Data-driven human transcriptomic modules determined by independent component analysis
Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic an...
Saved in:
Published in | BMC bioinformatics Vol. 19; no. 1; pp. 327 - 25 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
17.09.2018
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-018-2338-4 |
Cover
Abstract | Background
Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results.
In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features.
Results
We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (
p
< 0.01). The models also had higher accuracy and negative predictive value (
p
< 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches.
Conclusions
The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. |
---|---|
AbstractList | Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Abstract Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Keywords: Independent component analysis, Gene expression, Functional modules, Transcriptome Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features.BACKGROUNDAnalyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features.We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches.RESULTSWe identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches.The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.CONCLUSIONSThe 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity ( p < 0.01). The models also had higher accuracy and negative predictive value ( p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. |
ArticleNumber | 327 |
Audience | Academic |
Author | Zhou, Weizhuang Altman, Russ B. |
Author_xml | – sequence: 1 givenname: Weizhuang surname: Zhou fullname: Zhou, Weizhuang organization: Department of Bioengineering, Stanford University – sequence: 2 givenname: Russ B. surname: Altman fullname: Altman, Russ B. email: russ.altman@stanford.edu organization: Department of Bioengineering, Stanford University, Department of Genetics, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30223787$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wA9igSGxgkeJH_JgNUlVeI1VCArq2buybqavEHuykov8eT6elnQpQpMRyvnMSn3sOq70QA1bVS0qOKdXyXaZMi0VDqG4Y57ppn1QHtFW0YZSIvQfr_eow50tCqNJEPKv2OWGMK60OqvMPMEHjkr_CUF_MI4R6ShCyTX49xdHbeoxuHjDXDidMow_o6u669sHhGsstTLWN47r8WFlBgOE6-_y8etrDkPHF7fOoOv_08cfpl-bs6-fl6clZY4VgbSMXTkKPvFNEMcvBtX3vCOmk7gRS1VvZMalQKAY9EClRSWidEJQwYNghP6qWW18X4dKskx8hXZsI3txsxLQykCZvBzRO6472nLfIoBWi0wSRE6kXSgmUKIrX-63Xeu5GdLacJ8GwY7r7JvgLs4pXRtKWtYQWgze3Bin-nDFPZvTZ4jBAwDhnUwax4JwJLgv6-hF6GedUwruhtFJUaH1PraAcwIc-lu_ajak5EUIpJqnaeB3_hSqXwzK-Mpfel_0dwdsdQWEm_DWtYM7ZLL9_22VfPQzlTxp3BSqA2gI2xZwT9sb6CSYfNxn5wVBiNlU126qaUlWzqappi5I-Ut6Z_0_Dtppc2LDCdJ_bv0W_AWWt-Wo |
CitedBy_id | crossref_primary_10_1093_gigascience_giaa117 crossref_primary_10_1093_bib_bbad380 crossref_primary_10_1186_s12967_020_02456_z crossref_primary_10_1093_bioinformatics_btab121 crossref_primary_10_3390_ijms20184414 crossref_primary_10_1186_s13059_020_02021_3 crossref_primary_10_1371_journal_pcbi_1009888 crossref_primary_10_1016_j_biotechadv_2024_108479 crossref_primary_10_19113_sdufenbed_699241 crossref_primary_10_1109_TASE_2022_3229294 crossref_primary_10_3389_fgene_2021_683632 crossref_primary_10_1038_s41467_021_24584_w crossref_primary_10_1186_s12859_024_05795_6 |
Cites_doi | 10.1371/journal.pcbi.0030161 10.1177/0013164495055003002 10.1186/1755-8794-4-73 10.1016/j.jaut.2017.01.002 10.1016/j.jsbmb.2015.09.037 10.1038/srep04092 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.cels.2015.12.004 10.1016/j.bbadis.2009.02.013 10.1093/nar/gkt054 10.1038/nbt0410-322 10.1186/s12859-016-1414-x 10.1002/0471221317 10.1093/bioinformatics/btg405 10.1038/ng1180 10.1007/BF02289447 10.1093/nar/gku1057 10.1016/j.bcp.2016.03.025 10.1126/science.1132939 10.1002/art.23386 10.1093/bioinformatics/btw664 10.1186/1471-2105-10-422 10.1371/journal.pntd.0000086 10.1038/modpathol.2015.82 10.18637/jss.v014.i12 10.1111/exd.12576 10.1186/1471-2164-9-488 10.1093/bioinformatics/btl140 10.1073/pnas.97.18.10101 10.18637/jss.v011.i09 10.1016/j.celrep.2014.10.035 10.1111/biom.12111 10.1186/gb-2008-9-2-r26 10.1080/00273170902938969 10.1093/bioinformatics/btn615 10.1073/pnas.0506580102 10.1093/bioinformatics/18.1.51 10.1093/bioinformatics/btv428 10.1186/gb-2003-4-11-r76 10.1200/JCO.2009.23.4732 10.1128/mSystems.00025-15 10.1016/j.jbi.2010.07.001 10.1038/srep25696 10.1093/nar/gkv007 10.1037/0033-2909.99.3.432 10.1093/bioinformatics/btn520 10.1093/bioinformatics/19.2.185 10.1016/j.cels.2016.04.001 10.1038/nbt0308-303 10.1016/j.cels.2017.06.003 10.1371/journal.pntd.0003522 |
ContentType | Journal Article |
Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-018-2338-4 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection Text complet a ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 25 |
ExternalDocumentID | oai_doaj_org_article_d88b1f334e2a455b80ee30689775e6e5 PMC6142401 A557726176 30223787 10_1186_s12859_018_2338_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: LM05652; GM102365; GM61374 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NIGMS NIH HHS grantid: U01 GM061374 – fundername: National Institutes of Health grantid: GM102365 – fundername: NIGMS NIH HHS grantid: R24 GM061374 – fundername: National Institutes of Health grantid: LM05652 – fundername: National Institutes of Health grantid: GM61374 – fundername: NLM NIH HHS grantid: R01 LM005652 – fundername: NIGMS NIH HHS grantid: R01 GM102365 – fundername: ; grantid: LM05652; GM102365; GM61374 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF M0N NPM PMFND 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c5524-69d6afe3b7072c3ad4ffd00b68b5e17fc6b267e572afa066e76a4d55102a2ebe3 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:28:33 EDT 2025 Thu Aug 21 14:18:59 EDT 2025 Fri Sep 05 09:17:34 EDT 2025 Fri Jul 25 10:47:21 EDT 2025 Tue Jun 17 21:11:19 EDT 2025 Tue Jun 10 20:19:05 EDT 2025 Fri Jun 27 03:34:27 EDT 2025 Wed Feb 19 02:42:26 EST 2025 Thu Apr 24 22:55:47 EDT 2025 Tue Jul 01 03:38:26 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gene expression Functional modules Independent component analysis Transcriptome |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5524-69d6afe3b7072c3ad4ffd00b68b5e17fc6b267e572afa066e76a4d55102a2ebe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2338-4 |
PMID | 30223787 |
PQID | 2108771588 |
PQPubID | 44065 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d88b1f334e2a455b80ee30689775e6e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142401 proquest_miscellaneous_2109332536 proquest_journals_2108771588 gale_infotracmisc_A557726176 gale_infotracacademiconefile_A557726176 gale_incontextgauss_ISR_A557726176 pubmed_primary_30223787 crossref_citationtrail_10_1186_s12859_018_2338_4 crossref_primary_10_1186_s12859_018_2338_4 springer_journals_10_1186_s12859_018_2338_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180917 |
PublicationDateYYYYMMDD | 2018-09-17 |
PublicationDate_xml | – month: 9 year: 2018 text: 20180917 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2018 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | AR Bateman (2338_CR4) 2014; 4 CL Doig (2338_CR47) 2016; 155 H-U Klein (2338_CR49) 2009; 10 Q Li (2338_CR27) 2011; 12 2338_CR14 Y Zhu (2338_CR28) 2008; 24 M Rajasekhar (2338_CR48) 2017; 79 A Alexa (2338_CR36) 2006; 22 J Lamb (2338_CR1) 2006; 313 BB Risk (2338_CR22) 2014; 70 JL Horn (2338_CR31) 1965; 30 L. Gautier (2338_CR25) 2004; 20 VK Mootha (2338_CR2) 2003; 34 M Lukk (2338_CR10) 2010; 28 J Fink (2338_CR53) 2007; 1 Seth Carbon (2338_CR44) 2008; 25 2338_CR21 C Jonquet (2338_CR29) 2009; 2009 ME Ritchie (2338_CR41) 2015; 43 LW Glorfeld (2338_CR32) 1995; 55 G Heimberg (2338_CR11) 2016; 2 T Hastie (2338_CR20) 2003 J Stanczyk (2338_CR51) 2008; 58 Y Benjamini (2338_CR37) 1995; 57 I Faraoni (2338_CR50) 2009; 1792 A Subramanian (2338_CR3) 2005; 102 2338_CR35 W Sun (2338_CR42) 2015; 28 A Liberzon (2338_CR6) 2015; 1 2338_CR39 T Galili (2338_CR40) 2015; 31 S Tripathi (2338_CR5) 2013; 41 AE Teschendorff (2338_CR18) 2007; 3 A Hyvärinen (2338_CR30) 2001 J Tan (2338_CR13) 2017; 5 N Kolesnikov (2338_CR43) 2015; 43 W Zhou (2338_CR23) 2017; 33 CAM van de Weg (2338_CR52) 2015; 9 O Alter (2338_CR8) 2000; 97 A Dinno (2338_CR34) 2009; 44 M Lenz (2338_CR12) 2016; 6 JM Engreitz (2338_CR19) 2010; 43 P Malátková (2338_CR45) 2016; 109 T Haferlach (2338_CR38) 2010; 28 B.M. Bolstad (2338_CR24) 2003; 19 2338_CR9 WR Zwick (2338_CR33) 1986; 99 M Ringner (2338_CR7) 2008; 26 D Kim (2338_CR46) 2015; 24 T Hulsen (2338_CR54) 2008; 9 S-I Lee (2338_CR15) 2003; 4 AC Eklund (2338_CR26) 2008; 9 W Liebermeister (2338_CR16) 2002; 18 Anne Biton (2338_CR17) 2014; 9 20406941 - J Clin Oncol. 2010 May 20;28(15):2529-37 22172014 - BMC Bioinformatics. 2011 Dec 15;12:474 17708679 - PLoS Comput Biol. 2007 Aug;3(8):e161 19268705 - Biochim Biophys Acta. 2009 Jun;1792(6):497-505 25605792 - Nucleic Acids Res. 2015 Apr 20;43(7):e47 17008526 - Science. 2006 Sep 29;313(5795):1929-35 18842599 - Bioinformatics. 2008 Dec 1;24(23):2798-800 28118944 - J Autoimmun. 2017 May;79:53-62 27135536 - Cell Syst. 2016 Apr 27;2(4):239-250 27822512 - mSystems. 2016 Jan 19;1(1) 27055738 - Biochem Pharmacol. 2016 Jun 1;109:83-90 25768297 - PLoS Negl Trop Dis. 2015 Mar 13;9(3):e0003522 20379172 - Nat Biotechnol. 2010 Apr;28(4):322-4 27254731 - Sci Rep. 2016 Jun 02;6:25696 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6 24350655 - Biometrics. 2014 Mar;70(1):224-36 11836211 - Bioinformatics. 2002 Jan;18(1):51-60 26771021 - Cell Syst. 2015 Dec 23;1(6):417-425 20234802 - Multivariate Behav Res. 2009 May;44(3):362-388 14611662 - Genome Biol. 2003;4(11):R76 24522610 - Sci Rep. 2014 Feb 13;4:4092 27797771 - Bioinformatics. 2017 Feb 15;33(4):522-528 18327243 - Nat Biotechnol. 2008 Mar;26(3):303-4 18248669 - Genome Biol. 2008;9(2):R26 25456126 - Cell Rep. 2014 Nov 20;9(4):1235-45 14306381 - Psychometrika. 1965 Jun;30:179-85 20619355 - J Biomed Inform. 2010 Dec;43(6):932-44 23389952 - Nucleic Acids Res. 2013 Apr;41(7):e82 18383392 - Arthritis Rheum. 2008 Apr;58(4):1001-9 25361974 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6 21996057 - BMC Med Genomics. 2011 Oct 14;4:73 25356957 - Exp Dermatol. 2015 Jan;24(1):14-5 28711280 - Cell Syst. 2017 Jul 26;5(1):63-71.e6 12808457 - Nat Genet. 2003 Jul;34(3):267-73 20003504 - BMC Bioinformatics. 2009 Dec 15;10:422 19033274 - Bioinformatics. 2009 Jan 15;25(2):288-9 21347171 - Summit Transl Bioinform. 2009 Mar 01;2009:56-60 18925949 - BMC Genomics. 2008 Oct 16;9:488 16606683 - Bioinformatics. 2006 Jul 1;22(13):1600-7 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 18060089 - PLoS Negl Trop Dis. 2007 Nov 21;1(2):e86 26226845 - Mod Pathol. 2015 Sep;28(9):1214-24 26209431 - Bioinformatics. 2015 Nov 15;31(22):3718-20 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 26429394 - J Steroid Biochem Mol Biol. 2016 Jan;155(Pt A):47-55 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 |
References_xml | – volume: 3 start-page: e161 issue: 8 year: 2007 ident: 2338_CR18 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030161 – volume: 55 start-page: 377 issue: 3 year: 1995 ident: 2338_CR32 publication-title: Educ Psychol Meas doi: 10.1177/0013164495055003002 – ident: 2338_CR9 doi: 10.1186/1755-8794-4-73 – volume: 79 start-page: 53 year: 2017 ident: 2338_CR48 publication-title: J Autoimmun doi: 10.1016/j.jaut.2017.01.002 – volume: 155 start-page: 47 year: 2016 ident: 2338_CR47 publication-title: J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2015.09.037 – volume: 4 start-page: 4092 year: 2014 ident: 2338_CR4 publication-title: Sci Rep doi: 10.1038/srep04092 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 2338_CR37 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 1 start-page: 417 issue: 6 year: 2015 ident: 2338_CR6 publication-title: Cell Systems doi: 10.1016/j.cels.2015.12.004 – volume: 1792 start-page: 497 issue: 6 year: 2009 ident: 2338_CR50 publication-title: Biochim Biophys Acta (BBA) - Mol Basis Dis doi: 10.1016/j.bbadis.2009.02.013 – volume: 41 start-page: e82 issue: 7 year: 2013 ident: 2338_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt054 – volume: 28 start-page: 322 issue: 4 year: 2010 ident: 2338_CR10 publication-title: Nat Biotech doi: 10.1038/nbt0410-322 – volume: 12 start-page: 1 issue: 1 year: 2011 ident: 2338_CR27 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1414-x – volume-title: Independent Component Analysis year: 2001 ident: 2338_CR30 doi: 10.1002/0471221317 – volume: 20 start-page: 307 issue: 3 year: 2004 ident: 2338_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – ident: 2338_CR21 – volume: 34 start-page: 267 issue: 3 year: 2003 ident: 2338_CR2 publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 2009 start-page: 56 year: 2009 ident: 2338_CR29 publication-title: Summit on Translational Bioinformatics – volume: 30 start-page: 179 issue: 2 year: 1965 ident: 2338_CR31 publication-title: Psychometrika doi: 10.1007/BF02289447 – volume: 43 start-page: D1113 issue: D1 year: 2015 ident: 2338_CR43 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1057 – volume: 109 start-page: 83 year: 2016 ident: 2338_CR45 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2016.03.025 – volume: 313 start-page: 1929 issue: 5795 year: 2006 ident: 2338_CR1 publication-title: Science doi: 10.1126/science.1132939 – volume: 58 start-page: 1001 issue: 4 year: 2008 ident: 2338_CR51 publication-title: Arthritis & Rheumatism doi: 10.1002/art.23386 – volume: 33 start-page: 522 issue: 4 year: 2017 ident: 2338_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw664 – volume: 10 start-page: 422 issue: 1 year: 2009 ident: 2338_CR49 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-422 – volume: 1 start-page: e86 issue: 2 year: 2007 ident: 2338_CR53 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000086 – volume: 28 start-page: 1214 issue: 9 year: 2015 ident: 2338_CR42 publication-title: Mod Pathol doi: 10.1038/modpathol.2015.82 – ident: 2338_CR35 doi: 10.18637/jss.v014.i12 – volume: 24 start-page: 14 issue: 1 year: 2015 ident: 2338_CR46 publication-title: Exp Dermatol doi: 10.1111/exd.12576 – volume: 9 start-page: 488 issue: 1 year: 2008 ident: 2338_CR54 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-488 – volume: 22 start-page: 1600 issue: 13 year: 2006 ident: 2338_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl140 – volume: 97 start-page: 10101 year: 2000 ident: 2338_CR8 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.18.10101 – ident: 2338_CR39 doi: 10.18637/jss.v011.i09 – volume: 9 start-page: 1235 issue: 4 year: 2014 ident: 2338_CR17 publication-title: Cell Reports doi: 10.1016/j.celrep.2014.10.035 – volume: 70 start-page: 224 issue: 1 year: 2014 ident: 2338_CR22 publication-title: Biometrics doi: 10.1111/biom.12111 – volume: 9 start-page: 1 issue: 2 year: 2008 ident: 2338_CR26 publication-title: Genome Biol doi: 10.1186/gb-2008-9-2-r26 – volume: 44 start-page: 362 issue: 3 year: 2009 ident: 2338_CR34 publication-title: Multivar Behav Res doi: 10.1080/00273170902938969 – volume: 25 start-page: 288 issue: 2 year: 2008 ident: 2338_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn615 – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 2338_CR3 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0506580102 – volume: 18 start-page: 51 year: 2002 ident: 2338_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.51 – volume: 31 start-page: 3718 issue: 22 year: 2015 ident: 2338_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv428 – volume: 4 start-page: R76 issue: 11 year: 2003 ident: 2338_CR15 publication-title: Genome Biol doi: 10.1186/gb-2003-4-11-r76 – volume: 28 start-page: 2529 issue: 15 year: 2010 ident: 2338_CR38 publication-title: J Clin Oncol doi: 10.1200/JCO.2009.23.4732 – ident: 2338_CR14 doi: 10.1128/mSystems.00025-15 – volume: 43 start-page: 932 issue: 6 year: 2010 ident: 2338_CR19 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2010.07.001 – volume: 6 start-page: 25696 year: 2016 ident: 2338_CR12 publication-title: Sci Rep doi: 10.1038/srep25696 – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 2338_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 99 start-page: 432 year: 1986 ident: 2338_CR33 publication-title: Psychol Bull doi: 10.1037/0033-2909.99.3.432 – volume: 24 start-page: 2798 issue: 23 year: 2008 ident: 2338_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn520 – start-page: 665 volume-title: Advances in neural information processing systems year: 2003 ident: 2338_CR20 – volume: 19 start-page: 185 issue: 2 year: 2003 ident: 2338_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 2 start-page: 239 issue: 4 year: 2016 ident: 2338_CR11 publication-title: Cell Systems doi: 10.1016/j.cels.2016.04.001 – volume: 26 start-page: 303 issue: 3 year: 2008 ident: 2338_CR7 publication-title: Nat Biotech doi: 10.1038/nbt0308-303 – volume: 5 start-page: 63 issue: 1 year: 2017 ident: 2338_CR13 publication-title: Cell Systems doi: 10.1016/j.cels.2017.06.003 – volume: 9 start-page: e0003522 issue: 3 year: 2015 ident: 2338_CR52 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0003522 – reference: 25605792 - Nucleic Acids Res. 2015 Apr 20;43(7):e47 – reference: 26226845 - Mod Pathol. 2015 Sep;28(9):1214-24 – reference: 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6 – reference: 24350655 - Biometrics. 2014 Mar;70(1):224-36 – reference: 27055738 - Biochem Pharmacol. 2016 Jun 1;109:83-90 – reference: 18327243 - Nat Biotechnol. 2008 Mar;26(3):303-4 – reference: 14306381 - Psychometrika. 1965 Jun;30:179-85 – reference: 20619355 - J Biomed Inform. 2010 Dec;43(6):932-44 – reference: 19033274 - Bioinformatics. 2009 Jan 15;25(2):288-9 – reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 – reference: 23389952 - Nucleic Acids Res. 2013 Apr;41(7):e82 – reference: 24522610 - Sci Rep. 2014 Feb 13;4:4092 – reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73 – reference: 26429394 - J Steroid Biochem Mol Biol. 2016 Jan;155(Pt A):47-55 – reference: 25456126 - Cell Rep. 2014 Nov 20;9(4):1235-45 – reference: 27797771 - Bioinformatics. 2017 Feb 15;33(4):522-528 – reference: 18925949 - BMC Genomics. 2008 Oct 16;9:488 – reference: 20003504 - BMC Bioinformatics. 2009 Dec 15;10:422 – reference: 18383392 - Arthritis Rheum. 2008 Apr;58(4):1001-9 – reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 – reference: 20406941 - J Clin Oncol. 2010 May 20;28(15):2529-37 – reference: 25768297 - PLoS Negl Trop Dis. 2015 Mar 13;9(3):e0003522 – reference: 25356957 - Exp Dermatol. 2015 Jan;24(1):14-5 – reference: 18842599 - Bioinformatics. 2008 Dec 1;24(23):2798-800 – reference: 28118944 - J Autoimmun. 2017 May;79:53-62 – reference: 14611662 - Genome Biol. 2003;4(11):R76 – reference: 21996057 - BMC Med Genomics. 2011 Oct 14;4:73 – reference: 18060089 - PLoS Negl Trop Dis. 2007 Nov 21;1(2):e86 – reference: 19268705 - Biochim Biophys Acta. 2009 Jun;1792(6):497-505 – reference: 28711280 - Cell Syst. 2017 Jul 26;5(1):63-71.e6 – reference: 21347171 - Summit Transl Bioinform. 2009 Mar 01;2009:56-60 – reference: 22172014 - BMC Bioinformatics. 2011 Dec 15;12:474 – reference: 18248669 - Genome Biol. 2008;9(2):R26 – reference: 17708679 - PLoS Comput Biol. 2007 Aug;3(8):e161 – reference: 27254731 - Sci Rep. 2016 Jun 02;6:25696 – reference: 17008526 - Science. 2006 Sep 29;313(5795):1929-35 – reference: 27135536 - Cell Syst. 2016 Apr 27;2(4):239-250 – reference: 26771021 - Cell Syst. 2015 Dec 23;1(6):417-425 – reference: 26209431 - Bioinformatics. 2015 Nov 15;31(22):3718-20 – reference: 25361974 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 11836211 - Bioinformatics. 2002 Jan;18(1):51-60 – reference: 20379172 - Nat Biotechnol. 2010 Apr;28(4):322-4 – reference: 27822512 - mSystems. 2016 Jan 19;1(1): – reference: 20234802 - Multivariate Behav Res. 2009 May;44(3):362-388 – reference: 16606683 - Bioinformatics. 2006 Jul 1;22(13):1600-7 |
SSID | ssj0017805 |
Score | 2.3918402 |
Snippet | Background
Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in... Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene... Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in... Abstract Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 327 |
SubjectTerms | Algorithms Arthritis, Rheumatoid - genetics Arthritis, Rheumatoid - pathology Bioinformatics Biological activity Biomedical and Life Sciences Cancer Classification Clustering Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Dimensional analysis DNA Fingerprinting DNA microarrays Functional modules Gene expression Genomics Humans Independent component analysis Learning algorithms Leukemia Leukemia - genetics Leukemia - pathology Life Sciences Machine learning Medical research Microarrays MicroRNAs Model accuracy Modules Oligonucleotide Array Sequence Analysis Precision medicine Principal components analysis Regularization Research Article Rhabdomyosarcoma - genetics Rhabdomyosarcoma - pathology Rheumatoid arthritis Transcriptome Transcriptome analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLSggJCRQ1MTvHMujKkhwAFbqzbJjGyqVLGqyh_57ZhxvaIqAC8pls57sOjPjecjjbwh5Rq2KOtpYeU15xbmTVascrYIF5ymdiDwdCvvwUR6v-PsTcXKp1RfWhE3wwBPjDrzWromM8UAtF8LpOgQIczXELSLIkNBL67beJlN5_wCR-vMeZqPlwdAgThukzaAVkJNVfOGFElj_7yb5kk-6Wi95ZdM0-aKjW-RmDiLLw2nyu-Ra6G-T61NbyYs7ZPXGjrby52jIytSErxzRJSUDgaeQy-9rvzkLQ-lzMUzwpbsoT-eWuGOJpebrHj_ZDFtyl6yO3n55fVzl9glVJwQwXrZe2hiYU7WiHbOex-jr2kntRGhU7KSjUgWhqI0WIo-gpOUeIqiaWgqyZffITg__9IDAbAKPDTA9gCBs6Fq459QJiMYkXE1B6i07TZexxbHFxZlJOYaWZpKAAQkYlIDhBXkxP_JjAtb4G_ErlNFMiJjY6QvQFJM1xfxLUwryFCVsEPWix7Kar3YzDObd50_mUAjIMiCYkwV5noniGt6gs_mUAvABgbIWlPsLSliW3XJ4q0gmm4XBQH6tlWqE1gV5Mg_jk1jq1of1JtG0jFHB4CfuT3o3vzeDiIuBiS2IWmjkgjHLkf70WwINl3iksQZJvdzq7q9p_ZHvD_8H3_fIDYorD_tuqH2yM55vwiOI5Eb3OC3an1gEQwg priority: 102 providerName: Directory of Open Access Journals – databaseName: Text complet a ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbKVkhcEO8GCgoICQkUNXH82gNCLbQqSKxQoVJvlh3bpVJJyj4O_ffMeJ2UFFHtJbueZG3PeB7x-BtCXlMjgwomFE5RVjBmRTGVlhbegPEUlgcWD4V9nYnDY_blhJ9skFl_FgbTKnudGBW16xp8R74DoYmSsuJKfbj4XWDVKNxd7UtomFRawb2PEGO3yCaoZF5OyObe_uzb0bCvgAj-aW-zUmJnUSF-G4TTIC0QqxVsZJ0iiP-_qvovW3U9j_LaZmq0UQf3yN3kXOa7a2m4TzZ8-4DcXpebvHxIjj-ZpSncHBVcHovz5Us0VVFx4Onk_FfnVud-kbuUJONdbi_zs6FU7jLHFPSuxSuT4EwekeOD_R8fD4tUVqFoOAeGiKkTJvjaylLSpjaOheDK0gplua9kaISlQnouqQkGPBIvhWEOprWkhgLP68dk0sI_bRHojWehEmrq65oZ30zhO6OWg5cm4FNlpOynUzcJcxxLX5zrGHsoodcc0MABjRzQLCNvh1su1oAbNxHvIY8GQsTKjj9081Odlp52StkqQAc9NYxzq0rvIVBS4PlyLzzPyCvksEY0jBbTbU7NarHQn78f6V3OIfoAJ09k5E0iCh2MoDHp9ALMAwJojSi3R5SwXJtxcy9IOqmLhb4S7oy8HJrxTkyBa323ijTTuqa8hkc8WcvdMO4aPLEaVG9G5EgiRxMzbmnPfkYwcYFHHUvg1Ltedq-69d95f3rzIJ6ROxTXFFbakNtkspyv_HPw3Zb2RVqQfwA_E0Gl priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aEXwRv91aZRVBUBZ3872P9bRUQR_Ug76FZJNooe5Jd--h_31ncrm1Wz9A7uXuMrnLZibzQWZ-Q8hzalXU0cbKa8orzp2sWuVoFSwYT-lE5Kko7OMnebjkH47EUQaLxlqYi_f3jZavhwYR1iDgBX5CNFXxq-SaAL2LwryQi-nCAKH586XlH6fNzE5C5_9dB18wQpcTJC_dkibjc3CL3MxeY7m_YfNtciX0d8j1TR_Js7tk-daOtvKnqLnK1HWvHNEGJY2AZcflj5Vfn4Sh9Dn7JfjSnZXHUw_cscTc8lWP72zGKblHlgfvvi4Oq9wvoeqEgJ2WrZc2BuZUrWjHrOcx-rp2UjsRGhU76ahUQShqowVXIyhpuQeXqaaWAjPZfbLTwz89JLCawGMjdRsY4zZ0LXzm1AlwvyS8moLU2-00XQYTx54WJyYFFVqaDQcMcMAgBwwvyMtpys8Nksa_iN8gjyZCBMFOX4BsmHymjNfaNREWGKjlQjhdhwCSocGlFUEGUZBnyGGDMBc95tF8s-thMO-_fDb7QkBYAd6bLMiLTBRX8ASdzWUJsA-IjDWj3JtRwjns5sNbQTJZDwwGAmqtVCO0LsjTaRhnYm5bH1brRNMyRgWDn3iwkbvpuRm4WAx0akHUTCJnGzMf6Y-_J5RwiTWMNXDq1VZ2fy3rr_u--1_Uj8gNikcMO2qoPbIznq7DY_DRRvcknc5ziikzlQ priority: 102 providerName: Springer Nature |
Title | Data-driven human transcriptomic modules determined by independent component analysis |
URI | https://link.springer.com/article/10.1186/s12859-018-2338-4 https://www.ncbi.nlm.nih.gov/pubmed/30223787 https://www.proquest.com/docview/2108771588 https://www.proquest.com/docview/2109332536 https://pubmed.ncbi.nlm.nih.gov/PMC6142401 https://doaj.org/article/d88b1f334e2a455b80ee30689775e6e5 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELf2EGhfEG8CowoICQkUSBy_-gGhrawMJCY0qNRvlp3YY1JJtj4k-t9z5ybdMjZUqWrqc-r47nx39fl3hLyiRnrljU9KRVnCmBVJX1qaOAPGU1juWTgU9u1IHI7Y1zEfb5C2vFUzgbNrQzusJzWaTt79OV9-BIX_EBReifezDFHYICgGnkPElbBNsh22izCTj11sKiB8f7OxeW23HXI7B5OWS8yvu2SlApj_v0v2JZt1NZ_yyqZqsFXDu-RO42TGeyupuEc2XHWf3FqVnVw-IKNPZm6ScooLXRyK9MVzNFlhAcFTyvHvulxM3Cwum2QZV8Z2GZ-uS-bOY0xFryv8ZBpYk4dkNDz4OThMmvIKScE5MEb0S2G8y61MJS1yUzLvyzS1QlnuMukLYamQjktqvAHPxElhWAkeVkoNBd7nj8hWBb_0hMBoHPOZUH2X58y4og_XjFoO3pqAVxaRtJ1OXTTY41gCY6JDDKKEXjFDAzM0MkOziLxZdzlbAW_8j3gfebQmRMzs8EU9PdGNCupSKZt5GKCjhnFuVeocBEwKPGDuhOMReYkc1oiKUWHazYlZzGb6y49jvcc5RCHg7ImIvG6IfA1PUJjmFAPMAwJpdSh3O5SgtkW3uRUk3Uq9hvhbSZlxpSLyYt2MPTEVrnL1ItD085zyHG7xeCV36-duxTcisiORnYnptlSnvwKouMAjjylw6m0ruxfDunHen944gmdkh6JmYbENuUu25tOFew7u29z2yKYcS3hXw889sr1_cPT9GK4GYtALf4j0gtL-BbFqQxg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgvgkMCAiEBIqWOLbjPkxoY5tatlVorNLejBPbY9JIRtMK9c_x27hL3YwMsbepL219Sey7833E90HIG6ozJ512kZGURYzlIupnOY2sBuUpcu5YkxR2MBKDMft8zI9XyO9lLgyGVS5lYiOoTVXgO_J1cE1kliVcyo_nPyPsGoWnq8sWGtq3VjAbTYkxn9ixZ-e_wIWrN4bbQO-3lO7uHH0aRL7LQFRwDvMTfSO0s2mexRktUm2YcyaOcyFzbpPMFSKnIrM8o9ppUNA2E5oZeEpMNQUUpHDfG2SV4QuUHlnd2hl9OWzPMbBjgD9LTaRYrxOsFwfuO3An-IYR62jDpmnAv6rhL914OW7z0uFtoxN375I73pgNNxfcd4-s2PI-ublobzl_QMbbeqojM0GBGjbNAMMpqsZGUGE2dPijMrMzW4fGB-VYE-bz8LRtzTsNMeS9KvGb9uVTHpLxtSD4EemV8KQnBGZjmUuE7Ns0ZdoWffjNaM7BKhTwSQISL9GpCl_jHFttnKnG15FCLSiggAIKKaBYQN63l5wvCnxcBbyFNGoBsTZ380c1OVF-qysjZZ44mKClmnGey9hacMwkWNrcCssD8hoprLD6RonhPSd6Vtdq-PVQbXIO3g4YlSIg7zyQq2AFhfbZEoAHLNjVgVzrQIJ4KLrDS0ZSXjzV6mIzBeRVO4xXYshdaatZA9NPU8pTuMXjBd-1607B8ktB1Ack63BkBzHdkfL0e1O8XGBqZQyU-rDk3Ytp_RfvT69exEtya3B0sK_2h6O9Z-Q2xf2FXT6yNdKbTmb2OdiN0_yF35wh-Xbd8uAP9xd_QA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFYgL4k2gQEBISKCoid85LpRVu0CFKCv1ZtmxXSqVpNpkD_33jBNvIOUhoVw28TjreOx5yDPfIPQSa-Gl1z6zEtOMUsOzUhicOQ3KkxvmaZ8U9umQ7y_p4pgdxzqn7SbafXMkOeQ0BJSmuts9t37Y4pLvtkXAXQM3GLgMPlZGr6JteFCC97U9my2OFuNBQoDsj4eZf-w4UUc9av_vsvkX5XQ5cPLS6WmvlOa30M1oTaazgf230RVX30HXhvqSF3fRck93OrOrINHSvhpf2gXd1EuKkI6cfm_s-sy1qY1RMc6m5iI9HWvjdmmIOW_q8EtH_JJ7aDl___XdfhbrKGQVY8ABXlquvSNG5AJXRFvqvc1zw6VhrhC-4gZz4ZjA2mswQZzgmlowpXKsMTCZ3EdbNfzTQwSjcdQXXJaOEKpdVcI9xYaBWcbhKhKUb6ZTVRFkPNS6OFO9syG5GjiggAMqcEDRBL0eu5wPCBv_In4beDQSBnDs_kGzOlFxrykrpSk8DNBhTRkzMncOPCMJpi5z3LEEvQgcVgH-og7xNSd63bbq4OiLmjEG7gZYdTxBryKRb-ALKh3TFWAeAmLWhHJnQgn7s5o2bxaSivKhVeBoSyEKJmWCno_NoWeIeatds-5pSkIwI_CKB8O6G7-bgOlFQNYmSExW5GRipi316bcePZyH3MYcOPVms3Z_Duuv8_7ov6ifoeuf9-bq48Hhh8foBg67LRTdEDtoq1ut3RMw4zrzNG7VH4BdQEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+human+transcriptomic+modules+determined+by+independent+component+analysis&rft.jtitle=BMC+bioinformatics&rft.au=Zhou%2C+Weizhuang&rft.au=Altman%2C+Russ+B&rft.date=2018-09-17&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=327&rft_id=info:doi/10.1186%2Fs12859-018-2338-4&rft_id=info%3Apmid%2F30223787&rft.externalDocID=30223787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |