Dose Effect of Bovine Lactoferrin Fortification on Iron Metabolism of Anemic Infants
To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were p...
Saved in:
Published in | Journal of Nutritional Science and Vitaminology Vol. 66; no. 1; pp. 24 - 31 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Center for Academic Publications Japan
29.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-4800 1881-7742 |
DOI | 10.3177/jnsv.66.24 |
Cover
Abstract | To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were previously breast-fed and weaned were selected. The subjects were divided into three groups with the sequence of outpatient: fortified group 1 (FG1) with a bLF concentration of 38 mg/100 g, FG2 with 76 mg/100 g bLF, FG0 with no bLF. The intervention duration was 3 mo. Weight, height, head circumference and the concentration of hemoglobin (Hb), serum ferritin (SF), serum transferring receptor (sTfR) were measured and sTfR-SF index (TFR-F index) and total body iron content (TBIC) were computed before and after intervention. The primary outcome measures were obtained from 96 infants (35, 33 and 28 for FG0, FG1 and FG2, respectively). After 1 mo of intervention, the changes of Hb level showed no significant difference (p>0.05) among the three groups, however, the Hb level of infants in FG2 were significantly higher than those of infants in the other two groups after 3 mo of intervention (p<0.05). The present data indicated that the formula fortified with 76 mg/100 g bLF positively affected the Hb of anemic infants who were previously breastfed when compared with fortification with 38 mg/100 g bLF and no bLF fortification. |
---|---|
AbstractList | To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were previously breast-fed and weaned were selected. The subjects were divided into three groups with the sequence of outpatient: fortified group 1 (FG1) with a bLF concentration of 38 mg/100 g, FG2 with 76 mg/100 g bLF, FG0 with no bLF. The intervention duration was 3 mo. Weight, height, head circumference and the concentration of hemoglobin (Hb), serum ferritin (SF), serum transferring receptor (sTfR) were measured and sTfR-SF index (TFR-F index) and total body iron content (TBIC) were computed before and after intervention. The primary outcome measures were obtained from 96 infants (35, 33 and 28 for FG0, FG1 and FG2, respectively). After 1 mo of intervention, the changes of Hb level showed no significant difference (p>0.05) among the three groups, however, the Hb level of infants in FG2 were significantly higher than those of infants in the other two groups after 3 mo of intervention (p<0.05). The present data indicated that the formula fortified with 76 mg/100 g bLF positively affected the Hb of anemic infants who were previously breastfed when compared with fortification with 38 mg/100 g bLF and no bLF fortification. |
Author | CHEN, Ke LIU, Changqi ZHANG, Guoying CAO, Yanmei CHEN, Haixia LI, Hua DONG, Xiaobing |
Author_xml | – sequence: 1 fullname: CHEN, Ke organization: Department of Child Health Care, New Century Women’s and Children’s Hospital – sequence: 1 fullname: CAO, Yanmei organization: Department of Child Health Care, Dayi Maternal and Child Health Care Hospital – sequence: 1 fullname: DONG, Xiaobing organization: Department of Child Health Care, Hehuachi Community Health Service Center – sequence: 1 fullname: ZHANG, Guoying organization: Department of Pediatric Intensive Care Unit, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China – sequence: 1 fullname: LIU, Changqi organization: School of Exercise and Nutritional Sciences, San Diego State University – sequence: 1 fullname: CHEN, Haixia organization: Department of Disease Prevention and Control, Center for Disease Control and Prevention of Baoxing County – sequence: 1 fullname: LI, Hua organization: Department of Child Hygiene, Qingbaijiang Maternal and Child Health Care Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32115450$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoNU7Ide_AGyZ2Frssl-HTzU2mqh4qWeQ5pMNGU3KUks-O_dWtuDCMMMzDzvC_MOUc86CwhdEzympCzvNjbsxkUxztgZGpCqImlZsqyHBphikrIK4z4ahrDBmNUVqy5Qn2aE5CzHA7R6dAGSmdYgY-J08uB2xkKyFDI6Dd4bm8ydj0YbKaJxNulq4bv2AlGsXWNCu5dNLLRGJgurhY3hEp1r0QS4-p0j9DafrabP6fL1aTGdLFOZ5ySmdV0rpUoiQakaYyI1pbgoGCNCVqSWOVWZrqoixxmI7rQGrKWi6xwUk7XK6QjdHHy3n-sWFN960wr_xY_vdQA-ANK7EDxoLk38-SN6YRpOMN8nyPcJ8qLgGeskt38kR9d_4fsDvAlRvMMJFV1isoETSg78aS8_hOdg6TcqV4lR |
CitedBy_id | crossref_primary_10_1038_s41390_022_02136_2 crossref_primary_10_1177_10915818241299344 crossref_primary_10_1080_10408398_2022_2157792 crossref_primary_10_3390_nu13061974 crossref_primary_10_3390_jcm10235482 crossref_primary_10_1007_s10534_022_00430_4 crossref_primary_10_1016_j_nut_2021_111288 crossref_primary_10_3390_nu13010003 crossref_primary_10_1016_j_jtemb_2022_127093 crossref_primary_10_1016_j_lfs_2024_123340 crossref_primary_10_3390_molecules27092941 crossref_primary_10_1007_s00431_021_04125_9 crossref_primary_10_1007_s12011_023_03658_4 crossref_primary_10_1002_rfc2_70011 |
Cites_doi | 10.1016/j.hoc.2015.11.002 10.1111/hdi.12555 10.1007/s10534-010-9335-z 10.3390/ijms18091985 10.4103/0377-4929.91494 10.1016/j.foodchem.2013.07.143 10.1007/s00394-016-1325-7 10.1080/10408398.2018.1427552 10.3945/an.112.003186 10.1016/j.mehy.2017.12.020 10.1016/bs.afnr.2017.11.005 10.1139/o06-040 10.3945/ajcn.117.155804 10.3109/14767058.2011.599080 10.1056/NEJMe1206858 10.1097/MCO.0b013e328328d13e 10.1093/ajcn/76.4.858 10.1016/bs.afnr.2017.12.006 10.2174/1389203719666180514150921 10.1016/S0002-9629(15)40630-5 10.3945/ajcn.117.155960 10.1016/j.cca.2014.02.005 10.1111/j.1651-2227.1991.tb11826.x 10.1203/00006450-199607000-00013 10.1016/j.nut.2014.07.006 10.1016/S0946-672X(03)80010-X 10.1016/j.foodres.2017.12.016 10.1093/ajcp/98.5.511 |
ContentType | Journal Article |
Copyright | 2020 by the Center for Academic Publications Japan |
Copyright_xml | – notice: 2020 by the Center for Academic Publications Japan |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.3177/jnsv.66.24 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1881-7742 |
EndPage | 31 |
ExternalDocumentID | 32115450 10_3177_jnsv_66_24 article_jnsv_66_1_66_24_article_char_en |
Genre | Randomized Controlled Trial Journal Article |
GroupedDBID | --- -~X .55 2WC 53G 5GY 5RE AAFWJ AAWTL ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 F5P JSF JSH KQ8 OK1 RJT RZJ TR2 X7M AAYXX CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c551t-999ddd71cedd9001cf33066441ac819c53d2f886502ea330be0fcd3b5ed4c9d53 |
ISSN | 0301-4800 |
IngestDate | Thu Jan 02 22:57:37 EST 2025 Tue Jul 01 01:41:27 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Wed Sep 03 06:29:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | weaned infant TFR-F index anthropometric index ferritin total body iron content transferring receptor hemoglobin |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c551t-999ddd71cedd9001cf33066441ac819c53d2f886502ea330be0fcd3b5ed4c9d53 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jnsv/66/1/66_24/_article/-char/en |
PMID | 32115450 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_32115450 crossref_citationtrail_10_3177_jnsv_66_24 crossref_primary_10_3177_jnsv_66_24 jstage_primary_article_jnsv_66_1_66_24_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020/02/29 |
PublicationDateYYYYMMDD | 2020-02-29 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020/02/29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Nutritional Science and Vitaminology |
PublicationTitleAlternate | J Nutr Sci Vitaminol |
PublicationYear | 2020 |
Publisher | Center for Academic Publications Japan |
Publisher_xml | – name: Center for Academic Publications Japan |
References | 2) Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M. 2013. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 1: e16-25. 20) Cook JD. 1999.The measurement of serum transferrin receptor. Am J Med Sci 318: 269-276. 25) Mudd AT, Alexander LS, Berding K, Waworuntu RV, Berg BM, Donovan SM, Dilger RN. 2016. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Front Pediatr 4: 4. 31) Paesano R, Torcia F, Berlutti F, Pacifici E, Ebano V, Moscarini M, Valenti P. 2006. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem Cell Biol 84: 377-380. 13) Chierici R, Sawatzki G, Tamisari L, Volpato S, Vigi V. 1992. Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Acta Paediatr 81: 475-479. 22) World Health Organization. 1996. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. Geneva. 12) Schulz-Lell G, Dörner K, Oldigs HD, Sievers E, Schaub J. 1991. Iron availability from an infant formula supplemented with bovine lactoferrin. Acta Paediatr Scand 80: 155-158. 37) Naderi N, House JD. 2018. Recent developments in folate nutrition. Adv Food Nutr Res 83: 195-213. 29) Artym J. 2008. The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Postepy Hig Med Dosw (Online) 62: 599-612. 34) Daru J, Colman K, Stanworth SJ, De La Salle B, Wood EM, Pasricha SR. 2017. Serum ferritin as an indicator of iron status: what do we need to know. Am J Clin Nutr 106: 1634S-1639S. 4) World Health Organization. 2002. Micronutrient deficiencies: battling iron deficiency anemia. Geneva. 38) Sandstead HH. 2013. Human zinc deficiency: discovery to initial translation. Adv Nutr 4: 76-81. 14) King JC, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, Feigelman S, de Waard R. 2007. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr 44: 245-251. 21) World Health Organization. 2001. Iron deficiency anemia. assessment, prevention, and control. A guide for programme managers. Geneva. 8) Wang X, Liu S, Xu H, Yan W. 2012. Effects of recombinant human lactoferrin on improving the iron status of IDA rats. Wei Sheng Yan Jiu 41: 13-17, 22. 32) Heaney RP. 2012. Vitamin D—baseline status and effective dose. N Engl J Med 367: 77-78. 30) Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, Goolsbee W, Valenti P. 2010. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals 23: 411-417. 11) Jovaní M, Barberá R, Farré R. 2003. Effect of lactoferrin addition on the dialysability of iron from infant formulas. J Trace Elem Med Biol 17: 139-142. 36) Smith AD, Warren MJ, Refsum H. 2018. Vitamin B12. Adv Food Nutr Res 83: 215-279. 39) de Cunda MSB, Campos Hankins NA, Arruda SF. 2019. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 59: 1767-1781. 1) Kassebaum NJ. 2016. The global burden of anemia. Hematol Oncol Clin North Am 30: 247-308. 18) Shah VB, Shah BS, Puranik GV. 2011. Evaluation of non cyanide methods for hemoglobin estimation. Indian J Pathol Microbiol 54: 764-768. 15) Hao L, Shan Q, Wei J, Ma F, Sun P. 2018. Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci 20: 139-144. 26) Hernell O, Lönnerdal B. 2002. Iron status of infants fed low-iron formula: no effect of added bovine lactoferrin or nucleotides. Am J Clin Nutr 76: 858-864. 17) Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, Weizheng T, Ping Y, Lingying C, Meng M. 2015. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition 31: 304-309. 28) Ortiz R, Toblli JE, Romero JD, Monterrosa B, Frer C, Macagno E, Breymann C. 2011. Efficacy and safety of oral iron(III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study. J Matern Fetal Neonatal Med 24: 1347-1352. 35) Braga F, Infusino I, Dolci A, Panteghini M. 2014. Soluble transferrin receptor in complicated anemia. Clin Chim Acta 431: 143-147. 5) Anderson GJ, Frazer DM. 2017. Current understanding of iron homeostasis. Am J Clin Nutr 106: 1559S-1566S. 19) Stacy DL, Han P. 1992. Serum ferritin measurement and the degree of agreement using four techniques. Am J Clin Pathol 98: 511-515. 33) Heaney RP. 2008. Nutrients, endpoints, and the problem of proof. J Nutr 138: 1591-1595. 10) Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. 2017. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 18: pii: 1985. 23) Ramanathan G, Olynyk JK, Ferrari P. 2017. Diagnosing and preventing iron overload. Hemodial Int 21 (Suppl 1): S58-S67. 6) Erick M. 2018. Breast milk is conditionally perfect. Med Hypotheses 111: 82-89. 3) Jericó AC, García EJA. 2018. Oral iron as treatment for iron deficiency: should it always be the first choice. Med Clin (Barc), 33-34. 16) Fernández-Menéndez S, Fernández-Sánchez ML, González-Iglesias H, Fernández-Colomer B, López-Sastre J, Sanz-Medel A. 2017. Iron bioavailability from supplemented formula milk: effect of lactoferrin addition. Eur J Nutr 56: 2611-2620. 27) Burrin DG, Wang H, Heath J, Dudley MA. 1996. Orally administered lactoferrin increases hepatic protein synthesis in formula-fed newborn pigs. Pediatr Res 40: 72-76. 9) Ueno HM, Urazono H, Kobayashi T. 2014. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem 145: 90-94. 7) Lönnerdal B. 2009. Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 12: 293-297. 24) Franco I, Pérez MD, Conesa C, Calvo M, Sánchez L. 2018. Effect of technological treatments on bovine lactoferrin: An overview. Food Res Int 106: 173-182. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 29) Artym J. 2008. The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Postepy Hig Med Dosw (Online) 62: 599-612. – reference: 28) Ortiz R, Toblli JE, Romero JD, Monterrosa B, Frer C, Macagno E, Breymann C. 2011. Efficacy and safety of oral iron(III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study. J Matern Fetal Neonatal Med 24: 1347-1352. – reference: 30) Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, Goolsbee W, Valenti P. 2010. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals 23: 411-417. – reference: 37) Naderi N, House JD. 2018. Recent developments in folate nutrition. Adv Food Nutr Res 83: 195-213. – reference: 15) Hao L, Shan Q, Wei J, Ma F, Sun P. 2018. Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci 20: 139-144. – reference: 6) Erick M. 2018. Breast milk is conditionally perfect. Med Hypotheses 111: 82-89. – reference: 18) Shah VB, Shah BS, Puranik GV. 2011. Evaluation of non cyanide methods for hemoglobin estimation. Indian J Pathol Microbiol 54: 764-768. – reference: 24) Franco I, Pérez MD, Conesa C, Calvo M, Sánchez L. 2018. Effect of technological treatments on bovine lactoferrin: An overview. Food Res Int 106: 173-182. – reference: 1) Kassebaum NJ. 2016. The global burden of anemia. Hematol Oncol Clin North Am 30: 247-308. – reference: 19) Stacy DL, Han P. 1992. Serum ferritin measurement and the degree of agreement using four techniques. Am J Clin Pathol 98: 511-515. – reference: 4) World Health Organization. 2002. Micronutrient deficiencies: battling iron deficiency anemia. Geneva. – reference: 21) World Health Organization. 2001. Iron deficiency anemia. assessment, prevention, and control. A guide for programme managers. Geneva. – reference: 7) Lönnerdal B. 2009. Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 12: 293-297. – reference: 35) Braga F, Infusino I, Dolci A, Panteghini M. 2014. Soluble transferrin receptor in complicated anemia. Clin Chim Acta 431: 143-147. – reference: 38) Sandstead HH. 2013. Human zinc deficiency: discovery to initial translation. Adv Nutr 4: 76-81. – reference: 31) Paesano R, Torcia F, Berlutti F, Pacifici E, Ebano V, Moscarini M, Valenti P. 2006. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem Cell Biol 84: 377-380. – reference: 22) World Health Organization. 1996. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. Geneva. – reference: 11) Jovaní M, Barberá R, Farré R. 2003. Effect of lactoferrin addition on the dialysability of iron from infant formulas. J Trace Elem Med Biol 17: 139-142. – reference: 17) Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, Weizheng T, Ping Y, Lingying C, Meng M. 2015. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition 31: 304-309. – reference: 25) Mudd AT, Alexander LS, Berding K, Waworuntu RV, Berg BM, Donovan SM, Dilger RN. 2016. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Front Pediatr 4: 4. – reference: 2) Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M. 2013. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 1: e16-25. – reference: 34) Daru J, Colman K, Stanworth SJ, De La Salle B, Wood EM, Pasricha SR. 2017. Serum ferritin as an indicator of iron status: what do we need to know. Am J Clin Nutr 106: 1634S-1639S. – reference: 13) Chierici R, Sawatzki G, Tamisari L, Volpato S, Vigi V. 1992. Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Acta Paediatr 81: 475-479. – reference: 39) de Cunda MSB, Campos Hankins NA, Arruda SF. 2019. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 59: 1767-1781. – reference: 27) Burrin DG, Wang H, Heath J, Dudley MA. 1996. Orally administered lactoferrin increases hepatic protein synthesis in formula-fed newborn pigs. Pediatr Res 40: 72-76. – reference: 16) Fernández-Menéndez S, Fernández-Sánchez ML, González-Iglesias H, Fernández-Colomer B, López-Sastre J, Sanz-Medel A. 2017. Iron bioavailability from supplemented formula milk: effect of lactoferrin addition. Eur J Nutr 56: 2611-2620. – reference: 36) Smith AD, Warren MJ, Refsum H. 2018. Vitamin B12. Adv Food Nutr Res 83: 215-279. – reference: 33) Heaney RP. 2008. Nutrients, endpoints, and the problem of proof. J Nutr 138: 1591-1595. – reference: 23) Ramanathan G, Olynyk JK, Ferrari P. 2017. Diagnosing and preventing iron overload. Hemodial Int 21 (Suppl 1): S58-S67. – reference: 3) Jericó AC, García EJA. 2018. Oral iron as treatment for iron deficiency: should it always be the first choice. Med Clin (Barc), 33-34. – reference: 14) King JC, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, Feigelman S, de Waard R. 2007. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr 44: 245-251. – reference: 26) Hernell O, Lönnerdal B. 2002. Iron status of infants fed low-iron formula: no effect of added bovine lactoferrin or nucleotides. Am J Clin Nutr 76: 858-864. – reference: 32) Heaney RP. 2012. Vitamin D—baseline status and effective dose. N Engl J Med 367: 77-78. – reference: 20) Cook JD. 1999.The measurement of serum transferrin receptor. Am J Med Sci 318: 269-276. – reference: 10) Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. 2017. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 18: pii: 1985. – reference: 12) Schulz-Lell G, Dörner K, Oldigs HD, Sievers E, Schaub J. 1991. Iron availability from an infant formula supplemented with bovine lactoferrin. Acta Paediatr Scand 80: 155-158. – reference: 5) Anderson GJ, Frazer DM. 2017. Current understanding of iron homeostasis. Am J Clin Nutr 106: 1559S-1566S. – reference: 8) Wang X, Liu S, Xu H, Yan W. 2012. Effects of recombinant human lactoferrin on improving the iron status of IDA rats. Wei Sheng Yan Jiu 41: 13-17, 22. – reference: 9) Ueno HM, Urazono H, Kobayashi T. 2014. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem 145: 90-94. – ident: 2 – ident: 1 doi: 10.1016/j.hoc.2015.11.002 – ident: 23 doi: 10.1111/hdi.12555 – ident: 4 – ident: 30 doi: 10.1007/s10534-010-9335-z – ident: 10 doi: 10.3390/ijms18091985 – ident: 18 doi: 10.4103/0377-4929.91494 – ident: 9 doi: 10.1016/j.foodchem.2013.07.143 – ident: 33 – ident: 16 doi: 10.1007/s00394-016-1325-7 – ident: 39 doi: 10.1080/10408398.2018.1427552 – ident: 38 doi: 10.3945/an.112.003186 – ident: 14 – ident: 6 doi: 10.1016/j.mehy.2017.12.020 – ident: 36 doi: 10.1016/bs.afnr.2017.11.005 – ident: 31 doi: 10.1139/o06-040 – ident: 5 doi: 10.3945/ajcn.117.155804 – ident: 28 doi: 10.3109/14767058.2011.599080 – ident: 32 doi: 10.1056/NEJMe1206858 – ident: 7 doi: 10.1097/MCO.0b013e328328d13e – ident: 26 doi: 10.1093/ajcn/76.4.858 – ident: 37 doi: 10.1016/bs.afnr.2017.12.006 – ident: 15 doi: 10.2174/1389203719666180514150921 – ident: 20 doi: 10.1016/S0002-9629(15)40630-5 – ident: 22 – ident: 3 – ident: 34 doi: 10.3945/ajcn.117.155960 – ident: 35 doi: 10.1016/j.cca.2014.02.005 – ident: 12 doi: 10.1111/j.1651-2227.1991.tb11826.x – ident: 27 doi: 10.1203/00006450-199607000-00013 – ident: 13 – ident: 17 doi: 10.1016/j.nut.2014.07.006 – ident: 29 – ident: 11 doi: 10.1016/S0946-672X(03)80010-X – ident: 24 doi: 10.1016/j.foodres.2017.12.016 – ident: 8 – ident: 21 – ident: 19 doi: 10.1093/ajcp/98.5.511 – ident: 25 |
SSID | ssj0049848 |
Score | 2.3035562 |
Snippet | To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who... |
SourceID | pubmed crossref jstage |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 24 |
SubjectTerms | Anemia, Iron-Deficiency - drug therapy Anemia, Iron-Deficiency - metabolism Animals anthropometric index Breast Feeding Cattle Female ferritin Ferritins - blood hemoglobin Hemoglobins - analysis Humans Infant Iron - blood Iron - metabolism Lactoferrin - administration & dosage Lactoferrin - therapeutic use Male Receptors, Transferrin - blood TFR-F index total body iron content transferring receptor weaned infant Weaning |
Title | Dose Effect of Bovine Lactoferrin Fortification on Iron Metabolism of Anemic Infants |
URI | https://www.jstage.jst.go.jp/article/jnsv/66/1/66_24/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/32115450 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Nutritional Science and Vitaminology, 2020/02/29, Vol.66(1), pp.24-31 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1881-7742 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0049848 issn: 0301-4800 databaseCode: KQ8 dateStart: 19730101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1881-7742 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0049848 issn: 0301-4800 databaseCode: DIK dateStart: 19730101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXBIxLuckSCAlVKU3iuMlj2YV2QMdDh_oWOY6NOq3O1KVI42fxCzkndtIG9WFMqqzKsWM13-nxd5xzIeTdUIk40UHsZYKFHuNKehnTzPOzRMVykGkmKm-LKR-fsZN5NO90_mx5La3LrC9_74wruQ2q0Ae4YpTsfyDb3BQ64DvgCy0gDO2NMD5EZ3OXfxhI3yc8HVC9r1hCR2PGRdM7BnaNzkCOGJreZFXg25kSsL_A-hhIRE3lID8xWri8TjvY6rTO2u-yh9SBBj8WpVgu2ofzB-OjqY35aXpGp5WuF2apFg13PrXxUvOFwCC0n80Z9nhkL3xeF9d1vzuYACsUA7036g9Pp9WqcpZsu_rXXvInwAbMlroDVeOxeGDf0iirjuPYB_7PWvraVmlpyaVTvmxrG7d7y78bRGhfUZ-bq199zvv1jFbCbQdnioNSzlMfm4CldT-Gw4H03SF3gyHnWDXjcPKl3v1ZElcV25pfY1Pi4rofN6u2SNC9c7ADMMFDy66p-M3sIXngoKYju_wj0lHmMdkfGVEWy2v6nlauwhXM-2SGgket4NFCUyt4dEvwaEvwKHxQ8OhG8HCaFTzqBO8JOTs-mh2MPVeew5NAs0sPTIs8z4e-VHmeANuROgT7E_m1kMAzZRTmgY5jMAECJeBSpgZa5mEWqZzJJI_Cp2TPFEY9J1T7Os5hiuBRyPDEQAuJHgRRILIkyGSXfKifVypd7nosoXKRgg2Lz7YBK2Bd8rYZe2kztuwcxe1jb8bcEPYueWZhaiaGAaa0igYvbnvLl-T-5v_ziuyVq7V6DVS3zN5UsgXt9Pu3v0rOtTc |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dose+Effect+of+Bovine+Lactoferrin+Fortification+on+Iron+Metabolism+of+Anemic+Infants&rft.jtitle=Journal+of+Nutritional+Science+and+Vitaminology&rft.au=CHEN%2C+Ke&rft.au=CAO%2C+Yanmei&rft.au=DONG%2C+Xiaobing&rft.au=ZHANG%2C+Guoying&rft.date=2020-02-29&rft.pub=Center+for+Academic+Publications+Japan&rft.issn=0301-4800&rft.eissn=1881-7742&rft.volume=66&rft.issue=1&rft.spage=24&rft.epage=31&rft_id=info:doi/10.3177%2Fjnsv.66.24&rft.externalDocID=article_jnsv_66_1_66_24_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4800&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4800&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4800&client=summon |