Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle

Key points Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are conta...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 592; no. 6; pp. 1341 - 1352
Main Authors Herbst, E. A. F., Paglialunga, S., Gerling, C., Whitfield, J., Mukai, K., Chabowski, A., Heigenhauser, G. J. F., Spriet, L. L., Holloway, G. P.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.03.2014
Blackwell publishing Ltd
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/jphysiol.2013.267336

Cover

Abstract Key points Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are contained in the mitochondrial membrane, omega‐3 supplementation may alter metabolic function. We supplemented male participants for 12 weeks with fish oil [eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] and analysed mitochondrial function and reactive oxygen species (ROS) emissions in permeabilized muscle fibres from the vastus lateralis muscle. Supplementation incorporated EPA and DHA into mitochondrial membranes, but did not result in changes in maximal mitochondrial respiratory function or pyruvate respiration kinetics. However, the apparent Km for ADP was decreased following supplementation, and was independent of creatine, changes in the protein content of ADP synthase or ANT transporters. The propensity for ROS emissions increased with omega‐3 supplementation, although there were no changes in markers of lipid or protein oxidative damage. These results demonstrate that omega‐3 supplementation improves mitochondrial ADP kinetics, suggesting post‐translational modification of existing proteins. Studies have shown increased incorporation of omega‐3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega‐6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate‐supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate‐supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega‐3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post‐translational modification of ATP synthase and ANT isoforms. Omega‐3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega‐3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.
AbstractList Key points Following fish oil supplementation, omega-3 fatty acids are incorporated into cellular membranes, which may affect lipid-protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are contained in the mitochondrial membrane, omega-3 supplementation may alter metabolic function. We supplemented male participants for 12 weeks with fish oil [eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] and analysed mitochondrial function and reactive oxygen species (ROS) emissions in permeabilized muscle fibres from the vastus lateralis muscle. Supplementation incorporated EPA and DHA into mitochondrial membranes, but did not result in changes in maximal mitochondrial respiratory function or pyruvate respiration kinetics. However, the apparent Km for ADP was decreased following supplementation, and was independent of creatine, changes in the protein content of ADP synthase or ANT transporters. The propensity for ROS emissions increased with omega-3 supplementation, although there were no changes in markers of lipid or protein oxidative damage. These results demonstrate that omega-3 supplementation improves mitochondrial ADP kinetics, suggesting post-translational modification of existing proteins. Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) 450 and 320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. [PUBLICATION ABSTRACT]
Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.
Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.
Key points Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are contained in the mitochondrial membrane, omega‐3 supplementation may alter metabolic function. We supplemented male participants for 12 weeks with fish oil [eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] and analysed mitochondrial function and reactive oxygen species (ROS) emissions in permeabilized muscle fibres from the vastus lateralis muscle. Supplementation incorporated EPA and DHA into mitochondrial membranes, but did not result in changes in maximal mitochondrial respiratory function or pyruvate respiration kinetics. However, the apparent Km for ADP was decreased following supplementation, and was independent of creatine, changes in the protein content of ADP synthase or ANT transporters. The propensity for ROS emissions increased with omega‐3 supplementation, although there were no changes in markers of lipid or protein oxidative damage. These results demonstrate that omega‐3 supplementation improves mitochondrial ADP kinetics, suggesting post‐translational modification of existing proteins. Studies have shown increased incorporation of omega‐3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega‐6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate‐supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate‐supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega‐3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post‐translational modification of ATP synthase and ANT isoforms. Omega‐3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega‐3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.
Author Holloway, G. P.
Herbst, E. A. F.
Chabowski, A.
Paglialunga, S.
Mukai, K.
Heigenhauser, G. J. F.
Gerling, C.
Whitfield, J.
Spriet, L. L.
Author_xml – sequence: 1
  givenname: E. A. F.
  surname: Herbst
  fullname: Herbst, E. A. F.
  organization: University of Guelph
– sequence: 2
  givenname: S.
  surname: Paglialunga
  fullname: Paglialunga, S.
  organization: University of Guelph
– sequence: 3
  givenname: C.
  surname: Gerling
  fullname: Gerling, C.
  organization: University of Guelph
– sequence: 4
  givenname: J.
  surname: Whitfield
  fullname: Whitfield, J.
  organization: University of Guelph
– sequence: 5
  givenname: K.
  surname: Mukai
  fullname: Mukai, K.
  organization: University of Guelph
– sequence: 6
  givenname: A.
  surname: Chabowski
  fullname: Chabowski, A.
  organization: Medical University of Bialystok
– sequence: 7
  givenname: G. J. F.
  surname: Heigenhauser
  fullname: Heigenhauser, G. J. F.
  organization: McMaster University
– sequence: 8
  givenname: L. L.
  surname: Spriet
  fullname: Spriet, L. L.
  organization: University of Guelph
– sequence: 9
  givenname: G. P.
  surname: Holloway
  fullname: Holloway, G. P.
  organization: University of Guelph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24396061$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUQC1URKeFP0AoEhs2GfyI7ZgFEqp4qlJZlLXlce50PHXsYCdUs-sn9Bv5EjxKy6Mbusoi51zde3yEDkIMgNBzgpeEEPZ6O2x22UW_pJiwJRWSMfEILUgjVC2lYgdogTGlNZOcHKKjnLe4gFipJ-iQNkwJLMgCTWc9XJif1zesytMweOghjGZ0MVTGj5By1bsx2k0MXXLGVz30q2QCVDb2Q8xuJkNXJciDS7N56QKMzubKhWoz9SZU-RI8jHt_ytbDU_R4bXyGZ7ffY_Ttw_vzk0_16dnHzyfvTmvLOZV1x1phW04sw1J1pCl3t2xlZGuwtA00Fq_aljdKUdaBXVvOKOYCQFm7lrQV7Bjxee4UBrO7Mt7rIbnepJ0mWO8z6ruMep9RzxmL93b2hmnVQ2dLk2T-uNE4_e-f4Db6Iv7QJSvBipQBr24HpPh9gjzq3mUL3pd0ccqacNw2VHCOC_ryHrqNUwoly54qZxBKaaFe_L3R71XuXrIAb2bApphzgrW2bn7IsqDz_7u3uSc_MJOatSvnYfcgR59_-SpwI9kvEyHeKg
CODEN JPHYA7
CitedBy_id crossref_primary_10_3389_fnut_2023_1214684
crossref_primary_10_3389_fphys_2020_00563
crossref_primary_10_2337_db15_1661
crossref_primary_10_46940_ssmrj_01_1002
crossref_primary_10_1039_D2CC01487D
crossref_primary_10_1139_apnm_2015_0192
crossref_primary_10_1096_fj_201801857RRR
crossref_primary_10_1016_j_arres_2024_100100
crossref_primary_10_3390_nu8010027
crossref_primary_10_1093_advances_nmy007
crossref_primary_10_1152_ajpregu_00025_2018
crossref_primary_10_1038_srep41648
crossref_primary_10_1194_jlr_M077321
crossref_primary_10_1085_jgp_201611620
crossref_primary_10_1002_ana_26296
crossref_primary_10_1016_j_mam_2024_101322
crossref_primary_10_1113_jphysiol_2014_285379
crossref_primary_10_1074_jbc_M117_806786
crossref_primary_10_1186_s12916_020_01749_w
crossref_primary_10_1016_j_celrep_2018_02_069
crossref_primary_10_3390_ijms24097991
crossref_primary_10_1016_j_freeradbiomed_2016_12_005
crossref_primary_10_3390_jcm12247747
crossref_primary_10_1007_s40279_024_02072_7
crossref_primary_10_1186_s12970_020_00385_2
crossref_primary_10_18632_aging_101210
crossref_primary_10_1016_j_bbapap_2018_11_005
crossref_primary_10_1155_2018_8261432
crossref_primary_10_3390_ijms22157958
crossref_primary_10_1139_apnm_2016_0501
crossref_primary_10_1249_MSS_0000000000001321
crossref_primary_10_14814_phy2_14526
crossref_primary_10_1139_apnm_2016_0585
crossref_primary_10_1002_hep_32647
crossref_primary_10_1111_acel_12352
crossref_primary_10_14814_phy2_14408
crossref_primary_10_34133_research_0006
crossref_primary_10_1155_2022_9394356
crossref_primary_10_1038_s42003_024_06298_z
crossref_primary_10_7600_jpfsm_7_261
crossref_primary_10_1080_15548627_2020_1782034
crossref_primary_10_1007_s00125_015_3531_x
crossref_primary_10_1016_j_tem_2016_05_007
crossref_primary_10_1002_mnfr_201800813
crossref_primary_10_3390_md13116977
crossref_primary_10_1152_ajpendo_00438_2015
crossref_primary_10_3390_antiox5010007
crossref_primary_10_1007_s12017_020_08639_7
crossref_primary_10_3233_JAD_200252
crossref_primary_10_3390_nu15143108
crossref_primary_10_1016_j_plefa_2018_07_006
crossref_primary_10_1097_MCO_0000000000000441
crossref_primary_10_3390_life14101315
crossref_primary_10_1021_acsanm_3c04959
crossref_primary_10_1017_S0029665123004834
crossref_primary_10_2337_dc14_3101
crossref_primary_10_1177_0884533617691250
crossref_primary_10_1113_JP278920
crossref_primary_10_1016_j_plefa_2024_102651
crossref_primary_10_1371_journal_pone_0144828
crossref_primary_10_1016_j_metabol_2022_155242
crossref_primary_10_3389_fnut_2019_00144
crossref_primary_10_1093_gerona_glz141
crossref_primary_10_3390_nu9101100
crossref_primary_10_3390_md21070399
crossref_primary_10_1016_j_biopsych_2017_08_007
crossref_primary_10_1024_0300_9831_a000664
crossref_primary_10_1093_advances_nmaa050
crossref_primary_10_1096_fj_201900095R
crossref_primary_10_1038_s41598_021_95590_7
crossref_primary_10_3390_antiox12061163
crossref_primary_10_1155_2015_187849
crossref_primary_10_3389_fphys_2015_00426
crossref_primary_10_1016_j_schres_2022_08_027
crossref_primary_10_1093_nutrit_nuae055
crossref_primary_10_3390_diseases4010014
crossref_primary_10_3390_antibiotics11070932
crossref_primary_10_1038_s41598_020_58668_2
crossref_primary_10_3389_fphys_2019_00348
crossref_primary_10_1007_s40279_017_0693_3
crossref_primary_10_1016_j_mam_2018_04_001
crossref_primary_10_1113_jphysiol_2014_272419
crossref_primary_10_1152_ajpregu_00249_2020
crossref_primary_10_1152_ajpendo_00028_2020
crossref_primary_10_1016_j_scitotenv_2018_01_276
crossref_primary_10_3390_cells11071216
crossref_primary_10_3390_nu8060329
crossref_primary_10_1152_ajpregu_00196_2022
crossref_primary_10_1093_jn_nxac084
crossref_primary_10_1097_XEB_0000000000000056
crossref_primary_10_1042_BCJ20160373
crossref_primary_10_1038_s12276_023_01071_4
crossref_primary_10_1152_ajpregu_00003_2015
crossref_primary_10_1016_j_metabol_2015_07_002
crossref_primary_10_1080_10408398_2020_1828812
crossref_primary_10_1016_j_plefa_2014_03_001
crossref_primary_10_1016_j_bbalip_2014_08_003
crossref_primary_10_1242_jeb_126623
crossref_primary_10_3390_nu16172914
crossref_primary_10_1016_j_marenvres_2020_105205
crossref_primary_10_1152_ajpregu_00346_2016
crossref_primary_10_14814_phy2_12785
crossref_primary_10_1016_j_clnu_2022_04_007
crossref_primary_10_1139_apnm_2019_0581
crossref_primary_10_1371_journal_pone_0208048
crossref_primary_10_1097_MCO_0000000000000333
crossref_primary_10_3390_md16110453
crossref_primary_10_1007_s00125_017_4456_3
crossref_primary_10_2337_db14_1838
crossref_primary_10_3389_fmolb_2021_772174
crossref_primary_10_1042_BCJ20180419
crossref_primary_10_1152_ajpendo_00088_2019
crossref_primary_10_1186_s13102_021_00266_4
crossref_primary_10_1007_s40122_024_00641_2
crossref_primary_10_3390_antiox12081628
crossref_primary_10_1139_apnm_2014_0049
crossref_primary_10_1038_ejcn_2014_277
crossref_primary_10_1152_ajpendo_00468_2014
crossref_primary_10_1038_s41581_021_00488_2
crossref_primary_10_1111_ele_13771
crossref_primary_10_1097_ACI_0000000000000805
crossref_primary_10_1113_JP270844
crossref_primary_10_1159_000486553
crossref_primary_10_1007_s40279_021_01509_7
crossref_primary_10_1042_BCJ20160913
crossref_primary_10_3389_fnut_2024_1452768
crossref_primary_10_3390_ijms241512486
crossref_primary_10_1002_rmb2_12403
crossref_primary_10_1080_07315724_2021_1886196
crossref_primary_10_1002_1873_3468_12825
crossref_primary_10_1016_j_jff_2019_03_022
crossref_primary_10_1152_japplphysiol_00878_2019
crossref_primary_10_1007_s42978_019_00037_1
crossref_primary_10_3390_nu12072057
crossref_primary_10_1016_j_chc_2022_03_002
crossref_primary_10_3390_genes12020192
crossref_primary_10_1080_17461391_2014_950345
crossref_primary_10_1016_j_cell_2024_01_030
crossref_primary_10_1016_j_jff_2018_12_016
crossref_primary_10_3390_antiox13020161
Cites_doi 10.1194/jlr.M600551-JLR200
10.1017/S0007114510002928
10.1007/s11745-004-1317-0
10.1007/s00232-012-9426-6
10.1016/S0899-9007(02)00812-2
10.2527/jas.2006-031
10.1096/fj.03-1065fje
10.1016/j.bbamem.2011.12.034
10.1016/S0014-5793(00)01083-8
10.1194/jlr.D002857
10.1079/BJN2003964
10.1016/S0021-9258(18)61852-6
10.1093/jn/118.3.290
10.3390/ijms12129296
10.1113/jphysiol.2012.234682
10.1113/jphysiol.2013.259226
10.1371/journal.pone.0034402
10.1371/journal.pone.0055660
10.1093/ajcn/76.6.1222
10.1042/BJ20110366
10.1155/2012/395757
10.1152/ajpendo.00584.2012
10.1152/japplphysiol.01082.2010
10.1159/000177221
10.1074/jbc.M400566200
10.1056/NEJM199301283280404
10.1097/FJC.0b013e31819b5461
10.1097/FJC.0b013e3181911913
10.1161/01.CIR.0000015604.88808.74
10.1016/S0005-2728(99)00041-9
10.1093/cvr/cvs118
10.1172/JCI37048
ContentType Journal Article
Copyright 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
2014 The Physiological Society
2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014
Copyright_xml – notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
– notice: 2014 The Physiological Society
– notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1113/jphysiol.2013.267336
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 1352
ExternalDocumentID oai:pubmedcentral.nih.gov:3961091
PMC3961091
3246269051
24396061
10_1113_jphysiol_2013_267336
TJP6047
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: N N401 292739
– fundername: NSERC
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
0YM
10A
123
18M
1OC
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGYGG
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
.55
.GJ
31~
3EH
3O-
AAYJJ
ABUFD
ADTOC
ADXHL
AFFNX
AGHNM
C1A
CAG
CHEAL
COF
FA8
H13
HF~
H~9
MVM
NEJ
OHT
UKR
UNPAY
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
ID FETCH-LOGICAL-c5527-d386c851c3079d1411183ba78a07c4e4c0b88549923decfc532056ee9ccf72863
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Sun Oct 26 04:06:01 EDT 2025
Tue Sep 30 16:58:54 EDT 2025
Thu Oct 02 11:13:09 EDT 2025
Fri Jul 25 12:13:43 EDT 2025
Thu Apr 03 07:03:33 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Wed Oct 01 05:05:58 EDT 2025
Sun Sep 21 06:26:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5527-d386c851c3079d1411183ba78a07c4e4c0b88549923decfc532056ee9ccf72863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3961091
PMID 24396061
PQID 1507281222
PQPubID 1086388
PageCount 12
ParticipantIDs unpaywall_primary_10_1113_jphysiol_2013_267336
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3961091
proquest_miscellaneous_1508426550
proquest_journals_1507281222
pubmed_primary_24396061
crossref_citationtrail_10_1113_jphysiol_2013_267336
crossref_primary_10_1113_jphysiol_2013_267336
wiley_primary_10_1113_jphysiol_2013_267336_TJP6047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 March 2014
PublicationDateYYYYMMDD 2014-03-15
PublicationDate_xml – month: 03
  year: 2014
  text: 15 March 2014
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Oxford, UK
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2014
Publisher Wiley Subscription Services, Inc
Blackwell publishing Ltd
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Blackwell publishing Ltd
References 2012; 2012
2011; 437
2002; 18
1993; 328
2012; 245
1986; 30
2010; 104
2002; 76
2013; 304
1971; 246
2011; 12
2008; 52
2009; 119
2013; 8
2011; 110
2012; 94
2012; 590
2003; 90
2004; 279
2009; 53
2006; 84
2004; 18
1999; 1411
2000; 468
2004; 39
2002; 105
2012; 1818
2013; 591
2012; 7
1988; 118
2010; 51
2007; 48
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
21088205 - J Appl Physiol (1985). 2011 Mar;110(3):820-5
3351630 - J Nutr. 1988 Mar;118(3):290-6
22411972 - Cardiovasc Res. 2012 Jun 1;94(3):460-8
19276988 - J Cardiovasc Pharmacol. 2009 Apr;53(4):290-301
22244843 - Biochim Biophys Acta. 2012 Jun;1818(6):1545-54
12010914 - Circulation. 2002 May 14;105(19):2303-8
16971584 - J Anim Sci. 2006 Oct;84(10):2818-25
17426348 - J Lipid Res. 2007 Jul;48(7):1559-70
15132977 - FASEB J. 2004 Jul;18(10):1144-6
23383258 - PLoS One. 2013;8(1):e55660
21554250 - Biochem J. 2011 Jul 15;437(2):215-22
3789659 - Ann Nutr Metab. 1986;30(6):393-406
22527602 - J Membr Biol. 2012 Apr;245(4):165-76
19188683 - J Clin Invest. 2009 Mar;119(3):573-81
22907058 - J Physiol. 2012 Nov 1;590(Pt 21):5475-86
19034030 - J Cardiovasc Pharmacol. 2008 Dec;52(6):540-7
15691017 - Lipids. 2004 Oct;39(10):955-61
12093443 - Nutrition. 2002 Jul-Aug;18(7-8):627-30
22479624 - PLoS One. 2012;7(3):e34402
20691135 - Br J Nutr. 2010 Dec;104(12):1771-9
15161924 - J Biol Chem. 2004 Aug 27;279(35):36235-41
22272134 - Int J Mol Sci. 2011;12(12):9296-331
24786151 - J Physiol. 2014 May 1;592(9):1913-4
19965604 - J Lipid Res. 2010 Apr;51(4):856-65
10683429 - FEBS Lett. 2000 Feb 18;468(1):1-5
22523671 - J Nutr Metab. 2012;2012:395757
23632634 - Am J Physiol Endocrinol Metab. 2013 Jun 15;304(12):E1391-403
24081154 - J Physiol. 2013 Dec 1;591(23):6089-101
5096085 - J Biol Chem. 1971 Sep 25;246(18):5617-20
10216165 - Biochim Biophys Acta. 1999 Apr 21;1411(1):192-200
12450886 - Am J Clin Nutr. 2002 Dec;76(6):1222-9
13129446 - Br J Nutr. 2003 Oct;90(4):777-86
8418404 - N Engl J Med. 1993 Jan 28;328(4):238-44
References_xml – volume: 328
  start-page: 238
  year: 1993
  end-page: 244
  article-title: The relation between insulin sensitivity and the fatty‐acid composition of skeletal‐muscle phospholipids
  publication-title: N Engl J Med
– volume: 39
  start-page: 955
  year: 2004
  end-page: 961
  article-title: Dietary fish oil dose‐ and time‐response effects on cardiac phospholipid fatty acid composition
  publication-title: Lipids
– volume: 104
  start-page: 1771
  year: 2010
  end-page: 1779
  article-title: Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb
  publication-title: Br J Nutr
– volume: 8
  start-page: e55660
  year: 2013
  article-title: Over‐expressing mitofusin‐2 in healthy mature mammalian skeletal muscle does not alter mitochondrial bioenergetics
  publication-title: PLoS One
– volume: 1411
  start-page: 192
  year: 1999
  end-page: 200
  article-title: Thyroid hormone status and membrane ‐3 fatty acid content influence mitochondrial proton leak
  publication-title: Biochim Biophys Acta
– volume: 48
  start-page: 1559
  year: 2007
  end-page: 1570
  article-title: Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure
  publication-title: J Lipid Res
– volume: 279
  start-page: 36235
  year: 2004
  end-page: 36241
  article-title: A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria
  publication-title: J Biol Chem
– volume: 2012
  start-page: 395757
  year: 2012
  article-title: High physiological omega‐3 fatty acid supplementation affects muscle fatty acid composition and glucose and insulin homeostasis in obese adolescents
  publication-title: J Nutr Metab
– volume: 1818
  start-page: 1545
  year: 2012
  end-page: 1554
  article-title: Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within mitochondrial interactosome
  publication-title: Biochim Biophys Acta
– volume: 245
  start-page: 165
  year: 2012
  end-page: 176
  article-title: Unsaturation of mitochondrial membrane lipids is related to palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria
  publication-title: J Membr Biol
– volume: 468
  start-page: 1
  year: 2000
  end-page: 5
  article-title: Secondary carnitine deficiency and impaired docosahexaenoic (22:6 ‐3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and β‐oxidation
  publication-title: FEBS Lett
– volume: 53
  start-page: 290
  year: 2009
  end-page: 301
  article-title: Cardiolipin remodeling in the heart
  publication-title: J Cardiovasc Pharmacol
– volume: 105
  start-page: 2303
  year: 2002
  end-page: 2308
  article-title: Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function
  publication-title: Circulation
– volume: 591
  start-page: 6089
  year: 2013
  end-page: 6101
  article-title: Submaximal ADP‐stimulated respiration is impaired in ZDF rats and recovered by resveratrol
  publication-title: J Physiol
– volume: 110
  start-page: 820
  year: 2011
  end-page: 825
  article-title: Enhanced technique to measure proteins in single segments of human skeletal muscle fibers: fibre‐type dependence of AMPK‐α and ‐β
  publication-title: J Appl Physiol
– volume: 590
  start-page: 5475
  year: 2012
  end-page: 5486
  article-title: Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle
  publication-title: J Physiol
– volume: 12
  start-page: 9296
  year: 2011
  end-page: 9331
  article-title: Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes computer modelling
  publication-title: Int J Mol Sci
– volume: 304
  start-page: E1391
  year: 2013
  end-page: 1403
  article-title: Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high‐fat diet
  publication-title: Am J Physiol Endocrinol Metab
– volume: 84
  start-page: 2818
  year: 2006
  end-page: 2825
  article-title: Mitochondrial phospholipids of rat skeletal muscle are less polyunsaturated than whole tissue phospholipids: implications for protection against oxidative stress
  publication-title: J Anim Sci
– volume: 18
  start-page: 1144
  year: 2004
  end-page: 1146
  article-title: Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36
  publication-title: FASEB J
– volume: 18
  start-page: 627
  year: 2002
  end-page: 630
  article-title: Fatty acid compositions of serum phospholipids of postmenopausal women: a comparison between Greenland Inuit and Canadians before and after supplementation with fish oil
  publication-title: Nutrition
– volume: 118
  start-page: 290
  year: 1988
  end-page: 296
  article-title: Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil
  publication-title: J Nutr
– volume: 119
  start-page: 573
  year: 2009
  end-page: 581
  article-title: Mitochondrial H O emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
  publication-title: J Clin Invest
– volume: 7
  start-page: e34402
  year: 2012
  article-title: Improved mitochondrial function with diet‐induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids
  publication-title: PLoS One
– volume: 246
  start-page: 5617
  year: 1971
  end-page: 5620
  article-title: Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum, and mitochondria from rat skeletal muscle
  publication-title: J Biol Chem
– volume: 94
  start-page: 460
  year: 2012
  end-page: 468
  article-title: Dietary linoleate preserves cardiolipin and attenuates mitochondrial dysfunction in the failing rat heart
  publication-title: Cardiovasc Res
– volume: 30
  start-page: 393
  year: 1986
  end-page: 406
  article-title: Comparative changes in the fatty‐acid composition of rat cardiac phospholipids after long‐term feeding of sunflower seed oil‐ or tuna fish oil‐supplemented diets
  publication-title: Ann Nutr Metab
– volume: 437
  start-page: 215
  year: 2011
  end-page: 222
  article-title: Inhibiting myosin‐ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle
  publication-title: Biochem J
– volume: 90
  start-page: 777
  year: 2003
  end-page: 786
  article-title: Fish‐oil supplementation reduces stimulation of plasma glucose fluxes during exercise in untrained males
  publication-title: Br J Nutr
– volume: 52
  start-page: 540
  year: 2008
  end-page: 547
  article-title: Fish oil reduces heart rate and oxygen consumption during exercise
  publication-title: J Cardiovasc Pharmacol
– volume: 51
  start-page: 856
  year: 2010
  end-page: 865
  article-title: Separation and characterization of cardiolipin molecular species by reverse‐phase ion pair high‐performance liquid chromatography‐mass spectrometry
  publication-title: J Lipid Res
– volume: 76
  start-page: 1222
  year: 2002
  end-page: 1229
  article-title: Fatty acid composition of skeletal muscle reflects dietary fat composition in humans
  publication-title: Am J Clin Nutr
– ident: e_1_2_6_29_1
  doi: 10.1194/jlr.M600551-JLR200
– ident: e_1_2_6_23_1
  doi: 10.1017/S0007114510002928
– ident: e_1_2_6_21_1
  doi: 10.1007/s11745-004-1317-0
– ident: e_1_2_6_13_1
  doi: 10.1007/s00232-012-9426-6
– ident: e_1_2_6_31_1
  doi: 10.1016/S0899-9007(02)00812-2
– ident: e_1_2_6_32_1
  doi: 10.2527/jas.2006-031
– ident: e_1_2_6_5_1
  doi: 10.1096/fj.03-1065fje
– ident: e_1_2_6_12_1
  doi: 10.1016/j.bbamem.2011.12.034
– ident: e_1_2_6_14_1
  doi: 10.1016/S0014-5793(00)01083-8
– ident: e_1_2_6_18_1
  doi: 10.1194/jlr.D002857
– ident: e_1_2_6_10_1
  doi: 10.1079/BJN2003964
– ident: e_1_2_6_11_1
  doi: 10.1016/S0021-9258(18)61852-6
– ident: e_1_2_6_33_1
  doi: 10.1093/jn/118.3.290
– ident: e_1_2_6_2_1
  doi: 10.3390/ijms12129296
– ident: e_1_2_6_26_1
  doi: 10.1113/jphysiol.2012.234682
– ident: e_1_2_6_28_1
  doi: 10.1113/jphysiol.2013.259226
– ident: e_1_2_6_15_1
  doi: 10.1371/journal.pone.0034402
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pone.0055660
– ident: e_1_2_6_4_1
  doi: 10.1093/ajcn/76.6.1222
– ident: e_1_2_6_27_1
  doi: 10.1042/BJ20110366
– ident: e_1_2_6_9_1
  doi: 10.1155/2012/395757
– ident: e_1_2_6_17_1
  doi: 10.1152/ajpendo.00584.2012
– ident: e_1_2_6_20_1
  doi: 10.1152/japplphysiol.01082.2010
– ident: e_1_2_6_8_1
  doi: 10.1159/000177221
– ident: e_1_2_6_7_1
  doi: 10.1074/jbc.M400566200
– ident: e_1_2_6_6_1
  doi: 10.1056/NEJM199301283280404
– ident: e_1_2_6_30_1
  doi: 10.1097/FJC.0b013e31819b5461
– ident: e_1_2_6_24_1
  doi: 10.1097/FJC.0b013e3181911913
– ident: e_1_2_6_25_1
  doi: 10.1161/01.CIR.0000015604.88808.74
– ident: e_1_2_6_22_1
  doi: 10.1016/S0005-2728(99)00041-9
– ident: e_1_2_6_19_1
  doi: 10.1093/cvr/cvs118
– ident: e_1_2_6_3_1
  doi: 10.1172/JCI37048
– reference: 22411972 - Cardiovasc Res. 2012 Jun 1;94(3):460-8
– reference: 16971584 - J Anim Sci. 2006 Oct;84(10):2818-25
– reference: 3789659 - Ann Nutr Metab. 1986;30(6):393-406
– reference: 24081154 - J Physiol. 2013 Dec 1;591(23):6089-101
– reference: 15132977 - FASEB J. 2004 Jul;18(10):1144-6
– reference: 19188683 - J Clin Invest. 2009 Mar;119(3):573-81
– reference: 8418404 - N Engl J Med. 1993 Jan 28;328(4):238-44
– reference: 13129446 - Br J Nutr. 2003 Oct;90(4):777-86
– reference: 19276988 - J Cardiovasc Pharmacol. 2009 Apr;53(4):290-301
– reference: 10216165 - Biochim Biophys Acta. 1999 Apr 21;1411(1):192-200
– reference: 12093443 - Nutrition. 2002 Jul-Aug;18(7-8):627-30
– reference: 10683429 - FEBS Lett. 2000 Feb 18;468(1):1-5
– reference: 23383258 - PLoS One. 2013;8(1):e55660
– reference: 23632634 - Am J Physiol Endocrinol Metab. 2013 Jun 15;304(12):E1391-403
– reference: 3351630 - J Nutr. 1988 Mar;118(3):290-6
– reference: 12450886 - Am J Clin Nutr. 2002 Dec;76(6):1222-9
– reference: 21088205 - J Appl Physiol (1985). 2011 Mar;110(3):820-5
– reference: 22479624 - PLoS One. 2012;7(3):e34402
– reference: 15161924 - J Biol Chem. 2004 Aug 27;279(35):36235-41
– reference: 19965604 - J Lipid Res. 2010 Apr;51(4):856-65
– reference: 24786151 - J Physiol. 2014 May 1;592(9):1913-4
– reference: 22907058 - J Physiol. 2012 Nov 1;590(Pt 21):5475-86
– reference: 22523671 - J Nutr Metab. 2012;2012:395757
– reference: 17426348 - J Lipid Res. 2007 Jul;48(7):1559-70
– reference: 19034030 - J Cardiovasc Pharmacol. 2008 Dec;52(6):540-7
– reference: 20691135 - Br J Nutr. 2010 Dec;104(12):1771-9
– reference: 22244843 - Biochim Biophys Acta. 2012 Jun;1818(6):1545-54
– reference: 5096085 - J Biol Chem. 1971 Sep 25;246(18):5617-20
– reference: 15691017 - Lipids. 2004 Oct;39(10):955-61
– reference: 22527602 - J Membr Biol. 2012 Apr;245(4):165-76
– reference: 12010914 - Circulation. 2002 May 14;105(19):2303-8
– reference: 22272134 - Int J Mol Sci. 2011;12(12):9296-331
– reference: 21554250 - Biochem J. 2011 Jul 15;437(2):215-22
SSID ssj0013099
Score 2.4983068
Snippet Key points Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and...
Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to...
Key points Following fish oil supplementation, omega-3 fatty acids are incorporated into cellular membranes, which may affect lipid-protein interactions and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1341
SubjectTerms Adenine Nucleotide Translocator 1 - metabolism
Adenine Nucleotide Translocator 2 - metabolism
Adenosine Diphosphate - metabolism
Cell Respiration - physiology
Dietary Supplements
Docosahexaenoic Acids - administration & dosage
Docosahexaenoic Acids - pharmacokinetics
Eicosapentaenoic Acid - administration & dosage
Eicosapentaenoic Acid - pharmacokinetics
Energy Metabolism
Fatty acids
Fatty Acids, Omega-3 - administration & dosage
Fatty Acids, Omega-3 - pharmacokinetics
Fish oils
Humans
Hydrogen Peroxide - metabolism
Kinetics
Male
Membranes
Mitochondria, Muscle - metabolism
Mitochondrial Membranes - metabolism
Muscular system
Musculoskeletal system
Oxidative Stress
Phospholipids - metabolism
Proteins
Quadriceps Muscle - metabolism
Reactive Oxygen Species - metabolism
Skeletal Muscle and Exercise
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuge48FoegQUZCXFL2sROYh8rxGq1EkuFttJyihLHXUobt9o2QuXET-A38kuYcR5S2QO7l0iRbSXT-Wx_U0--AXg3Ko0mDRBfCCPxwme-lML4JeciMaHJlaux9Ok8OZ2Ks8v48gDC7lsYl7Svi3lgl1Vg599cbuW60sMuT2zIFSmEY8BzmMRIvwdwOD2fjL_2quCpK7mIC4BC5qh4-7lcGPLhd_dnwYoOHEIeRAkpAe5vRzc45s1UyXu1Xee7H_lyuU9n3X508hC-dJY0aSiLoN4Wgf75j8jjnUx9BA9adsrGTdNjODD2CRyNLUbm1Y69Z5PGtNXV7gjqz5W5yv_8-s3ZhkqDNmno5GfmjuA3rMLVAldXWxLIWWUqjMytYZTF3qaKsdyW7Lo97af7BZJeEo5mc8tc-UC2WeDGuKXx9Qbf6SlMTz5efDj12yIOviZxN3S6TDTSOo2LiSpDgZ6QvMhTmY9SLYzQo0JKClIjjrCZaSpUESfGKK1naSQT_gwGdmXNC2BaGYOuU1qRjKIKCxyax3lsuBSlLKUHvPNlpluFcyq0scyaSIdnHQIyQkDWIMADvx-1bhQ-_tP_uINJ1s73TUa0OkKuFEUevO2bcabS8Qv-tKva9ZHIhzAk9OB5g6r-gWQPhpKhB-ke3voOpAK-34KIcWrgLUg8CHpk3tKOyMH3Vp2zi7NJMhLpy7s-5RXcxztBWXthfAyD7XVtXiON2xZv2on7F804SWI
  priority: 102
  providerName: Unpaywall
Title Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2013.267336
https://www.ncbi.nlm.nih.gov/pubmed/24396061
https://www.proquest.com/docview/1507281222
https://www.proquest.com/docview/1508426550
https://pubmed.ncbi.nlm.nih.gov/PMC3961091
https://www.ncbi.nlm.nih.gov/pmc/articles/3961091
UnpaywallVersion submittedVersion
Volume 592
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: DIK
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: GX1
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20141130
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: FIJ
  dateStart: 19860501
  isFulltext: true
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  providerName: Ingenta
– providerCode: PRVAQN
  databaseName: PubMed Central - TCM; UIC
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: RPM
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1469-7793
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V5QAXXuVhKNEiIW4OsXdtr48RIqoqUSLUSOVkrdeb0CbeVHUsFE78BH4jv4SZ9QOFIlHBxZLtHdsznpmd8Y6_AXg1KowmDBBfCCNxw-e-lML4BeciNoFRqeux9P4kPpqJ47PobA8m3b8wDT5E_8GNLMP5azJwlbddSAICG7hwqf-alg8CPgxjwvVDVxzw2GVWH8NfiwmjNO1Bw5MoaP-gw8u8-dNFdmeoa2Hn9erJ27W9VNsvarXajXDdFDW5B4uOuaYyZTmsN_lQf_0N9_H_ub8Pd9solo0btXsAe8Y-hIOxxQy-3LLXbNqQrRfbA6g_lGahfnz7zllFLUSbcnXSB-aW6itWoldBL2wLMgZWmhIfzBpG1e5tSRlTtmBXbVUA7S-RAQKYZueWuTaDrFriBLoh-rrCZ3oEs8m707dHftvswdcEAofKIWON4Z9Gp5MWgUA-Jc9VItUo0cIIPcqlpGQ25Khec00NLaLYmFTreRLKmD-Gfbu25ikwnRqDYkl1SnCLaZAjqYpUZLgUhSykB7x7wZlukdCpIccqazIinnXSzUi6WSNdD_ye6rJBAvnL-MNOd7LWL1QZhd8hxlRh6MHL_jRaNC3ToGjXtRsjMW7C1NGDJ42q9TckfjDlDDxIdpSwH0Bo4btn7PlnhxqOhAQC68GwV9cb8hE6RbzR4Oz0eBqPRPLsX4iewx08KqjCL4gOYX9zVZsXGPJt8oEz6IH7FjeAW7OT6fjTTzqPV5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtRADLZKOZQLf4USWmCQELcsSWaSTI4VoiylLRXaSr1FyWS2LbuZrZqN0PbEI_CMfZLakx-0FIkKcYm0ip3EXttjZ5zPAG-8QivCAHGF0BIPfOxKKbRbcC4i7esssTOW9g-i4ZHYPQ6PV-Bj9y1Mgw_Rv3Ajz7DxmhycXki3Xk5oA99s7T-j_QOfD4KIgP3uwF0RYclC2dHX4Nd2gpckPWx4HPrtN3R4nXd_usryGnUj8bzZP7lWm_Ns8T2bTpdzXLtI7TyA0068pjdlMqjn-UBd_ob8-B_kfwj320SWbTeW9whWtHkM69sGi_hywd6yw4ZtdrJYh_pLqU-yqx8_OatoimjTsU4mwexufcVKDCwYiE1B_sBKXeKTGc2o4b3tKmOZKdhF2xhAvycoAWFMszPD7KRBVk1wDZ0Tf13hMz2Bo50Po_dDt5334CrCgUP7kJHCDFBh3EkKX6CckudZLDMvVkIL5eVSUj0bcLSwsaKZFmGkdaLUOA5kxJ_CqpkZ_QyYSrRGtSQqIcTFxM-RNQuzUHMpCllIB3j3D6eqBUOnmRzTtCmKeNppNyXtpo12HXB7rvMGDOQv9Fud8aRtaKhSysADTKuCwIHX_Wl0atqpQdXOaksjMXXC6tGBjcbW-huSPFh1-g7ES1bYExBg-PIZc3ZqgcORkXBgHRj09npLOQJribciTke7h5En4uf_wvQK1oaj_b1079PB5024hxSCGv78cAtW5xe1foEZ4Dx_ab37GqhrWPE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9NADLfGkICX8WfAAgMOCfGWLsldkrvHiVHGgFGhTdpblFyu22hzrZZGqDzxEfiMfBLs_ENlSEyIl0hV7CR2bZ-dc34GeOHlRhMGiCuEkXjgY1dKYdyccxEZ36SqnrH04TDaPxYHJ-HJGrzpvoVp8CH6F27kGXW8Jgc383zcejmhDXyua_8Z7R_4fBBEBOx3Da6LUEnq7dv7FPzaTvCU6mHD49Bvv6HD6-z86Sqra9SlxPNy_-TNys7T5Zd0Ol3NcetFangbzjrxmt6UyaBaZAP99Tfkx_8g_x3YaBNZtttY3l1YM_YebO5aLOKLJXvJRg3b7HS5CdXHwpymP75956ykKaJNxzqZBKt360tWYGDBQGxz8gdWmAKfzBpGDe9tVxlLbc4u2sYA-j1BCQhjmp1bVk8aZOUE19AF8VclPtN9OB6-Pnq177bzHlxNOHBoHzLSmAFqjDsq9wXKKXmWxjL1Yi2M0F4mJdWzAUcLG2uaaRFGxiitx3EgI_4A1u3Mmi1gWhmDalFaEeKi8jNkTcM0NFyKXObSAd79w4luwdBpJsc0aYoinnTaTUi7SaNdB9yea96AgfyFfrsznqQNDWVCGXiAaVUQOPC8P41OTTs1qNpZVdNITJ2wenTgYWNr_Q1JHqw6fQfiFSvsCQgwfPWMPT-rgcORkXBgHRj09npFOYLaEq9EnBwdjCJPxI_-hekZ3BjtDZP3bw_fPYZbSCCo388Pt2F9cVGZJ5gALrKntXP_BNspWHU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuge48FoegQUZCXFL2sROYh8rxGq1EkuFttJyihLHXUobt9o2QuXET-A38kuYcR5S2QO7l0iRbSXT-Wx_U0--AXg3Ko0mDRBfCCPxwme-lML4JeciMaHJlaux9Ok8OZ2Ks8v48gDC7lsYl7Svi3lgl1Vg599cbuW60sMuT2zIFSmEY8BzmMRIvwdwOD2fjL_2quCpK7mIC4BC5qh4-7lcGPLhd_dnwYoOHEIeRAkpAe5vRzc45s1UyXu1Xee7H_lyuU9n3X508hC-dJY0aSiLoN4Wgf75j8jjnUx9BA9adsrGTdNjODD2CRyNLUbm1Y69Z5PGtNXV7gjqz5W5yv_8-s3ZhkqDNmno5GfmjuA3rMLVAldXWxLIWWUqjMytYZTF3qaKsdyW7Lo97af7BZJeEo5mc8tc-UC2WeDGuKXx9Qbf6SlMTz5efDj12yIOviZxN3S6TDTSOo2LiSpDgZ6QvMhTmY9SLYzQo0JKClIjjrCZaSpUESfGKK1naSQT_gwGdmXNC2BaGYOuU1qRjKIKCxyax3lsuBSlLKUHvPNlpluFcyq0scyaSIdnHQIyQkDWIMADvx-1bhQ-_tP_uINJ1s73TUa0OkKuFEUevO2bcabS8Qv-tKva9ZHIhzAk9OB5g6r-gWQPhpKhB-ke3voOpAK-34KIcWrgLUg8CHpk3tKOyMH3Vp2zi7NJMhLpy7s-5RXcxztBWXthfAyD7XVtXiON2xZv2on7F804SWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omega%E2%80%903+supplementation+alters+mitochondrial+membrane+composition+and+respiration+kinetics+in+human+skeletal+muscle&rft.jtitle=The+Journal+of+physiology&rft.au=Herbst%2C+E.+A.+F.&rft.au=Paglialunga%2C+S.&rft.au=Gerling%2C+C.&rft.au=Whitfield%2C+J.&rft.date=2014-03-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=592&rft.issue=6&rft.spage=1341&rft.epage=1352&rft_id=info:doi/10.1113%2Fjphysiol.2013.267336&rft.externalDBID=10.1113%252Fjphysiol.2013.267336&rft.externalDocID=TJP6047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon