Data-driven human transcriptomic modules determined by independent component analysis

Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic an...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. 1; pp. 327 - 25
Main Authors Zhou, Weizhuang, Altman, Russ B.
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.09.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-018-2338-4

Cover

Abstract Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity ( p  < 0.01). The models also had higher accuracy and negative predictive value ( p  < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
AbstractList Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
Abstract Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently. Keywords: Independent component analysis, Gene expression, Functional modules, Transcriptome
Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features.BACKGROUNDAnalyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features.We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches.RESULTSWe identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches.The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.CONCLUSIONSThe 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. Results We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity ( p  < 0.01). The models also had higher accuracy and negative predictive value ( p  < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. Conclusions The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.
ArticleNumber 327
Audience Academic
Author Zhou, Weizhuang
Altman, Russ B.
Author_xml – sequence: 1
  givenname: Weizhuang
  surname: Zhou
  fullname: Zhou, Weizhuang
  organization: Department of Bioengineering, Stanford University
– sequence: 2
  givenname: Russ B.
  surname: Altman
  fullname: Altman, Russ B.
  email: russ.altman@stanford.edu
  organization: Department of Bioengineering, Stanford University, Department of Genetics, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30223787$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkeJH_JgNUlVeI1VCArq2buybqavEHuykov8eT6elnQpQpMRyvnMSn3sOq70QA1bVS0qOKdXyXaZMi0VDqG4Y57ppn1QHtFW0YZSIvQfr_eow50tCqNJEPKv2OWGMK60OqvMPMEHjkr_CUF_MI4R6ShCyTX49xdHbeoxuHjDXDidMow_o6u669sHhGsstTLWN47r8WFlBgOE6-_y8etrDkPHF7fOoOv_08cfpl-bs6-fl6clZY4VgbSMXTkKPvFNEMcvBtX3vCOmk7gRS1VvZMalQKAY9EClRSWidEJQwYNghP6qWW18X4dKskx8hXZsI3txsxLQykCZvBzRO6472nLfIoBWi0wSRE6kXSgmUKIrX-63Xeu5GdLacJ8GwY7r7JvgLs4pXRtKWtYQWgze3Bin-nDFPZvTZ4jBAwDhnUwax4JwJLgv6-hF6GedUwruhtFJUaH1PraAcwIc-lu_ajak5EUIpJqnaeB3_hSqXwzK-Mpfel_0dwdsdQWEm_DWtYM7ZLL9_22VfPQzlTxp3BSqA2gI2xZwT9sb6CSYfNxn5wVBiNlU126qaUlWzqappi5I-Ut6Z_0_Dtppc2LDCdJ_bv0W_AWWt-Wo
CitedBy_id crossref_primary_10_1093_gigascience_giaa117
crossref_primary_10_1093_bib_bbad380
crossref_primary_10_1186_s12967_020_02456_z
crossref_primary_10_1093_bioinformatics_btab121
crossref_primary_10_3390_ijms20184414
crossref_primary_10_1186_s13059_020_02021_3
crossref_primary_10_1371_journal_pcbi_1009888
crossref_primary_10_1016_j_biotechadv_2024_108479
crossref_primary_10_19113_sdufenbed_699241
crossref_primary_10_1109_TASE_2022_3229294
crossref_primary_10_3389_fgene_2021_683632
crossref_primary_10_1038_s41467_021_24584_w
crossref_primary_10_1186_s12859_024_05795_6
Cites_doi 10.1371/journal.pcbi.0030161
10.1177/0013164495055003002
10.1186/1755-8794-4-73
10.1016/j.jaut.2017.01.002
10.1016/j.jsbmb.2015.09.037
10.1038/srep04092
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.cels.2015.12.004
10.1016/j.bbadis.2009.02.013
10.1093/nar/gkt054
10.1038/nbt0410-322
10.1186/s12859-016-1414-x
10.1002/0471221317
10.1093/bioinformatics/btg405
10.1038/ng1180
10.1007/BF02289447
10.1093/nar/gku1057
10.1016/j.bcp.2016.03.025
10.1126/science.1132939
10.1002/art.23386
10.1093/bioinformatics/btw664
10.1186/1471-2105-10-422
10.1371/journal.pntd.0000086
10.1038/modpathol.2015.82
10.18637/jss.v014.i12
10.1111/exd.12576
10.1186/1471-2164-9-488
10.1093/bioinformatics/btl140
10.1073/pnas.97.18.10101
10.18637/jss.v011.i09
10.1016/j.celrep.2014.10.035
10.1111/biom.12111
10.1186/gb-2008-9-2-r26
10.1080/00273170902938969
10.1093/bioinformatics/btn615
10.1073/pnas.0506580102
10.1093/bioinformatics/18.1.51
10.1093/bioinformatics/btv428
10.1186/gb-2003-4-11-r76
10.1200/JCO.2009.23.4732
10.1128/mSystems.00025-15
10.1016/j.jbi.2010.07.001
10.1038/srep25696
10.1093/nar/gkv007
10.1037/0033-2909.99.3.432
10.1093/bioinformatics/btn520
10.1093/bioinformatics/19.2.185
10.1016/j.cels.2016.04.001
10.1038/nbt0308-303
10.1016/j.cels.2017.06.003
10.1371/journal.pntd.0003522
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-018-2338-4
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
Text complet a ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database




MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 25
ExternalDocumentID oai_doaj_org_article_d88b1f334e2a455b80ee30689775e6e5
PMC6142401
A557726176
30223787
10_1186_s12859_018_2338_4
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: LM05652; GM102365; GM61374
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIGMS NIH HHS
  grantid: U01 GM061374
– fundername: National Institutes of Health
  grantid: GM102365
– fundername: NIGMS NIH HHS
  grantid: R24 GM061374
– fundername: National Institutes of Health
  grantid: LM05652
– fundername: National Institutes of Health
  grantid: GM61374
– fundername: NLM NIH HHS
  grantid: R01 LM005652
– fundername: NIGMS NIH HHS
  grantid: R01 GM102365
– fundername: ;
  grantid: LM05652; GM102365; GM61374
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
PMFND
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5524-69d6afe3b7072c3ad4ffd00b68b5e17fc6b267e572afa066e76a4d55102a2ebe3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:28:33 EDT 2025
Thu Aug 21 14:18:59 EDT 2025
Fri Sep 05 09:17:34 EDT 2025
Fri Jul 25 10:47:21 EDT 2025
Tue Jun 17 21:11:19 EDT 2025
Tue Jun 10 20:19:05 EDT 2025
Fri Jun 27 03:34:27 EDT 2025
Wed Feb 19 02:42:26 EST 2025
Thu Apr 24 22:55:47 EDT 2025
Tue Jul 01 03:38:26 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gene expression
Functional modules
Independent component analysis
Transcriptome
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5524-69d6afe3b7072c3ad4ffd00b68b5e17fc6b267e572afa066e76a4d55102a2ebe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2338-4
PMID 30223787
PQID 2108771588
PQPubID 44065
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_d88b1f334e2a455b80ee30689775e6e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142401
proquest_miscellaneous_2109332536
proquest_journals_2108771588
gale_infotracmisc_A557726176
gale_infotracacademiconefile_A557726176
gale_incontextgauss_ISR_A557726176
pubmed_primary_30223787
crossref_citationtrail_10_1186_s12859_018_2338_4
crossref_primary_10_1186_s12859_018_2338_4
springer_journals_10_1186_s12859_018_2338_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180917
PublicationDateYYYYMMDD 2018-09-17
PublicationDate_xml – month: 9
  year: 2018
  text: 20180917
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References AR Bateman (2338_CR4) 2014; 4
CL Doig (2338_CR47) 2016; 155
H-U Klein (2338_CR49) 2009; 10
Q Li (2338_CR27) 2011; 12
2338_CR14
Y Zhu (2338_CR28) 2008; 24
M Rajasekhar (2338_CR48) 2017; 79
A Alexa (2338_CR36) 2006; 22
J Lamb (2338_CR1) 2006; 313
BB Risk (2338_CR22) 2014; 70
JL Horn (2338_CR31) 1965; 30
L. Gautier (2338_CR25) 2004; 20
VK Mootha (2338_CR2) 2003; 34
M Lukk (2338_CR10) 2010; 28
J Fink (2338_CR53) 2007; 1
Seth Carbon (2338_CR44) 2008; 25
2338_CR21
C Jonquet (2338_CR29) 2009; 2009
ME Ritchie (2338_CR41) 2015; 43
LW Glorfeld (2338_CR32) 1995; 55
G Heimberg (2338_CR11) 2016; 2
T Hastie (2338_CR20) 2003
J Stanczyk (2338_CR51) 2008; 58
Y Benjamini (2338_CR37) 1995; 57
I Faraoni (2338_CR50) 2009; 1792
A Subramanian (2338_CR3) 2005; 102
2338_CR35
W Sun (2338_CR42) 2015; 28
A Liberzon (2338_CR6) 2015; 1
2338_CR39
T Galili (2338_CR40) 2015; 31
S Tripathi (2338_CR5) 2013; 41
AE Teschendorff (2338_CR18) 2007; 3
A Hyvärinen (2338_CR30) 2001
J Tan (2338_CR13) 2017; 5
N Kolesnikov (2338_CR43) 2015; 43
W Zhou (2338_CR23) 2017; 33
CAM van de Weg (2338_CR52) 2015; 9
O Alter (2338_CR8) 2000; 97
A Dinno (2338_CR34) 2009; 44
M Lenz (2338_CR12) 2016; 6
JM Engreitz (2338_CR19) 2010; 43
P Malátková (2338_CR45) 2016; 109
T Haferlach (2338_CR38) 2010; 28
B.M. Bolstad (2338_CR24) 2003; 19
2338_CR9
WR Zwick (2338_CR33) 1986; 99
M Ringner (2338_CR7) 2008; 26
D Kim (2338_CR46) 2015; 24
T Hulsen (2338_CR54) 2008; 9
S-I Lee (2338_CR15) 2003; 4
AC Eklund (2338_CR26) 2008; 9
W Liebermeister (2338_CR16) 2002; 18
Anne Biton (2338_CR17) 2014; 9
20406941 - J Clin Oncol. 2010 May 20;28(15):2529-37
22172014 - BMC Bioinformatics. 2011 Dec 15;12:474
17708679 - PLoS Comput Biol. 2007 Aug;3(8):e161
19268705 - Biochim Biophys Acta. 2009 Jun;1792(6):497-505
25605792 - Nucleic Acids Res. 2015 Apr 20;43(7):e47
17008526 - Science. 2006 Sep 29;313(5795):1929-35
18842599 - Bioinformatics. 2008 Dec 1;24(23):2798-800
28118944 - J Autoimmun. 2017 May;79:53-62
27135536 - Cell Syst. 2016 Apr 27;2(4):239-250
27822512 - mSystems. 2016 Jan 19;1(1)
27055738 - Biochem Pharmacol. 2016 Jun 1;109:83-90
25768297 - PLoS Negl Trop Dis. 2015 Mar 13;9(3):e0003522
20379172 - Nat Biotechnol. 2010 Apr;28(4):322-4
27254731 - Sci Rep. 2016 Jun 02;6:25696
10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6
24350655 - Biometrics. 2014 Mar;70(1):224-36
11836211 - Bioinformatics. 2002 Jan;18(1):51-60
26771021 - Cell Syst. 2015 Dec 23;1(6):417-425
20234802 - Multivariate Behav Res. 2009 May;44(3):362-388
14611662 - Genome Biol. 2003;4(11):R76
24522610 - Sci Rep. 2014 Feb 13;4:4092
27797771 - Bioinformatics. 2017 Feb 15;33(4):522-528
18327243 - Nat Biotechnol. 2008 Mar;26(3):303-4
18248669 - Genome Biol. 2008;9(2):R26
25456126 - Cell Rep. 2014 Nov 20;9(4):1235-45
14306381 - Psychometrika. 1965 Jun;30:179-85
20619355 - J Biomed Inform. 2010 Dec;43(6):932-44
23389952 - Nucleic Acids Res. 2013 Apr;41(7):e82
18383392 - Arthritis Rheum. 2008 Apr;58(4):1001-9
25361974 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6
21996057 - BMC Med Genomics. 2011 Oct 14;4:73
25356957 - Exp Dermatol. 2015 Jan;24(1):14-5
28711280 - Cell Syst. 2017 Jul 26;5(1):63-71.e6
12808457 - Nat Genet. 2003 Jul;34(3):267-73
20003504 - BMC Bioinformatics. 2009 Dec 15;10:422
19033274 - Bioinformatics. 2009 Jan 15;25(2):288-9
21347171 - Summit Transl Bioinform. 2009 Mar 01;2009:56-60
18925949 - BMC Genomics. 2008 Oct 16;9:488
16606683 - Bioinformatics. 2006 Jul 1;22(13):1600-7
12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
18060089 - PLoS Negl Trop Dis. 2007 Nov 21;1(2):e86
26226845 - Mod Pathol. 2015 Sep;28(9):1214-24
26209431 - Bioinformatics. 2015 Nov 15;31(22):3718-20
14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
26429394 - J Steroid Biochem Mol Biol. 2016 Jan;155(Pt A):47-55
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
References_xml – volume: 3
  start-page: e161
  issue: 8
  year: 2007
  ident: 2338_CR18
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030161
– volume: 55
  start-page: 377
  issue: 3
  year: 1995
  ident: 2338_CR32
  publication-title: Educ Psychol Meas
  doi: 10.1177/0013164495055003002
– ident: 2338_CR9
  doi: 10.1186/1755-8794-4-73
– volume: 79
  start-page: 53
  year: 2017
  ident: 2338_CR48
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2017.01.002
– volume: 155
  start-page: 47
  year: 2016
  ident: 2338_CR47
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/j.jsbmb.2015.09.037
– volume: 4
  start-page: 4092
  year: 2014
  ident: 2338_CR4
  publication-title: Sci Rep
  doi: 10.1038/srep04092
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 2338_CR37
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 1
  start-page: 417
  issue: 6
  year: 2015
  ident: 2338_CR6
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2015.12.004
– volume: 1792
  start-page: 497
  issue: 6
  year: 2009
  ident: 2338_CR50
  publication-title: Biochim Biophys Acta (BBA) - Mol Basis Dis
  doi: 10.1016/j.bbadis.2009.02.013
– volume: 41
  start-page: e82
  issue: 7
  year: 2013
  ident: 2338_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt054
– volume: 28
  start-page: 322
  issue: 4
  year: 2010
  ident: 2338_CR10
  publication-title: Nat Biotech
  doi: 10.1038/nbt0410-322
– volume: 12
  start-page: 1
  issue: 1
  year: 2011
  ident: 2338_CR27
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1414-x
– volume-title: Independent Component Analysis
  year: 2001
  ident: 2338_CR30
  doi: 10.1002/0471221317
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  ident: 2338_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg405
– ident: 2338_CR21
– volume: 34
  start-page: 267
  issue: 3
  year: 2003
  ident: 2338_CR2
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 2009
  start-page: 56
  year: 2009
  ident: 2338_CR29
  publication-title: Summit on Translational Bioinformatics
– volume: 30
  start-page: 179
  issue: 2
  year: 1965
  ident: 2338_CR31
  publication-title: Psychometrika
  doi: 10.1007/BF02289447
– volume: 43
  start-page: D1113
  issue: D1
  year: 2015
  ident: 2338_CR43
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1057
– volume: 109
  start-page: 83
  year: 2016
  ident: 2338_CR45
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2016.03.025
– volume: 313
  start-page: 1929
  issue: 5795
  year: 2006
  ident: 2338_CR1
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 58
  start-page: 1001
  issue: 4
  year: 2008
  ident: 2338_CR51
  publication-title: Arthritis & Rheumatism
  doi: 10.1002/art.23386
– volume: 33
  start-page: 522
  issue: 4
  year: 2017
  ident: 2338_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw664
– volume: 10
  start-page: 422
  issue: 1
  year: 2009
  ident: 2338_CR49
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-422
– volume: 1
  start-page: e86
  issue: 2
  year: 2007
  ident: 2338_CR53
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000086
– volume: 28
  start-page: 1214
  issue: 9
  year: 2015
  ident: 2338_CR42
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2015.82
– ident: 2338_CR35
  doi: 10.18637/jss.v014.i12
– volume: 24
  start-page: 14
  issue: 1
  year: 2015
  ident: 2338_CR46
  publication-title: Exp Dermatol
  doi: 10.1111/exd.12576
– volume: 9
  start-page: 488
  issue: 1
  year: 2008
  ident: 2338_CR54
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-488
– volume: 22
  start-page: 1600
  issue: 13
  year: 2006
  ident: 2338_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl140
– volume: 97
  start-page: 10101
  year: 2000
  ident: 2338_CR8
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.18.10101
– ident: 2338_CR39
  doi: 10.18637/jss.v011.i09
– volume: 9
  start-page: 1235
  issue: 4
  year: 2014
  ident: 2338_CR17
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2014.10.035
– volume: 70
  start-page: 224
  issue: 1
  year: 2014
  ident: 2338_CR22
  publication-title: Biometrics
  doi: 10.1111/biom.12111
– volume: 9
  start-page: 1
  issue: 2
  year: 2008
  ident: 2338_CR26
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-2-r26
– volume: 44
  start-page: 362
  issue: 3
  year: 2009
  ident: 2338_CR34
  publication-title: Multivar Behav Res
  doi: 10.1080/00273170902938969
– volume: 25
  start-page: 288
  issue: 2
  year: 2008
  ident: 2338_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn615
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 2338_CR3
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0506580102
– volume: 18
  start-page: 51
  year: 2002
  ident: 2338_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.1.51
– volume: 31
  start-page: 3718
  issue: 22
  year: 2015
  ident: 2338_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv428
– volume: 4
  start-page: R76
  issue: 11
  year: 2003
  ident: 2338_CR15
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-11-r76
– volume: 28
  start-page: 2529
  issue: 15
  year: 2010
  ident: 2338_CR38
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.23.4732
– ident: 2338_CR14
  doi: 10.1128/mSystems.00025-15
– volume: 43
  start-page: 932
  issue: 6
  year: 2010
  ident: 2338_CR19
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2010.07.001
– volume: 6
  start-page: 25696
  year: 2016
  ident: 2338_CR12
  publication-title: Sci Rep
  doi: 10.1038/srep25696
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 2338_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 99
  start-page: 432
  year: 1986
  ident: 2338_CR33
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.99.3.432
– volume: 24
  start-page: 2798
  issue: 23
  year: 2008
  ident: 2338_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn520
– start-page: 665
  volume-title: Advances in neural information processing systems
  year: 2003
  ident: 2338_CR20
– volume: 19
  start-page: 185
  issue: 2
  year: 2003
  ident: 2338_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 2
  start-page: 239
  issue: 4
  year: 2016
  ident: 2338_CR11
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2016.04.001
– volume: 26
  start-page: 303
  issue: 3
  year: 2008
  ident: 2338_CR7
  publication-title: Nat Biotech
  doi: 10.1038/nbt0308-303
– volume: 5
  start-page: 63
  issue: 1
  year: 2017
  ident: 2338_CR13
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2017.06.003
– volume: 9
  start-page: e0003522
  issue: 3
  year: 2015
  ident: 2338_CR52
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0003522
– reference: 25605792 - Nucleic Acids Res. 2015 Apr 20;43(7):e47
– reference: 26226845 - Mod Pathol. 2015 Sep;28(9):1214-24
– reference: 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6
– reference: 24350655 - Biometrics. 2014 Mar;70(1):224-36
– reference: 27055738 - Biochem Pharmacol. 2016 Jun 1;109:83-90
– reference: 18327243 - Nat Biotechnol. 2008 Mar;26(3):303-4
– reference: 14306381 - Psychometrika. 1965 Jun;30:179-85
– reference: 20619355 - J Biomed Inform. 2010 Dec;43(6):932-44
– reference: 19033274 - Bioinformatics. 2009 Jan 15;25(2):288-9
– reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
– reference: 23389952 - Nucleic Acids Res. 2013 Apr;41(7):e82
– reference: 24522610 - Sci Rep. 2014 Feb 13;4:4092
– reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73
– reference: 26429394 - J Steroid Biochem Mol Biol. 2016 Jan;155(Pt A):47-55
– reference: 25456126 - Cell Rep. 2014 Nov 20;9(4):1235-45
– reference: 27797771 - Bioinformatics. 2017 Feb 15;33(4):522-528
– reference: 18925949 - BMC Genomics. 2008 Oct 16;9:488
– reference: 20003504 - BMC Bioinformatics. 2009 Dec 15;10:422
– reference: 18383392 - Arthritis Rheum. 2008 Apr;58(4):1001-9
– reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
– reference: 20406941 - J Clin Oncol. 2010 May 20;28(15):2529-37
– reference: 25768297 - PLoS Negl Trop Dis. 2015 Mar 13;9(3):e0003522
– reference: 25356957 - Exp Dermatol. 2015 Jan;24(1):14-5
– reference: 18842599 - Bioinformatics. 2008 Dec 1;24(23):2798-800
– reference: 28118944 - J Autoimmun. 2017 May;79:53-62
– reference: 14611662 - Genome Biol. 2003;4(11):R76
– reference: 21996057 - BMC Med Genomics. 2011 Oct 14;4:73
– reference: 18060089 - PLoS Negl Trop Dis. 2007 Nov 21;1(2):e86
– reference: 19268705 - Biochim Biophys Acta. 2009 Jun;1792(6):497-505
– reference: 28711280 - Cell Syst. 2017 Jul 26;5(1):63-71.e6
– reference: 21347171 - Summit Transl Bioinform. 2009 Mar 01;2009:56-60
– reference: 22172014 - BMC Bioinformatics. 2011 Dec 15;12:474
– reference: 18248669 - Genome Biol. 2008;9(2):R26
– reference: 17708679 - PLoS Comput Biol. 2007 Aug;3(8):e161
– reference: 27254731 - Sci Rep. 2016 Jun 02;6:25696
– reference: 17008526 - Science. 2006 Sep 29;313(5795):1929-35
– reference: 27135536 - Cell Syst. 2016 Apr 27;2(4):239-250
– reference: 26771021 - Cell Syst. 2015 Dec 23;1(6):417-425
– reference: 26209431 - Bioinformatics. 2015 Nov 15;31(22):3718-20
– reference: 25361974 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 11836211 - Bioinformatics. 2002 Jan;18(1):51-60
– reference: 20379172 - Nat Biotechnol. 2010 Apr;28(4):322-4
– reference: 27822512 - mSystems. 2016 Jan 19;1(1):
– reference: 20234802 - Multivariate Behav Res. 2009 May;44(3):362-388
– reference: 16606683 - Bioinformatics. 2006 Jul 1;22(13):1600-7
SSID ssj0017805
Score 2.3918402
Snippet Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in...
Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene...
Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in...
Abstract Background Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 327
SubjectTerms Algorithms
Arthritis, Rheumatoid - genetics
Arthritis, Rheumatoid - pathology
Bioinformatics
Biological activity
Biomedical and Life Sciences
Cancer
Classification
Clustering
Computational biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Dimensional analysis
DNA Fingerprinting
DNA microarrays
Functional modules
Gene expression
Genomics
Humans
Independent component analysis
Learning algorithms
Leukemia
Leukemia - genetics
Leukemia - pathology
Life Sciences
Machine learning
Medical research
Microarrays
MicroRNAs
Model accuracy
Modules
Oligonucleotide Array Sequence Analysis
Precision medicine
Principal components analysis
Regularization
Research Article
Rhabdomyosarcoma - genetics
Rhabdomyosarcoma - pathology
Rheumatoid arthritis
Transcriptome
Transcriptome analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLSggJCRQ1MTvHMujKkhwAFbqzbJjGyqVLGqyh_57ZhxvaIqAC8pls57sOjPjecjjbwh5Rq2KOtpYeU15xbmTVascrYIF5ymdiDwdCvvwUR6v-PsTcXKp1RfWhE3wwBPjDrzWromM8UAtF8LpOgQIczXELSLIkNBL67beJlN5_wCR-vMeZqPlwdAgThukzaAVkJNVfOGFElj_7yb5kk-6Wi95ZdM0-aKjW-RmDiLLw2nyu-Ra6G-T61NbyYs7ZPXGjrby52jIytSErxzRJSUDgaeQy-9rvzkLQ-lzMUzwpbsoT-eWuGOJpebrHj_ZDFtyl6yO3n55fVzl9glVJwQwXrZe2hiYU7WiHbOex-jr2kntRGhU7KSjUgWhqI0WIo-gpOUeIqiaWgqyZffITg__9IDAbAKPDTA9gCBs6Fq459QJiMYkXE1B6i07TZexxbHFxZlJOYaWZpKAAQkYlIDhBXkxP_JjAtb4G_ErlNFMiJjY6QvQFJM1xfxLUwryFCVsEPWix7Kar3YzDObd50_mUAjIMiCYkwV5noniGt6gs_mUAvABgbIWlPsLSliW3XJ4q0gmm4XBQH6tlWqE1gV5Mg_jk1jq1of1JtG0jFHB4CfuT3o3vzeDiIuBiS2IWmjkgjHLkf70WwINl3iksQZJvdzq7q9p_ZHvD_8H3_fIDYorD_tuqH2yM55vwiOI5Eb3OC3an1gEQwg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Text complet a ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbKVkhcEO8GCgoICQkUNXH82gNCLbQqSKxQoVJvlh3bpVJJyj4O_ffMeJ2UFFHtJbueZG3PeB7x-BtCXlMjgwomFE5RVjBmRTGVlhbegPEUlgcWD4V9nYnDY_blhJ9skFl_FgbTKnudGBW16xp8R74DoYmSsuJKfbj4XWDVKNxd7UtomFRawb2PEGO3yCaoZF5OyObe_uzb0bCvgAj-aW-zUmJnUSF-G4TTIC0QqxVsZJ0iiP-_qvovW3U9j_LaZmq0UQf3yN3kXOa7a2m4TzZ8-4DcXpebvHxIjj-ZpSncHBVcHovz5Us0VVFx4Onk_FfnVud-kbuUJONdbi_zs6FU7jLHFPSuxSuT4EwekeOD_R8fD4tUVqFoOAeGiKkTJvjaylLSpjaOheDK0gplua9kaISlQnouqQkGPBIvhWEOprWkhgLP68dk0sI_bRHojWehEmrq65oZ30zhO6OWg5cm4FNlpOynUzcJcxxLX5zrGHsoodcc0MABjRzQLCNvh1su1oAbNxHvIY8GQsTKjj9081Odlp52StkqQAc9NYxzq0rvIVBS4PlyLzzPyCvksEY0jBbTbU7NarHQn78f6V3OIfoAJ09k5E0iCh2MoDHp9ALMAwJojSi3R5SwXJtxcy9IOqmLhb4S7oy8HJrxTkyBa323ijTTuqa8hkc8WcvdMO4aPLEaVG9G5EgiRxMzbmnPfkYwcYFHHUvg1Ltedq-69d95f3rzIJ6ROxTXFFbakNtkspyv_HPw3Zb2RVqQfwA_E0Gl
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aEXwRv91aZRVBUBZ3872P9bRUQR_Ug76FZJNooe5Jd--h_31ncrm1Wz9A7uXuMrnLZibzQWZ-Q8hzalXU0cbKa8orzp2sWuVoFSwYT-lE5Kko7OMnebjkH47EUQaLxlqYi_f3jZavhwYR1iDgBX5CNFXxq-SaAL2LwryQi-nCAKH586XlH6fNzE5C5_9dB18wQpcTJC_dkibjc3CL3MxeY7m_YfNtciX0d8j1TR_Js7tk-daOtvKnqLnK1HWvHNEGJY2AZcflj5Vfn4Sh9Dn7JfjSnZXHUw_cscTc8lWP72zGKblHlgfvvi4Oq9wvoeqEgJ2WrZc2BuZUrWjHrOcx-rp2UjsRGhU76ahUQShqowVXIyhpuQeXqaaWAjPZfbLTwz89JLCawGMjdRsY4zZ0LXzm1AlwvyS8moLU2-00XQYTx54WJyYFFVqaDQcMcMAgBwwvyMtpys8Nksa_iN8gjyZCBMFOX4BsmHymjNfaNREWGKjlQjhdhwCSocGlFUEGUZBnyGGDMBc95tF8s-thMO-_fDb7QkBYAd6bLMiLTBRX8ASdzWUJsA-IjDWj3JtRwjns5sNbQTJZDwwGAmqtVCO0LsjTaRhnYm5bH1brRNMyRgWDn3iwkbvpuRm4WAx0akHUTCJnGzMf6Y-_J5RwiTWMNXDq1VZ2fy3rr_u--1_Uj8gNikcMO2qoPbIznq7DY_DRRvcknc5ziikzlQ
  priority: 102
  providerName: Springer Nature
Title Data-driven human transcriptomic modules determined by independent component analysis
URI https://link.springer.com/article/10.1186/s12859-018-2338-4
https://www.ncbi.nlm.nih.gov/pubmed/30223787
https://www.proquest.com/docview/2108771588
https://www.proquest.com/docview/2109332536
https://pubmed.ncbi.nlm.nih.gov/PMC6142401
https://doaj.org/article/d88b1f334e2a455b80ee30689775e6e5
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELf2EGhfEG8CowoICQkUSBy_-gGhrawMJCY0qNRvlp3YY1JJtj4k-t9z5ybdMjZUqWrqc-r47nx39fl3hLyiRnrljU9KRVnCmBVJX1qaOAPGU1juWTgU9u1IHI7Y1zEfb5C2vFUzgbNrQzusJzWaTt79OV9-BIX_EBReifezDFHYICgGnkPElbBNsh22izCTj11sKiB8f7OxeW23HXI7B5OWS8yvu2SlApj_v0v2JZt1NZ_yyqZqsFXDu-RO42TGeyupuEc2XHWf3FqVnVw-IKNPZm6ScooLXRyK9MVzNFlhAcFTyvHvulxM3Cwum2QZV8Z2GZ-uS-bOY0xFryv8ZBpYk4dkNDz4OThMmvIKScE5MEb0S2G8y61MJS1yUzLvyzS1QlnuMukLYamQjktqvAHPxElhWAkeVkoNBd7nj8hWBb_0hMBoHPOZUH2X58y4og_XjFoO3pqAVxaRtJ1OXTTY41gCY6JDDKKEXjFDAzM0MkOziLxZdzlbAW_8j3gfebQmRMzs8EU9PdGNCupSKZt5GKCjhnFuVeocBEwKPGDuhOMReYkc1oiKUWHazYlZzGb6y49jvcc5RCHg7ImIvG6IfA1PUJjmFAPMAwJpdSh3O5SgtkW3uRUk3Uq9hvhbSZlxpSLyYt2MPTEVrnL1ItD085zyHG7xeCV36-duxTcisiORnYnptlSnvwKouMAjjylw6m0ruxfDunHen944gmdkh6JmYbENuUu25tOFew7u29z2yKYcS3hXw889sr1_cPT9GK4GYtALf4j0gtL-BbFqQxg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgvgkMCAiEBIqWOLbjPkxoY5tatlVorNLejBPbY9JIRtMK9c_x27hL3YwMsbepL219Sey7833E90HIG6ozJ512kZGURYzlIupnOY2sBuUpcu5YkxR2MBKDMft8zI9XyO9lLgyGVS5lYiOoTVXgO_J1cE1kliVcyo_nPyPsGoWnq8sWGtq3VjAbTYkxn9ixZ-e_wIWrN4bbQO-3lO7uHH0aRL7LQFRwDvMTfSO0s2mexRktUm2YcyaOcyFzbpPMFSKnIrM8o9ppUNA2E5oZeEpMNQUUpHDfG2SV4QuUHlnd2hl9OWzPMbBjgD9LTaRYrxOsFwfuO3An-IYR62jDpmnAv6rhL914OW7z0uFtoxN375I73pgNNxfcd4-s2PI-ublobzl_QMbbeqojM0GBGjbNAMMpqsZGUGE2dPijMrMzW4fGB-VYE-bz8LRtzTsNMeS9KvGb9uVTHpLxtSD4EemV8KQnBGZjmUuE7Ns0ZdoWffjNaM7BKhTwSQISL9GpCl_jHFttnKnG15FCLSiggAIKKaBYQN63l5wvCnxcBbyFNGoBsTZ380c1OVF-qysjZZ44mKClmnGey9hacMwkWNrcCssD8hoprLD6RonhPSd6Vtdq-PVQbXIO3g4YlSIg7zyQq2AFhfbZEoAHLNjVgVzrQIJ4KLrDS0ZSXjzV6mIzBeRVO4xXYshdaatZA9NPU8pTuMXjBd-1607B8ktB1Ack63BkBzHdkfL0e1O8XGBqZQyU-rDk3Ytp_RfvT69exEtya3B0sK_2h6O9Z-Q2xf2FXT6yNdKbTmb2OdiN0_yF35wh-Xbd8uAP9xd_QA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFYgL4k2gQEBISKCoid85LpRVu0CFKCv1ZtmxXSqVpNpkD_33jBNvIOUhoVw28TjreOx5yDPfIPQSa-Gl1z6zEtOMUsOzUhicOQ3KkxvmaZ8U9umQ7y_p4pgdxzqn7SbafXMkOeQ0BJSmuts9t37Y4pLvtkXAXQM3GLgMPlZGr6JteFCC97U9my2OFuNBQoDsj4eZf-w4UUc9av_vsvkX5XQ5cPLS6WmvlOa30M1oTaazgf230RVX30HXhvqSF3fRck93OrOrINHSvhpf2gXd1EuKkI6cfm_s-sy1qY1RMc6m5iI9HWvjdmmIOW_q8EtH_JJ7aDl___XdfhbrKGQVY8ABXlquvSNG5AJXRFvqvc1zw6VhrhC-4gZz4ZjA2mswQZzgmlowpXKsMTCZ3EdbNfzTQwSjcdQXXJaOEKpdVcI9xYaBWcbhKhKUb6ZTVRFkPNS6OFO9syG5GjiggAMqcEDRBL0eu5wPCBv_In4beDQSBnDs_kGzOlFxrykrpSk8DNBhTRkzMncOPCMJpi5z3LEEvQgcVgH-og7xNSd63bbq4OiLmjEG7gZYdTxBryKRb-ALKh3TFWAeAmLWhHJnQgn7s5o2bxaSivKhVeBoSyEKJmWCno_NoWeIeatds-5pSkIwI_CKB8O6G7-bgOlFQNYmSExW5GRipi316bcePZyH3MYcOPVms3Z_Duuv8_7ov6ifoeuf9-bq48Hhh8foBg67LRTdEDtoq1ut3RMw4zrzNG7VH4BdQEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+human+transcriptomic+modules+determined+by+independent+component+analysis&rft.jtitle=BMC+bioinformatics&rft.au=Zhou%2C+Weizhuang&rft.au=Altman%2C+Russ+B&rft.date=2018-09-17&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=327&rft_id=info:doi/10.1186%2Fs12859-018-2338-4&rft_id=info%3Apmid%2F30223787&rft.externalDocID=30223787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon