Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α 2 β 2 heterote...
Saved in:
Published in | The EMBO journal Vol. 23; no. 14; pp. 2745 - 2754 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
21.07.2004
Nature Publishing Group UK |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 |
DOI | 10.1038/sj.emboj.7600298 |
Cover
Abstract | The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α
2
β
2
heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2‐enoyl‐CoA hydratase (ECH),
L
‐3‐hydroxyacyl‐CoA dehydrogenase (HACD) and 3‐ketoacyl‐CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3′‐phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3′‐phosphate ADP bring the reactive C2–C3 bond to the correct position for cleavage. The α‐helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other β‐oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex. |
---|---|
AbstractList | The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex. The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α 2 β 2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2‐enoyl‐CoA hydratase (ECH), L ‐3‐hydroxyacyl‐CoA dehydrogenase (HACD) and 3‐ketoacyl‐CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3′‐phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3′‐phosphate ADP bring the reactive C2–C3 bond to the correct position for cleavage. The α‐helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other β‐oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex. The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta -oxidation cycle. The alpha sub(2) beta sub(2) heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), -3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'- phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha -helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta - oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex. The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid β‐oxidation cycle. The α2β2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2‐enoyl‐CoA hydratase (ECH), L‐3‐hydroxyacyl‐CoA dehydrogenase (HACD) and 3‐ketoacyl‐CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3′‐phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3′‐phosphate ADP bring the reactive C2–C3 bond to the correct position for cleavage. The α‐helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other β‐oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex. The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex. |
Author | Ishikawa, Momoyo Oyama, Takuji Tsunaka, Yasuo Morikawa, Kosuke Tsuchiya, Daisuke |
Author_xml | – sequence: 1 givenname: Momoyo surname: Ishikawa fullname: Ishikawa, Momoyo organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan – sequence: 2 givenname: Daisuke surname: Tsuchiya fullname: Tsuchiya, Daisuke organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan – sequence: 3 givenname: Takuji surname: Oyama fullname: Oyama, Takuji organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan – sequence: 4 givenname: Yasuo surname: Tsunaka fullname: Tsunaka, Yasuo organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan – sequence: 5 givenname: Kosuke surname: Morikawa fullname: Morikawa, Kosuke email: morikawa@beri.or.jp organization: Biomolecular Engineering Research Institute, Furuedai, Osaka, Suita, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15229654$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFPSvkFbsMthPfFiygKr0wwIKiSrCwnORk6iGxBzuBGR6LB-GZSDvDcJGgK-vI_3fOf85_gPZ88IDQQ0qmlOTqSVpMoSvDYioFIUyrO2hCC0EyRiTfQxPCBM0KqvQ-OkhpQQjhStJ7aJ9yxrTgxQR9eNvHoeqHaFtc2uQSbkLE1ZX1HtrW-Tnu4LpyqcOhwRY3tu_X2Fauxt-_ZWHlatu74HE3tL0D_3XdAa5Ct2xhdR_dbWyb4MH2PUTvXhxfHJ1mszcnZ0fPZlnFOVOZYkWZy6LRoLXKS9YwkKTRnGlZK0qgLinUTSWlFqopSaGELXImcwG2LGvN80P0dNN3OZQd1BX4flzHLKPrbFybYJ3588e7KzMPnw2nheZi5B9v-Rg-DZB607lUjetbD2FIRgjJRJ7LW4VUKjaeWI3CR7872ln5efdRIDaCKoaUIjSmcv3NIUeDrjWUmOuATVqYm4DNNuARJH-Bu97_RvQG-eJaWN-qN8evnp__YumGTSPm5xDNIgzRj2n-b162YVzqYbWbZ-NHI2Quubl8fWLohXz5_vySmln-AzjW34A |
CitedBy_id | crossref_primary_10_1002_bies_202200056 crossref_primary_10_1073_pnas_2002250117 crossref_primary_10_1111_j_1365_313X_2008_03431_x crossref_primary_10_1038_s41589_018_0153_x crossref_primary_10_1042_BCJ20190314 crossref_primary_10_1016_j_jmb_2005_01_018 crossref_primary_10_1128_AEM_03909_15 crossref_primary_10_1038_s41467_018_04543_8 crossref_primary_10_1021_acsbiomaterials_8b00279 crossref_primary_10_1074_jbc_M110_106013 crossref_primary_10_1021_cb400007k crossref_primary_10_1007_s00253_018_9073_7 crossref_primary_10_1248_bpb_32_1997 crossref_primary_10_3389_fbioe_2015_00191 crossref_primary_10_1371_journal_pcbi_1006401 crossref_primary_10_1107_S2059798318017242 crossref_primary_10_1016_j_ijbiomac_2024_129365 crossref_primary_10_1016_j_chembiol_2015_10_009 crossref_primary_10_1073_pnas_1718649115 crossref_primary_10_1002_prot_25054 crossref_primary_10_1021_acs_jafc_1c00158 crossref_primary_10_1021_acs_jpcc_8b01922 crossref_primary_10_1126_science_1138248 crossref_primary_10_1038_s41467_024_53118_3 crossref_primary_10_1016_j_fm_2020_103494 crossref_primary_10_1074_jbc_M110_106005 crossref_primary_10_1016_j_tube_2014_03_003 crossref_primary_10_1093_jimb_kuae027 crossref_primary_10_1074_jbc_M109_053975 crossref_primary_10_1074_jbc_M114_625483 crossref_primary_10_3390_pathogens12091171 crossref_primary_10_1007_s00253_015_6392_9 crossref_primary_10_1016_j_str_2023_04_011 crossref_primary_10_1371_journal_pcbi_1005461 crossref_primary_10_1016_j_abb_2017_02_001 crossref_primary_10_1038_s41598_019_42206_w crossref_primary_10_1074_jbc_M703921200 crossref_primary_10_3390_en11102663 crossref_primary_10_1016_j_biotechadv_2017_06_004 crossref_primary_10_1038_nchem_2459 crossref_primary_10_1074_jbc_M110_139493 crossref_primary_10_1016_j_mib_2023_102402 crossref_primary_10_1002_ajmg_a_36434 crossref_primary_10_1016_j_copbio_2008_07_006 crossref_primary_10_1016_j_jsb_2021_107776 crossref_primary_10_1021_bi100742w crossref_primary_10_1016_j_procbio_2014_03_016 crossref_primary_10_1021_bi901069h crossref_primary_10_1016_j_ymben_2019_04_010 crossref_primary_10_1016_j_jsb_2020_107494 crossref_primary_10_1016_j_bbrc_2008_09_078 crossref_primary_10_1038_s41467_019_11931_1 crossref_primary_10_3390_biology4020424 crossref_primary_10_1016_j_abb_2022_109391 crossref_primary_10_1074_jbc_M110_117606 crossref_primary_10_1016_j_ymben_2016_12_012 crossref_primary_10_3389_fcimb_2023_1095060 crossref_primary_10_1042_BJ20130669 crossref_primary_10_1016_j_str_2005_10_011 crossref_primary_10_1042_BJ20101661 crossref_primary_10_1039_C1SM06452E crossref_primary_10_1016_j_ijpara_2011_07_009 crossref_primary_10_1111_febs_12150 crossref_primary_10_1016_j_jbc_2024_107647 crossref_primary_10_3390_biom12081019 crossref_primary_10_1016_j_biotechadv_2011_05_020 crossref_primary_10_1074_jbc_M112_388231 crossref_primary_10_1146_annurev_biochem_052521_033746 crossref_primary_10_1038_s42003_019_0631_z crossref_primary_10_1007_s00253_021_11121_4 crossref_primary_10_1016_j_jmb_2006_03_032 crossref_primary_10_1073_pnas_1816317116 crossref_primary_10_1016_j_jmb_2005_10_085 crossref_primary_10_1016_j_sbi_2005_10_010 crossref_primary_10_1021_pr801059u crossref_primary_10_1038_s41467_024_49646_7 crossref_primary_10_1016_j_bbamcr_2006_08_034 crossref_primary_10_1038_s41467_025_57532_z crossref_primary_10_3389_fphys_2014_00282 crossref_primary_10_1073_pnas_1801252115 crossref_primary_10_1107_S2059798324006557 crossref_primary_10_1371_journal_pcbi_1003186 crossref_primary_10_3389_fenrg_2022_896668 crossref_primary_10_3390_ijms11093540 crossref_primary_10_1016_j_ijbiomac_2015_10_054 crossref_primary_10_1038_s42255_020_00285_4 crossref_primary_10_1016_j_synbio_2023_09_005 |
Cites_doi | 10.1073/pnas.012589499 10.1016/S1388-1981(99)00027-X 10.1172/JCI2091 10.1021/bi9829027 10.1042/bj1500077 10.1016/S0021-9258(19)61496-1 10.1006/jmbi.1997.1331 10.1016/0163-7827(95)00011-9 10.1016/S0969-2126(94)00081-6 10.1093/emboj/cdf574 10.1021/bi015844p 10.1016/S0076-6879(97)77028-9 10.1107/S0108767393007597 10.1042/bst0280177 10.1016/0006-291X(92)90501-B 10.1006/jmbi.1998.2439 10.1128/jb.172.11.6459-6468.1990 10.1093/oxfordjournals.jbchem.a123023 10.1093/nar/22.22.4673 10.1042/0300-5127:0290279 10.1016/S0969-2126(00)80061-1 10.1096/fasebj.8.15.8001737 10.1093/oxfordjournals.jbchem.a123722 10.1110/ps.8.10.2010 10.1074/jbc.M104839200 10.1074/jbc.271.30.17816 10.1107/S0907444998003254 10.1042/bj3280815 10.1016/S0962-8924(98)01382-8 10.1002/j.1460-2075.1996.tb00897.x 10.1093/nar/18.16.4937 10.1006/jmbi.1997.1491 10.1073/pnas.74.2.492 10.1107/S0021889891004399 10.1006/jmbi.2000.3638 10.1002/prot.340110407 10.1016/S0021-9258(18)48391-3 10.1016/S0959-440X(02)00390-1 10.1016/S0076-6879(97)76073-7 10.1021/bi00241a023 |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2004 Copyright © 2004 European Molecular Biology Organization Copyright © 2004, European Molecular Biology Organization 2004 |
Copyright_xml | – notice: European Molecular Biology Organization 2004 – notice: Copyright © 2004 European Molecular Biology Organization – notice: Copyright © 2004, European Molecular Biology Organization 2004 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K 7X8 5PM |
DOI | 10.1038/sj.emboj.7600298 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Bacteriology Abstracts (Microbiology B) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Atomic structure of β-oxidation multienzyme |
EISSN | 1460-2075 |
EndPage | 2754 |
ExternalDocumentID | PMC514956 15229654 10_1038_sj_emboj_7600298 EMBJ7600298 ark_67375_WNG_1T7KZJW1_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -DZ -Q- -~X .55 0R~ 123 1OC 29G 2WC 33P 36B 39C 3O- 4.4 53G 5VS 70F 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANHP AANLZ AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFFNX AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AI. AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HVGLF HYE H~9 KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RHI RNS ROL RPM RZO SV3 TN5 TR2 UKHRP VH1 WBKPD WH7 WIH WIK WIN WOHZO WOQ WXSBR X7M Y6R YSK ZCA ZGI ZZTAW ~KM 24P 3V. 88A AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV M0L PKN RHF RIG WYJ ABJNI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K 7X8 5PM |
ID | FETCH-LOGICAL-c5528-824b374f9e9983b2f2e70f95297d810edb1edfc77968fb0486a432736eabbd953 |
IEDL.DBID | C6C |
ISSN | 0261-4189 |
IngestDate | Thu Aug 21 14:05:15 EDT 2025 Fri Sep 05 05:25:08 EDT 2025 Sun Sep 28 11:33:30 EDT 2025 Wed Feb 19 02:34:55 EST 2025 Tue Jul 01 02:05:22 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Wed Jan 22 16:48:12 EST 2025 Fri Feb 21 02:43:44 EST 2025 Sun Sep 21 06:18:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | atomic structure multienzyme complex channelling mechanism domain rearrangement fatty acid β‐oxidation |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5528-824b374f9e9983b2f2e70f95297d810edb1edfc77968fb0486a432736eabbd953 |
Notes | istex:DEF3D4B424329A8A997B4EF677CFA698300A8059 Supplementary data 1Supplementary data 2Supplementary data 3 ark:/67375/WNG-1T7KZJW1-L ArticleID:EMBJ7600298 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/sj.emboj.7600298 |
PMID | 15229654 |
PQID | 17820588 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_514956 proquest_miscellaneous_66726337 proquest_miscellaneous_17820588 pubmed_primary_15229654 crossref_citationtrail_10_1038_sj_emboj_7600298 crossref_primary_10_1038_sj_emboj_7600298 wiley_primary_10_1038_sj_emboj_7600298_EMBJ7600298 springer_journals_10_1038_sj_emboj_7600298 istex_primary_ark_67375_WNG_1T7KZJW1_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 21, 2004 |
PublicationDateYYYYMMDD | 2004-07-21 |
PublicationDate_xml | – month: 07 year: 2004 text: July 21, 2004 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2004 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK |
References | Yao KW, Schulz H (1996) Intermediate channeling on the trifunctional beta-oxidation complex from pig-heart mitochondria. J Biol Chem 271: 17816-17820 Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54: 905-921 Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50: 157-163 de La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276: 472-494 Conte LL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285: 2177-2198 Engel CK, Kiema TR, Hiltunen JK, Wierenga RK (1998) The crystal structure of enoyl-CoA hydratase complex with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol 275: 847-859 Brink J, Ludtke SJ, Yang C-Y, Gu Z-W, Wakil SJ, Chiu W (2002) Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci USA 99: 138-143 Mathieu M, Zeelen JPh, Pauptit RA, Erdmann R, Kunau W-H, Wierenga RK (1994) The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2: 797-808 Merrit EA, Bacon DJ (1997) Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol 277: 505-524 Stanley KK, Tubbs PK (1975) The role of intermediates in mitochondrial fatty acid oxidation. Biochem J 150: 77-88 Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11: 281-296 Leslie AGW (1991) Macromolecular data processing. In Crystal Computing V, Moras D, Pogjarny AD, Thierry JC (eds) pp 27-38. Oxford, UK: Oxford University Press Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-325 Binstock JF, Pramanik A, Schulz H (1977) Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci USA 74: 492-495 Kraulis PE (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946-950 Barycki JJ, O'Brien LK, Birktoft JJ, Strauss AW, Banaszak LJ (1999a) Pig heart short chain L-3-hydroxyacyl-CoA dehydrogenase revisited: sequence analysis and crystal structure determination. Protein Sci 8: 2010-2018 Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7: 1279-1290 Ibdah JA, Tein I, Dionisi-Vici C, Bennett MJ, IJlst L, Gibson B, Wanders RJA, Strauss AW (1998) Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Invest 102: 1193-1199 Mathieu M, Modis Y, Zeelen JPh, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau W-H, Wierenga RK (1997) The 1.8 Å crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implication for substrate binding and reaction mechanism. J Mol Biol 273: 714-728 Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2000) Sequestration of the active site by interdomain shifting. J Biol Chem 275: 27186-27196 Barycki JJ, O'Brien LK, Bratt JM, Zhang R, Sanishvili R, Strauss AW, Banaszak LJ (1999b) Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry 38: 5786-5798 Milne JLS, Shi D, Rosenthal PB, Sunshine JS, Domingo GJ, Wu X, Brooks BR, Perham RN, Henderson R, Subramaniam S (2002) Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. EMBO J 21: 5587-5598 Smith S (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8: 1248-1259 Kim J-JP, Battaile KP (2002) Burning fat: the structural basis of fatty acid β-oxidation. Curr Opin Struct Biol 12: 721-728 Kunau W-H, Dommes V, Schulz H (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34: 267-342 Ishikawa M, Mikami Y, Usukura J, Iwasaki H, Shinagawa H, Morikawa K (1997) Reconstitution, morphology and crystallization of a fatty acid β-oxidation multienzyme complex from Pseudomonas fragi. Biochem J 328: 815-820 Uchida Y, Izai K, Orii T, Hashimoto T (1992) Novel fatty acid β-oxidation enzymes in rat liver mitochondria. J Biol Chem 267: 1034-1041 DiRusso CC (1990) Primary sequence of the Escherichia coli fad BA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol 172: 6459-6468 Eaton S, Bartlett K, Pourfarzam M (1999) Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters. Biochim Biophys Acta 1437: 402-408 He Yang X-Y, Schulz H, Elzinga M, Yang S-Y (1991) Nucleotide sequence of the promoter and fadB gene of the fadBA operon and primary structure of the multifunctional fatty acid oxidation protein from Escherichia coli. Biochemistry 30: 6788-6795 Eaton S, Bursby T, Middleton B, Pourfarzam M, Mills K, Johnson AW, Barlett K (2000) The mitochondrial trifunctional protein: centre of a β-oxidation metabolon? Biochem Soc Trans 28: 177-182 Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 297: 1171-1182 Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In The Metabolic and Molecular Bases of Inherited Disease, Scriver CR, Beaudet AL, Sly WS, Valle D (eds) 8 edn, Vol. 2, pp 2297-2326. New York: McGraw-Hill Engel CK, Mathieu MJ, Zeelen P, Hiltunen JK, Wierenga RK (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 Å resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15: 5135-5145 Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2001) Glutamate 170 of human L-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem 276: 36718-36726 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680 Carpenter K, Pollitt RJ, Middleton B (1992) Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun 183: 443-448 Imamura S, Ueda S, Mizugaki M, Kawaguchi A (1990) Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. J Biochem 107: 184-189 Liang X, Le W, Zhang D, Schulz H (2001) Impact of the intramitochondrial enzyme organization on fatty acid oxidation. Biochem Soc Trans 29: 279-282 Sato S, Hayashi M, Imamura S, Ozeki Y, Kawaguchi A (1992) Primary structure of the genes, faoA and faoB, from Pseudomonas fragi B-0771 which encode the two subunits of the HDT multienzyme complex involved in fatty acid β-oxidation. J Biochem 111: 8-15 Nakahigashi K, Inokuchi H (1990) Nucleotide sequence of the fadA and fadB genes from Escherichia coli. Nucleic Acids Res 18: 4937 Bahnson BJ, Anderson VE, Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41: 2621-2629 Agius L, Sherratt HSA (eds) (1997) Channelling in Intermediary Metabolism. London, UK: Portland Press Ltd 1990; 107 1992; 183 1999b; 38 2000; 28 1997; 273 1990; 18 1991; 11 1991; 30 2002; 12 1995; 34 1992; 267 1997; 276 2002; 99 1997; 277 1999; 285 1997 1994; 22 1975; 150 2000; 275 2000; 297 1991 2001; 29 1998; 275 1999; 7 1996; 15 2001; 276 1994; 8 1997; 328 2002; 41 2001 1991; 24 1999a; 8 1992; 111 1999; 1437 2002; 21 1996; 271 1977; 74 1998; 54 1998; 102 1994; 50 1994; 2 1990; 172 7600298-b2 7600298-b1 He Yang X-Y (7600298-b18) 1991; 30 7600298-b4 7600298-b6 Nakahigashi K (7600298-b33) 1990; 18 7600298-b30 7600298-b31 7600298-b32 7600298-b11 7600298-b8 7600298-b16 Eaton S (7600298-b15) 2000; 28 7600298-b9 Ibdah JA (7600298-b19) 1998; 102 Ishikawa M (7600298-b21) 1997; 328 7600298-b34 7600298-b14 Mathieu M (7600298-b28) 1994; 2 7600298-b36 7600298-b37 Smith S (7600298-b39) 1994; 8 Imamura S (7600298-b20) 1990; 107 DiRusso CC (7600298-b13) 1990; 172 Sato S (7600298-b38) 1992; 111 Stanley KK (7600298-b40) 1975; 150 Uchida Y (7600298-b42) 1992; 267 Nicholls A (7600298-b35) 1991; 11 Binstock JF (7600298-b7) 1977; 74 Barycki JJ (7600298-b3) 1999a; 8 7600298-b43 7600298-b22 Thompson JD (7600298-b41) 1994; 22 Carpenter K (7600298-b10) 1992; 183 Barycki JJ (7600298-b5) 2000; 275 7600298-b27 Engel CK (7600298-b17) 1996; 15 Merrit EA (7600298-b29) 1997; 277 de La Fortelle E (7600298-b12) 1997; 276 7600298-b23 7600298-b24 7600298-b25 7600298-b26 |
References_xml | – reference: Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11: 281-296 – reference: Yao KW, Schulz H (1996) Intermediate channeling on the trifunctional beta-oxidation complex from pig-heart mitochondria. J Biol Chem 271: 17816-17820 – reference: de La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276: 472-494 – reference: Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 297: 1171-1182 – reference: Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In The Metabolic and Molecular Bases of Inherited Disease, Scriver CR, Beaudet AL, Sly WS, Valle D (eds) 8 edn, Vol. 2, pp 2297-2326. New York: McGraw-Hill – reference: Agius L, Sherratt HSA (eds) (1997) Channelling in Intermediary Metabolism. London, UK: Portland Press Ltd – reference: DiRusso CC (1990) Primary sequence of the Escherichia coli fad BA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol 172: 6459-6468 – reference: Uchida Y, Izai K, Orii T, Hashimoto T (1992) Novel fatty acid β-oxidation enzymes in rat liver mitochondria. J Biol Chem 267: 1034-1041 – reference: Engel CK, Mathieu MJ, Zeelen P, Hiltunen JK, Wierenga RK (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 Å resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15: 5135-5145 – reference: Eaton S, Bartlett K, Pourfarzam M (1999) Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters. Biochim Biophys Acta 1437: 402-408 – reference: Leslie AGW (1991) Macromolecular data processing. In Crystal Computing V, Moras D, Pogjarny AD, Thierry JC (eds) pp 27-38. Oxford, UK: Oxford University Press – reference: Barycki JJ, O'Brien LK, Bratt JM, Zhang R, Sanishvili R, Strauss AW, Banaszak LJ (1999b) Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry 38: 5786-5798 – reference: Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2001) Glutamate 170 of human L-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem 276: 36718-36726 – reference: Liang X, Le W, Zhang D, Schulz H (2001) Impact of the intramitochondrial enzyme organization on fatty acid oxidation. Biochem Soc Trans 29: 279-282 – reference: Bahnson BJ, Anderson VE, Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41: 2621-2629 – reference: Eaton S, Bursby T, Middleton B, Pourfarzam M, Mills K, Johnson AW, Barlett K (2000) The mitochondrial trifunctional protein: centre of a β-oxidation metabolon? Biochem Soc Trans 28: 177-182 – reference: Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-325 – reference: Brink J, Ludtke SJ, Yang C-Y, Gu Z-W, Wakil SJ, Chiu W (2002) Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci USA 99: 138-143 – reference: Engel CK, Kiema TR, Hiltunen JK, Wierenga RK (1998) The crystal structure of enoyl-CoA hydratase complex with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol 275: 847-859 – reference: Kim J-JP, Battaile KP (2002) Burning fat: the structural basis of fatty acid β-oxidation. Curr Opin Struct Biol 12: 721-728 – reference: He Yang X-Y, Schulz H, Elzinga M, Yang S-Y (1991) Nucleotide sequence of the promoter and fadB gene of the fadBA operon and primary structure of the multifunctional fatty acid oxidation protein from Escherichia coli. Biochemistry 30: 6788-6795 – reference: Mathieu M, Modis Y, Zeelen JPh, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau W-H, Wierenga RK (1997) The 1.8 Å crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implication for substrate binding and reaction mechanism. J Mol Biol 273: 714-728 – reference: Conte LL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285: 2177-2198 – reference: Merrit EA, Bacon DJ (1997) Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol 277: 505-524 – reference: Ishikawa M, Mikami Y, Usukura J, Iwasaki H, Shinagawa H, Morikawa K (1997) Reconstitution, morphology and crystallization of a fatty acid β-oxidation multienzyme complex from Pseudomonas fragi. Biochem J 328: 815-820 – reference: Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7: 1279-1290 – reference: Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680 – reference: Smith S (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8: 1248-1259 – reference: Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ (2000) Sequestration of the active site by interdomain shifting. J Biol Chem 275: 27186-27196 – reference: Mathieu M, Zeelen JPh, Pauptit RA, Erdmann R, Kunau W-H, Wierenga RK (1994) The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2: 797-808 – reference: Sato S, Hayashi M, Imamura S, Ozeki Y, Kawaguchi A (1992) Primary structure of the genes, faoA and faoB, from Pseudomonas fragi B-0771 which encode the two subunits of the HDT multienzyme complex involved in fatty acid β-oxidation. J Biochem 111: 8-15 – reference: Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54: 905-921 – reference: Barycki JJ, O'Brien LK, Birktoft JJ, Strauss AW, Banaszak LJ (1999a) Pig heart short chain L-3-hydroxyacyl-CoA dehydrogenase revisited: sequence analysis and crystal structure determination. Protein Sci 8: 2010-2018 – reference: Imamura S, Ueda S, Mizugaki M, Kawaguchi A (1990) Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. J Biochem 107: 184-189 – reference: Nakahigashi K, Inokuchi H (1990) Nucleotide sequence of the fadA and fadB genes from Escherichia coli. Nucleic Acids Res 18: 4937 – reference: Ibdah JA, Tein I, Dionisi-Vici C, Bennett MJ, IJlst L, Gibson B, Wanders RJA, Strauss AW (1998) Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Invest 102: 1193-1199 – reference: Binstock JF, Pramanik A, Schulz H (1977) Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci USA 74: 492-495 – reference: Kunau W-H, Dommes V, Schulz H (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34: 267-342 – reference: Milne JLS, Shi D, Rosenthal PB, Sunshine JS, Domingo GJ, Wu X, Brooks BR, Perham RN, Henderson R, Subramaniam S (2002) Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. EMBO J 21: 5587-5598 – reference: Carpenter K, Pollitt RJ, Middleton B (1992) Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun 183: 443-448 – reference: Kraulis PE (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946-950 – reference: Stanley KK, Tubbs PK (1975) The role of intermediates in mitochondrial fatty acid oxidation. Biochem J 150: 77-88 – reference: Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50: 157-163 – volume: 183 start-page: 443 year: 1992 end-page: 448 article-title: Human liver long‐chain 3‐hydroxyacyl‐coenzyme A dehydrogenase is a multifunctional membrane‐bound beta‐oxidation enzyme of mitochondria publication-title: Biochem Biophys Res Commun – year: 1997 publication-title: Channelling in Intermediary Metabolism – volume: 11 start-page: 281 year: 1991 end-page: 296 article-title: Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons publication-title: Proteins Struct Funct Genet – volume: 107 start-page: 184 year: 1990 end-page: 189 article-title: Purification of the multienzyme complex for fatty acid oxidation from and reconstitution of the fatty acid oxidation system publication-title: J Biochem – volume: 267 start-page: 1034 year: 1992 end-page: 1041 article-title: Novel fatty acid β‐oxidation enzymes in rat liver mitochondria publication-title: J Biol Chem – volume: 276 start-page: 36718 year: 2001 end-page: 36726 article-title: Glutamate 170 of human ‐3‐hydroxyacyl‐CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme publication-title: J Biol Chem – volume: 74 start-page: 492 year: 1977 end-page: 495 article-title: Isolation of a multi‐enzyme complex of fatty acid oxidation from publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 177 year: 2000 end-page: 182 article-title: The mitochondrial trifunctional protein: centre of a β‐oxidation metabolon? publication-title: Biochem Soc Trans – volume: 12 start-page: 721 year: 2002 end-page: 728 article-title: Burning fat: the structural basis of fatty acid β‐oxidation publication-title: Curr Opin Struct Biol – volume: 328 start-page: 815 year: 1997 end-page: 820 article-title: Reconstitution, morphology and crystallization of a fatty acid β‐oxidation multienzyme complex from publication-title: Biochem J – volume: 111 start-page: 8 year: 1992 end-page: 15 article-title: Primary structure of the genes, and , from B‐0771 which encode the two subunits of the HDT multienzyme complex involved in fatty acid β‐oxidation publication-title: J Biochem – volume: 297 start-page: 1171 year: 2000 end-page: 1182 article-title: Crystallographic analysis of the reaction pathway of biosynthetic thiolase publication-title: J Mol Biol – start-page: 2297 year: 2001 end-page: 2326 article-title: Mitochondrial fatty acid oxidation disorders publication-title: The Metabolic and Molecular Bases of Inherited Disease – volume: 285 start-page: 2177 year: 1999 end-page: 2198 article-title: The atomic structure of protein–protein recognition sites publication-title: J Mol Biol – volume: 8 start-page: 1248 year: 1994 end-page: 1259 article-title: The animal fatty acid synthase: one gene, one polypeptide, seven enzymes publication-title: FASEB J – volume: 99 start-page: 138 year: 2002 end-page: 143 article-title: Quaternary structure of human fatty acid synthase by electron cryomicroscopy publication-title: Proc Natl Acad Sci USA – volume: 273 start-page: 714 year: 1997 end-page: 728 article-title: The 1.8 Å crystal structure of the dimeric peroxisomal 3‐ketoacyl‐CoA thiolase of : implication for substrate binding and reaction mechanism publication-title: J Mol Biol – volume: 275 start-page: 847 year: 1998 end-page: 859 article-title: The crystal structure of enoyl‐CoA hydratase complex with octanoyl‐CoA reveals the structural adaptations required for binding of a long chain fatty acid‐CoA molecule publication-title: J Mol Biol – volume: 22 start-page: 4673 year: 1994 end-page: 4680 article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res – volume: 172 start-page: 6459 year: 1990 end-page: 6468 article-title: Primary sequence of the operon, encoding the fatty acid‐oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes publication-title: J Bacteriol – volume: 38 start-page: 5786 year: 1999b end-page: 5798 article-title: Biochemical characterization and crystal structure determination of human heart short chain ‐3‐hydroxyacyl‐CoA dehydrogenase provide insights into catalytic mechanism publication-title: Biochemistry – volume: 1437 start-page: 402 year: 1999 end-page: 408 article-title: Intermediates of myocardial mitochondrial beta‐oxidation: possible channelling of NADH and of CoA esters publication-title: Biochim Biophys Acta – volume: 276 start-page: 472 year: 1997 end-page: 494 article-title: Maximum‐likelihood heavy‐atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods publication-title: Methods Enzymol – volume: 21 start-page: 5587 year: 2002 end-page: 5598 article-title: Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine publication-title: EMBO J – volume: 276 start-page: 307 year: 1997 end-page: 325 article-title: Processing of X‐ray diffraction data collected in oscillation mode publication-title: Methods Enzymol – volume: 15 start-page: 5135 year: 1996 end-page: 5145 article-title: Crystal structure of enoyl‐coenzyme A (CoA) hydratase at 2.5 Å resolution: a spiral fold defines the CoA‐binding pocket publication-title: EMBO J – volume: 54 start-page: 905 year: 1998 end-page: 921 article-title: Crystallography & NMR system: a new software suite for macromolecular structure determination publication-title: Acta Crystallogr D – volume: 2 start-page: 797 year: 1994 end-page: 808 article-title: The 2.8 Å crystal structure of peroxisomal 3‐ketoacyl‐CoA thiolase of : a five‐layered αβαβα structure constructed from two core domains of identical topology publication-title: Structure – volume: 29 start-page: 279 year: 2001 end-page: 282 article-title: Impact of the intramitochondrial enzyme organization on fatty acid oxidation publication-title: Biochem Soc Trans – volume: 275 start-page: 27186 year: 2000 end-page: 27196 article-title: Sequestration of the active site by interdomain shifting publication-title: J Biol Chem – volume: 50 start-page: 157 year: 1994 end-page: 163 article-title: AMoRe: an automated package for molecular replacement publication-title: Acta Crystallogr A – start-page: 27 year: 1991 end-page: 38 article-title: Macromolecular data processing publication-title: Crystal Computing V – volume: 24 start-page: 946 year: 1991 end-page: 950 article-title: MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures publication-title: J Appl Crystallogr – volume: 277 start-page: 505 year: 1997 end-page: 524 article-title: Raster3D version 2.0: a program for photorealistic molecular graphics publication-title: Methods Enzymol – volume: 41 start-page: 2621 year: 2002 end-page: 2629 article-title: Structural mechanism of enoyl‐CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion publication-title: Biochemistry – volume: 30 start-page: 6788 year: 1991 end-page: 6795 article-title: Nucleotide sequence of the promoter and gene of the operon and primary structure of the multifunctional fatty acid oxidation protein from publication-title: Biochemistry – volume: 102 start-page: 1193 year: 1998 end-page: 1199 article-title: Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype–phenotype correlation publication-title: J Clin Invest – volume: 271 start-page: 17816 year: 1996 end-page: 17820 article-title: Intermediate channeling on the trifunctional beta‐oxidation complex from pig‐heart mitochondria publication-title: J Biol Chem – volume: 34 start-page: 267 year: 1995 end-page: 342 article-title: β‐Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress publication-title: Prog Lipid Res – volume: 7 start-page: 1279 year: 1999 end-page: 1290 article-title: A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism publication-title: Structure – volume: 150 start-page: 77 year: 1975 end-page: 88 article-title: The role of intermediates in mitochondrial fatty acid oxidation publication-title: Biochem J – volume: 8 start-page: 2010 year: 1999a end-page: 2018 article-title: Pig heart short chain ‐3‐hydroxyacyl‐CoA dehydrogenase revisited: sequence analysis and crystal structure determination publication-title: Protein Sci – volume: 18 start-page: 4937 year: 1990 article-title: Nucleotide sequence of the and genes from publication-title: Nucleic Acids Res – ident: 7600298-b8 doi: 10.1073/pnas.012589499 – ident: 7600298-b14 doi: 10.1016/S1388-1981(99)00027-X – ident: 7600298-b1 – volume: 102 start-page: 1193 year: 1998 ident: 7600298-b19 publication-title: J Clin Invest doi: 10.1172/JCI2091 – ident: 7600298-b4 doi: 10.1021/bi9829027 – volume: 150 start-page: 77 year: 1975 ident: 7600298-b40 publication-title: Biochem J doi: 10.1042/bj1500077 – volume: 275 start-page: 27186 year: 2000 ident: 7600298-b5 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)61496-1 – ident: 7600298-b27 doi: 10.1006/jmbi.1997.1331 – ident: 7600298-b24 doi: 10.1016/0163-7827(95)00011-9 – volume: 2 start-page: 797 year: 1994 ident: 7600298-b28 publication-title: Structure doi: 10.1016/S0969-2126(94)00081-6 – ident: 7600298-b30 doi: 10.1093/emboj/cdf574 – ident: 7600298-b37 – ident: 7600298-b2 doi: 10.1021/bi015844p – volume: 277 start-page: 505 year: 1997 ident: 7600298-b29 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)77028-9 – ident: 7600298-b34 doi: 10.1107/S0108767393007597 – volume: 28 start-page: 177 year: 2000 ident: 7600298-b15 publication-title: Biochem Soc Trans doi: 10.1042/bst0280177 – volume: 183 start-page: 443 year: 1992 ident: 7600298-b10 publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(92)90501-B – ident: 7600298-b11 doi: 10.1006/jmbi.1998.2439 – volume: 172 start-page: 6459 year: 1990 ident: 7600298-b13 publication-title: J Bacteriol doi: 10.1128/jb.172.11.6459-6468.1990 – volume: 107 start-page: 184 year: 1990 ident: 7600298-b20 publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a123023 – volume: 22 start-page: 4673 year: 1994 ident: 7600298-b41 publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – ident: 7600298-b26 doi: 10.1042/0300-5127:0290279 – ident: 7600298-b31 doi: 10.1016/S0969-2126(00)80061-1 – volume: 8 start-page: 1248 year: 1994 ident: 7600298-b39 publication-title: FASEB J doi: 10.1096/fasebj.8.15.8001737 – volume: 111 start-page: 8 year: 1992 ident: 7600298-b38 publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a123722 – volume: 8 start-page: 2010 year: 1999a ident: 7600298-b3 publication-title: Protein Sci doi: 10.1110/ps.8.10.2010 – ident: 7600298-b6 doi: 10.1074/jbc.M104839200 – ident: 7600298-b43 doi: 10.1074/jbc.271.30.17816 – ident: 7600298-b9 doi: 10.1107/S0907444998003254 – volume: 328 start-page: 815 year: 1997 ident: 7600298-b21 publication-title: Biochem J doi: 10.1042/bj3280815 – ident: 7600298-b36 doi: 10.1016/S0962-8924(98)01382-8 – volume: 15 start-page: 5135 year: 1996 ident: 7600298-b17 publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00897.x – ident: 7600298-b25 – volume: 18 start-page: 4937 year: 1990 ident: 7600298-b33 publication-title: Nucleic Acids Res doi: 10.1093/nar/18.16.4937 – ident: 7600298-b16 doi: 10.1006/jmbi.1997.1491 – volume: 74 start-page: 492 year: 1977 ident: 7600298-b7 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.74.2.492 – ident: 7600298-b23 doi: 10.1107/S0021889891004399 – ident: 7600298-b32 doi: 10.1006/jmbi.2000.3638 – volume: 11 start-page: 281 year: 1991 ident: 7600298-b35 publication-title: Proteins Struct Funct Genet doi: 10.1002/prot.340110407 – volume: 267 start-page: 1034 year: 1992 ident: 7600298-b42 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)48391-3 – ident: 7600298-b22 doi: 10.1016/S0959-440X(02)00390-1 – volume: 276 start-page: 472 year: 1997 ident: 7600298-b12 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76073-7 – volume: 30 start-page: 6788 year: 1991 ident: 7600298-b18 publication-title: Biochemistry doi: 10.1021/bi00241a023 |
SSID | ssj0005871 |
Score | 2.1140373 |
Snippet | The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2745 |
SubjectTerms | 3-Hydroxyacyl CoA Dehydrogenases - chemistry 3-Hydroxyacyl CoA Dehydrogenases - genetics 3-Hydroxyacyl CoA Dehydrogenases - metabolism Acetyl-CoA C-Acyltransferase - chemistry Acetyl-CoA C-Acyltransferase - genetics Acetyl-CoA C-Acyltransferase - metabolism Adenosine Diphosphate - metabolism atomic structure Binding Sites Carbon-Carbon Double Bond Isomerases - chemistry Carbon-Carbon Double Bond Isomerases - metabolism channelling mechanism Crystallography, X-Ray domain rearrangement EMBO21 EMBO40 Enoyl-CoA Hydratase - chemistry Enoyl-CoA Hydratase - genetics Enoyl-CoA Hydratase - metabolism fatty acid β-oxidation Fatty Acids - metabolism Humans Mitochondrial Trifunctional Protein Models, Chemical Models, Molecular multienzyme complex Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Mutation Oxidation-Reduction Protein Structure, Secondary Protein Structure, Tertiary Racemases and Epimerases - chemistry Racemases and Epimerases - genetics Racemases and Epimerases - metabolism Substrate Specificity |
Title | Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex |
URI | https://api.istex.fr/ark:/67375/WNG-1T7KZJW1-L/fulltext.pdf https://link.springer.com/article/10.1038/sj.emboj.7600298 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fsj.emboj.7600298 https://www.ncbi.nlm.nih.gov/pubmed/15229654 https://www.proquest.com/docview/17820588 https://www.proquest.com/docview/66726337 https://pubmed.ncbi.nlm.nih.gov/PMC514956 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD7aViG4QTD-wk_xBUICKVuT-C-XXdUxFVYhtmkVErLsxBbt1hSRIrVc8Qg8Cw_CQ_Ak2E7SqRoMcZMfxYmd4xP7HJ8v3wF4pqmiqaFZqKxzEmKZsVBJmVpXxeS0g3OV-aWBwyE9OMGDERltQKf5F8aD9j2lpR-mG3TYbjnZ0VM1m-xUgSS-CS3OEuJ0ukd7F6AO7l0sv6qCI57WgclOwi89YW0iajmZLv5kZV4GS64ipuv2rJ-Q9m_BzdqSRN2q7bdhQxfbcK3KLbnchuu9JpXbHfhw5FliHcMGstPWuETWVEXun18HcrG1oKl2Z-NyimYGSWTkfL5EMhvn6OePX9--zxbjKvcS8gBEXXxdTjXycHS9uAsn-_3j3kFY51UIM0JiHvIYq4Rhk2rrayUqNrFmHZOSOGU5jzo6V5HOTcZYSrlRjpNP4sSaOVRLpfKUJPdgq5gV-gGgzI7bUY4VibQ1xXIsDccmVyRjmUw54QHsNkIWWU067nJfnAsf_E64KCfCd4uouyWAF6s7PlWEG1eUfe77bVVQfj5zQDVGxOnwlYiO2ev3g9NIvAngadOxworexURkoWdfShE5vkDC-d9LUMpimiQsgPuVIlw0y9quKSU4ALqmIqsCjrp7_Uox_ugpvIl3TAN42eiSqIeO8oqXjb22_VMqon-4N6iPH_5PDY_gRoVLYmEcPYYtq5r6iTW55qoNm2zE7Jb3oja0ut3B0cDu9_rDt-_a_gv8DVioMsg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD4ardC4QTD-wt98gZBAytYk_stlmTZK1_ZmnTYhIctObNFCU0SK1HLFI_AsPAgPwZNgO0mnajDEXaI4iXPOiX2Oz-fvADzTVNHU0CxUNjgJscxYqKRMbahictrBucr80sBwRHunuH9Ozreg0-yF8aB9T2nph-kGHbZfTvf0TM2ne1UiiV-DNnc0mC1od7v9k_4FrIP7IMuvq-CIp3VqspPwS8_YmIraTqrLP_mZl-GS65zppkfrp6SjW3Cz9iVRt-r9bdjSxQ5cr6pLrnZg-6Ap5nYH3p14nljHsYHsxDUpkXVWkdv162Au9i1opt3ZpJyhuUESGblYrJDMJjn6-ePXt-_z5aSqvoQ8BFEXX1czjTwgXS_vwunR4figF9aVFcKMkJiHPMYqYdik2kZbiYpNrFnHpCROWc6jjs5VpHOTMZZSbpRj5ZM4sY4O1VKpPCXJPWgV80I_AJTZkTvKsSKRts5YjqXh2OSKZCyTKSc8gP1GyCKracdd9YuPwqe_Ey7KqfBqEbVaAnixvuNTRblxRdvnXm_rhvLzBwdVY0ScjV6LaMyO3_bPIjEIYLdRrLCid1kRWej5l1JEjjGQcP73FpSymCYJC-B-ZQgX3bLea0oJDoBumMi6gSPv3rxSTN57Em_iQ9MAXja2JOrBo7ziY2Nvbf-UijgcvurXxw__5w27sN0bDwdi8GZ0_AhuVCglFsbRY2hZM9VPrAO2UE_rf-43YjcyOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELWgFZcXBOUWbvUDQgIp203i6yMsXcq2XSHRqhUSsuzYFlnYpCKLtMsTn8C38CF8BF-C7SRbrQpFvCXKJHHsiWfGc3wGgMeGKMItyWPlgpMYyZzGSkruQhWrSR9plYelgf0x2TlEo2N83G4Kq1tYZUNpGabpDh22VU96ZqqqSa9JJLHeibYXwTpzBtGHXAMyOAV2sBBmhZUVlDDeJif7GTvzlBVjtO77df4nT_MsYHKZNV31aYNRGl4H11pvEj5v2n8DXDDlBrjU1JdcbIArg66c203w_m1givUsG9CZrqKGzl2Fft-vB7q4t8Cp8WdFPYWVhRJaOZstoMwLDX_--PXtezUvmvpLMIAQTfl1MTUwQNLN_BY4HG4fDHbitrZCnGOcspilSGUUWW5cvJWp1KaG9i3HKaeaJX2jVWK0zSnlhFnlefkkypyrQ4xUSnOc3QZrZVWauwDmbu5ONFI4Mc4d00hahqxWOKe55AyzCGx1nSzylnjc17_4JEICPGOinogwLKIdlgg8Xd5x0pBunCP7JIzbUlB-_ujBahSLo_ErkRzQ3Xejo0TsRWCzG1jhut7nRWRpqi-1SDxnIGbs7xKE0JRkGY3AnUYRTpvl_FdOMIoAWVGRpYCn7169UhYfAo03DsFpBJ51uiTa6aM-52PToG3_7BWxvf9i1B7f-583bILLb14Oxd7r8e59cLWBKdE4TR6ANael5qHzwGbqUfjhfgOSWzHm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+channelling+mechanism+of+a+fatty+acid+beta-oxidation+multienzyme+complex&rft.jtitle=The+EMBO+journal&rft.au=Ishikawa%2C+Momoyo&rft.au=Tsuchiya%2C+Daisuke&rft.au=Oyama%2C+Takuji&rft.au=Tsunaka%2C+Yasuo&rft.date=2004-07-21&rft.issn=0261-4189&rft.volume=23&rft.issue=14&rft.spage=2745&rft_id=info:doi/10.1038%2Fsj.emboj.7600298&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |