: A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments
  publication-title: J Biomech Eng
– volume: 42
  start-page: 1460
  year: 2009
  end-page: 1468
  ident: bib0021
  article-title: Adaptive glenoid bone remodeling simulation
  publication-title: J Biomech
– volume: 222
  start-page: 221
  year: 2008
  end-page: 228
  ident: bib0014
  article-title: Development of specimen-specific finite element models of human vertebrae for the analysis of vertebroplasty
  publication-title: Proc Inst Mech Eng Part H: J Eng Med
– volume: 40
  start-page: 669
  year: 2007
  end-page: 673
  ident: bib0024
  article-title: The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies
  publication-title: J Biomech
– volume: 42
  start-page: 234
  year: 2009
  end-page: 241
  ident: bib0026
  article-title: Validation of subject-specific automated p-FE analysis of the proximal femur
  publication-title: J Biomech
– volume: 39
  start-page: 2457
  year: 2006
  end-page: 2467
  ident: bib0003
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: J Biomech
– volume: 133
  year: 2011
  ident: bib0010
  article-title: A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra
  publication-title: J Biomech Eng
– volume: 30
  start-page: 403
  year: 1997
  end-page: 407
  ident: bib0023
  article-title: Temporal stability of node-based internal bone adaptation simulations
  publication-title: J Biomech
– volume: 215
  start-page: 203
  year: 2001
  end-page: 212
  ident: bib0013
  article-title: A three-dimensional finite element model from computed tomography data: a semi-automated method
  publication-title: Proc Inst Mech Eng Part H: J Eng Med
– volume: 26
  start-page: 61
  year: 2004
  end-page: 69
  ident: bib0007
  article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models
  publication-title: Med Eng Phys
– volume: 17
  start-page: 997
  year: 2014
  end-page: 1001
  ident: bib0012
  article-title: A new cortical thickness mapping method with application to an in vivo finite element model
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 18
  start-page: 1495
  year: 2014
  end-page: 1499
  ident: bib0011
  article-title: Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 95
  start-page: 23
  year: 2009
  end-page: 30
  ident: bib0004
  article-title: A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation
  publication-title: Comput Methods Programs Biomed
– volume: 20
  start-page: 515
  year: 1998
  end-page: 522
  ident: bib0001
  article-title: Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation
  publication-title: Med Eng Phys
– volume: 8
  start-page: 662
  year: 1990
  end-page: 670
  ident: bib0019
  article-title: Approach for time-dependent bone modeling and remodeling—application. A preliminary remodeling simulation
  publication-title: J Orthop Res
– year: 2000
  ident: bib0016
  article-title: The finite element method
– volume: 20
  start-page: 17
  year: 2007
  end-page: 22
  ident: bib0005
  article-title: A CT database for research, development and education: concept and potential
  publication-title: J Digit Imaging
– volume: 43
  start-page: 1011
  year: 2010
  end-page: 1015
  ident: bib0009
  article-title: A new approach for assigning bone material properties from CT images onto finite element models
  publication-title: J Biomech
– volume: 95
  start-page: 23
  year: 2009
  ident: 10.1016/j.medengphy.2015.05.006_bib0004
  article-title: A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2009.01.004
– volume: 17
  start-page: 997
  issue: 9
  year: 2014
  ident: 10.1016/j.medengphy.2015.05.006_bib0012
  article-title: A new cortical thickness mapping method with application to an in vivo finite element model
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2012.731594
– volume: 133
  year: 2011
  ident: 10.1016/j.medengphy.2015.05.006_bib0010
  article-title: A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra
  publication-title: J Biomech Eng
  doi: 10.1115/1.4004190
– volume: 20
  start-page: 17
  year: 2007
  ident: 10.1016/j.medengphy.2015.05.006_bib0005
  article-title: A CT database for research, development and education: concept and potential
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-006-0771-9
– volume: 28
  start-page: 449
  year: 1995
  ident: 10.1016/j.medengphy.2015.05.006_bib0022
  article-title: Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)00087-K
– volume: 34
  start-page: 1157
  year: 2001
  ident: 10.1016/j.medengphy.2015.05.006_bib0018
