Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex

The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α 2 β 2 heterote...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 23; no. 14; pp. 2745 - 2754
Main Authors Ishikawa, Momoyo, Tsuchiya, Daisuke, Oyama, Takuji, Tsunaka, Yasuo, Morikawa, Kosuke
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 21.07.2004
Nature Publishing Group UK
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
DOI10.1038/sj.emboj.7600298

Cover

Abstract The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α 2 β 2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2‐enoyl‐CoA hydratase (ECH), L ‐3‐hydroxyacyl‐CoA dehydrogenase (HACD) and 3‐ketoacyl‐CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3′‐phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3′‐phosphate ADP bring the reactive C2–C3 bond to the correct position for cleavage. The α‐helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other β‐oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
AbstractList The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α 2 β 2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2‐enoyl‐CoA hydratase (ECH), L ‐3‐hydroxyacyl‐CoA dehydrogenase (HACD) and 3‐ketoacyl‐CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3′‐phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3′‐phosphate ADP bring the reactive C2–C3 bond to the correct position for cleavage. The α‐helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other β‐oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta -oxidation cycle. The alpha sub(2) beta sub(2) heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), -3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'- phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha -helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta - oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α2β2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2‐enoyl‐CoA hydratase (ECH), L‐3‐hydroxyacyl‐CoA dehydrogenase (HACD) and 3‐ketoacyl‐CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3′‐phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3′‐phosphate ADP bring the reactive C2–C3 bond to the correct position for cleavage. The α‐helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other β‐oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
Author Ishikawa, Momoyo
Oyama, Takuji
Tsunaka, Yasuo
Morikawa, Kosuke
Tsuchiya, Daisuke
Author_xml – sequence: 1
  givenname: Momoyo
  surname: Ishikawa
  fullname: Ishikawa, Momoyo
  organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan
– sequence: 2
  givenname: Daisuke
  surname: Tsuchiya
  fullname: Tsuchiya, Daisuke
  organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan
– sequence: 3
  givenname: Takuji
  surname: Oyama
  fullname: Oyama, Takuji
  organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan
– sequence: 4
  givenname: Yasuo
  surname: Tsunaka
  fullname: Tsunaka, Yasuo
  organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan
– sequence: 5
  givenname: Kosuke
  surname: Morikawa
  fullname: Morikawa, Kosuke
  email: morikawa@beri.or.jp
  organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15229654$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFPSvkFbsMthPfFiygKr0wwIKiSrCwnORk6iGxBzuBGR6LB-GZSDvDcJGgK-vI_3fOf85_gPZ88IDQQ0qmlOTqSVpMoSvDYioFIUyrO2hCC0EyRiTfQxPCBM0KqvQ-OkhpQQjhStJ7aJ9yxrTgxQR9eNvHoeqHaFtc2uQSbkLE1ZX1HtrW-Tnu4LpyqcOhwRY3tu_X2Fauxt-_ZWHlatu74HE3tL0D_3XdAa5Ct2xhdR_dbWyb4MH2PUTvXhxfHJ1mszcnZ0fPZlnFOVOZYkWZy6LRoLXKS9YwkKTRnGlZK0qgLinUTSWlFqopSaGELXImcwG2LGvN80P0dNN3OZQd1BX4flzHLKPrbFybYJ3588e7KzMPnw2nheZi5B9v-Rg-DZB607lUjetbD2FIRgjJRJ7LW4VUKjaeWI3CR7872ln5efdRIDaCKoaUIjSmcv3NIUeDrjWUmOuATVqYm4DNNuARJH-Bu97_RvQG-eJaWN-qN8evnp__YumGTSPm5xDNIgzRj2n-b162YVzqYbWbZ-NHI2Quubl8fWLohXz5_vySmln-AzjW34A
CitedBy_id crossref_primary_10_1002_bies_202200056
crossref_primary_10_1073_pnas_2002250117
crossref_primary_10_1111_j_1365_313X_2008_03431_x
crossref_primary_10_1038_s41589_018_0153_x
crossref_primary_10_1042_BCJ20190314
crossref_primary_10_1016_j_jmb_2005_01_018
crossref_primary_10_1128_AEM_03909_15
crossref_primary_10_1038_s41467_018_04543_8
crossref_primary_10_1021_acsbiomaterials_8b00279
crossref_primary_10_1074_jbc_M110_106013
crossref_primary_10_1021_cb400007k
crossref_primary_10_1007_s00253_018_9073_7
crossref_primary_10_1248_bpb_32_1997
crossref_primary_10_3389_fbioe_2015_00191
crossref_primary_10_1371_journal_pcbi_1006401
crossref_primary_10_1107_S2059798318017242
crossref_primary_10_1016_j_ijbiomac_2024_129365
crossref_primary_10_1016_j_chembiol_2015_10_009
crossref_primary_10_1073_pnas_1718649115
crossref_primary_10_1002_prot_25054
crossref_primary_10_1021_acs_jafc_1c00158
crossref_primary_10_1021_acs_jpcc_8b01922
crossref_primary_10_1126_science_1138248
crossref_primary_10_1038_s41467_024_53118_3
crossref_primary_10_1016_j_fm_2020_103494
crossref_primary_10_1074_jbc_M110_106005
crossref_primary_10_1016_j_tube_2014_03_003
crossref_primary_10_1093_jimb_kuae027
crossref_primary_10_1074_jbc_M109_053975
crossref_primary_10_1074_jbc_M114_625483
crossref_primary_10_3390_pathogens12091171
crossref_primary_10_1007_s00253_015_6392_9
crossref_primary_10_1016_j_str_2023_04_011
crossref_primary_10_1371_journal_pcbi_1005461
crossref_primary_10_1016_j_abb_2017_02_001
crossref_primary_10_1038_s41598_019_42206_w
crossref_primary_10_1074_jbc_M703921200
crossref_primary_10_3390_en11102663
crossref_primary_10_1016_j_biotechadv_2017_06_004
crossref_primary_10_1038_nchem_2459
crossref_primary_10_1074_jbc_M110_139493
crossref_primary_10_1016_j_mib_2023_102402
crossref_primary_10_1002_ajmg_a_36434
crossref_primary_10_1016_j_copbio_2008_07_006
crossref_primary_10_1016_j_jsb_2021_107776
crossref_primary_10_1021_bi100742w
crossref_primary_10_1016_j_procbio_2014_03_016
crossref_primary_10_1021_bi901069h
crossref_primary_10_1016_j_ymben_2019_04_010
crossref_primary_10_1016_j_jsb_2020_107494
crossref_primary_10_1016_j_bbrc_2008_09_078
crossref_primary_10_1038_s41467_019_11931_1
crossref_primary_10_3390_biology4020424
crossref_primary_10_1016_j_abb_2022_109391
crossref_primary_10_1074_jbc_M110_117606
crossref_primary_10_1016_j_ymben_2016_12_012
crossref_primary_10_3389_fcimb_2023_1095060
crossref_primary_10_1042_BJ20130669
crossref_primary_10_1016_j_str_2005_10_011
crossref_primary_10_1042_BJ20101661
crossref_primary_10_1039_C1SM06452E
crossref_primary_10_1016_j_ijpara_2011_07_009
crossref_primary_10_1111_febs_12150
crossref_primary_10_1016_j_jbc_2024_107647
crossref_primary_10_3390_biom12081019
crossref_primary_10_1016_j_biotechadv_2011_05_020
crossref_primary_10_1074_jbc_M112_388231
crossref_primary_10_1146_annurev_biochem_052521_033746
crossref_primary_10_1038_s42003_019_0631_z
crossref_primary_10_1007_s00253_021_11121_4
crossref_primary_10_1016_j_jmb_2006_03_032
crossref_primary_10_1073_pnas_1816317116
crossref_primary_10_1016_j_jmb_2005_10_085
crossref_primary_10_1016_j_sbi_2005_10_010
crossref_primary_10_1021_pr801059u
crossref_primary_10_1038_s41467_024_49646_7
crossref_primary_10_1016_j_bbamcr_2006_08_034
crossref_primary_10_1038_s41467_025_57532_z
crossref_primary_10_3389_fphys_2014_00282
crossref_primary_10_1073_pnas_1801252115
crossref_primary_10_1107_S2059798324006557
crossref_primary_10_1371_journal_pcbi_1003186
crossref_primary_10_3389_fenrg_2022_896668
crossref_primary_10_3390_ijms11093540
crossref_primary_10_1016_j_ijbiomac_2015_10_054
crossref_primary_10_1038_s42255_020_00285_4
crossref_primary_10_1016_j_synbio_2023_09_005
Cites_doi 10.1073/pnas.012589499
10.1016/S1388-1981(99)00027-X
10.1172/JCI2091
10.1021/bi9829027
10.1042/bj1500077
10.1016/S0021-9258(19)61496-1
10.1006/jmbi.1997.1331
10.1016/0163-7827(95)00011-9
10.1016/S0969-2126(94)00081-6
10.1093/emboj/cdf574
10.1021/bi015844p
10.1016/S0076-6879(97)77028-9
10.1107/S0108767393007597
10.1042/bst0280177
10.1016/0006-291X(92)90501-B
10.1006/jmbi.1998.2439
10.1128/jb.172.11.6459-6468.1990
10.1093/oxfordjournals.jbchem.a123023
10.1093/nar/22.22.4673
10.1042/0300-5127:0290279
10.1016/S0969-2126(00)80061-1
10.1096/fasebj.8.15.8001737
10.1093/oxfordjournals.jbchem.a123722
10.1110/ps.8.10.2010
10.1074/jbc.M104839200
10.1074/jbc.271.30.17816
10.1107/S0907444998003254
10.1042/bj3280815
10.1016/S0962-8924(98)01382-8
10.1002/j.1460-2075.1996.tb00897.x
10.1093/nar/18.16.4937
10.1006/jmbi.1997.1491
10.1073/pnas.74.2.492
10.1107/S0021889891004399
10.1006/jmbi.2000.3638
10.1002/prot.340110407
10.1016/S0021-9258(18)48391-3
10.1016/S0959-440X(02)00390-1
10.1016/S0076-6879(97)76073-7
10.1021/bi00241a023
ContentType Journal Article
Copyright European Molecular Biology Organization 2004
Copyright © 2004 European Molecular Biology Organization
Copyright © 2004, European Molecular Biology Organization 2004
Copyright_xml – notice: European Molecular Biology Organization 2004
– notice: Copyright © 2004 European Molecular Biology Organization
– notice: Copyright © 2004, European Molecular Biology Organization 2004
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
5PM
DOI 10.1038/sj.emboj.7600298
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Bacteriology Abstracts (Microbiology B)

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Atomic structure of β-oxidation multienzyme
EISSN 1460-2075
EndPage 2754
ExternalDocumentID PMC514956
15229654
10_1038_sj_emboj_7600298
EMBJ7600298
ark_67375_WNG_1T7KZJW1_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-Q-
-~X
.55
0R~
123
1OC
29G
2WC
33P
36B
39C
3O-
4.4
53G
5VS
70F
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANHP
AANLZ
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFFNX
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AI.
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RHI
RNS
ROL
RPM
RZO
SV3
TN5
TR2
UKHRP
VH1
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
X7M
Y6R
YSK
ZCA
ZGI
ZZTAW
~KM
24P
3V.
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
M0L
PKN
RHF
RIG
WYJ
ABJNI
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
5PM
ID FETCH-LOGICAL-c5528-824b374f9e9983b2f2e70f95297d810edb1edfc77968fb0486a432736eabbd953
IEDL.DBID C6C
ISSN 0261-4189
IngestDate Thu Aug 21 14:05:15 EDT 2025
Fri Sep 05 05:25:08 EDT 2025
Sun Sep 28 11:33:30 EDT 2025
Wed Feb 19 02:34:55 EST 2025
Tue Jul 01 02:05:22 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Wed Jan 22 16:48:12 EST 2025
Fri Feb 21 02:43:44 EST 2025
Sun Sep 21 06:18:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords atomic structure
multienzyme complex
channelling mechanism
domain rearrangement
fatty acid β‐oxidation
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5528-824b374f9e9983b2f2e70f95297d810edb1edfc77968fb0486a432736eabbd953
Notes istex:DEF3D4B424329A8A997B4EF677CFA698300A8059
Supplementary data 1Supplementary data 2Supplementary data 3
ark:/67375/WNG-1T7KZJW1-L
ArticleID:EMBJ7600298
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/sj.emboj.7600298
PMID 15229654
PQID 17820588
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_514956
proquest_miscellaneous_66726337
proquest_miscellaneous_17820588
pubmed_primary_15229654
crossref_citationtrail_10_1038_sj_emboj_7600298
crossref_primary_10_1038_sj_emboj_7600298
wiley_primary_10_1038_sj_emboj_7600298_EMBJ7600298
springer_journals_10_1038_sj_emboj_7600298
istex_primary_ark_67375_WNG_1T7KZJW1_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 21, 2004
PublicationDateYYYYMMDD 2004-07-21
PublicationDate_xml – month: 07
  year: 2004
  text: July 21, 2004
  day: 21
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
References Yao KW, Schulz H (1996) Intermediate channeling on the trifunctional beta-oxidation complex from pig-heart mitochondria. J Biol Chem 271: 17816-17820
Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54: 905-921
Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50: 157-163
de La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276: 472-494
Conte LL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285: 2177-2198
Engel CK, Kiema TR, Hiltunen JK, Wierenga RK (1998) The crystal structure of enoyl-CoA hydratase complex with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol 275: 847-859
Brink J, Ludtke SJ, Yang C-Y, Gu Z-W, Wakil SJ, Chiu W (2002) Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci USA 99: 138-143
Mathieu M, Zeelen JPh, Pauptit RA, Erdmann R, Kunau W-H, Wierenga RK (1994) The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2: 797-808
Merrit EA, Bacon DJ (1997) Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol 277: 505-524
Stanley KK, Tubbs PK (1975) The role of intermediates in mitochondrial fatty acid oxidation. Biochem J 150: 77-88
Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11: 281-296
Leslie AGW (1991) Macromolecular data processing. In Crystal Computing V, Moras D, Pogjarny AD, Thierry JC (eds) pp 27-38. Oxford, UK: Oxford University Press
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-325
Binstock JF, Pramanik A, Schulz H (1977) Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci USA 74: 492-495
Kraulis PE (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946-950
Barycki JJ, O'Brien LK, Birktoft JJ, Strauss AW, Banaszak LJ (1999a) Pig heart short chain L-3-hydroxyacyl-CoA dehydrogenase revisited: sequence analysis and crystal structure determination. Protein Sci 8: 2010-2018
Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7: 1279-1290
Ibdah JA, Tein I, Dionisi-Vici C, Bennett MJ, IJlst L, Gibson B, Wanders RJA, Strauss AW (1998) Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Invest 102: 1193-1199
Mathieu M, Modis Y, Zeelen JPh, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau W-H, Wierenga RK (1997) The 1.8 Å crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implication for substrate binding and reaction mechanism. J Mol Biol 273: 714-728
Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2000) Sequestration of the active site by interdomain shifting. J Biol Chem 275: 27186-27196
Barycki JJ, O'Brien LK, Bratt JM, Zhang R, Sanishvili R, Strauss AW, Banaszak LJ (1999b) Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry 38: 5786-5798
Milne JLS, Shi D, Rosenthal PB, Sunshine JS, Domingo GJ, Wu X, Brooks BR, Perham RN, Henderson R, Subramaniam S (2002) Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. EMBO J 21: 5587-5598
Smith S (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8: 1248-1259
Kim J-JP, Battaile KP (2002) Burning fat: the structural basis of fatty acid β-oxidation. Curr Opin Struct Biol 12: 721-728
Kunau W-H, Dommes V, Schulz H (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34: 267-342
Ishikawa M, Mikami Y, Usukura J, Iwasaki H, Shinagawa H, Morikawa K (1997) Reconstitution, morphology and crystallization of a fatty acid β-oxidation multienzyme complex from Pseudomonas fragi. Biochem J 328: 815-820
Uchida Y, Izai K, Orii T, Hashimoto T (1992) Novel fatty acid β-oxidation enzymes in rat liver mitochondria. J Biol Chem 267: 1034-1041
DiRusso CC (1990) Primary sequence of the Escherichia coli fad BA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol 172: 6459-6468
Eaton S, Bartlett K, Pourfarzam M (1999) Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters. Biochim Biophys Acta 1437: 402-408
He Yang X-Y, Schulz H, Elzinga M, Yang S-Y (1991) Nucleotide sequence of the promoter and fadB gene of the fadBA operon and primary structure of the multifunctional fatty acid oxidation protein from Escherichia coli. Biochemistry 30: 6788-6795
Eaton S, Bursby T, Middleton B, Pourfarzam M, Mills K, Johnson AW, Barlett K (2000) The mitochondrial trifunctional protein: centre of a β-oxidation metabolon? Biochem Soc Trans 28: 177-182
Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 297: 1171-1182
Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In The Metabolic and Molecular Bases of Inherited Disease, Scriver CR, Beaudet AL, Sly WS, Valle D (eds) 8 edn, Vol. 2, pp 2297-2326. New York: McGraw-Hill
Engel CK, Mathieu MJ, Zeelen P, Hiltunen JK, Wierenga RK (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 Å resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15: 5135-5145
Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2001) Glutamate 170 of human L-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem 276: 36718-36726
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
Carpenter K, Pollitt RJ, Middleton B (1992) Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun 183: 443-448
Imamura S, Ueda S, Mizugaki M, Kawaguchi A (1990) Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. J Biochem 107: 184-189
Liang X, Le W, Zhang D, Schulz H (2001) Impact of the intramitochondrial enzyme organization on fatty acid oxidation. Biochem Soc Trans 29: 279-282
Sato S, Hayashi M, Imamura S, Ozeki Y, Kawaguchi A (1992) Primary structure of the genes, faoA and faoB, from Pseudomonas fragi B-0771 which encode the two subunits of the HDT multienzyme complex involved in fatty acid β-oxidation. J Biochem 111: 8-15
Nakahigashi K, Inokuchi H (1990) Nucleotide sequence of the fadA and fadB genes from Escherichia coli. Nucleic Acids Res 18: 4937
Bahnson BJ, Anderson VE, Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41: 2621-2629
Agius L, Sherratt HSA (eds) (1997) Channelling in Intermediary Metabolism. London, UK: Portland Press Ltd
1990; 107
1992; 183
1999b; 38
2000; 28
1997; 273
1990; 18
1991; 11
1991; 30
2002; 12
1995; 34
1992; 267
1997; 276
2002; 99
1997; 277
1999; 285
1997
1994; 22
1975; 150
2000; 275
2000; 297
1991
2001; 29
1998; 275
1999; 7
1996; 15
2001; 276
1994; 8
1997; 328
2002; 41
2001
1991; 24
1999a; 8
1992; 111
1999; 1437
2002; 21
1996; 271
1977; 74
1998; 54
1998; 102
1994; 50
1994; 2
1990; 172
7600298-b2
7600298-b1
He Yang X-Y (7600298-b18) 1991; 30
7600298-b4
7600298-b6
Nakahigashi K (7600298-b33) 1990; 18
7600298-b30
7600298-b31
7600298-b32
7600298-b11
7600298-b8
7600298-b16
Eaton S (7600298-b15) 2000; 28
7600298-b9
Ibdah JA (7600298-b19) 1998; 102
Ishikawa M (7600298-b21) 1997; 328
7600298-b34
7600298-b14
Mathieu M (7600298-b28) 1994; 2
7600298-b36
7600298-b37
Smith S (7600298-b39) 1994; 8
Imamura S (7600298-b20) 1990; 107
DiRusso CC (7600298-b13) 1990; 172
Sato S (7600298-b38) 1992; 111
Stanley KK (7600298-b40) 1975; 150
Uchida Y (7600298-b42) 1992; 267
Nicholls A (7600298-b35) 1991; 11
Binstock JF (7600298-b7) 1977; 74
Barycki JJ (7600298-b3) 1999a; 8
7600298-b43
7600298-b22
Thompson JD (7600298-b41) 1994; 22
Carpenter K (7600298-b10) 1992; 183
Barycki JJ (7600298-b5) 2000; 275
7600298-b27
Engel CK (7600298-b17) 1996; 15
Merrit EA (7600298-b29) 1997; 277
de La Fortelle E (7600298-b12) 1997; 276
7600298-b23
7600298-b24
7600298-b25
7600298-b26
References_xml – reference: Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11: 281-296
– reference: Yao KW, Schulz H (1996) Intermediate channeling on the trifunctional beta-oxidation complex from pig-heart mitochondria. J Biol Chem 271: 17816-17820
– reference: de La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276: 472-494
– reference: Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 297: 1171-1182
– reference: Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In The Metabolic and Molecular Bases of Inherited Disease, Scriver CR, Beaudet AL, Sly WS, Valle D (eds) 8 edn, Vol. 2, pp 2297-2326. New York: McGraw-Hill
– reference: Agius L, Sherratt HSA (eds) (1997) Channelling in Intermediary Metabolism. London, UK: Portland Press Ltd
– reference: DiRusso CC (1990) Primary sequence of the Escherichia coli fad BA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol 172: 6459-6468
– reference: Uchida Y, Izai K, Orii T, Hashimoto T (1992) Novel fatty acid β-oxidation enzymes in rat liver mitochondria. J Biol Chem 267: 1034-1041
– reference: Engel CK, Mathieu MJ, Zeelen P, Hiltunen JK, Wierenga RK (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 Å resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15: 5135-5145
– reference: Eaton S, Bartlett K, Pourfarzam M (1999) Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters. Biochim Biophys Acta 1437: 402-408
– reference: Leslie AGW (1991) Macromolecular data processing. In Crystal Computing V, Moras D, Pogjarny AD, Thierry JC (eds) pp 27-38. Oxford, UK: Oxford University Press
– reference: Barycki JJ, O'Brien LK, Bratt JM, Zhang R, Sanishvili R, Strauss AW, Banaszak LJ (1999b) Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry 38: 5786-5798
– reference: Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2001) Glutamate 170 of human L-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem 276: 36718-36726
– reference: Liang X, Le W, Zhang D, Schulz H (2001) Impact of the intramitochondrial enzyme organization on fatty acid oxidation. Biochem Soc Trans 29: 279-282
– reference: Bahnson BJ, Anderson VE, Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41: 2621-2629
– reference: Eaton S, Bursby T, Middleton B, Pourfarzam M, Mills K, Johnson AW, Barlett K (2000) The mitochondrial trifunctional protein: centre of a β-oxidation metabolon? Biochem Soc Trans 28: 177-182
– reference: Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-325
– reference: Brink J, Ludtke SJ, Yang C-Y, Gu Z-W, Wakil SJ, Chiu W (2002) Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci USA 99: 138-143
– reference: Engel CK, Kiema TR, Hiltunen JK, Wierenga RK (1998) The crystal structure of enoyl-CoA hydratase complex with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol 275: 847-859
– reference: Kim J-JP, Battaile KP (2002) Burning fat: the structural basis of fatty acid β-oxidation. Curr Opin Struct Biol 12: 721-728
– reference: He Yang X-Y, Schulz H, Elzinga M, Yang S-Y (1991) Nucleotide sequence of the promoter and fadB gene of the fadBA operon and primary structure of the multifunctional fatty acid oxidation protein from Escherichia coli. Biochemistry 30: 6788-6795
– reference: Mathieu M, Modis Y, Zeelen JPh, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau W-H, Wierenga RK (1997) The 1.8 Å crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implication for substrate binding and reaction mechanism. J Mol Biol 273: 714-728
– reference: Conte LL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285: 2177-2198
– reference: Merrit EA, Bacon DJ (1997) Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol 277: 505-524
– reference: Ishikawa M, Mikami Y, Usukura J, Iwasaki H, Shinagawa H, Morikawa K (1997) Reconstitution, morphology and crystallization of a fatty acid β-oxidation multienzyme complex from Pseudomonas fragi. Biochem J 328: 815-820
– reference: Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7: 1279-1290
– reference: Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
– reference: Smith S (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8: 1248-1259
– reference: Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2000) Sequestration of the active site by interdomain shifting. J Biol Chem 275: 27186-27196
– reference: Mathieu M, Zeelen JPh, Pauptit RA, Erdmann R, Kunau W-H, Wierenga RK (1994) The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2: 797-808
– reference: Sato S, Hayashi M, Imamura S, Ozeki Y, Kawaguchi A (1992) Primary structure of the genes, faoA and faoB, from Pseudomonas fragi B-0771 which encode the two subunits of the HDT multienzyme complex involved in fatty acid β-oxidation. J Biochem 111: 8-15
– reference: Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54: 905-921
– reference: Barycki JJ, O'Brien LK, Birktoft JJ, Strauss AW, Banaszak LJ (1999a) Pig heart short chain L-3-hydroxyacyl-CoA dehydrogenase revisited: sequence analysis and crystal structure determination. Protein Sci 8: 2010-2018
– reference: Imamura S, Ueda S, Mizugaki M, Kawaguchi A (1990) Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. J Biochem 107: 184-189
– reference: Nakahigashi K, Inokuchi H (1990) Nucleotide sequence of the fadA and fadB genes from Escherichia coli. Nucleic Acids Res 18: 4937
– reference: Ibdah JA, Tein I, Dionisi-Vici C, Bennett MJ, IJlst L, Gibson B, Wanders RJA, Strauss AW (1998) Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Invest 102: 1193-1199
– reference: Binstock JF, Pramanik A, Schulz H (1977) Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci USA 74: 492-495
– reference: Kunau W-H, Dommes V, Schulz H (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34: 267-342
– reference: Milne JLS, Shi D, Rosenthal PB, Sunshine JS, Domingo GJ, Wu X, Brooks BR, Perham RN, Henderson R, Subramaniam S (2002) Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. EMBO J 21: 5587-5598
– reference: Carpenter K, Pollitt RJ, Middleton B (1992) Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun 183: 443-448
– reference: Kraulis PE (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946-950
– reference: Stanley KK, Tubbs PK (1975) The role of intermediates in mitochondrial fatty acid oxidation. Biochem J 150: 77-88
– reference: Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50: 157-163
– volume: 183
  start-page: 443
  year: 1992
  end-page: 448
  article-title: Human liver long‐chain 3‐hydroxyacyl‐coenzyme A dehydrogenase is a multifunctional membrane‐bound beta‐oxidation enzyme of mitochondria
  publication-title: Biochem Biophys Res Commun
– year: 1997
  publication-title: Channelling in Intermediary Metabolism
– volume: 11
  start-page: 281
  year: 1991
  end-page: 296
  article-title: Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons
  publication-title: Proteins Struct Funct Genet
– volume: 107
  start-page: 184
  year: 1990
  end-page: 189
  article-title: Purification of the multienzyme complex for fatty acid oxidation from and reconstitution of the fatty acid oxidation system
  publication-title: J Biochem
– volume: 267
  start-page: 1034
  year: 1992
  end-page: 1041
  article-title: Novel fatty acid β‐oxidation enzymes in rat liver mitochondria
  publication-title: J Biol Chem
– volume: 276
  start-page: 36718
  year: 2001
  end-page: 36726
  article-title: Glutamate 170 of human ‐3‐hydroxyacyl‐CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme
  publication-title: J Biol Chem
– volume: 74
  start-page: 492
  year: 1977
  end-page: 495
  article-title: Isolation of a multi‐enzyme complex of fatty acid oxidation from
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 177
  year: 2000
  end-page: 182
  article-title: The mitochondrial trifunctional protein: centre of a β‐oxidation metabolon?
  publication-title: Biochem Soc Trans
– volume: 12
  start-page: 721
  year: 2002
  end-page: 728
  article-title: Burning fat: the structural basis of fatty acid β‐oxidation
  publication-title: Curr Opin Struct Biol
– volume: 328
  start-page: 815
  year: 1997
  end-page: 820
  article-title: Reconstitution, morphology and crystallization of a fatty acid β‐oxidation multienzyme complex from
  publication-title: Biochem J
– volume: 111
  start-page: 8
  year: 1992
  end-page: 15
  article-title: Primary structure of the genes, and , from B‐0771 which encode the two subunits of the HDT multienzyme complex involved in fatty acid β‐oxidation
  publication-title: J Biochem
– volume: 297
  start-page: 1171
  year: 2000
  end-page: 1182
  article-title: Crystallographic analysis of the reaction pathway of biosynthetic thiolase
  publication-title: J Mol Biol
– start-page: 2297
  year: 2001
  end-page: 2326
  article-title: Mitochondrial fatty acid oxidation disorders
  publication-title: The Metabolic and Molecular Bases of Inherited Disease
– volume: 285
  start-page: 2177
  year: 1999
  end-page: 2198
  article-title: The atomic structure of protein–protein recognition sites
  publication-title: J Mol Biol
– volume: 8
  start-page: 1248
  year: 1994
  end-page: 1259
  article-title: The animal fatty acid synthase: one gene, one polypeptide, seven enzymes
  publication-title: FASEB J
– volume: 99
  start-page: 138
  year: 2002
  end-page: 143
  article-title: Quaternary structure of human fatty acid synthase by electron cryomicroscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 273
  start-page: 714
  year: 1997
  end-page: 728
  article-title: The 1.8 Å crystal structure of the dimeric peroxisomal 3‐ketoacyl‐CoA thiolase of : implication for substrate binding and reaction mechanism
  publication-title: J Mol Biol
– volume: 275
  start-page: 847
  year: 1998
  end-page: 859
  article-title: The crystal structure of enoyl‐CoA hydratase complex with octanoyl‐CoA reveals the structural adaptations required for binding of a long chain fatty acid‐CoA molecule
  publication-title: J Mol Biol
– volume: 22
  start-page: 4673
  year: 1994
  end-page: 4680
  article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res
– volume: 172
  start-page: 6459
  year: 1990
  end-page: 6468
  article-title: Primary sequence of the operon, encoding the fatty acid‐oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes
  publication-title: J Bacteriol
– volume: 38
  start-page: 5786
  year: 1999b
  end-page: 5798
  article-title: Biochemical characterization and crystal structure determination of human heart short chain ‐3‐hydroxyacyl‐CoA dehydrogenase provide insights into catalytic mechanism
  publication-title: Biochemistry
– volume: 1437
  start-page: 402
  year: 1999
  end-page: 408
  article-title: Intermediates of myocardial mitochondrial beta‐oxidation: possible channelling of NADH and of CoA esters
  publication-title: Biochim Biophys Acta
– volume: 276
  start-page: 472
  year: 1997
  end-page: 494
  article-title: Maximum‐likelihood heavy‐atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods
  publication-title: Methods Enzymol
– volume: 21
  start-page: 5587
  year: 2002
  end-page: 5598
  article-title: Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine
  publication-title: EMBO J
– volume: 276
  start-page: 307
  year: 1997
  end-page: 325
  article-title: Processing of X‐ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
– volume: 15
  start-page: 5135
  year: 1996
  end-page: 5145
  article-title: Crystal structure of enoyl‐coenzyme A (CoA) hydratase at 2.5 Å resolution: a spiral fold defines the CoA‐binding pocket
  publication-title: EMBO J
– volume: 54
  start-page: 905
  year: 1998
  end-page: 921
  article-title: Crystallography & NMR system: a new software suite for macromolecular structure determination
  publication-title: Acta Crystallogr D
– volume: 2
  start-page: 797
  year: 1994
  end-page: 808
  article-title: The 2.8 Å crystal structure of peroxisomal 3‐ketoacyl‐CoA thiolase of : a five‐layered αβαβα structure constructed from two core domains of identical topology
  publication-title: Structure
– volume: 29
  start-page: 279
  year: 2001
  end-page: 282
  article-title: Impact of the intramitochondrial enzyme organization on fatty acid oxidation
  publication-title: Biochem Soc Trans
– volume: 275
  start-page: 27186
  year: 2000
  end-page: 27196
  article-title: Sequestration of the active site by interdomain shifting
  publication-title: J Biol Chem
– volume: 50
  start-page: 157
  year: 1994
  end-page: 163
  article-title: AMoRe: an automated package for molecular replacement
  publication-title: Acta Crystallogr A
– start-page: 27
  year: 1991
  end-page: 38
  article-title: Macromolecular data processing
  publication-title: Crystal Computing V
– volume: 24
  start-page: 946
  year: 1991
  end-page: 950
  article-title: MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures
  publication-title: J Appl Crystallogr
– volume: 277
  start-page: 505
  year: 1997
  end-page: 524
  article-title: Raster3D version 2.0: a program for photorealistic molecular graphics
  publication-title: Methods Enzymol
– volume: 41
  start-page: 2621
  year: 2002
  end-page: 2629
  article-title: Structural mechanism of enoyl‐CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion
  publication-title: Biochemistry
– volume: 30
  start-page: 6788
  year: 1991
  end-page: 6795
  article-title: Nucleotide sequence of the promoter and gene of the operon and primary structure of the multifunctional fatty acid oxidation protein from
  publication-title: Biochemistry
– volume: 102
  start-page: 1193
  year: 1998
  end-page: 1199
  article-title: Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype–phenotype correlation
  publication-title: J Clin Invest
– volume: 271
  start-page: 17816
  year: 1996
  end-page: 17820
  article-title: Intermediate channeling on the trifunctional beta‐oxidation complex from pig‐heart mitochondria
  publication-title: J Biol Chem
– volume: 34
  start-page: 267
  year: 1995
  end-page: 342
  article-title: β‐Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress
  publication-title: Prog Lipid Res
– volume: 7
  start-page: 1279
  year: 1999
  end-page: 1290
  article-title: A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism
  publication-title: Structure
– volume: 150
  start-page: 77
  year: 1975
  end-page: 88
  article-title: The role of intermediates in mitochondrial fatty acid oxidation
  publication-title: Biochem J
– volume: 8
  start-page: 2010
  year: 1999a
  end-page: 2018
  article-title: Pig heart short chain ‐3‐hydroxyacyl‐CoA dehydrogenase revisited: sequence analysis and crystal structure determination
  publication-title: Protein Sci
– volume: 18
  start-page: 4937
  year: 1990
  article-title: Nucleotide sequence of the and genes from
  publication-title: Nucleic Acids Res
– ident: 7600298-b8
  doi: 10.1073/pnas.012589499
– ident: 7600298-b14
  doi: 10.1016/S1388-1981(99)00027-X
– ident: 7600298-b1
– volume: 102
  start-page: 1193
  year: 1998
  ident: 7600298-b19
  publication-title: J Clin Invest
  doi: 10.1172/JCI2091
– ident: 7600298-b4
  doi: 10.1021/bi9829027
– volume: 150
  start-page: 77
  year: 1975
  ident: 7600298-b40
  publication-title: Biochem J
  doi: 10.1042/bj1500077
– volume: 275
  start-page: 27186
  year: 2000
  ident: 7600298-b5
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)61496-1
– ident: 7600298-b27
  doi: 10.1006/jmbi.1997.1331
– ident: 7600298-b24
  doi: 10.1016/0163-7827(95)00011-9
– volume: 2
  start-page: 797
  year: 1994
  ident: 7600298-b28
  publication-title: Structure
  doi: 10.1016/S0969-2126(94)00081-6
– ident: 7600298-b30
  doi: 10.1093/emboj/cdf574
– ident: 7600298-b37
– ident: 7600298-b2
  doi: 10.1021/bi015844p
– volume: 277
  start-page: 505
  year: 1997
  ident: 7600298-b29
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)77028-9
– ident: 7600298-b34
  doi: 10.1107/S0108767393007597
– volume: 28
  start-page: 177
  year: 2000
  ident: 7600298-b15
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0280177
– volume: 183
  start-page: 443
  year: 1992
  ident: 7600298-b10
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/0006-291X(92)90501-B
– ident: 7600298-b11
  doi: 10.1006/jmbi.1998.2439
– volume: 172
  start-page: 6459
  year: 1990
  ident: 7600298-b13
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.11.6459-6468.1990
– volume: 107
  start-page: 184
  year: 1990
  ident: 7600298-b20
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a123023
– volume: 22
  start-page: 4673
  year: 1994
  ident: 7600298-b41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.22.4673
– ident: 7600298-b26
  doi: 10.1042/0300-5127:0290279
– ident: 7600298-b31
  doi: 10.1016/S0969-2126(00)80061-1
– volume: 8
  start-page: 1248
  year: 1994
  ident: 7600298-b39
  publication-title: FASEB J
  doi: 10.1096/fasebj.8.15.8001737
– volume: 111
  start-page: 8
  year: 1992
  ident: 7600298-b38
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a123722
– volume: 8
  start-page: 2010
  year: 1999a
  ident: 7600298-b3
  publication-title: Protein Sci
  doi: 10.1110/ps.8.10.2010
– ident: 7600298-b6
  doi: 10.1074/jbc.M104839200
– ident: 7600298-b43
  doi: 10.1074/jbc.271.30.17816
– ident: 7600298-b9
  doi: 10.1107/S0907444998003254
– volume: 328
  start-page: 815
  year: 1997
  ident: 7600298-b21
  publication-title: Biochem J
  doi: 10.1042/bj3280815
– ident: 7600298-b36
  doi: 10.1016/S0962-8924(98)01382-8
– volume: 15
  start-page: 5135
  year: 1996
  ident: 7600298-b17
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00897.x
– ident: 7600298-b25
– volume: 18
  start-page: 4937
  year: 1990
  ident: 7600298-b33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.16.4937
– ident: 7600298-b16
  doi: 10.1006/jmbi.1997.1491
– volume: 74
  start-page: 492
  year: 1977
  ident: 7600298-b7
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.74.2.492
– ident: 7600298-b23
  doi: 10.1107/S0021889891004399
– ident: 7600298-b32
  doi: 10.1006/jmbi.2000.3638
– volume: 11
  start-page: 281
  year: 1991
  ident: 7600298-b35
  publication-title: Proteins Struct Funct Genet
  doi: 10.1002/prot.340110407
– volume: 267
  start-page: 1034
  year: 1992
  ident: 7600298-b42
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)48391-3
– ident: 7600298-b22
  doi: 10.1016/S0959-440X(02)00390-1
– volume: 276
  start-page: 472
  year: 1997
  ident: 7600298-b12
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76073-7
– volume: 30
  start-page: 6788
  year: 1991
  ident: 7600298-b18
  publication-title: Biochemistry
  doi: 10.1021/bi00241a023
SSID ssj0005871
Score 2.1140373
Snippet The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2745
SubjectTerms 3-Hydroxyacyl CoA Dehydrogenases - chemistry
3-Hydroxyacyl CoA Dehydrogenases - genetics
3-Hydroxyacyl CoA Dehydrogenases - metabolism
Acetyl-CoA C-Acyltransferase - chemistry
Acetyl-CoA C-Acyltransferase - genetics
Acetyl-CoA C-Acyltransferase - metabolism
Adenosine Diphosphate - metabolism
atomic structure
Binding Sites
Carbon-Carbon Double Bond Isomerases - chemistry
Carbon-Carbon Double Bond Isomerases - metabolism
channelling mechanism
Crystallography, X-Ray
domain rearrangement
EMBO21
EMBO40
Enoyl-CoA Hydratase - chemistry
Enoyl-CoA Hydratase - genetics
Enoyl-CoA Hydratase - metabolism
fatty acid β-oxidation
Fatty Acids - metabolism
Humans
Mitochondrial Trifunctional Protein
Models, Chemical
Models, Molecular
multienzyme complex
Multienzyme Complexes - chemistry
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Mutation
Oxidation-Reduction
Protein Structure, Secondary
Protein Structure, Tertiary
Racemases and Epimerases - chemistry
Racemases and Epimerases - genetics
Racemases and Epimerases - metabolism
Substrate Specificity
Title Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex
URI https://api.istex.fr/ark:/67375/WNG-1T7KZJW1-L/fulltext.pdf
https://link.springer.com/article/10.1038/sj.emboj.7600298
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fsj.emboj.7600298
https://www.ncbi.nlm.nih.gov/pubmed/15229654
https://www.proquest.com/docview/17820588
https://www.proquest.com/docview/66726337
https://pubmed.ncbi.nlm.nih.gov/PMC514956
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD7aViG4QTD-wk_xBUICKVuT-C-XXdUxFVYhtmkVErLsxBbt1hSRIrVc8Qg8Cw_CQ_Ak2E7SqRoMcZMfxYmd4xP7HJ8v3wF4pqmiqaFZqKxzEmKZsVBJmVpXxeS0g3OV-aWBwyE9OMGDERltQKf5F8aD9j2lpR-mG3TYbjnZ0VM1m-xUgSS-CS3OEuJ0ukd7F6AO7l0sv6qCI57WgclOwi89YW0iajmZLv5kZV4GS64ipuv2rJ-Q9m_BzdqSRN2q7bdhQxfbcK3KLbnchuu9JpXbHfhw5FliHcMGstPWuETWVEXun18HcrG1oKl2Z-NyimYGSWTkfL5EMhvn6OePX9--zxbjKvcS8gBEXXxdTjXycHS9uAsn-_3j3kFY51UIM0JiHvIYq4Rhk2rrayUqNrFmHZOSOGU5jzo6V5HOTcZYSrlRjpNP4sSaOVRLpfKUJPdgq5gV-gGgzI7bUY4VibQ1xXIsDccmVyRjmUw54QHsNkIWWU067nJfnAsf_E64KCfCd4uouyWAF6s7PlWEG1eUfe77bVVQfj5zQDVGxOnwlYiO2ev3g9NIvAngadOxworexURkoWdfShE5vkDC-d9LUMpimiQsgPuVIlw0y9quKSU4ALqmIqsCjrp7_Uox_ugpvIl3TAN42eiSqIeO8oqXjb22_VMqon-4N6iPH_5PDY_gRoVLYmEcPYYtq5r6iTW55qoNm2zE7Jb3oja0ut3B0cDu9_rDt-_a_gv8DVioMsg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD4ardC4QTD-wt98gZBAytYk_stlmTZK1_ZmnTYhIctObNFCU0SK1HLFI_AsPAgPwZNgO0mnajDEXaI4iXPOiX2Oz-fvADzTVNHU0CxUNjgJscxYqKRMbahictrBucr80sBwRHunuH9Ozreg0-yF8aB9T2nph-kGHbZfTvf0TM2ne1UiiV-DNnc0mC1od7v9k_4FrIP7IMuvq-CIp3VqspPwS8_YmIraTqrLP_mZl-GS65zppkfrp6SjW3Cz9iVRt-r9bdjSxQ5cr6pLrnZg-6Ap5nYH3p14nljHsYHsxDUpkXVWkdv162Au9i1opt3ZpJyhuUESGblYrJDMJjn6-ePXt-_z5aSqvoQ8BFEXX1czjTwgXS_vwunR4figF9aVFcKMkJiHPMYqYdik2kZbiYpNrFnHpCROWc6jjs5VpHOTMZZSbpRj5ZM4sY4O1VKpPCXJPWgV80I_AJTZkTvKsSKRts5YjqXh2OSKZCyTKSc8gP1GyCKracdd9YuPwqe_Ey7KqfBqEbVaAnixvuNTRblxRdvnXm_rhvLzBwdVY0ScjV6LaMyO3_bPIjEIYLdRrLCid1kRWej5l1JEjjGQcP73FpSymCYJC-B-ZQgX3bLea0oJDoBumMi6gSPv3rxSTN57Em_iQ9MAXja2JOrBo7ziY2Nvbf-UijgcvurXxw__5w27sN0bDwdi8GZ0_AhuVCglFsbRY2hZM9VPrAO2UE_rf-43YjcyOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELWgFZcXBOUWbvUDQgIp203i6yMsXcq2XSHRqhUSsuzYFlnYpCKLtMsTn8C38CF8BF-C7SRbrQpFvCXKJHHsiWfGc3wGgMeGKMItyWPlgpMYyZzGSkruQhWrSR9plYelgf0x2TlEo2N83G4Kq1tYZUNpGabpDh22VU96ZqqqSa9JJLHeibYXwTpzBtGHXAMyOAV2sBBmhZUVlDDeJif7GTvzlBVjtO77df4nT_MsYHKZNV31aYNRGl4H11pvEj5v2n8DXDDlBrjU1JdcbIArg66c203w_m1givUsG9CZrqKGzl2Fft-vB7q4t8Cp8WdFPYWVhRJaOZstoMwLDX_--PXtezUvmvpLMIAQTfl1MTUwQNLN_BY4HG4fDHbitrZCnGOcspilSGUUWW5cvJWp1KaG9i3HKaeaJX2jVWK0zSnlhFnlefkkypyrQ4xUSnOc3QZrZVWauwDmbu5ONFI4Mc4d00hahqxWOKe55AyzCGx1nSzylnjc17_4JEICPGOinogwLKIdlgg8Xd5x0pBunCP7JIzbUlB-_ujBahSLo_ErkRzQ3Xejo0TsRWCzG1jhut7nRWRpqi-1SDxnIGbs7xKE0JRkGY3AnUYRTpvl_FdOMIoAWVGRpYCn7169UhYfAo03DsFpBJ51uiTa6aM-52PToG3_7BWxvf9i1B7f-583bILLb14Oxd7r8e59cLWBKdE4TR6ANael5qHzwGbqUfjhfgOSWzHm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+channelling+mechanism+of+a+fatty+acid+beta-oxidation+multienzyme+complex&rft.jtitle=The+EMBO+journal&rft.au=Ishikawa%2C+Momoyo&rft.au=Tsuchiya%2C+Daisuke&rft.au=Oyama%2C+Takuji&rft.au=Tsunaka%2C+Yasuo&rft.date=2004-07-21&rft.issn=0261-4189&rft.volume=23&rft.issue=14&rft.spage=2745&rft_id=info:doi/10.1038%2Fsj.emboj.7600298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon