Dose Effect of Bovine Lactoferrin Fortification on Iron Metabolism of Anemic Infants

To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were p...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nutritional Science and Vitaminology Vol. 66; no. 1; pp. 24 - 31
Main Authors CHEN, Ke, CAO, Yanmei, DONG, Xiaobing, ZHANG, Guoying, LIU, Changqi, CHEN, Haixia, LI, Hua
Format Journal Article
LanguageEnglish
Published Japan Center for Academic Publications Japan 29.02.2020
Subjects
Online AccessGet full text
ISSN0301-4800
1881-7742
DOI10.3177/jnsv.66.24

Cover

Abstract To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were previously breast-fed and weaned were selected. The subjects were divided into three groups with the sequence of outpatient: fortified group 1 (FG1) with a bLF concentration of 38 mg/100 g, FG2 with 76 mg/100 g bLF, FG0 with no bLF. The intervention duration was 3 mo. Weight, height, head circumference and the concentration of hemoglobin (Hb), serum ferritin (SF), serum transferring receptor (sTfR) were measured and sTfR-SF index (TFR-F index) and total body iron content (TBIC) were computed before and after intervention. The primary outcome measures were obtained from 96 infants (35, 33 and 28 for FG0, FG1 and FG2, respectively). After 1 mo of intervention, the changes of Hb level showed no significant difference (p>0.05) among the three groups, however, the Hb level of infants in FG2 were significantly higher than those of infants in the other two groups after 3 mo of intervention (p<0.05). The present data indicated that the formula fortified with 76 mg/100 g bLF positively affected the Hb of anemic infants who were previously breastfed when compared with fortification with 38 mg/100 g bLF and no bLF fortification.
AbstractList To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were previously breast-fed and weaned were selected. The subjects were divided into three groups with the sequence of outpatient: fortified group 1 (FG1) with a bLF concentration of 38 mg/100 g, FG2 with 76 mg/100 g bLF, FG0 with no bLF. The intervention duration was 3 mo. Weight, height, head circumference and the concentration of hemoglobin (Hb), serum ferritin (SF), serum transferring receptor (sTfR) were measured and sTfR-SF index (TFR-F index) and total body iron content (TBIC) were computed before and after intervention. The primary outcome measures were obtained from 96 infants (35, 33 and 28 for FG0, FG1 and FG2, respectively). After 1 mo of intervention, the changes of Hb level showed no significant difference (p>0.05) among the three groups, however, the Hb level of infants in FG2 were significantly higher than those of infants in the other two groups after 3 mo of intervention (p<0.05). The present data indicated that the formula fortified with 76 mg/100 g bLF positively affected the Hb of anemic infants who were previously breastfed when compared with fortification with 38 mg/100 g bLF and no bLF fortification.
Author CHEN, Ke
LIU, Changqi
ZHANG, Guoying
CAO, Yanmei
CHEN, Haixia
LI, Hua
DONG, Xiaobing
Author_xml – sequence: 1
  fullname: CHEN, Ke
  organization: Department of Child Health Care, New Century Women’s and Children’s Hospital
– sequence: 1
  fullname: CAO, Yanmei
  organization: Department of Child Health Care, Dayi Maternal and Child Health Care Hospital
– sequence: 1
  fullname: DONG, Xiaobing
  organization: Department of Child Health Care, Hehuachi Community Health Service Center
– sequence: 1
  fullname: ZHANG, Guoying
  organization: Department of Pediatric Intensive Care Unit, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China
– sequence: 1
  fullname: LIU, Changqi
  organization: School of Exercise and Nutritional Sciences, San Diego State University
– sequence: 1
  fullname: CHEN, Haixia
  organization: Department of Disease Prevention and Control, Center for Disease Control and Prevention of Baoxing County
– sequence: 1
  fullname: LI, Hua
  organization: Department of Child Hygiene, Qingbaijiang Maternal and Child Health Care Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32115450$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LAzEQhoNU7Ide_AGyZ2Frssl-HTzU2mqh4qWeQ5pMNGU3KUks-O_dWtuDCMMMzDzvC_MOUc86CwhdEzympCzvNjbsxkUxztgZGpCqImlZsqyHBphikrIK4z4ahrDBmNUVqy5Qn2aE5CzHA7R6dAGSmdYgY-J08uB2xkKyFDI6Dd4bm8ydj0YbKaJxNulq4bv2AlGsXWNCu5dNLLRGJgurhY3hEp1r0QS4-p0j9DafrabP6fL1aTGdLFOZ5ySmdV0rpUoiQakaYyI1pbgoGCNCVqSWOVWZrqoixxmI7rQGrKWi6xwUk7XK6QjdHHy3n-sWFN960wr_xY_vdQA-ANK7EDxoLk38-SN6YRpOMN8nyPcJ8qLgGeskt38kR9d_4fsDvAlRvMMJFV1isoETSg78aS8_hOdg6TcqV4lR
CitedBy_id crossref_primary_10_1038_s41390_022_02136_2
crossref_primary_10_1177_10915818241299344
crossref_primary_10_1080_10408398_2022_2157792
crossref_primary_10_3390_nu13061974
crossref_primary_10_3390_jcm10235482
crossref_primary_10_1007_s10534_022_00430_4
crossref_primary_10_1016_j_nut_2021_111288
crossref_primary_10_3390_nu13010003
crossref_primary_10_1016_j_jtemb_2022_127093
crossref_primary_10_1016_j_lfs_2024_123340
crossref_primary_10_3390_molecules27092941
crossref_primary_10_1007_s00431_021_04125_9
crossref_primary_10_1007_s12011_023_03658_4
crossref_primary_10_1002_rfc2_70011
Cites_doi 10.1016/j.hoc.2015.11.002
10.1111/hdi.12555
10.1007/s10534-010-9335-z
10.3390/ijms18091985
10.4103/0377-4929.91494
10.1016/j.foodchem.2013.07.143
10.1007/s00394-016-1325-7
10.1080/10408398.2018.1427552
10.3945/an.112.003186
10.1016/j.mehy.2017.12.020
10.1016/bs.afnr.2017.11.005
10.1139/o06-040
10.3945/ajcn.117.155804
10.3109/14767058.2011.599080
10.1056/NEJMe1206858
10.1097/MCO.0b013e328328d13e
10.1093/ajcn/76.4.858
10.1016/bs.afnr.2017.12.006
10.2174/1389203719666180514150921
10.1016/S0002-9629(15)40630-5
10.3945/ajcn.117.155960
10.1016/j.cca.2014.02.005
10.1111/j.1651-2227.1991.tb11826.x
10.1203/00006450-199607000-00013
10.1016/j.nut.2014.07.006
10.1016/S0946-672X(03)80010-X
10.1016/j.foodres.2017.12.016
10.1093/ajcp/98.5.511
ContentType Journal Article
Copyright 2020 by the Center for Academic Publications Japan
Copyright_xml – notice: 2020 by the Center for Academic Publications Japan
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3177/jnsv.66.24
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1881-7742
EndPage 31
ExternalDocumentID 32115450
10_3177_jnsv_66_24
article_jnsv_66_1_66_24_article_char_en
Genre Randomized Controlled Trial
Journal Article
GroupedDBID ---
-~X
.55
2WC
53G
5GY
5RE
AAFWJ
AAWTL
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
F5P
JSF
JSH
KQ8
OK1
RJT
RZJ
TR2
X7M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c551t-999ddd71cedd9001cf33066441ac819c53d2f886502ea330be0fcd3b5ed4c9d53
ISSN 0301-4800
IngestDate Thu Jan 02 22:57:37 EST 2025
Tue Jul 01 01:41:27 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Wed Sep 03 06:29:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords weaned infant
TFR-F index
anthropometric index
ferritin
total body iron content
transferring receptor
hemoglobin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-999ddd71cedd9001cf33066441ac819c53d2f886502ea330be0fcd3b5ed4c9d53
OpenAccessLink https://www.jstage.jst.go.jp/article/jnsv/66/1/66_24/_article/-char/en
PMID 32115450
PageCount 8
ParticipantIDs pubmed_primary_32115450
crossref_citationtrail_10_3177_jnsv_66_24
crossref_primary_10_3177_jnsv_66_24
jstage_primary_article_jnsv_66_1_66_24_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020/02/29
PublicationDateYYYYMMDD 2020-02-29
PublicationDate_xml – month: 02
  year: 2020
  text: 2020/02/29
  day: 29
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Nutritional Science and Vitaminology
PublicationTitleAlternate J Nutr Sci Vitaminol
PublicationYear 2020
Publisher Center for Academic Publications Japan
Publisher_xml – name: Center for Academic Publications Japan
References 2) Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M. 2013. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 1: e16-25.
20) Cook JD. 1999.The measurement of serum transferrin receptor. Am J Med Sci 318: 269-276.
25) Mudd AT, Alexander LS, Berding K, Waworuntu RV, Berg BM, Donovan SM, Dilger RN. 2016. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Front Pediatr 4: 4.
31) Paesano R, Torcia F, Berlutti F, Pacifici E, Ebano V, Moscarini M, Valenti P. 2006. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem Cell Biol 84: 377-380.
13) Chierici R, Sawatzki G, Tamisari L, Volpato S, Vigi V. 1992. Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Acta Paediatr 81: 475-479.
22) World Health Organization. 1996. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. Geneva.
12) Schulz-Lell G, Dörner K, Oldigs HD, Sievers E, Schaub J. 1991. Iron availability from an infant formula supplemented with bovine lactoferrin. Acta Paediatr Scand 80: 155-158.
37) Naderi N, House JD. 2018. Recent developments in folate nutrition. Adv Food Nutr Res 83: 195-213.
29) Artym J. 2008. The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Postepy Hig Med Dosw (Online) 62: 599-612.
34) Daru J, Colman K, Stanworth SJ, De La Salle B, Wood EM, Pasricha SR. 2017. Serum ferritin as an indicator of iron status: what do we need to know. Am J Clin Nutr 106: 1634S-1639S.
4) World Health Organization. 2002. Micronutrient deficiencies: battling iron deficiency anemia. Geneva.
38) Sandstead HH. 2013. Human zinc deficiency: discovery to initial translation. Adv Nutr 4: 76-81.
14) King JC, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, Feigelman S, de Waard R. 2007. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr 44: 245-251.
21) World Health Organization. 2001. Iron deficiency anemia. assessment, prevention, and control. A guide for programme managers. Geneva.
8) Wang X, Liu S, Xu H, Yan W. 2012. Effects of recombinant human lactoferrin on improving the iron status of IDA rats. Wei Sheng Yan Jiu 41: 13-17, 22.
32) Heaney RP. 2012. Vitamin D—baseline status and effective dose. N Engl J Med 367: 77-78.
30) Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, Goolsbee W, Valenti P. 2010. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals 23: 411-417.
11) Jovaní M, Barberá R, Farré R. 2003. Effect of lactoferrin addition on the dialysability of iron from infant formulas. J Trace Elem Med Biol 17: 139-142.
36) Smith AD, Warren MJ, Refsum H. 2018. Vitamin B12. Adv Food Nutr Res 83: 215-279.
39) de Cunda MSB, Campos Hankins NA, Arruda SF. 2019. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 59: 1767-1781.
1) Kassebaum NJ. 2016. The global burden of anemia. Hematol Oncol Clin North Am 30: 247-308.
18) Shah VB, Shah BS, Puranik GV. 2011. Evaluation of non cyanide methods for hemoglobin estimation. Indian J Pathol Microbiol 54: 764-768.
15) Hao L, Shan Q, Wei J, Ma F, Sun P. 2018. Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci 20: 139-144.
26) Hernell O, Lönnerdal B. 2002. Iron status of infants fed low-iron formula: no effect of added bovine lactoferrin or nucleotides. Am J Clin Nutr 76: 858-864.
17) Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, Weizheng T, Ping Y, Lingying C, Meng M. 2015. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition 31: 304-309.
28) Ortiz R, Toblli JE, Romero JD, Monterrosa B, Frer C, Macagno E, Breymann C. 2011. Efficacy and safety of oral iron(III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study. J Matern Fetal Neonatal Med 24: 1347-1352.
35) Braga F, Infusino I, Dolci A, Panteghini M. 2014. Soluble transferrin receptor in complicated anemia. Clin Chim Acta 431: 143-147.
5) Anderson GJ, Frazer DM. 2017. Current understanding of iron homeostasis. Am J Clin Nutr 106: 1559S-1566S.
19) Stacy DL, Han P. 1992. Serum ferritin measurement and the degree of agreement using four techniques. Am J Clin Pathol 98: 511-515.
33) Heaney RP. 2008. Nutrients, endpoints, and the problem of proof. J Nutr 138: 1591-1595.
10) Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. 2017. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 18: pii: 1985.
23) Ramanathan G, Olynyk JK, Ferrari P. 2017. Diagnosing and preventing iron overload. Hemodial Int 21 (Suppl 1): S58-S67.
6) Erick M. 2018. Breast milk is conditionally perfect. Med Hypotheses 111: 82-89.
3) Jericó AC, García EJA. 2018. Oral iron as treatment for iron deficiency: should it always be the first choice. Med Clin (Barc), 33-34.
16) Fernández-Menéndez S, Fernández-Sánchez ML, González-Iglesias H, Fernández-Colomer B, López-Sastre J, Sanz-Medel A. 2017. Iron bioavailability from supplemented formula milk: effect of lactoferrin addition. Eur J Nutr 56: 2611-2620.
27) Burrin DG, Wang H, Heath J, Dudley MA. 1996. Orally administered lactoferrin increases hepatic protein synthesis in formula-fed newborn pigs. Pediatr Res 40: 72-76.
9) Ueno HM, Urazono H, Kobayashi T. 2014. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem 145: 90-94.
7) Lönnerdal B. 2009. Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 12: 293-297.
24) Franco I, Pérez MD, Conesa C, Calvo M, Sánchez L. 2018. Effect of technological treatments on bovine lactoferrin: An overview. Food Res Int 106: 173-182.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 29) Artym J. 2008. The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Postepy Hig Med Dosw (Online) 62: 599-612.
– reference: 28) Ortiz R, Toblli JE, Romero JD, Monterrosa B, Frer C, Macagno E, Breymann C. 2011. Efficacy and safety of oral iron(III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study. J Matern Fetal Neonatal Med 24: 1347-1352.
– reference: 30) Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, Goolsbee W, Valenti P. 2010. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals 23: 411-417.
– reference: 37) Naderi N, House JD. 2018. Recent developments in folate nutrition. Adv Food Nutr Res 83: 195-213.
– reference: 15) Hao L, Shan Q, Wei J, Ma F, Sun P. 2018. Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci 20: 139-144.
– reference: 6) Erick M. 2018. Breast milk is conditionally perfect. Med Hypotheses 111: 82-89.
– reference: 18) Shah VB, Shah BS, Puranik GV. 2011. Evaluation of non cyanide methods for hemoglobin estimation. Indian J Pathol Microbiol 54: 764-768.
– reference: 24) Franco I, Pérez MD, Conesa C, Calvo M, Sánchez L. 2018. Effect of technological treatments on bovine lactoferrin: An overview. Food Res Int 106: 173-182.
– reference: 1) Kassebaum NJ. 2016. The global burden of anemia. Hematol Oncol Clin North Am 30: 247-308.
– reference: 19) Stacy DL, Han P. 1992. Serum ferritin measurement and the degree of agreement using four techniques. Am J Clin Pathol 98: 511-515.
– reference: 4) World Health Organization. 2002. Micronutrient deficiencies: battling iron deficiency anemia. Geneva.
– reference: 21) World Health Organization. 2001. Iron deficiency anemia. assessment, prevention, and control. A guide for programme managers. Geneva.
– reference: 7) Lönnerdal B. 2009. Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 12: 293-297.
– reference: 35) Braga F, Infusino I, Dolci A, Panteghini M. 2014. Soluble transferrin receptor in complicated anemia. Clin Chim Acta 431: 143-147.
– reference: 38) Sandstead HH. 2013. Human zinc deficiency: discovery to initial translation. Adv Nutr 4: 76-81.
– reference: 31) Paesano R, Torcia F, Berlutti F, Pacifici E, Ebano V, Moscarini M, Valenti P. 2006. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem Cell Biol 84: 377-380.
– reference: 22) World Health Organization. 1996. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. Geneva.
– reference: 11) Jovaní M, Barberá R, Farré R. 2003. Effect of lactoferrin addition on the dialysability of iron from infant formulas. J Trace Elem Med Biol 17: 139-142.
– reference: 17) Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, Weizheng T, Ping Y, Lingying C, Meng M. 2015. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition 31: 304-309.
– reference: 25) Mudd AT, Alexander LS, Berding K, Waworuntu RV, Berg BM, Donovan SM, Dilger RN. 2016. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Front Pediatr 4: 4.
– reference: 2) Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M. 2013. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 1: e16-25.
– reference: 34) Daru J, Colman K, Stanworth SJ, De La Salle B, Wood EM, Pasricha SR. 2017. Serum ferritin as an indicator of iron status: what do we need to know. Am J Clin Nutr 106: 1634S-1639S.
– reference: 13) Chierici R, Sawatzki G, Tamisari L, Volpato S, Vigi V. 1992. Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Acta Paediatr 81: 475-479.
– reference: 39) de Cunda MSB, Campos Hankins NA, Arruda SF. 2019. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 59: 1767-1781.
– reference: 27) Burrin DG, Wang H, Heath J, Dudley MA. 1996. Orally administered lactoferrin increases hepatic protein synthesis in formula-fed newborn pigs. Pediatr Res 40: 72-76.
– reference: 16) Fernández-Menéndez S, Fernández-Sánchez ML, González-Iglesias H, Fernández-Colomer B, López-Sastre J, Sanz-Medel A. 2017. Iron bioavailability from supplemented formula milk: effect of lactoferrin addition. Eur J Nutr 56: 2611-2620.
– reference: 36) Smith AD, Warren MJ, Refsum H. 2018. Vitamin B12. Adv Food Nutr Res 83: 215-279.
– reference: 33) Heaney RP. 2008. Nutrients, endpoints, and the problem of proof. J Nutr 138: 1591-1595.
– reference: 23) Ramanathan G, Olynyk JK, Ferrari P. 2017. Diagnosing and preventing iron overload. Hemodial Int 21 (Suppl 1): S58-S67.
– reference: 3) Jericó AC, García EJA. 2018. Oral iron as treatment for iron deficiency: should it always be the first choice. Med Clin (Barc), 33-34.
– reference: 14) King JC, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, Feigelman S, de Waard R. 2007. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr 44: 245-251.
– reference: 26) Hernell O, Lönnerdal B. 2002. Iron status of infants fed low-iron formula: no effect of added bovine lactoferrin or nucleotides. Am J Clin Nutr 76: 858-864.
– reference: 32) Heaney RP. 2012. Vitamin D—baseline status and effective dose. N Engl J Med 367: 77-78.
– reference: 20) Cook JD. 1999.The measurement of serum transferrin receptor. Am J Med Sci 318: 269-276.
– reference: 10) Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. 2017. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 18: pii: 1985.
– reference: 12) Schulz-Lell G, Dörner K, Oldigs HD, Sievers E, Schaub J. 1991. Iron availability from an infant formula supplemented with bovine lactoferrin. Acta Paediatr Scand 80: 155-158.
– reference: 5) Anderson GJ, Frazer DM. 2017. Current understanding of iron homeostasis. Am J Clin Nutr 106: 1559S-1566S.
– reference: 8) Wang X, Liu S, Xu H, Yan W. 2012. Effects of recombinant human lactoferrin on improving the iron status of IDA rats. Wei Sheng Yan Jiu 41: 13-17, 22.
– reference: 9) Ueno HM, Urazono H, Kobayashi T. 2014. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem 145: 90-94.
– ident: 2
– ident: 1
  doi: 10.1016/j.hoc.2015.11.002
– ident: 23
  doi: 10.1111/hdi.12555
– ident: 4
– ident: 30
  doi: 10.1007/s10534-010-9335-z
– ident: 10
  doi: 10.3390/ijms18091985
– ident: 18
  doi: 10.4103/0377-4929.91494
– ident: 9
  doi: 10.1016/j.foodchem.2013.07.143
– ident: 33
– ident: 16
  doi: 10.1007/s00394-016-1325-7
– ident: 39
  doi: 10.1080/10408398.2018.1427552
– ident: 38
  doi: 10.3945/an.112.003186
– ident: 14
– ident: 6
  doi: 10.1016/j.mehy.2017.12.020
– ident: 36
  doi: 10.1016/bs.afnr.2017.11.005
– ident: 31
  doi: 10.1139/o06-040
– ident: 5
  doi: 10.3945/ajcn.117.155804
– ident: 28
  doi: 10.3109/14767058.2011.599080
– ident: 32
  doi: 10.1056/NEJMe1206858
– ident: 7
  doi: 10.1097/MCO.0b013e328328d13e
– ident: 26
  doi: 10.1093/ajcn/76.4.858
– ident: 37
  doi: 10.1016/bs.afnr.2017.12.006
– ident: 15
  doi: 10.2174/1389203719666180514150921
– ident: 20
  doi: 10.1016/S0002-9629(15)40630-5
– ident: 22
– ident: 3
– ident: 34
  doi: 10.3945/ajcn.117.155960
– ident: 35
  doi: 10.1016/j.cca.2014.02.005
– ident: 12
  doi: 10.1111/j.1651-2227.1991.tb11826.x
– ident: 27
  doi: 10.1203/00006450-199607000-00013
– ident: 13
– ident: 17
  doi: 10.1016/j.nut.2014.07.006
– ident: 29
– ident: 11
  doi: 10.1016/S0946-672X(03)80010-X
– ident: 24
  doi: 10.1016/j.foodres.2017.12.016
– ident: 8
– ident: 21
– ident: 19
  doi: 10.1093/ajcp/98.5.511
– ident: 25
SSID ssj0049848
Score 2.3035562
Snippet To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who...
SourceID pubmed
crossref
jstage
SourceType Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms Anemia, Iron-Deficiency - drug therapy
Anemia, Iron-Deficiency - metabolism
Animals
anthropometric index
Breast Feeding
Cattle
Female
ferritin
Ferritins - blood
hemoglobin
Hemoglobins - analysis
Humans
Infant
Iron - blood
Iron - metabolism
Lactoferrin - administration & dosage
Lactoferrin - therapeutic use
Male
Receptors, Transferrin - blood
TFR-F index
total body iron content
transferring receptor
weaned infant
Weaning
Title Dose Effect of Bovine Lactoferrin Fortification on Iron Metabolism of Anemic Infants
URI https://www.jstage.jst.go.jp/article/jnsv/66/1/66_24/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/32115450
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Nutritional Science and Vitaminology, 2020/02/29, Vol.66(1), pp.24-31
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-7742
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0049848
  issn: 0301-4800
  databaseCode: KQ8
  dateStart: 19730101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1881-7742
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0049848
  issn: 0301-4800
  databaseCode: DIK
  dateStart: 19730101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXBIxLuckSCAlVKU3iuMlj2YV2QMdDh_oWOY6NOq3O1KVI42fxCzkndtIG9WFMqqzKsWM13-nxd5xzIeTdUIk40UHsZYKFHuNKehnTzPOzRMVykGkmKm-LKR-fsZN5NO90_mx5La3LrC9_74wruQ2q0Ae4YpTsfyDb3BQ64DvgCy0gDO2NMD5EZ3OXfxhI3yc8HVC9r1hCR2PGRdM7BnaNzkCOGJreZFXg25kSsL_A-hhIRE3lID8xWri8TjvY6rTO2u-yh9SBBj8WpVgu2ofzB-OjqY35aXpGp5WuF2apFg13PrXxUvOFwCC0n80Z9nhkL3xeF9d1vzuYACsUA7036g9Pp9WqcpZsu_rXXvInwAbMlroDVeOxeGDf0iirjuPYB_7PWvraVmlpyaVTvmxrG7d7y78bRGhfUZ-bq199zvv1jFbCbQdnioNSzlMfm4CldT-Gw4H03SF3gyHnWDXjcPKl3v1ZElcV25pfY1Pi4rofN6u2SNC9c7ADMMFDy66p-M3sIXngoKYju_wj0lHmMdkfGVEWy2v6nlauwhXM-2SGgket4NFCUyt4dEvwaEvwKHxQ8OhG8HCaFTzqBO8JOTs-mh2MPVeew5NAs0sPTIs8z4e-VHmeANuROgT7E_m1kMAzZRTmgY5jMAECJeBSpgZa5mEWqZzJJI_Cp2TPFEY9J1T7Os5hiuBRyPDEQAuJHgRRILIkyGSXfKifVypd7nosoXKRgg2Lz7YBK2Bd8rYZe2kztuwcxe1jb8bcEPYueWZhaiaGAaa0igYvbnvLl-T-5v_ziuyVq7V6DVS3zN5UsgXt9Pu3v0rOtTc
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dose+Effect+of+Bovine+Lactoferrin+Fortification+on+Iron+Metabolism+of+Anemic+Infants&rft.jtitle=Journal+of+Nutritional+Science+and+Vitaminology&rft.au=CHEN%2C+Ke&rft.au=CAO%2C+Yanmei&rft.au=DONG%2C+Xiaobing&rft.au=ZHANG%2C+Guoying&rft.date=2020-02-29&rft.pub=Center+for+Academic+Publications+Japan&rft.issn=0301-4800&rft.eissn=1881-7742&rft.volume=66&rft.issue=1&rft.spage=24&rft.epage=31&rft_id=info:doi/10.3177%2Fjnsv.66.24&rft.externalDocID=article_jnsv_66_1_66_24_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4800&client=summon