  article-title: Application of an anisotropic bone-remodelling model based on a damage–repair theory to the analysis of the proximal femur before and after total hip replacement
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00069-0
– volume: 42
  start-page: 1460
  year: 2009
  ident: 10.1016/j.medengphy.2015.05.006_bib0021
  article-title: Adaptive glenoid bone remodeling simulation
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.04.002
– volume: 43
  start-page: 1011
  year: 2010
  ident: 10.1016/j.medengphy.2015.05.006_bib0009
  article-title: A new approach for assigning bone material properties from CT images onto finite element models
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.10.040
– volume: 20
  start-page: 515
  year: 1998
  ident: 10.1016/j.medengphy.2015.05.006_bib0001
  article-title: Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(98)00054-X
– volume: 18
  start-page: 1495
  year: 2014
  ident: 10.1016/j.medengphy.2015.05.006_bib0011
  article-title: Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2014.920831
– volume: 222
  start-page: 221
  year: 2008
  ident: 10.1016/j.medengphy.2015.05.006_bib0014
  article-title: Development of specimen-specific finite element models of human vertebrae for the analysis of vertebroplasty
  publication-title: Proc Inst Mech Eng Part H: J Eng Med
  doi: 10.1243/09544119JEIM285
– volume: 39
  start-page: 2457
  year: 2006
  ident: 10.1016/j.medengphy.2015.05.006_bib0003
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.07.018
– volume: 215
  start-page: 203
  year: 2001
  ident: 10.1016/j.medengphy.2015.05.006_bib0013
  article-title: A three-dimensional finite element model from computed tomography data: a semi-automated method
  publication-title: Proc Inst Mech Eng Part H: J Eng Med
  doi: 10.1243/0954411011533760
– volume: 8
  start-page: 662
  year: 1990
  ident: 10.1016/j.medengphy.2015.05.006_bib0019
  article-title: Approach for time-dependent bone modeling and remodeling—application. A preliminary remodeling simulation
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100080507
– volume: 29
  start-page: 134
  year: 2007
  ident: 10.1016/j.medengphy.2015.05.006_bib0020
  article-title: Comparison of two numerical approaches for bone remodelling
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2005.12.008
– volume: 26
  start-page: 61
  year: 2004
  ident: 10.1016/j.medengphy.2015.05.006_bib0007
  article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(03)00138-3
– volume: 20
  start-page: 735
  year: 1998
  ident: 10.1016/j.medengphy.2015.05.006_bib0006
  article-title: Material properties assignment to finite element models of bone structures: a new method
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(98)00081-2
– volume: 40
  start-page: 669
  year: 2007
  ident: 10.1016/j.medengphy.2015.05.006_bib0024
  article-title: The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.02.005
– volume: 129
  start-page: 297
  year: 2007
  ident: 10.1016/j.medengphy.2015.05.006_bib0025
  article-title: A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments
  publication-title: J Biomech Eng
  doi: 10.1115/1.2720906
– volume: 30
  start-page: 403
  year: 1997
  ident: 10.1016/j.medengphy.2015.05.006_bib0023
  article-title: Temporal stability of node-based internal bone adaptation simulations
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(96)00149-2
– volume: 42
  start-page: 234
  year: 2009
  ident: 10.1016/j.medengphy.2015.05.006_bib0026
  article-title: Validation of subject-specific automated p-FE analysis of the proximal femur
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.10.039
– volume: 30
  start-page: 444
  year: 2008
  ident: 10.1016/j.medengphy.2015.05.006_bib0008
  article-title: A modified method for assigning material properties to FE models of bones
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.05.006
– volume: 29
  start-page: 525
  year: 1996
  ident: 10.1016/j.medengphy.2015.05.006_bib0017
  article-title: Mechanical validation of whole bone composite femur models
  publication-title: J Biomech
  doi: 10.1016/0021-9290(95)00084-4
– year: 2000
  ident: 10.1016/j.medengphy.2015.05.006_bib0016
– volume: 40
  start-page: 1575
  year: 2012
  ident: 10.1016/j.medengphy.2015.05.006_bib0015
  article-title: Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-012-0514-7
– volume: 11
  start-page: 463
  year: 2008
  ident: 10.1016/j.medengphy.2015.05.006_bib0002
  article-title: A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255840801930728
SSID ssj0004463
Score 2.1995554
Snippet Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties...
Abstract Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 808
SubjectTerms Bone
Bone and Bones - diagnostic imaging
Bone and Bones - physiology
Computed tomography
Element-based approaches
Finite Element Analysis
Finite element models
Linear Models
Material assignment
Models, Biological
Node-based approaches
Nonlinear Dynamics
Pattern Recognition, Automated
Radiology
Software
Tomography, X-Ray Computed - methods
Title Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453315001241
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453315001241
https://dx.doi.org/10.1016/j.medengphy.2015.05.006
https://www.ncbi.nlm.nih.gov/pubmed/26054803
https://www.proquest.com/docview/1698967562
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjUMHy6NJSGYlrWDuJswm3akW1gNoLVOrN8ivVIpRdNbtXzv3ZzCR2oKKoSJVySeSJHXsy8409D4B3XguvveGJcxUaKLrSiXGlSezMS225dzNNWwOnZ8XiPP98IS92YB5jYcitMsj-XqZ30jo8mYbZnK6Xy-lXkUnEI1mGkAalLAWv76ZZJdIR7B5_-rI4-x0emXcF1ah9QgQ33LxQ5_jmEj-J3Lxkl8WTqh_drqT-BUI7ZXTyFPYCimTH_UCfwY5vxvBoHou3jeHJH3kGx_DwNJygP4fr-VB4sGWrmjUr5xNSZY7pxjHfe5PHJyHhuO-aIsxeXtI2CjOrxjOEuh33sjXt519RYlZGyRBYuzW0uZNQECc5IrF6ScA2vpt1xXfaF3B-8vHbfJGEagyJlTLdJKm0aKuVhXC1sGh75rZAKCJcKaUtq5ktfO1I19laWs6dtabkmrvcc-0L6Vz2EkYNDm8fmHeV1qKs80wjoBGVrhyKEmONKVKCkBMo4vQrG1KVU8WMHyr6pH1Xw7opWjfF8eLFBPhAuO6zddxNUsb1VTEYFcWnQo1yN-nsNlLfBjHQKqHaVHH1F6tO4MNAeYPb_6_bt5ENFXIVHfDoxq-22B1VA0ULsEgn8Krnz2EayG7NS569vk_XB_CY7noHyEMYba62_g2Cso05ggfvf4qj8Ov9AhPWOsA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CA017KK37cpu0W-hVePVYedVbMAlOE_vSBHJb9qXgUGQT2f8hPzsz0kptaEoKAV202tFKu6OZb1bzAPjmdey1NzxyrkADRRc6Mk6ayE680JZ7N9G0NTBf5LOL7MeluNyBaRcLQ26VQfa3Mr2R1qFlHGZzvF4uxz_jVCAeSVOENChlKXh9F08LOYDdw5PT2eJ3eGTWFFSj_hER3HPzQp3jqyt8JXLzEk0WT6p-9LCS-hcIbZTR8St4GVAkO2wf9DXs-GoIe9OueNsQXvyRZ3AIz-bhD_obuJ32hQdrtipZtXI-IlXmmK4c8603edcSEo77pivC7OUVbaMws6o8Q6jbcC9b037-DSVmZZQMgdVbQ5s7EQVxkiMSK5cEbLt7s6b4Tv0WLo6PzqezKFRjiKwQySZKhEVbTeaxK2OLtmdmc4QisZNCWFlMbO5LR7rOlsJy7qw1kmvuMs-1z4Vz6TsYVPh4H4B5V2gdyzJLNQKauNCFQ1FirDF5QhByBHk3_cqGVOVUMeOX6nzSrlW_borWTXE8eD4C3hOu22wdj5PIbn1VF4yK4lOhRnmcdPIQqa-DGKhVrOpEcfUXq47ge095j9v_b9ivHRsq5Cr6waMrv9ricFQNFC3APBnB-5Y_-2kguzWTPP34lKG_wN7sfH6mzk4Wp5_gOV1pnSH3YbC52foDBGgb8zl8gHe3rjy4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+node-based+and+element-based+approaches+of+assigning+bone+material+properties+onto+subject-specific+finite+element+models&rft.jtitle=Medical+engineering+%26+physics&rft.au=Chen%2C+G&rft.au=Wu%2C+F+Y&rft.au=Liu%2C+Z+C&rft.au=Yang%2C+K&rft.date=2015-08-01&rft.eissn=1873-4030&rft.volume=37&rft.issue=8&rft.spage=808&rft_id=info:doi/10.1016%2Fj.medengphy.2015.05.006&rft_id=info%3Apmid%2F26054803&rft.externalDocID=26054803
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453315X00087%2Fcov150h.gif