Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle
Key points Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are conta...
Saved in:
| Published in | The Journal of physiology Vol. 592; no. 6; pp. 1341 - 1352 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
15.03.2014
Blackwell publishing Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-3751 1469-7793 1469-7793 |
| DOI | 10.1113/jphysiol.2013.267336 |
Cover
| Abstract | Key points
Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and therefore the function of embedded proteins.
As the components of the electron transport chain required for oxidative phosphorylation are contained in the mitochondrial membrane, omega‐3 supplementation may alter metabolic function.
We supplemented male participants for 12 weeks with fish oil [eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] and analysed mitochondrial function and reactive oxygen species (ROS) emissions in permeabilized muscle fibres from the vastus lateralis muscle.
Supplementation incorporated EPA and DHA into mitochondrial membranes, but did not result in changes in maximal mitochondrial respiratory function or pyruvate respiration kinetics.
However, the apparent Km for ADP was decreased following supplementation, and was independent of creatine, changes in the protein content of ADP synthase or ANT transporters.
The propensity for ROS emissions increased with omega‐3 supplementation, although there were no changes in markers of lipid or protein oxidative damage.
These results demonstrate that omega‐3 supplementation improves mitochondrial ADP kinetics, suggesting post‐translational modification of existing proteins.
Studies have shown increased incorporation of omega‐3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega‐6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate‐supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate‐supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega‐3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post‐translational modification of ATP synthase and ANT isoforms. Omega‐3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega‐3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. |
|---|---|
| AbstractList | Key points Following fish oil supplementation, omega-3 fatty acids are incorporated into cellular membranes, which may affect lipid-protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are contained in the mitochondrial membrane, omega-3 supplementation may alter metabolic function. We supplemented male participants for 12 weeks with fish oil [eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] and analysed mitochondrial function and reactive oxygen species (ROS) emissions in permeabilized muscle fibres from the vastus lateralis muscle. Supplementation incorporated EPA and DHA into mitochondrial membranes, but did not result in changes in maximal mitochondrial respiratory function or pyruvate respiration kinetics. However, the apparent Km for ADP was decreased following supplementation, and was independent of creatine, changes in the protein content of ADP synthase or ANT transporters. The propensity for ROS emissions increased with omega-3 supplementation, although there were no changes in markers of lipid or protein oxidative damage. These results demonstrate that omega-3 supplementation improves mitochondrial ADP kinetics, suggesting post-translational modification of existing proteins. Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) 450 and 320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. [PUBLICATION ABSTRACT] Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. Key points Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and therefore the function of embedded proteins. As the components of the electron transport chain required for oxidative phosphorylation are contained in the mitochondrial membrane, omega‐3 supplementation may alter metabolic function. We supplemented male participants for 12 weeks with fish oil [eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] and analysed mitochondrial function and reactive oxygen species (ROS) emissions in permeabilized muscle fibres from the vastus lateralis muscle. Supplementation incorporated EPA and DHA into mitochondrial membranes, but did not result in changes in maximal mitochondrial respiratory function or pyruvate respiration kinetics. However, the apparent Km for ADP was decreased following supplementation, and was independent of creatine, changes in the protein content of ADP synthase or ANT transporters. The propensity for ROS emissions increased with omega‐3 supplementation, although there were no changes in markers of lipid or protein oxidative damage. These results demonstrate that omega‐3 supplementation improves mitochondrial ADP kinetics, suggesting post‐translational modification of existing proteins. Studies have shown increased incorporation of omega‐3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega‐6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate‐supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate‐supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega‐3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post‐translational modification of ATP synthase and ANT isoforms. Omega‐3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega‐3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. |
| Author | Holloway, G. P. Herbst, E. A. F. Chabowski, A. Paglialunga, S. Mukai, K. Heigenhauser, G. J. F. Gerling, C. Whitfield, J. Spriet, L. L. |
| Author_xml | – sequence: 1 givenname: E. A. F. surname: Herbst fullname: Herbst, E. A. F. organization: University of Guelph – sequence: 2 givenname: S. surname: Paglialunga fullname: Paglialunga, S. organization: University of Guelph – sequence: 3 givenname: C. surname: Gerling fullname: Gerling, C. organization: University of Guelph – sequence: 4 givenname: J. surname: Whitfield fullname: Whitfield, J. organization: University of Guelph – sequence: 5 givenname: K. surname: Mukai fullname: Mukai, K. organization: University of Guelph – sequence: 6 givenname: A. surname: Chabowski fullname: Chabowski, A. organization: Medical University of Bialystok – sequence: 7 givenname: G. J. F. surname: Heigenhauser fullname: Heigenhauser, G. J. F. organization: McMaster University – sequence: 8 givenname: L. L. surname: Spriet fullname: Spriet, L. L. organization: University of Guelph – sequence: 9 givenname: G. P. surname: Holloway fullname: Holloway, G. P. organization: University of Guelph |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24396061$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctu1DAUQC1URKeFP0AoEhs2GfyI7ZgFEqp4qlJZlLXlce50PHXsYCdUs-sn9Bv5EjxKy6Mbusoi51zde3yEDkIMgNBzgpeEEPZ6O2x22UW_pJiwJRWSMfEILUgjVC2lYgdogTGlNZOcHKKjnLe4gFipJ-iQNkwJLMgCTWc9XJif1zesytMweOghjGZ0MVTGj5By1bsx2k0MXXLGVz30q2QCVDb2Q8xuJkNXJciDS7N56QKMzubKhWoz9SZU-RI8jHt_ytbDU_R4bXyGZ7ffY_Ttw_vzk0_16dnHzyfvTmvLOZV1x1phW04sw1J1pCl3t2xlZGuwtA00Fq_aljdKUdaBXVvOKOYCQFm7lrQV7Bjxee4UBrO7Mt7rIbnepJ0mWO8z6ruMep9RzxmL93b2hmnVQ2dLk2T-uNE4_e-f4Db6Iv7QJSvBipQBr24HpPh9gjzq3mUL3pd0ccqacNw2VHCOC_ryHrqNUwoly54qZxBKaaFe_L3R71XuXrIAb2bApphzgrW2bn7IsqDz_7u3uSc_MJOatSvnYfcgR59_-SpwI9kvEyHeKg |
| CODEN | JPHYA7 |
| CitedBy_id | crossref_primary_10_3389_fnut_2023_1214684 crossref_primary_10_3389_fphys_2020_00563 crossref_primary_10_2337_db15_1661 crossref_primary_10_46940_ssmrj_01_1002 crossref_primary_10_1039_D2CC01487D crossref_primary_10_1139_apnm_2015_0192 crossref_primary_10_1096_fj_201801857RRR crossref_primary_10_1016_j_arres_2024_100100 crossref_primary_10_3390_nu8010027 crossref_primary_10_1093_advances_nmy007 crossref_primary_10_1152_ajpregu_00025_2018 crossref_primary_10_1038_srep41648 crossref_primary_10_1194_jlr_M077321 crossref_primary_10_1085_jgp_201611620 crossref_primary_10_1002_ana_26296 crossref_primary_10_1016_j_mam_2024_101322 crossref_primary_10_1113_jphysiol_2014_285379 crossref_primary_10_1074_jbc_M117_806786 crossref_primary_10_1186_s12916_020_01749_w crossref_primary_10_1016_j_celrep_2018_02_069 crossref_primary_10_3390_ijms24097991 crossref_primary_10_1016_j_freeradbiomed_2016_12_005 crossref_primary_10_3390_jcm12247747 crossref_primary_10_1007_s40279_024_02072_7 crossref_primary_10_1186_s12970_020_00385_2 crossref_primary_10_18632_aging_101210 crossref_primary_10_1016_j_bbapap_2018_11_005 crossref_primary_10_1155_2018_8261432 crossref_primary_10_3390_ijms22157958 crossref_primary_10_1139_apnm_2016_0501 crossref_primary_10_1249_MSS_0000000000001321 crossref_primary_10_14814_phy2_14526 crossref_primary_10_1139_apnm_2016_0585 crossref_primary_10_1002_hep_32647 crossref_primary_10_1111_acel_12352 crossref_primary_10_14814_phy2_14408 crossref_primary_10_34133_research_0006 crossref_primary_10_1155_2022_9394356 crossref_primary_10_1038_s42003_024_06298_z crossref_primary_10_7600_jpfsm_7_261 crossref_primary_10_1080_15548627_2020_1782034 crossref_primary_10_1007_s00125_015_3531_x crossref_primary_10_1016_j_tem_2016_05_007 crossref_primary_10_1002_mnfr_201800813 crossref_primary_10_3390_md13116977 crossref_primary_10_1152_ajpendo_00438_2015 crossref_primary_10_3390_antiox5010007 crossref_primary_10_1007_s12017_020_08639_7 crossref_primary_10_3233_JAD_200252 crossref_primary_10_3390_nu15143108 crossref_primary_10_1016_j_plefa_2018_07_006 crossref_primary_10_1097_MCO_0000000000000441 crossref_primary_10_3390_life14101315 crossref_primary_10_1021_acsanm_3c04959 crossref_primary_10_1017_S0029665123004834 crossref_primary_10_2337_dc14_3101 crossref_primary_10_1177_0884533617691250 crossref_primary_10_1113_JP278920 crossref_primary_10_1016_j_plefa_2024_102651 crossref_primary_10_1371_journal_pone_0144828 crossref_primary_10_1016_j_metabol_2022_155242 crossref_primary_10_3389_fnut_2019_00144 crossref_primary_10_1093_gerona_glz141 crossref_primary_10_3390_nu9101100 crossref_primary_10_3390_md21070399 crossref_primary_10_1016_j_biopsych_2017_08_007 crossref_primary_10_1024_0300_9831_a000664 crossref_primary_10_1093_advances_nmaa050 crossref_primary_10_1096_fj_201900095R crossref_primary_10_1038_s41598_021_95590_7 crossref_primary_10_3390_antiox12061163 crossref_primary_10_1155_2015_187849 crossref_primary_10_3389_fphys_2015_00426 crossref_primary_10_1016_j_schres_2022_08_027 crossref_primary_10_1093_nutrit_nuae055 crossref_primary_10_3390_diseases4010014 crossref_primary_10_3390_antibiotics11070932 crossref_primary_10_1038_s41598_020_58668_2 crossref_primary_10_3389_fphys_2019_00348 crossref_primary_10_1007_s40279_017_0693_3 crossref_primary_10_1016_j_mam_2018_04_001 crossref_primary_10_1113_jphysiol_2014_272419 crossref_primary_10_1152_ajpregu_00249_2020 crossref_primary_10_1152_ajpendo_00028_2020 crossref_primary_10_1016_j_scitotenv_2018_01_276 crossref_primary_10_3390_cells11071216 crossref_primary_10_3390_nu8060329 crossref_primary_10_1152_ajpregu_00196_2022 crossref_primary_10_1093_jn_nxac084 crossref_primary_10_1097_XEB_0000000000000056 crossref_primary_10_1042_BCJ20160373 crossref_primary_10_1038_s12276_023_01071_4 crossref_primary_10_1152_ajpregu_00003_2015 crossref_primary_10_1016_j_metabol_2015_07_002 crossref_primary_10_1080_10408398_2020_1828812 crossref_primary_10_1016_j_plefa_2014_03_001 crossref_primary_10_1016_j_bbalip_2014_08_003 crossref_primary_10_1242_jeb_126623 crossref_primary_10_3390_nu16172914 crossref_primary_10_1016_j_marenvres_2020_105205 crossref_primary_10_1152_ajpregu_00346_2016 crossref_primary_10_14814_phy2_12785 crossref_primary_10_1016_j_clnu_2022_04_007 crossref_primary_10_1139_apnm_2019_0581 crossref_primary_10_1371_journal_pone_0208048 crossref_primary_10_1097_MCO_0000000000000333 crossref_primary_10_3390_md16110453 crossref_primary_10_1007_s00125_017_4456_3 crossref_primary_10_2337_db14_1838 crossref_primary_10_3389_fmolb_2021_772174 crossref_primary_10_1042_BCJ20180419 crossref_primary_10_1152_ajpendo_00088_2019 crossref_primary_10_1186_s13102_021_00266_4 crossref_primary_10_1007_s40122_024_00641_2 crossref_primary_10_3390_antiox12081628 crossref_primary_10_1139_apnm_2014_0049 crossref_primary_10_1038_ejcn_2014_277 crossref_primary_10_1152_ajpendo_00468_2014 crossref_primary_10_1038_s41581_021_00488_2 crossref_primary_10_1111_ele_13771 crossref_primary_10_1097_ACI_0000000000000805 crossref_primary_10_1113_JP270844 crossref_primary_10_1159_000486553 crossref_primary_10_1007_s40279_021_01509_7 crossref_primary_10_1042_BCJ20160913 crossref_primary_10_3389_fnut_2024_1452768 crossref_primary_10_3390_ijms241512486 crossref_primary_10_1002_rmb2_12403 crossref_primary_10_1080_07315724_2021_1886196 crossref_primary_10_1002_1873_3468_12825 crossref_primary_10_1016_j_jff_2019_03_022 crossref_primary_10_1152_japplphysiol_00878_2019 crossref_primary_10_1007_s42978_019_00037_1 crossref_primary_10_3390_nu12072057 crossref_primary_10_1016_j_chc_2022_03_002 crossref_primary_10_3390_genes12020192 crossref_primary_10_1080_17461391_2014_950345 crossref_primary_10_1016_j_cell_2024_01_030 crossref_primary_10_1016_j_jff_2018_12_016 crossref_primary_10_3390_antiox13020161 |
| Cites_doi | 10.1194/jlr.M600551-JLR200 10.1017/S0007114510002928 10.1007/s11745-004-1317-0 10.1007/s00232-012-9426-6 10.1016/S0899-9007(02)00812-2 10.2527/jas.2006-031 10.1096/fj.03-1065fje 10.1016/j.bbamem.2011.12.034 10.1016/S0014-5793(00)01083-8 10.1194/jlr.D002857 10.1079/BJN2003964 10.1016/S0021-9258(18)61852-6 10.1093/jn/118.3.290 10.3390/ijms12129296 10.1113/jphysiol.2012.234682 10.1113/jphysiol.2013.259226 10.1371/journal.pone.0034402 10.1371/journal.pone.0055660 10.1093/ajcn/76.6.1222 10.1042/BJ20110366 10.1155/2012/395757 10.1152/ajpendo.00584.2012 10.1152/japplphysiol.01082.2010 10.1159/000177221 10.1074/jbc.M400566200 10.1056/NEJM199301283280404 10.1097/FJC.0b013e31819b5461 10.1097/FJC.0b013e3181911913 10.1161/01.CIR.0000015604.88808.74 10.1016/S0005-2728(99)00041-9 10.1093/cvr/cvs118 10.1172/JCI37048 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014 The Physiological Society 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014 |
| Copyright_xml | – notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society – notice: 2014 The Physiological Society – notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1113/jphysiol.2013.267336 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1469-7793 |
| EndPage | 1352 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3961091 PMC3961091 3246269051 24396061 10_1113_jphysiol_2013_267336 TJP6047 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: N N401 292739 – fundername: NSERC |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 0YM 10A 123 18M 1OC 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGYGG AHBTC AI. AIACR AIAGR AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM .55 .GJ 31~ 3EH 3O- AAYJJ ABUFD ADTOC ADXHL AFFNX AGHNM C1A CAG CHEAL COF FA8 H13 HF~ H~9 MVM NEJ OHT UKR UNPAY WHG X7M XOL YXB YYP ZGI ZXP |
| ID | FETCH-LOGICAL-c5527-d386c851c3079d1411183ba78a07c4e4c0b88549923decfc532056ee9ccf72863 |
| IEDL.DBID | DR2 |
| ISSN | 0022-3751 1469-7793 |
| IngestDate | Sun Oct 26 04:06:01 EDT 2025 Tue Sep 30 16:58:54 EDT 2025 Thu Oct 02 11:13:09 EDT 2025 Fri Jul 25 12:13:43 EDT 2025 Thu Apr 03 07:03:33 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Wed Oct 01 05:05:58 EDT 2025 Sun Sep 21 06:26:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5527-d386c851c3079d1411183ba78a07c4e4c0b88549923decfc532056ee9ccf72863 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3961091 |
| PMID | 24396061 |
| PQID | 1507281222 |
| PQPubID | 1086388 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1113_jphysiol_2013_267336 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3961091 proquest_miscellaneous_1508426550 proquest_journals_1507281222 pubmed_primary_24396061 crossref_citationtrail_10_1113_jphysiol_2013_267336 crossref_primary_10_1113_jphysiol_2013_267336 wiley_primary_10_1113_jphysiol_2013_267336_TJP6047 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 15 March 2014 |
| PublicationDateYYYYMMDD | 2014-03-15 |
| PublicationDate_xml | – month: 03 year: 2014 text: 15 March 2014 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: Oxford, UK |
| PublicationTitle | The Journal of physiology |
| PublicationTitleAlternate | J Physiol |
| PublicationYear | 2014 |
| Publisher | Wiley Subscription Services, Inc Blackwell publishing Ltd |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Blackwell publishing Ltd |
| References | 2012; 2012 2011; 437 2002; 18 1993; 328 2012; 245 1986; 30 2010; 104 2002; 76 2013; 304 1971; 246 2011; 12 2008; 52 2009; 119 2013; 8 2011; 110 2012; 94 2012; 590 2003; 90 2004; 279 2009; 53 2006; 84 2004; 18 1999; 1411 2000; 468 2004; 39 2002; 105 2012; 1818 2013; 591 2012; 7 1988; 118 2010; 51 2007; 48 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 21088205 - J Appl Physiol (1985). 2011 Mar;110(3):820-5 3351630 - J Nutr. 1988 Mar;118(3):290-6 22411972 - Cardiovasc Res. 2012 Jun 1;94(3):460-8 19276988 - J Cardiovasc Pharmacol. 2009 Apr;53(4):290-301 22244843 - Biochim Biophys Acta. 2012 Jun;1818(6):1545-54 12010914 - Circulation. 2002 May 14;105(19):2303-8 16971584 - J Anim Sci. 2006 Oct;84(10):2818-25 17426348 - J Lipid Res. 2007 Jul;48(7):1559-70 15132977 - FASEB J. 2004 Jul;18(10):1144-6 23383258 - PLoS One. 2013;8(1):e55660 21554250 - Biochem J. 2011 Jul 15;437(2):215-22 3789659 - Ann Nutr Metab. 1986;30(6):393-406 22527602 - J Membr Biol. 2012 Apr;245(4):165-76 19188683 - J Clin Invest. 2009 Mar;119(3):573-81 22907058 - J Physiol. 2012 Nov 1;590(Pt 21):5475-86 19034030 - J Cardiovasc Pharmacol. 2008 Dec;52(6):540-7 15691017 - Lipids. 2004 Oct;39(10):955-61 12093443 - Nutrition. 2002 Jul-Aug;18(7-8):627-30 22479624 - PLoS One. 2012;7(3):e34402 20691135 - Br J Nutr. 2010 Dec;104(12):1771-9 15161924 - J Biol Chem. 2004 Aug 27;279(35):36235-41 22272134 - Int J Mol Sci. 2011;12(12):9296-331 24786151 - J Physiol. 2014 May 1;592(9):1913-4 19965604 - J Lipid Res. 2010 Apr;51(4):856-65 10683429 - FEBS Lett. 2000 Feb 18;468(1):1-5 22523671 - J Nutr Metab. 2012;2012:395757 23632634 - Am J Physiol Endocrinol Metab. 2013 Jun 15;304(12):E1391-403 24081154 - J Physiol. 2013 Dec 1;591(23):6089-101 5096085 - J Biol Chem. 1971 Sep 25;246(18):5617-20 10216165 - Biochim Biophys Acta. 1999 Apr 21;1411(1):192-200 12450886 - Am J Clin Nutr. 2002 Dec;76(6):1222-9 13129446 - Br J Nutr. 2003 Oct;90(4):777-86 8418404 - N Engl J Med. 1993 Jan 28;328(4):238-44 |
| References_xml | – volume: 328 start-page: 238 year: 1993 end-page: 244 article-title: The relation between insulin sensitivity and the fatty‐acid composition of skeletal‐muscle phospholipids publication-title: N Engl J Med – volume: 39 start-page: 955 year: 2004 end-page: 961 article-title: Dietary fish oil dose‐ and time‐response effects on cardiac phospholipid fatty acid composition publication-title: Lipids – volume: 104 start-page: 1771 year: 2010 end-page: 1779 article-title: Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb publication-title: Br J Nutr – volume: 8 start-page: e55660 year: 2013 article-title: Over‐expressing mitofusin‐2 in healthy mature mammalian skeletal muscle does not alter mitochondrial bioenergetics publication-title: PLoS One – volume: 1411 start-page: 192 year: 1999 end-page: 200 article-title: Thyroid hormone status and membrane ‐3 fatty acid content influence mitochondrial proton leak publication-title: Biochim Biophys Acta – volume: 48 start-page: 1559 year: 2007 end-page: 1570 article-title: Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure publication-title: J Lipid Res – volume: 279 start-page: 36235 year: 2004 end-page: 36241 article-title: A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria publication-title: J Biol Chem – volume: 2012 start-page: 395757 year: 2012 article-title: High physiological omega‐3 fatty acid supplementation affects muscle fatty acid composition and glucose and insulin homeostasis in obese adolescents publication-title: J Nutr Metab – volume: 1818 start-page: 1545 year: 2012 end-page: 1554 article-title: Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within mitochondrial interactosome publication-title: Biochim Biophys Acta – volume: 245 start-page: 165 year: 2012 end-page: 176 article-title: Unsaturation of mitochondrial membrane lipids is related to palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria publication-title: J Membr Biol – volume: 468 start-page: 1 year: 2000 end-page: 5 article-title: Secondary carnitine deficiency and impaired docosahexaenoic (22:6 ‐3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and β‐oxidation publication-title: FEBS Lett – volume: 53 start-page: 290 year: 2009 end-page: 301 article-title: Cardiolipin remodeling in the heart publication-title: J Cardiovasc Pharmacol – volume: 105 start-page: 2303 year: 2002 end-page: 2308 article-title: Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function publication-title: Circulation – volume: 591 start-page: 6089 year: 2013 end-page: 6101 article-title: Submaximal ADP‐stimulated respiration is impaired in ZDF rats and recovered by resveratrol publication-title: J Physiol – volume: 110 start-page: 820 year: 2011 end-page: 825 article-title: Enhanced technique to measure proteins in single segments of human skeletal muscle fibers: fibre‐type dependence of AMPK‐α and ‐β publication-title: J Appl Physiol – volume: 590 start-page: 5475 year: 2012 end-page: 5486 article-title: Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle publication-title: J Physiol – volume: 12 start-page: 9296 year: 2011 end-page: 9331 article-title: Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes computer modelling publication-title: Int J Mol Sci – volume: 304 start-page: E1391 year: 2013 end-page: 1403 article-title: Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high‐fat diet publication-title: Am J Physiol Endocrinol Metab – volume: 84 start-page: 2818 year: 2006 end-page: 2825 article-title: Mitochondrial phospholipids of rat skeletal muscle are less polyunsaturated than whole tissue phospholipids: implications for protection against oxidative stress publication-title: J Anim Sci – volume: 18 start-page: 1144 year: 2004 end-page: 1146 article-title: Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36 publication-title: FASEB J – volume: 18 start-page: 627 year: 2002 end-page: 630 article-title: Fatty acid compositions of serum phospholipids of postmenopausal women: a comparison between Greenland Inuit and Canadians before and after supplementation with fish oil publication-title: Nutrition – volume: 118 start-page: 290 year: 1988 end-page: 296 article-title: Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil publication-title: J Nutr – volume: 119 start-page: 573 year: 2009 end-page: 581 article-title: Mitochondrial H O emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans publication-title: J Clin Invest – volume: 7 start-page: e34402 year: 2012 article-title: Improved mitochondrial function with diet‐induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids publication-title: PLoS One – volume: 246 start-page: 5617 year: 1971 end-page: 5620 article-title: Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum, and mitochondria from rat skeletal muscle publication-title: J Biol Chem – volume: 94 start-page: 460 year: 2012 end-page: 468 article-title: Dietary linoleate preserves cardiolipin and attenuates mitochondrial dysfunction in the failing rat heart publication-title: Cardiovasc Res – volume: 30 start-page: 393 year: 1986 end-page: 406 article-title: Comparative changes in the fatty‐acid composition of rat cardiac phospholipids after long‐term feeding of sunflower seed oil‐ or tuna fish oil‐supplemented diets publication-title: Ann Nutr Metab – volume: 437 start-page: 215 year: 2011 end-page: 222 article-title: Inhibiting myosin‐ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle publication-title: Biochem J – volume: 90 start-page: 777 year: 2003 end-page: 786 article-title: Fish‐oil supplementation reduces stimulation of plasma glucose fluxes during exercise in untrained males publication-title: Br J Nutr – volume: 52 start-page: 540 year: 2008 end-page: 547 article-title: Fish oil reduces heart rate and oxygen consumption during exercise publication-title: J Cardiovasc Pharmacol – volume: 51 start-page: 856 year: 2010 end-page: 865 article-title: Separation and characterization of cardiolipin molecular species by reverse‐phase ion pair high‐performance liquid chromatography‐mass spectrometry publication-title: J Lipid Res – volume: 76 start-page: 1222 year: 2002 end-page: 1229 article-title: Fatty acid composition of skeletal muscle reflects dietary fat composition in humans publication-title: Am J Clin Nutr – ident: e_1_2_6_29_1 doi: 10.1194/jlr.M600551-JLR200 – ident: e_1_2_6_23_1 doi: 10.1017/S0007114510002928 – ident: e_1_2_6_21_1 doi: 10.1007/s11745-004-1317-0 – ident: e_1_2_6_13_1 doi: 10.1007/s00232-012-9426-6 – ident: e_1_2_6_31_1 doi: 10.1016/S0899-9007(02)00812-2 – ident: e_1_2_6_32_1 doi: 10.2527/jas.2006-031 – ident: e_1_2_6_5_1 doi: 10.1096/fj.03-1065fje – ident: e_1_2_6_12_1 doi: 10.1016/j.bbamem.2011.12.034 – ident: e_1_2_6_14_1 doi: 10.1016/S0014-5793(00)01083-8 – ident: e_1_2_6_18_1 doi: 10.1194/jlr.D002857 – ident: e_1_2_6_10_1 doi: 10.1079/BJN2003964 – ident: e_1_2_6_11_1 doi: 10.1016/S0021-9258(18)61852-6 – ident: e_1_2_6_33_1 doi: 10.1093/jn/118.3.290 – ident: e_1_2_6_2_1 doi: 10.3390/ijms12129296 – ident: e_1_2_6_26_1 doi: 10.1113/jphysiol.2012.234682 – ident: e_1_2_6_28_1 doi: 10.1113/jphysiol.2013.259226 – ident: e_1_2_6_15_1 doi: 10.1371/journal.pone.0034402 – ident: e_1_2_6_16_1 doi: 10.1371/journal.pone.0055660 – ident: e_1_2_6_4_1 doi: 10.1093/ajcn/76.6.1222 – ident: e_1_2_6_27_1 doi: 10.1042/BJ20110366 – ident: e_1_2_6_9_1 doi: 10.1155/2012/395757 – ident: e_1_2_6_17_1 doi: 10.1152/ajpendo.00584.2012 – ident: e_1_2_6_20_1 doi: 10.1152/japplphysiol.01082.2010 – ident: e_1_2_6_8_1 doi: 10.1159/000177221 – ident: e_1_2_6_7_1 doi: 10.1074/jbc.M400566200 – ident: e_1_2_6_6_1 doi: 10.1056/NEJM199301283280404 – ident: e_1_2_6_30_1 doi: 10.1097/FJC.0b013e31819b5461 – ident: e_1_2_6_24_1 doi: 10.1097/FJC.0b013e3181911913 – ident: e_1_2_6_25_1 doi: 10.1161/01.CIR.0000015604.88808.74 – ident: e_1_2_6_22_1 doi: 10.1016/S0005-2728(99)00041-9 – ident: e_1_2_6_19_1 doi: 10.1093/cvr/cvs118 – ident: e_1_2_6_3_1 doi: 10.1172/JCI37048 – reference: 22411972 - Cardiovasc Res. 2012 Jun 1;94(3):460-8 – reference: 16971584 - J Anim Sci. 2006 Oct;84(10):2818-25 – reference: 3789659 - Ann Nutr Metab. 1986;30(6):393-406 – reference: 24081154 - J Physiol. 2013 Dec 1;591(23):6089-101 – reference: 15132977 - FASEB J. 2004 Jul;18(10):1144-6 – reference: 19188683 - J Clin Invest. 2009 Mar;119(3):573-81 – reference: 8418404 - N Engl J Med. 1993 Jan 28;328(4):238-44 – reference: 13129446 - Br J Nutr. 2003 Oct;90(4):777-86 – reference: 19276988 - J Cardiovasc Pharmacol. 2009 Apr;53(4):290-301 – reference: 10216165 - Biochim Biophys Acta. 1999 Apr 21;1411(1):192-200 – reference: 12093443 - Nutrition. 2002 Jul-Aug;18(7-8):627-30 – reference: 10683429 - FEBS Lett. 2000 Feb 18;468(1):1-5 – reference: 23383258 - PLoS One. 2013;8(1):e55660 – reference: 23632634 - Am J Physiol Endocrinol Metab. 2013 Jun 15;304(12):E1391-403 – reference: 3351630 - J Nutr. 1988 Mar;118(3):290-6 – reference: 12450886 - Am J Clin Nutr. 2002 Dec;76(6):1222-9 – reference: 21088205 - J Appl Physiol (1985). 2011 Mar;110(3):820-5 – reference: 22479624 - PLoS One. 2012;7(3):e34402 – reference: 15161924 - J Biol Chem. 2004 Aug 27;279(35):36235-41 – reference: 19965604 - J Lipid Res. 2010 Apr;51(4):856-65 – reference: 24786151 - J Physiol. 2014 May 1;592(9):1913-4 – reference: 22907058 - J Physiol. 2012 Nov 1;590(Pt 21):5475-86 – reference: 22523671 - J Nutr Metab. 2012;2012:395757 – reference: 17426348 - J Lipid Res. 2007 Jul;48(7):1559-70 – reference: 19034030 - J Cardiovasc Pharmacol. 2008 Dec;52(6):540-7 – reference: 20691135 - Br J Nutr. 2010 Dec;104(12):1771-9 – reference: 22244843 - Biochim Biophys Acta. 2012 Jun;1818(6):1545-54 – reference: 5096085 - J Biol Chem. 1971 Sep 25;246(18):5617-20 – reference: 15691017 - Lipids. 2004 Oct;39(10):955-61 – reference: 22527602 - J Membr Biol. 2012 Apr;245(4):165-76 – reference: 12010914 - Circulation. 2002 May 14;105(19):2303-8 – reference: 22272134 - Int J Mol Sci. 2011;12(12):9296-331 – reference: 21554250 - Biochem J. 2011 Jul 15;437(2):215-22 |
| SSID | ssj0013099 |
| Score | 2.4983068 |
| Snippet | Key points
Following fish oil supplementation, omega‐3 fatty acids are incorporated into cellular membranes, which may affect lipid–protein interactions and... Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to... Key points Following fish oil supplementation, omega-3 fatty acids are incorporated into cellular membranes, which may affect lipid-protein interactions and... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1341 |
| SubjectTerms | Adenine Nucleotide Translocator 1 - metabolism Adenine Nucleotide Translocator 2 - metabolism Adenosine Diphosphate - metabolism Cell Respiration - physiology Dietary Supplements Docosahexaenoic Acids - administration & dosage Docosahexaenoic Acids - pharmacokinetics Eicosapentaenoic Acid - administration & dosage Eicosapentaenoic Acid - pharmacokinetics Energy Metabolism Fatty acids Fatty Acids, Omega-3 - administration & dosage Fatty Acids, Omega-3 - pharmacokinetics Fish oils Humans Hydrogen Peroxide - metabolism Kinetics Male Membranes Mitochondria, Muscle - metabolism Mitochondrial Membranes - metabolism Muscular system Musculoskeletal system Oxidative Stress Phospholipids - metabolism Proteins Quadriceps Muscle - metabolism Reactive Oxygen Species - metabolism Skeletal Muscle and Exercise Young Adult |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuge48FoegQUZCXFL2sROYh8rxGq1EkuFttJyihLHXUobt9o2QuXET-A38kuYcR5S2QO7l0iRbSXT-Wx_U0--AXg3Ko0mDRBfCCPxwme-lML4JeciMaHJlaux9Ok8OZ2Ks8v48gDC7lsYl7Svi3lgl1Vg599cbuW60sMuT2zIFSmEY8BzmMRIvwdwOD2fjL_2quCpK7mIC4BC5qh4-7lcGPLhd_dnwYoOHEIeRAkpAe5vRzc45s1UyXu1Xee7H_lyuU9n3X508hC-dJY0aSiLoN4Wgf75j8jjnUx9BA9adsrGTdNjODD2CRyNLUbm1Y69Z5PGtNXV7gjqz5W5yv_8-s3ZhkqDNmno5GfmjuA3rMLVAldXWxLIWWUqjMytYZTF3qaKsdyW7Lo97af7BZJeEo5mc8tc-UC2WeDGuKXx9Qbf6SlMTz5efDj12yIOviZxN3S6TDTSOo2LiSpDgZ6QvMhTmY9SLYzQo0JKClIjjrCZaSpUESfGKK1naSQT_gwGdmXNC2BaGYOuU1qRjKIKCxyax3lsuBSlLKUHvPNlpluFcyq0scyaSIdnHQIyQkDWIMADvx-1bhQ-_tP_uINJ1s73TUa0OkKuFEUevO2bcabS8Qv-tKva9ZHIhzAk9OB5g6r-gWQPhpKhB-ke3voOpAK-34KIcWrgLUg8CHpk3tKOyMH3Vp2zi7NJMhLpy7s-5RXcxztBWXthfAyD7XVtXiON2xZv2on7F804SWI priority: 102 providerName: Unpaywall |
| Title | Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2013.267336 https://www.ncbi.nlm.nih.gov/pubmed/24396061 https://www.proquest.com/docview/1507281222 https://www.proquest.com/docview/1508426550 https://pubmed.ncbi.nlm.nih.gov/PMC3961091 https://www.ncbi.nlm.nih.gov/pmc/articles/3961091 |
| UnpaywallVersion | submittedVersion |
| Volume | 592 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0013099 issn: 1469-7793 databaseCode: DIK dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0013099 issn: 1469-7793 databaseCode: GX1 dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals customDbUrl: eissn: 1469-7793 dateEnd: 20141130 omitProxy: true ssIdentifier: ssj0013099 issn: 1469-7793 databaseCode: FIJ dateStart: 19860501 isFulltext: true titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 providerName: Ingenta – providerCode: PRVAQN databaseName: PubMed Central - TCM; UIC customDbUrl: eissn: 1469-7793 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0013099 issn: 1469-7793 databaseCode: RPM dateStart: 18780101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1469-7793 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1469-7793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013099 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V5QAXXuVhKNEiIW4OsXdtr48RIqoqUSLUSOVkrdeb0CbeVHUsFE78BH4jv4SZ9QOFIlHBxZLtHdsznpmd8Y6_AXg1KowmDBBfCCNxw-e-lML4BeciNoFRqeux9P4kPpqJ47PobA8m3b8wDT5E_8GNLMP5azJwlbddSAICG7hwqf-alg8CPgxjwvVDVxzw2GVWH8NfiwmjNO1Bw5MoaP-gw8u8-dNFdmeoa2Hn9erJ27W9VNsvarXajXDdFDW5B4uOuaYyZTmsN_lQf_0N9_H_ub8Pd9solo0btXsAe8Y-hIOxxQy-3LLXbNqQrRfbA6g_lGahfnz7zllFLUSbcnXSB-aW6itWoldBL2wLMgZWmhIfzBpG1e5tSRlTtmBXbVUA7S-RAQKYZueWuTaDrFriBLoh-rrCZ3oEs8m707dHftvswdcEAofKIWON4Z9Gp5MWgUA-Jc9VItUo0cIIPcqlpGQ25Khec00NLaLYmFTreRLKmD-Gfbu25ikwnRqDYkl1SnCLaZAjqYpUZLgUhSykB7x7wZlukdCpIccqazIinnXSzUi6WSNdD_ye6rJBAvnL-MNOd7LWL1QZhd8hxlRh6MHL_jRaNC3ToGjXtRsjMW7C1NGDJ42q9TckfjDlDDxIdpSwH0Bo4btn7PlnhxqOhAQC68GwV9cb8hE6RbzR4Oz0eBqPRPLsX4iewx08KqjCL4gOYX9zVZsXGPJt8oEz6IH7FjeAW7OT6fjTTzqPV5A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtRADLZKOZQLf4USWmCQELcsSWaSTI4VoiylLRXaSr1FyWS2LbuZrZqN0PbEI_CMfZLakx-0FIkKcYm0ip3EXttjZ5zPAG-8QivCAHGF0BIPfOxKKbRbcC4i7esssTOW9g-i4ZHYPQ6PV-Bj9y1Mgw_Rv3Ajz7DxmhycXki3Xk5oA99s7T-j_QOfD4KIgP3uwF0RYclC2dHX4Nd2gpckPWx4HPrtN3R4nXd_usryGnUj8bzZP7lWm_Ns8T2bTpdzXLtI7TyA0068pjdlMqjn-UBd_ob8-B_kfwj320SWbTeW9whWtHkM69sGi_hywd6yw4ZtdrJYh_pLqU-yqx8_OatoimjTsU4mwexufcVKDCwYiE1B_sBKXeKTGc2o4b3tKmOZKdhF2xhAvycoAWFMszPD7KRBVk1wDZ0Tf13hMz2Bo50Po_dDt5334CrCgUP7kJHCDFBh3EkKX6CckudZLDMvVkIL5eVSUj0bcLSwsaKZFmGkdaLUOA5kxJ_CqpkZ_QyYSrRGtSQqIcTFxM-RNQuzUHMpCllIB3j3D6eqBUOnmRzTtCmKeNppNyXtpo12HXB7rvMGDOQv9Fud8aRtaKhSysADTKuCwIHX_Wl0atqpQdXOaksjMXXC6tGBjcbW-huSPFh1-g7ES1bYExBg-PIZc3ZqgcORkXBgHRj09npLOQJribciTke7h5En4uf_wvQK1oaj_b1079PB5024hxSCGv78cAtW5xe1foEZ4Dx_ab37GqhrWPE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9NADLfGkICX8WfAAgMOCfGWLsldkrvHiVHGgFGhTdpblFyu22hzrZZGqDzxEfiMfBLs_ENlSEyIl0hV7CR2bZ-dc34GeOHlRhMGiCuEkXjgY1dKYdyccxEZ36SqnrH04TDaPxYHJ-HJGrzpvoVp8CH6F27kGXW8Jgc383zcejmhDXyua_8Z7R_4fBBEBOx3Da6LUEnq7dv7FPzaTvCU6mHD49Bvv6HD6-z86Sqra9SlxPNy_-TNys7T5Zd0Ol3NcetFangbzjrxmt6UyaBaZAP99Tfkx_8g_x3YaBNZtttY3l1YM_YebO5aLOKLJXvJRg3b7HS5CdXHwpymP75956ykKaJNxzqZBKt360tWYGDBQGxz8gdWmAKfzBpGDe9tVxlLbc4u2sYA-j1BCQhjmp1bVk8aZOUE19AF8VclPtN9OB6-Pnq177bzHlxNOHBoHzLSmAFqjDsq9wXKKXmWxjL1Yi2M0F4mJdWzAUcLG2uaaRFGxiitx3EgI_4A1u3Mmi1gWhmDalFaEeKi8jNkTcM0NFyKXObSAd79w4luwdBpJsc0aYoinnTaTUi7SaNdB9yea96AgfyFfrsznqQNDWVCGXiAaVUQOPC8P41OTTs1qNpZVdNITJ2wenTgYWNr_Q1JHqw6fQfiFSvsCQgwfPWMPT-rgcORkXBgHRj09npFOYLaEq9EnBwdjCJPxI_-hekZ3BjtDZP3bw_fPYZbSCCo388Pt2F9cVGZJ5gALrKntXP_BNspWHU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tuge48FoegQUZCXFL2sROYh8rxGq1EkuFttJyihLHXUobt9o2QuXET-A38kuYcR5S2QO7l0iRbSXT-Wx_U0--AXg3Ko0mDRBfCCPxwme-lML4JeciMaHJlaux9Ok8OZ2Ks8v48gDC7lsYl7Svi3lgl1Vg599cbuW60sMuT2zIFSmEY8BzmMRIvwdwOD2fjL_2quCpK7mIC4BC5qh4-7lcGPLhd_dnwYoOHEIeRAkpAe5vRzc45s1UyXu1Xee7H_lyuU9n3X508hC-dJY0aSiLoN4Wgf75j8jjnUx9BA9adsrGTdNjODD2CRyNLUbm1Y69Z5PGtNXV7gjqz5W5yv_8-s3ZhkqDNmno5GfmjuA3rMLVAldXWxLIWWUqjMytYZTF3qaKsdyW7Lo97af7BZJeEo5mc8tc-UC2WeDGuKXx9Qbf6SlMTz5efDj12yIOviZxN3S6TDTSOo2LiSpDgZ6QvMhTmY9SLYzQo0JKClIjjrCZaSpUESfGKK1naSQT_gwGdmXNC2BaGYOuU1qRjKIKCxyax3lsuBSlLKUHvPNlpluFcyq0scyaSIdnHQIyQkDWIMADvx-1bhQ-_tP_uINJ1s73TUa0OkKuFEUevO2bcabS8Qv-tKva9ZHIhzAk9OB5g6r-gWQPhpKhB-ke3voOpAK-34KIcWrgLUg8CHpk3tKOyMH3Vp2zi7NJMhLpy7s-5RXcxztBWXthfAyD7XVtXiON2xZv2on7F804SWI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omega%E2%80%903+supplementation+alters+mitochondrial+membrane+composition+and+respiration+kinetics+in+human+skeletal+muscle&rft.jtitle=The+Journal+of+physiology&rft.au=Herbst%2C+E.+A.+F.&rft.au=Paglialunga%2C+S.&rft.au=Gerling%2C+C.&rft.au=Whitfield%2C+J.&rft.date=2014-03-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=592&rft.issue=6&rft.spage=1341&rft.epage=1352&rft_id=info:doi/10.1113%2Fjphysiol.2013.267336&rft.externalDBID=10.1113%252Fjphysiol.2013.267336&rft.externalDocID=TJP6047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |