Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares...
Saved in:
Published in | Medical engineering & physics Vol. 37; no. 8; pp. 808 - 812 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2015.05.006 |
Cover
Abstract | Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.
•Develops a node-based approach that assigns bone material properties onto subject-specific finite element models.•It is the simplest and most powerful assignment approach, which completely avoids complex programming.•It is applicable to many types of analyses and elements; it has been tested on both linear and non-linear analyses and different types of elements.•Its accuracy has been verified by comparing with the element-based approach in the literature. |
---|---|
AbstractList | Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.
•Develops a node-based approach that assigns bone material properties onto subject-specific finite element models.•It is the simplest and most powerful assignment approach, which completely avoids complex programming.•It is applicable to many types of analyses and elements; it has been tested on both linear and non-linear analyses and different types of elements.•Its accuracy has been verified by comparing with the element-based approach in the literature. Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements.Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Abstract Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. |
Author | Yang, K. Chen, G. Liu, Z.C. Wu, F.Y. Cui, F. |
Author_xml | – sequence: 1 givenname: G. surname: Chen fullname: Chen, G. email: gongfa.chen@gdut.edu.cn organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 2 givenname: F.Y. surname: Wu fullname: Wu, F.Y. organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 3 givenname: Z.C. surname: Liu fullname: Liu, Z.C. organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 4 givenname: K. surname: Yang fullname: Yang, K. organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 5 givenname: F. surname: Cui fullname: Cui, F. organization: Institute of High Performance Computing, ASTAR, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26054803$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsuO1DAQjNAi9gG_ADlyydBObCc5AFqNeEkrcQDOltPuzDokdrAzSPMHfDYOs8NhJcRKLdmyqqrbVX2ZnTnvKMteMNgwYPLVsJnIkNvNt4dNCUxsIBXIR9kFa-qq4FDBWbpXAgouquo8u4xxAADOZfUkOy8lCN5AdZH92vpp1sFG72Lu-9x5Q0WnI5lcO5PTSBO55fQyz8FrvKU_UB2j3TnrdnmXhssnvVCweswTZqaw2BXlFp_HfTcQLkWcCW1vMe-tswudtPMptRzj0-xxr8dIz-7Oq-zb-3dftx-Lm88fPm2vbwoUolyKUmBb8kYy0zNs64ajFIIz0wiBTVujpN6UDa-xFwhgELsGNBhOoEkKY6qr7OVRN435Y09xUZONSOOoHfl9VEy2TStrIcsEfX4H3XfJbjUHO-lwUCf3EuD1EYDBxxioV2gXvdj07aDtqBioNS01qL9pqTUtBalAJn59j39q8X_m9ZGZnKOfloKKaMkhGRuS18p4-wCNN_c0cEzJoB6_04Hi4PfBpSQUU7FUoL6s27QuExMArOQsCbz9t8CDRvgNbwbh2w |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105319 crossref_primary_10_1002_jbm4_10349 crossref_primary_10_1080_10255842_2019_1615481 crossref_primary_10_1016_j_matpr_2022_01_222 crossref_primary_10_1016_j_medengphy_2021_07_012 crossref_primary_10_3390_ma13010106 crossref_primary_10_1016_j_heliyon_2024_e40668 crossref_primary_10_1016_j_jmbbm_2023_106299 crossref_primary_10_1115_1_4047991 crossref_primary_10_1080_10255842_2017_1291805 crossref_primary_10_1016_j_procir_2020_05_142 crossref_primary_10_1080_10255842_2019_1661386 crossref_primary_10_1186_s41747_020_00172_3 crossref_primary_10_1016_j_clinbiomech_2022_105704 crossref_primary_10_1016_j_jmbbm_2019_03_009 crossref_primary_10_1080_10255842_2020_1789863 |
Cites_doi | 10.1016/j.cmpb.2009.01.004 10.1080/10255842.2012.731594 10.1115/1.4004190 10.1007/s10278-006-0771-9 10.1016/0021-9290(94)00087-K 10.1016/S0021-9290(01)00069-0 10.1016/j.jbiomech.2009.04.002 10.1016/j.jbiomech.2009.10.040 10.1016/S1350-4533(98)00054-X 10.1080/10255842.2014.920831 10.1243/09544119JEIM285 10.1016/j.jbiomech.2005.07.018 10.1243/0954411011533760 10.1002/jor.1100080507 10.1016/j.medengphy.2005.12.008 10.1016/S1350-4533(03)00138-3 10.1016/S1350-4533(98)00081-2 10.1016/j.jbiomech.2006.02.005 10.1115/1.2720906 10.1016/S0021-9290(96)00149-2 10.1016/j.jbiomech.2008.10.039 10.1016/j.medengphy.2007.05.006 10.1016/0021-9290(95)00084-4 10.1007/s10439-012-0514-7 10.1080/10255840801930728 |
ContentType | Journal Article |
Copyright | 2015 IPEM IPEM Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 IPEM – notice: IPEM – notice: Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medengphy.2015.05.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 812 |
ExternalDocumentID | 26054803 10_1016_j_medengphy_2015_05_006 S1350453315001241 1_s2_0_S1350453315001241 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX ACLOT CITATION ~HD CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c552t-25c924861df1c9784c65541d855c897c6efd2847cf5c00dccb80a0d4e0ae65dd3 |
IEDL.DBID | AIKHN |
ISSN | 1350-4533 1873-4030 |
IngestDate | Wed Oct 01 17:26:16 EDT 2025 Thu Apr 03 07:07:59 EDT 2025 Wed Oct 01 05:03:26 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Fri Feb 23 02:29:18 EST 2024 Sun Feb 23 10:19:58 EST 2025 Tue Aug 26 16:31:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Finite element models Element-based approaches Bone Node-based approaches Computed tomography Material assignment |
Language | English |
License | Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-25c924861df1c9784c65541d855c897c6efd2847cf5c00dccb80a0d4e0ae65dd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 26054803 |
PQID | 1698967562 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1698967562 pubmed_primary_26054803 crossref_citationtrail_10_1016_j_medengphy_2015_05_006 crossref_primary_10_1016_j_medengphy_2015_05_006 elsevier_sciencedirect_doi_10_1016_j_medengphy_2015_05_006 elsevier_clinicalkeyesjournals_1_s2_0_S1350453315001241 elsevier_clinicalkey_doi_10_1016_j_medengphy_2015_05_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Beaupre, Orr, Carter (bib0019) 1990; 8 Cristofolini, Viceconti, Cappello, Toni (bib0017) 1996; 29 Unnikrishnan, Morgan (bib0010) 2011; 133 Kim, Kim, Eberhardt (bib0012) 2014; 17 Chen, Pettet, Pearcy, McElwain (bib0020) 2007; 29 Yosibash, Padan, Joskowicz, Milgrom (bib0025) 2007; 129 Sharma, Debski, McMahon, Robertson (bib0021) 2009; 42 Shim, Battley, Anderson, Munro (bib0011) 2014; 18 Jacobs, Levenston, Beaupre, Simo, Carter (bib0022) 1995; 28 Levenston (bib0023) 1997; 30 Lengsfeld, Schmitt, Alter, Kaminsky, Leppek (bib0001) 1998; 20 Cattaneo, Dalstra, Frich (bib0013) 2001; 215 Gong, Zhang, Fan, Kwok, Leung (bib0015) 2012; 40 Wilcox (bib0024) 2007; 40 Zannoni, Mantovani, Viceconti (bib0006) 1998; 20 Wijayathunga, Jones, Oakland, Furtado, Hall, Wilcox (bib0014) 2008; 222 Taddei, Cristofolini, Martelli, Gill, Viceconti (bib0003) 2006; 39 Trabelsi, Yosibash, Milgrom (bib0026) 2009; 42 Chen, Schmutz, Epari, Rathnayaka, Ibrahim, Schuetz (bib0009) 2010; 43 Zienkiewicz, Taylor (bib0016) 2000 Messmer, Matthews, Jacob, Kikinis, Regazzoni, Noser (bib0005) 2007; 20 Kluess, Souffrant, Mittelmeier, Wree, Schmitz, Bader (bib0004) 2009; 95 Helgason, Taddei, Pálsson, Schileo, Cristofolini, Viceconti (bib0008) 2008; 30 Taddei, Pancanti, Viceconti (bib0007) 2004; 26 Kourtis, Carter, Kesari, Beaupre (bib0002) 2008; 11 Doblare, Garcia (bib0018) 2001; 34 Sharma (10.1016/j.medengphy.2015.05.006_bib0021) 2009; 42 Kluess (10.1016/j.medengphy.2015.05.006_bib0004) 2009; 95 Levenston (10.1016/j.medengphy.2015.05.006_bib0023) 1997; 30 Gong (10.1016/j.medengphy.2015.05.006_bib0015) 2012; 40 Helgason (10.1016/j.medengphy.2015.05.006_bib0008) 2008; 30 Taddei (10.1016/j.medengphy.2015.05.006_bib0007) 2004; 26 Beaupre (10.1016/j.medengphy.2015.05.006_bib0019) 1990; 8 Kim (10.1016/j.medengphy.2015.05.006_bib0012) 2014; 17 Lengsfeld (10.1016/j.medengphy.2015.05.006_bib0001) 1998; 20 Doblare (10.1016/j.medengphy.2015.05.006_bib0018) 2001; 34 Chen (10.1016/j.medengphy.2015.05.006_bib0020) 2007; 29 Cristofolini (10.1016/j.medengphy.2015.05.006_bib0017) 1996; 29 Kourtis (10.1016/j.medengphy.2015.05.006_bib0002) 2008; 11 Wilcox (10.1016/j.medengphy.2015.05.006_bib0024) 2007; 40 Cattaneo (10.1016/j.medengphy.2015.05.006_bib0013) 2001; 215 Zienkiewicz (10.1016/j.medengphy.2015.05.006_bib0016) 2000 Unnikrishnan (10.1016/j.medengphy.2015.05.006_bib0010) 2011; 133 Zannoni (10.1016/j.medengphy.2015.05.006_bib0006) 1998; 20 Jacobs (10.1016/j.medengphy.2015.05.006_bib0022) 1995; 28 Taddei (10.1016/j.medengphy.2015.05.006_bib0003) 2006; 39 Chen (10.1016/j.medengphy.2015.05.006_bib0009) 2010; 43 Shim (10.1016/j.medengphy.2015.05.006_bib0011) 2014; 18 Messmer (10.1016/j.medengphy.2015.05.006_bib0005) 2007; 20 Yosibash (10.1016/j.medengphy.2015.05.006_bib0025) 2007; 129 Trabelsi (10.1016/j.medengphy.2015.05.006_bib0026) 2009; 42 Wijayathunga (10.1016/j.medengphy.2015.05.006_bib0014) 2008; 222 |
References_xml | – volume: 28 start-page: 449 year: 1995 end-page: 459 ident: bib0022 article-title: Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach publication-title: J Biomech – volume: 20 start-page: 735 year: 1998 end-page: 740 ident: bib0006 article-title: Material properties assignment to finite element models of bone structures: a new method publication-title: Med Eng Phys – volume: 30 start-page: 444 year: 2008 end-page: 453 ident: bib0008 article-title: A modified method for assigning material properties to FE models of bones publication-title: Med Eng Phys – volume: 11 start-page: 463 year: 2008 end-page: 476 ident: bib0002 article-title: A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties publication-title: Comput Methods Biomech Biomed Eng – volume: 29 start-page: 525 year: 1996 end-page: 535 ident: bib0017 article-title: Mechanical validation of whole bone composite femur models publication-title: J Biomech – volume: 40 start-page: 1575 year: 2012 end-page: 1585 ident: bib0015 article-title: Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology publication-title: Ann Biomed Eng – volume: 29 start-page: 134 year: 2007 end-page: 139 ident: bib0020 article-title: Comparison of two numerical approaches for bone remodelling publication-title: Med Eng Phys – volume: 34 start-page: 1157 year: 2001 end-page: 1170 ident: bib0018 article-title: Application of an anisotropic bone-remodelling model based on a damage–repair theory to the analysis of the proximal femur before and after total hip replacement publication-title: J Biomech – volume: 129 start-page: 297 year: 2007 end-page: 309 ident: bib0025 article-title: A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments publication-title: J Biomech Eng – volume: 42 start-page: 1460 year: 2009 end-page: 1468 ident: bib0021 article-title: Adaptive glenoid bone remodeling simulation publication-title: J Biomech – volume: 222 start-page: 221 year: 2008 end-page: 228 ident: bib0014 article-title: Development of specimen-specific finite element models of human vertebrae for the analysis of vertebroplasty publication-title: Proc Inst Mech Eng Part H: J Eng Med – volume: 40 start-page: 669 year: 2007 end-page: 673 ident: bib0024 article-title: The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies publication-title: J Biomech – volume: 42 start-page: 234 year: 2009 end-page: 241 ident: bib0026 article-title: Validation of subject-specific automated p-FE analysis of the proximal femur publication-title: J Biomech – volume: 39 start-page: 2457 year: 2006 end-page: 2467 ident: bib0003 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: J Biomech – volume: 133 year: 2011 ident: bib0010 article-title: A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra publication-title: J Biomech Eng – volume: 30 start-page: 403 year: 1997 end-page: 407 ident: bib0023 article-title: Temporal stability of node-based internal bone adaptation simulations publication-title: J Biomech – volume: 215 start-page: 203 year: 2001 end-page: 212 ident: bib0013 article-title: A three-dimensional finite element model from computed tomography data: a semi-automated method publication-title: Proc Inst Mech Eng Part H: J Eng Med – volume: 26 start-page: 61 year: 2004 end-page: 69 ident: bib0007 article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models publication-title: Med Eng Phys – volume: 17 start-page: 997 year: 2014 end-page: 1001 ident: bib0012 article-title: A new cortical thickness mapping method with application to an in vivo finite element model publication-title: Comput Methods Biomech Biomed Eng – volume: 18 start-page: 1495 year: 2014 end-page: 1499 ident: bib0011 article-title: Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone publication-title: Comput Methods Biomech Biomed Eng – volume: 95 start-page: 23 year: 2009 end-page: 30 ident: bib0004 article-title: A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation publication-title: Comput Methods Programs Biomed – volume: 20 start-page: 515 year: 1998 end-page: 522 ident: bib0001 article-title: Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation publication-title: Med Eng Phys – volume: 8 start-page: 662 year: 1990 end-page: 670 ident: bib0019 article-title: Approach for time-dependent bone modeling and remodeling—application. A preliminary remodeling simulation publication-title: J Orthop Res – year: 2000 ident: bib0016 article-title: The finite element method – volume: 20 start-page: 17 year: 2007 end-page: 22 ident: bib0005 article-title: A CT database for research, development and education: concept and potential publication-title: J Digit Imaging – volume: 43 start-page: 1011 year: 2010 end-page: 1015 ident: bib0009 article-title: A new approach for assigning bone material properties from CT images onto finite element models publication-title: J Biomech – volume: 95 start-page: 23 year: 2009 ident: 10.1016/j.medengphy.2015.05.006_bib0004 article-title: A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2009.01.004 – volume: 17 start-page: 997 issue: 9 year: 2014 ident: 10.1016/j.medengphy.2015.05.006_bib0012 article-title: A new cortical thickness mapping method with application to an in vivo finite element model publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2012.731594 – volume: 133 year: 2011 ident: 10.1016/j.medengphy.2015.05.006_bib0010 article-title: A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra publication-title: J Biomech Eng doi: 10.1115/1.4004190 – volume: 20 start-page: 17 year: 2007 ident: 10.1016/j.medengphy.2015.05.006_bib0005 article-title: A CT database for research, development and education: concept and potential publication-title: J Digit Imaging doi: 10.1007/s10278-006-0771-9 – volume: 28 start-page: 449 year: 1995 ident: 10.1016/j.medengphy.2015.05.006_bib0022 article-title: Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach publication-title: J Biomech doi: 10.1016/0021-9290(94)00087-K – volume: 34 start-page: 1157 year: 2001 ident: 10.1016/j.medengphy.2015.05.006_bib0018 article-title: Application of an anisotropic bone-remodelling model based on a damage–repair theory to the analysis of the proximal femur before and after total hip replacement publication-title: J Biomech doi: 10.1016/S0021-9290(01)00069-0 – volume: 42 start-page: 1460 year: 2009 ident: 10.1016/j.medengphy.2015.05.006_bib0021 article-title: Adaptive glenoid bone remodeling simulation publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.04.002 – volume: 43 start-page: 1011 year: 2010 ident: 10.1016/j.medengphy.2015.05.006_bib0009 article-title: A new approach for assigning bone material properties from CT images onto finite element models publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.10.040 – volume: 20 start-page: 515 year: 1998 ident: 10.1016/j.medengphy.2015.05.006_bib0001 article-title: Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation publication-title: Med Eng Phys doi: 10.1016/S1350-4533(98)00054-X – volume: 18 start-page: 1495 year: 2014 ident: 10.1016/j.medengphy.2015.05.006_bib0011 article-title: Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2014.920831 – volume: 222 start-page: 221 year: 2008 ident: 10.1016/j.medengphy.2015.05.006_bib0014 article-title: Development of specimen-specific finite element models of human vertebrae for the analysis of vertebroplasty publication-title: Proc Inst Mech Eng Part H: J Eng Med doi: 10.1243/09544119JEIM285 – volume: 39 start-page: 2457 year: 2006 ident: 10.1016/j.medengphy.2015.05.006_bib0003 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.07.018 – volume: 215 start-page: 203 year: 2001 ident: 10.1016/j.medengphy.2015.05.006_bib0013 article-title: A three-dimensional finite element model from computed tomography data: a semi-automated method publication-title: Proc Inst Mech Eng Part H: J Eng Med doi: 10.1243/0954411011533760 – volume: 8 start-page: 662 year: 1990 ident: 10.1016/j.medengphy.2015.05.006_bib0019 article-title: Approach for time-dependent bone modeling and remodeling—application. A preliminary remodeling simulation publication-title: J Orthop Res doi: 10.1002/jor.1100080507 – volume: 29 start-page: 134 year: 2007 ident: 10.1016/j.medengphy.2015.05.006_bib0020 article-title: Comparison of two numerical approaches for bone remodelling publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2005.12.008 – volume: 26 start-page: 61 year: 2004 ident: 10.1016/j.medengphy.2015.05.006_bib0007 article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models publication-title: Med Eng Phys doi: 10.1016/S1350-4533(03)00138-3 – volume: 20 start-page: 735 year: 1998 ident: 10.1016/j.medengphy.2015.05.006_bib0006 article-title: Material properties assignment to finite element models of bone structures: a new method publication-title: Med Eng Phys doi: 10.1016/S1350-4533(98)00081-2 – volume: 40 start-page: 669 year: 2007 ident: 10.1016/j.medengphy.2015.05.006_bib0024 article-title: The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.02.005 – volume: 129 start-page: 297 year: 2007 ident: 10.1016/j.medengphy.2015.05.006_bib0025 article-title: A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments publication-title: J Biomech Eng doi: 10.1115/1.2720906 – volume: 30 start-page: 403 year: 1997 ident: 10.1016/j.medengphy.2015.05.006_bib0023 article-title: Temporal stability of node-based internal bone adaptation simulations publication-title: J Biomech doi: 10.1016/S0021-9290(96)00149-2 – volume: 42 start-page: 234 year: 2009 ident: 10.1016/j.medengphy.2015.05.006_bib0026 article-title: Validation of subject-specific automated p-FE analysis of the proximal femur publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.10.039 – volume: 30 start-page: 444 year: 2008 ident: 10.1016/j.medengphy.2015.05.006_bib0008 article-title: A modified method for assigning material properties to FE models of bones publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.05.006 – volume: 29 start-page: 525 year: 1996 ident: 10.1016/j.medengphy.2015.05.006_bib0017 article-title: Mechanical validation of whole bone composite femur models publication-title: J Biomech doi: 10.1016/0021-9290(95)00084-4 – year: 2000 ident: 10.1016/j.medengphy.2015.05.006_bib0016 – volume: 40 start-page: 1575 year: 2012 ident: 10.1016/j.medengphy.2015.05.006_bib0015 article-title: Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology publication-title: Ann Biomed Eng doi: 10.1007/s10439-012-0514-7 – volume: 11 start-page: 463 year: 2008 ident: 10.1016/j.medengphy.2015.05.006_bib0002 article-title: A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255840801930728 |
SSID | ssj0004463 |
Score | 2.1995554 |
Snippet | Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties... Abstract Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 808 |
SubjectTerms | Bone Bone and Bones - diagnostic imaging Bone and Bones - physiology Computed tomography Element-based approaches Finite Element Analysis Finite element models Linear Models Material assignment Models, Biological Node-based approaches Nonlinear Dynamics Pattern Recognition, Automated Radiology Software Tomography, X-Ray Computed - methods |
Title | Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453315001241 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453315001241 https://dx.doi.org/10.1016/j.medengphy.2015.05.006 https://www.ncbi.nlm.nih.gov/pubmed/26054803 https://www.proquest.com/docview/1698967562 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjUMHy6NJSGYlrWDuJswm3akW1gNoLVOrN8ivVIpRdNbtXzv3ZzCR2oKKoSJVySeSJHXsy8409D4B3XguvveGJcxUaKLrSiXGlSezMS225dzNNWwOnZ8XiPP98IS92YB5jYcitMsj-XqZ30jo8mYbZnK6Xy-lXkUnEI1mGkAalLAWv76ZZJdIR7B5_-rI4-x0emXcF1ah9QgQ33LxQ5_jmEj-J3Lxkl8WTqh_drqT-BUI7ZXTyFPYCimTH_UCfwY5vxvBoHou3jeHJH3kGx_DwNJygP4fr-VB4sGWrmjUr5xNSZY7pxjHfe5PHJyHhuO-aIsxeXtI2CjOrxjOEuh33sjXt519RYlZGyRBYuzW0uZNQECc5IrF6ScA2vpt1xXfaF3B-8vHbfJGEagyJlTLdJKm0aKuVhXC1sGh75rZAKCJcKaUtq5ktfO1I19laWs6dtabkmrvcc-0L6Vz2EkYNDm8fmHeV1qKs80wjoBGVrhyKEmONKVKCkBMo4vQrG1KVU8WMHyr6pH1Xw7opWjfF8eLFBPhAuO6zddxNUsb1VTEYFcWnQo1yN-nsNlLfBjHQKqHaVHH1F6tO4MNAeYPb_6_bt5ENFXIVHfDoxq-22B1VA0ULsEgn8Krnz2EayG7NS569vk_XB_CY7noHyEMYba62_g2Cso05ggfvf4qj8Ov9AhPWOsA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CA017KK37cpu0W-hVePVYedVbMAlOE_vSBHJb9qXgUGQT2f8hPzsz0kptaEoKAV202tFKu6OZb1bzAPjmdey1NzxyrkADRRc6Mk6ayE680JZ7N9G0NTBf5LOL7MeluNyBaRcLQ26VQfa3Mr2R1qFlHGZzvF4uxz_jVCAeSVOENChlKXh9F08LOYDdw5PT2eJ3eGTWFFSj_hER3HPzQp3jqyt8JXLzEk0WT6p-9LCS-hcIbZTR8St4GVAkO2wf9DXs-GoIe9OueNsQXvyRZ3AIz-bhD_obuJ32hQdrtipZtXI-IlXmmK4c8603edcSEo77pivC7OUVbaMws6o8Q6jbcC9b037-DSVmZZQMgdVbQ5s7EQVxkiMSK5cEbLt7s6b4Tv0WLo6PzqezKFRjiKwQySZKhEVbTeaxK2OLtmdmc4QisZNCWFlMbO5LR7rOlsJy7qw1kmvuMs-1z4Vz6TsYVPh4H4B5V2gdyzJLNQKauNCFQ1FirDF5QhByBHk3_cqGVOVUMeOX6nzSrlW_borWTXE8eD4C3hOu22wdj5PIbn1VF4yK4lOhRnmcdPIQqa-DGKhVrOpEcfUXq47ge095j9v_b9ivHRsq5Cr6waMrv9ricFQNFC3APBnB-5Y_-2kguzWTPP34lKG_wN7sfH6mzk4Wp5_gOV1pnSH3YbC52foDBGgb8zl8gHe3rjy4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+node-based+and+element-based+approaches+of+assigning+bone+material+properties+onto+subject-specific+finite+element+models&rft.jtitle=Medical+engineering+%26+physics&rft.au=Chen%2C+G&rft.au=Wu%2C+F+Y&rft.au=Liu%2C+Z+C&rft.au=Yang%2C+K&rft.date=2015-08-01&rft.eissn=1873-4030&rft.volume=37&rft.issue=8&rft.spage=808&rft_id=info:doi/10.1016%2Fj.medengphy.2015.05.006&rft_id=info%3Apmid%2F26054803&rft.externalDocID=26054803 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453315X00087%2Fcov150h.gif |