Structural Basis of Heterochromatin Formation by Human HP1

Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), i...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 69; no. 3; pp. 385 - 397.e8
Main Authors Machida, Shinichi, Takizawa, Yoshimasa, Ishimaru, Masakazu, Sugita, Yukihiko, Sekine, Satoshi, Nakayama, Jun-ichi, Wolf, Matthias, Kurumizaka, Hitoshi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2018
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2017.12.011

Cover

Abstract Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. [Display omitted] •The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1 HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.
AbstractList Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. [Display omitted] •The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1 HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.
Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
Author Ishimaru, Masakazu
Nakayama, Jun-ichi
Sugita, Yukihiko
Wolf, Matthias
Machida, Shinichi
Kurumizaka, Hitoshi
Takizawa, Yoshimasa
Sekine, Satoshi
Author_xml – sequence: 1
  givenname: Shinichi
  surname: Machida
  fullname: Machida, Shinichi
  organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
– sequence: 2
  givenname: Yoshimasa
  surname: Takizawa
  fullname: Takizawa, Yoshimasa
  organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
– sequence: 3
  givenname: Masakazu
  surname: Ishimaru
  fullname: Ishimaru, Masakazu
  organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
– sequence: 4
  givenname: Yukihiko
  surname: Sugita
  fullname: Sugita, Yukihiko
  organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
– sequence: 5
  givenname: Satoshi
  surname: Sekine
  fullname: Sekine, Satoshi
  organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
– sequence: 6
  givenname: Jun-ichi
  surname: Nakayama
  fullname: Nakayama, Jun-ichi
  organization: National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
– sequence: 7
  givenname: Matthias
  surname: Wolf
  fullname: Wolf, Matthias
  email: matthias.wolf@oist.jp
  organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
– sequence: 8
  givenname: Hitoshi
  surname: Kurumizaka
  fullname: Kurumizaka, Hitoshi
  email: kurumizaka@waseda.jp
  organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29336876$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r3DAQxUVIab76H5TiYy_raGR9WDkUmpBkC4EWkpyFrB1RLbaVSnIg_3282U0POSQwMO_wewPz3hHZH-OIhHwFWgMFebquh9g77GtGQdXAagqwRw6BarXgIPn-TjMlxQE5ynlNKXDR6s_kgOmmka2Sh-TstqTJlSnZvjq3OeQq-mqJBVN0f1McbAljdRXTRsSx6p6q5TTYsVr-gRPyyds-45fdPib3V5d3F8vFze_rXxc_bxZOCCgLrYRAQO5FRzlXqvNqlqgb3ynsWmmF0pwKLpB5Z0Ew58GvUHYgveq0b47J9-3dhxT_TZiLGUKeH-_tiHHKhjHRzEMl_xAF3WrRMtXIGf22Q6duwJV5SGGw6cm8RjMDfAu4FHNO6P8jQM2mAbM22wbMpgEDzMwNzLazNzYXykt4JdnQf2T-sTXjnOdjwGSyCzg6XIWErphVDO8feAZlu6Jn
CitedBy_id crossref_primary_10_1016_j_mrfmmm_2020_111712
crossref_primary_10_1016_j_bbagen_2025_130790
crossref_primary_10_1091_mbc_E18_05_0331
crossref_primary_10_1016_j_molcel_2023_04_020
crossref_primary_10_3389_fcimb_2020_607526
crossref_primary_10_1016_j_bbrep_2019_100634
crossref_primary_10_1039_D3MR00011G
crossref_primary_10_1073_pnas_2009513117
crossref_primary_10_1073_pnas_2211855120
crossref_primary_10_15252_embr_202051078
crossref_primary_10_1038_s41586_019_1411_0
crossref_primary_10_1002_adhm_202401192
crossref_primary_10_1038_s41467_019_08314_x
crossref_primary_10_7554_eLife_47859
crossref_primary_10_1186_s13072_021_00424_5
crossref_primary_10_1038_s41467_023_36021_1
crossref_primary_10_1038_s41557_020_0474_8
crossref_primary_10_15252_embj_2021108813
crossref_primary_10_1016_j_pbi_2019_03_008
crossref_primary_10_1098_rsos_191976
crossref_primary_10_1016_j_bpj_2019_11_004
crossref_primary_10_1038_s42003_025_07732_6
crossref_primary_10_1186_s12915_024_02048_z
crossref_primary_10_1016_j_bpj_2018_03_011
crossref_primary_10_1042_BST20220763
crossref_primary_10_1016_j_sbi_2019_10_010
crossref_primary_10_1016_j_sbi_2019_07_011
crossref_primary_10_1073_pnas_2004111117
crossref_primary_10_1093_nar_gkab587
crossref_primary_10_1038_s42003_020_01517_9
crossref_primary_10_3389_fgene_2022_1058741
crossref_primary_10_1016_j_cbpa_2019_01_022
crossref_primary_10_1016_j_biopha_2023_115343
crossref_primary_10_1021_acs_orglett_9b03152
crossref_primary_10_1016_j_molcel_2023_12_036
crossref_primary_10_1080_19491034_2021_1889858
crossref_primary_10_1016_j_annonc_2020_02_002
crossref_primary_10_1016_j_cis_2022_102777
crossref_primary_10_1038_s41467_021_25596_2
crossref_primary_10_1038_s41576_018_0089_8
crossref_primary_10_2217_ije_2019_0008
crossref_primary_10_1126_sciadv_adk8908
crossref_primary_10_3390_biom13020377
crossref_primary_10_1038_s41422_018_0104_9
crossref_primary_10_1016_j_molcel_2020_02_005
crossref_primary_10_1093_nar_gkaf154
crossref_primary_10_3390_ph14060495
crossref_primary_10_1038_s42003_020_0784_9
crossref_primary_10_1242_jcs_257717
crossref_primary_10_1002_sstr_202400203
crossref_primary_10_1016_j_bpj_2018_03_025
crossref_primary_10_1038_s41598_019_46573_2
crossref_primary_10_1016_j_bpj_2021_01_033
crossref_primary_10_1016_j_devcel_2018_10_004
crossref_primary_10_2147_BCTT_S381856
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_1016_j_bpr_2021_100028
crossref_primary_10_1534_genetics_118_301146
crossref_primary_10_1098_rsob_230271
crossref_primary_10_1016_j_bbrc_2021_06_010
crossref_primary_10_1101_cshperspect_a040675
crossref_primary_10_1038_s41586_019_1275_3
crossref_primary_10_1016_j_isci_2022_104105
crossref_primary_10_7554_eLife_90820
crossref_primary_10_1093_jb_mvab040
crossref_primary_10_3389_fmolb_2021_741581
crossref_primary_10_1016_j_tibs_2023_02_007
crossref_primary_10_3390_cells9081866
crossref_primary_10_1016_j_ceb_2020_02_016
crossref_primary_10_1088_1478_3975_ac0aff
crossref_primary_10_1093_genetics_iyab108
crossref_primary_10_1016_j_molcel_2021_02_038
crossref_primary_10_1007_s10875_024_01847_x
crossref_primary_10_3390_toxins12050294
crossref_primary_10_1007_s00204_024_03713_6
crossref_primary_10_1016_j_mrl_2024_200153
crossref_primary_10_1016_j_celrep_2021_109540
crossref_primary_10_1016_j_jbc_2025_108300
crossref_primary_10_1002_chem_202003071
crossref_primary_10_1016_j_bpj_2022_05_039
crossref_primary_10_1093_jb_mvy117
crossref_primary_10_1093_nar_gky632
crossref_primary_10_3390_biom13050810
crossref_primary_10_1128_spectrum_03288_22
crossref_primary_10_1016_j_jmb_2021_166827
crossref_primary_10_1016_j_jprot_2021_104170
crossref_primary_10_1016_j_sbi_2025_103006
crossref_primary_10_1093_nar_gkae720
crossref_primary_10_3390_v12080884
crossref_primary_10_1042_EBC20180067
crossref_primary_10_1080_15384101_2020_1836441
crossref_primary_10_1016_j_isci_2022_104590
crossref_primary_10_3390_biology12081058
crossref_primary_10_1038_s41586_021_03460_z
crossref_primary_10_1016_j_jmb_2020_10_012
crossref_primary_10_1016_j_molcel_2021_07_034
crossref_primary_10_1042_BST20191226
crossref_primary_10_1042_EBC20180065
crossref_primary_10_1103_PhysRevX_12_041033
crossref_primary_10_1093_gbe_evz010
crossref_primary_10_1186_s12915_022_01435_8
crossref_primary_10_1021_acscentsci_1c01332
crossref_primary_10_3390_cells9081881
crossref_primary_10_3390_cells9112480
crossref_primary_10_1038_s41467_020_18863_1
crossref_primary_10_52601_bpr_2024_240038
crossref_primary_10_7554_eLife_63972
crossref_primary_10_1016_j_isci_2022_104563
crossref_primary_10_1016_j_str_2019_10_016
crossref_primary_10_1177_25168657221109766
crossref_primary_10_3389_fbioe_2022_1035543
crossref_primary_10_1038_s12276_024_01226_x
crossref_primary_10_1016_j_celrep_2023_113428
crossref_primary_10_1038_s41467_024_51246_4
crossref_primary_10_1073_pnas_1920725117
crossref_primary_10_3389_fgene_2022_903923
crossref_primary_10_1111_gtc_13109
crossref_primary_10_3390_genes13040639
crossref_primary_10_1007_s12551_020_00675_8
crossref_primary_10_1038_s41594_022_00892_7
crossref_primary_10_1016_j_gde_2019_06_001
crossref_primary_10_3390_ijms22136922
crossref_primary_10_1016_j_gim_2023_100861
crossref_primary_10_1103_PhysRevE_109_014405
crossref_primary_10_1016_j_gde_2024_102194
crossref_primary_10_1016_j_arr_2024_102206
crossref_primary_10_1146_annurev_genom_121321_094603
crossref_primary_10_3389_fgene_2022_876862
crossref_primary_10_1002_cbic_202000332
crossref_primary_10_3389_fcell_2021_729338
crossref_primary_10_1016_j_bbagrm_2022_194851
crossref_primary_10_1021_acsomega_1c05381
crossref_primary_10_1021_acschembio_2c00203
crossref_primary_10_1073_pnas_2208672119
crossref_primary_10_3389_fgene_2022_870640
crossref_primary_10_1080_19491034_2023_2165602
crossref_primary_10_1038_s10038_022_01083_4
crossref_primary_10_15252_embj_2021110286
crossref_primary_10_1038_s41587_021_01031_1
crossref_primary_10_1103_PhysRevE_100_060401
crossref_primary_10_1016_j_jmro_2022_100057
crossref_primary_10_1016_j_molcel_2024_05_002
crossref_primary_10_1039_D1SC00731A
crossref_primary_10_3389_fcell_2021_739780
crossref_primary_10_1242_bio_060011
crossref_primary_10_1007_s12551_020_00663_y
crossref_primary_10_3390_ijms21218241
crossref_primary_10_7554_eLife_90820_3
crossref_primary_10_1016_j_sbi_2019_05_017
crossref_primary_10_1016_j_tranon_2023_101715
crossref_primary_10_1242_dev_181180
crossref_primary_10_1101_sqb_2019_84_040360
crossref_primary_10_1016_j_canlet_2024_217088
crossref_primary_10_1016_j_str_2024_09_013
crossref_primary_10_3390_cells9061497
crossref_primary_10_1016_j_freeradbiomed_2019_01_031
crossref_primary_10_1093_bfgp_elz023
crossref_primary_10_1021_jacs_3c06481
crossref_primary_10_1016_j_sbi_2021_06_004
crossref_primary_10_1016_j_cancergen_2022_06_004
crossref_primary_10_1042_BST20210772
crossref_primary_10_1073_pnas_2308858120
crossref_primary_10_1080_19491034_2022_2143106
crossref_primary_10_1111_boc_201900063
crossref_primary_10_2183_pjab_98_001
crossref_primary_10_1016_j_semcdb_2018_07_004
crossref_primary_10_7554_eLife_47980
crossref_primary_10_1134_S0026893322030049
crossref_primary_10_5940_jcrsj_64_65
crossref_primary_10_3390_ijms25031833
crossref_primary_10_1016_j_cellin_2024_100213
crossref_primary_10_3390_genes10121049
crossref_primary_10_1063_5_0172696
crossref_primary_10_1016_j_jmb_2019_10_018
crossref_primary_10_1073_pnas_2317911121
crossref_primary_10_1073_pnas_2213075120
crossref_primary_10_1038_s12276_020_00497_4
crossref_primary_10_18632_oncotarget_24717
crossref_primary_10_1002_bies_202200043
crossref_primary_10_1038_s41586_024_08183_5
crossref_primary_10_1242_jcs_240416
crossref_primary_10_1093_nar_gkad793
crossref_primary_10_1098_rsob_190116
crossref_primary_10_1016_j_isci_2021_102070
Cites_doi 10.1006/jsbi.1996.0013
10.1038/nrg2008
10.1016/S1097-2765(00)80204-X
10.1038/nmeth1139
10.1002/bies.201000138
10.1038/nature10002
10.1038/nrm1355
10.1038/sj.emboj.7600088
10.1371/journal.pgen.1000769
10.1074/jbc.M113.512137
10.1038/nmeth.2727
10.1016/j.jmb.2010.08.039
10.1038/nsmb.2532
10.1038/ncb2075
10.1002/jcc.20084
10.1016/S0960-9822(00)00467-X
10.1038/ncomms11310
10.1021/acs.biochem.5b01126
10.1038/nsmb.2565
10.1016/j.tcb.2014.01.002
10.1016/j.celrep.2013.05.003
10.1006/jsbi.1996.0030
10.1038/nature22989
10.1038/47412
10.1093/emboj/19.7.1587
10.1038/nature08448
10.1016/j.cell.2007.02.005
10.1016/j.tig.2014.03.002
10.1016/j.ab.2004.08.039
10.1016/S0006-291X(02)03021-8
10.1038/35065138
10.1016/j.cell.2006.12.041
10.1016/j.ultramic.2013.06.004
10.1093/jb/mvu032
10.1126/science.aak9867
10.1038/nsmb.2244
10.1038/nrm2763
10.1038/nrm3941
10.1126/science.1069473
10.1038/nsmb1337
10.1186/1756-8935-8-3
10.1093/oxfordjournals.jbchem.a021378
10.1128/MCB.01576-06
10.1093/nar/gku995
10.1016/j.tcb.2014.07.006
10.1038/38444
10.1016/S0021-9258(18)53396-2
10.1016/bs.mie.2016.04.012
10.1016/S1047-8477(03)00069-8
10.1007/s004120050372
10.1091/mbc.e11-01-0009
10.1038/nature722
10.1038/nature12032
10.1038/nrg3673
10.1107/S0907444904013253
10.1093/nar/gkn060
10.1016/S1097-2765(01)00218-0
10.1006/jmbi.1997.1494
10.1038/nrm3382
10.1016/j.jsb.2006.05.009
10.1126/science.1060118
10.1073/pnas.1003064107
10.1038/nature22822
10.1038/35065132
10.1038/ng1046
10.1002/j.1460-2075.1996.tb00876.x
10.1016/j.molcel.2010.12.016
10.1016/j.jsb.2005.07.007
10.1038/nmeth.2089
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2017.12.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 397.e8
ExternalDocumentID 29336876
10_1016_j_molcel_2017_12_011
S1097276517309395
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c551t-9755e1e4f5b04477bf7f5be93fb7eb86a57940545e2fca152cf1fde6b16f7b9f3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Fri Sep 05 05:27:57 EDT 2025
Fri Sep 05 11:40:43 EDT 2025
Mon Jul 21 06:06:32 EDT 2025
Tue Jul 01 03:40:51 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Fri Feb 23 02:30:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ACF
H3K9me3
HP1
nucleosome
histone
chromatin
cryo-EM
epigenetics
heterochromatin
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c551t-9755e1e4f5b04477bf7f5be93fb7eb86a57940545e2fca152cf1fde6b16f7b9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276517309395
PMID 29336876
PQID 1989582736
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2253253064
proquest_miscellaneous_1989582736
pubmed_primary_29336876
crossref_primary_10_1016_j_molcel_2017_12_011
crossref_citationtrail_10_1016_j_molcel_2017_12_011
elsevier_sciencedirect_doi_10_1016_j_molcel_2017_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Valouev, Johnson, Boyd, Smith, Fire, Sidow (bib67) 2011; 474
Azzaz, Vitalini, Thomas, Price, Blacketer, Cryderman, Zirbel, Woodcock, Elcock, Wallrath, Shogren-Knaak (bib2) 2014; 289
Yamamoto, Sonoda (bib71) 2003; 301
Grewal, Jia (bib16) 2007; 8
Nozawa, Nagao, Masuda, Iwasaki, Hirota, Nozaki, Kimura, Obuse (bib49) 2010; 12
Scheres (bib53) 2016; 579
Kleywegt, Harris, Zou, Taylor, Wählby, Jones (bib24) 2004; 60
Canzio, Chang, Shankar, Kuchenbecker, Simon, Madhani, Narlikar, Al-Sady (bib6) 2011; 41
Frank, Radermacher, Penczek, Zhu, Li, Ladjadj, Leith (bib15) 1996; 116
Luger, Dechassa, Tremethick (bib34) 2012; 13
Nishibuchi, Nakayama (bib47) 2014; 156
Bhaumik, Smith, Shilatifard (bib4) 2007; 14
Luger, Mäder, Richmond, Sargent, Richmond (bib33) 1997; 389
Canzio, Larson, Narlikar (bib8) 2014; 24
Maison, Romeo, Bailly, Dubarry, Quivy, Almouzni (bib37) 2012; 19
Saksouk, Simboeck, Déjardin (bib52) 2015; 8
Machida, Hayashida, Takaku, Fukuto, Sun, Kinomura, Tashiro, Kurumizaka (bib35) 2016; 55
Lavigne, Eskeland, Azebi, Saint-André, Jang, Batsché, Fan, Kingston, Imhof, Muchardt (bib31) 2009; 5
Strahl, Allis (bib58) 2000; 403
Kang, Chaudhary, Dong, Kim, Brautigam, Yu (bib21) 2011; 22
Minc, Allory, Worman, Courvalin, Buendia (bib40) 1999; 108
Brasher, Smith, Fogh, Nietlispach, Thiru, Nielsen, Broadhurst, Ball, Murzina, Laue (bib5) 2000; 19
Kouzarides (bib25) 2007; 128
Lachner, O’Carroll, Rea, Mechtler, Jenuwein (bib29) 2001; 410
Nielsen, Nietlispach, Mott, Callaghan, Bannister, Kouzarides, Murzin, Murzina, Laue (bib46) 2002; 416
Cowieson, Partridge, Allshire, McLaughlin (bib11) 2000; 10
Mastronarde (bib38) 2005; 152
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib51) 2004; 25
Jacobs, Khorasanizadeh (bib20) 2002; 295
Nielsen, Oulad-Abdelghani, Ortiz, Remboutsika, Chambon, Losson (bib45) 2001; 7
Maison, Almouzni (bib36) 2004; 5
Simon, Kingston (bib55) 2009; 10
Kremer, Mastronarde, McIntosh (bib26) 1996; 116
Canzio, Liao, Naber, Pate, Larson, Wu, Marina, Garcia, Madhani, Cooke (bib7) 2013; 496
Maze, Noh, Soshnev, Allis (bib39) 2014; 15
Collins, Poot, Kukimoto, García-Jiménez, Dellaire, Varga-Weisz (bib10) 2002; 32
Aygün, Mehta, Grewal (bib1) 2013; 20
Demeler, van Holde (bib13) 2004; 335
Schneider, Rasband, Eliceiri (bib54) 2012; 9
Kucukelbir, Sigworth, Tagare (bib27) 2014; 11
Izzo, Kamieniarz-Gdula, Ramírez, Noureen, Kind, Manke, van Steensel, Schneider (bib19) 2013; 3
Vasudevan, Chua, Davey (bib68) 2010; 403
Kwon, Workman (bib28) 2011; 33
Venkatesh, Workman (bib69) 2015; 16
Murzina, Verreault, Laue, Stillman (bib43) 1999; 4
Nishibuchi, Machida, Osakabe, Murakoshi, Hiragami-Hamada, Nakagawa, Fischle, Nishimura, Kurumizaka, Tagami, Nakayama (bib48) 2014; 42
Mishima, Jayasinghe, Lu, Otani, Shirakawa, Kawakami, Kimura, Hojo, Carlton, Tajima, Suetake (bib42) 2015; 43
Zheng, Palovcak, Armache, Cheng, Agard (bib72) 2016
Hansen, Lohr (bib17) 1993; 268
Kastner, Fischer, Golas, Sander, Dube, Boehringer, Hartmuth, Deckert, Hauer, Wolf (bib22) 2008; 5
Ura, Nightingale, Wolffe (bib66) 1996; 15
Bannister, Zegerman, Partridge, Miska, Thomas, Allshire, Kouzarides (bib3) 2001; 410
Mindell, Grigorieff (bib41) 2003; 142
Larson, Elnatan, Keenen, Trnka, Johnston, Burlingame, Agard, Redding, Narlikar (bib30) 2017; 547
Sugimoto, Yamada, Muro, Himeno (bib60) 1996; 120
Talbert, Henikoff (bib63) 2014; 24
Kato, Osakabe, Arimura, Mizukami, Horikoshi, Saikusa, Akashi, Nishimura, Park, Nogami (bib23) 2017; 356
Wolffe (bib70) 1998
Thiru, Nietlispach, Mott, Okuwaki, Lyon, Nielsen, Hirshberg, Verreault, Murzina, Laue (bib65) 2004; 23
Eskeland, Eberharter, Imhof (bib14) 2007; 27
Nozawa, Nagao, Igami, Shibata, Shirai, Nozaki, Sado, Kimura, Obuse (bib50) 2013; 20
Soboleva, Nekrasov, Ryan, Tremethick (bib57) 2014; 30
Lowary, Widom (bib32) 1998; 276
Simon, Chu, Racki, de la Cruz, Burlingame, Panning, Narlikar, Shokat (bib56) 2007; 128
Tachiwana, Osakabe, Kimura, Kurumizaka (bib61) 2008; 36
Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib9) 2013; 135
Tachiwana, Kagawa, Osakabe, Kawaguchi, Shiga, Hayashi-Takanaka, Kimura, Kurumizaka (bib62) 2010; 107
Hiragami-Hamada, Soeroes, Nikolov, Wilkins, Kreuz, Chen, De La Rosa-Velázquez, Zenn, Kost, Pohl (bib18) 2016; 7
Nakayama, Rice, Strahl, Allis, Grewal (bib44) 2001; 292
Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (bib64) 2007; 157
Dawson, Bannister, Göttgens, Foster, Bartke, Green, Kouzarides (bib12) 2009; 461
Strom, Emelyanov, Mir, Fyodorov, Darzacq, Karpen (bib59) 2017; 547
Aygün (10.1016/j.molcel.2017.12.011_bib1) 2013; 20
Cowieson (10.1016/j.molcel.2017.12.011_bib11) 2000; 10
Collins (10.1016/j.molcel.2017.12.011_bib10) 2002; 32
Minc (10.1016/j.molcel.2017.12.011_bib40) 1999; 108
Nakayama (10.1016/j.molcel.2017.12.011_bib44) 2001; 292
Yamamoto (10.1016/j.molcel.2017.12.011_bib71) 2003; 301
Kastner (10.1016/j.molcel.2017.12.011_bib22) 2008; 5
Grewal (10.1016/j.molcel.2017.12.011_bib16) 2007; 8
Lavigne (10.1016/j.molcel.2017.12.011_bib31) 2009; 5
Machida (10.1016/j.molcel.2017.12.011_bib35) 2016; 55
Kouzarides (10.1016/j.molcel.2017.12.011_bib25) 2007; 128
Maze (10.1016/j.molcel.2017.12.011_bib39) 2014; 15
Mastronarde (10.1016/j.molcel.2017.12.011_bib38) 2005; 152
Canzio (10.1016/j.molcel.2017.12.011_bib8) 2014; 24
Saksouk (10.1016/j.molcel.2017.12.011_bib52) 2015; 8
Hansen (10.1016/j.molcel.2017.12.011_bib17) 1993; 268
Murzina (10.1016/j.molcel.2017.12.011_bib43) 1999; 4
Nishibuchi (10.1016/j.molcel.2017.12.011_bib48) 2014; 42
Simon (10.1016/j.molcel.2017.12.011_bib55) 2009; 10
Luger (10.1016/j.molcel.2017.12.011_bib33) 1997; 389
Luger (10.1016/j.molcel.2017.12.011_bib34) 2012; 13
Simon (10.1016/j.molcel.2017.12.011_bib56) 2007; 128
Bannister (10.1016/j.molcel.2017.12.011_bib3) 2001; 410
Nishibuchi (10.1016/j.molcel.2017.12.011_bib47) 2014; 156
Mishima (10.1016/j.molcel.2017.12.011_bib42) 2015; 43
Lachner (10.1016/j.molcel.2017.12.011_bib29) 2001; 410
Kucukelbir (10.1016/j.molcel.2017.12.011_bib27) 2014; 11
Nielsen (10.1016/j.molcel.2017.12.011_bib45) 2001; 7
Frank (10.1016/j.molcel.2017.12.011_bib15) 1996; 116
Demeler (10.1016/j.molcel.2017.12.011_bib13) 2004; 335
Scheres (10.1016/j.molcel.2017.12.011_bib53) 2016; 579
Kwon (10.1016/j.molcel.2017.12.011_bib28) 2011; 33
Strahl (10.1016/j.molcel.2017.12.011_bib58) 2000; 403
Kremer (10.1016/j.molcel.2017.12.011_bib26) 1996; 116
Maison (10.1016/j.molcel.2017.12.011_bib36) 2004; 5
Izzo (10.1016/j.molcel.2017.12.011_bib19) 2013; 3
Canzio (10.1016/j.molcel.2017.12.011_bib6) 2011; 41
Eskeland (10.1016/j.molcel.2017.12.011_bib14) 2007; 27
Vasudevan (10.1016/j.molcel.2017.12.011_bib68) 2010; 403
Ura (10.1016/j.molcel.2017.12.011_bib66) 1996; 15
Dawson (10.1016/j.molcel.2017.12.011_bib12) 2009; 461
Tang (10.1016/j.molcel.2017.12.011_bib64) 2007; 157
Wolffe (10.1016/j.molcel.2017.12.011_bib70) 1998
Nielsen (10.1016/j.molcel.2017.12.011_bib46) 2002; 416
Jacobs (10.1016/j.molcel.2017.12.011_bib20) 2002; 295
Tachiwana (10.1016/j.molcel.2017.12.011_bib61) 2008; 36
Talbert (10.1016/j.molcel.2017.12.011_bib63) 2014; 24
Thiru (10.1016/j.molcel.2017.12.011_bib65) 2004; 23
Larson (10.1016/j.molcel.2017.12.011_bib30) 2017; 547
Tachiwana (10.1016/j.molcel.2017.12.011_bib62) 2010; 107
Soboleva (10.1016/j.molcel.2017.12.011_bib57) 2014; 30
Venkatesh (10.1016/j.molcel.2017.12.011_bib69) 2015; 16
Schneider (10.1016/j.molcel.2017.12.011_bib54) 2012; 9
Strom (10.1016/j.molcel.2017.12.011_bib59) 2017; 547
Canzio (10.1016/j.molcel.2017.12.011_bib7) 2013; 496
Zheng (10.1016/j.molcel.2017.12.011_bib72) 2016
Mindell (10.1016/j.molcel.2017.12.011_bib41) 2003; 142
Pettersen (10.1016/j.molcel.2017.12.011_bib51) 2004; 25
Chen (10.1016/j.molcel.2017.12.011_bib9) 2013; 135
Kato (10.1016/j.molcel.2017.12.011_bib23) 2017; 356
Nozawa (10.1016/j.molcel.2017.12.011_bib50) 2013; 20
Kleywegt (10.1016/j.molcel.2017.12.011_bib24) 2004; 60
Bhaumik (10.1016/j.molcel.2017.12.011_bib4) 2007; 14
Valouev (10.1016/j.molcel.2017.12.011_bib67) 2011; 474
Maison (10.1016/j.molcel.2017.12.011_bib37) 2012; 19
Sugimoto (10.1016/j.molcel.2017.12.011_bib60) 1996; 120
Brasher (10.1016/j.molcel.2017.12.011_bib5) 2000; 19
Azzaz (10.1016/j.molcel.2017.12.011_bib2) 2014; 289
Hiragami-Hamada (10.1016/j.molcel.2017.12.011_bib18) 2016; 7
Nozawa (10.1016/j.molcel.2017.12.011_bib49) 2010; 12
Kang (10.1016/j.molcel.2017.12.011_bib21) 2011; 22
Lowary (10.1016/j.molcel.2017.12.011_bib32) 1998; 276
References_xml – volume: 128
  start-page: 693
  year: 2007
  end-page: 705
  ident: bib25
  article-title: Chromatin modifications and their function
  publication-title: Cell
– volume: 547
  start-page: 236
  year: 2017
  end-page: 240
  ident: bib30
  article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
  publication-title: Nature
– volume: 108
  start-page: 220
  year: 1999
  end-page: 234
  ident: bib40
  article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells
  publication-title: Chromosoma
– volume: 135
  start-page: 24
  year: 2013
  end-page: 35
  ident: bib9
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
– volume: 301
  start-page: 287
  year: 2003
  end-page: 292
  ident: bib71
  article-title: Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 410
  start-page: 120
  year: 2001
  end-page: 124
  ident: bib3
  article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
  publication-title: Nature
– volume: 33
  start-page: 280
  year: 2011
  end-page: 289
  ident: bib28
  article-title: The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription
  publication-title: BioEssays
– volume: 7
  start-page: 11310
  year: 2016
  ident: bib18
  article-title: Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin
  publication-title: Nat. Commun.
– volume: 55
  start-page: 637
  year: 2016
  end-page: 646
  ident: bib35
  article-title: Relaxed chromatin formation and weak suppression of homologous pairing by the testis-specific linker histone H1T
  publication-title: Biochemistry
– volume: 107
  start-page: 10454
  year: 2010
  end-page: 10459
  ident: bib62
  article-title: Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2016
  ident: bib72
  article-title: Anisotropic correction of beam-induced motion for improved single-particle electron cryo-microscopy
  publication-title: bioRxiv
– volume: 289
  start-page: 6850
  year: 2014
  end-page: 6861
  ident: bib2
  article-title: Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 67
  year: 2011
  end-page: 81
  ident: bib6
  article-title: Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly
  publication-title: Mol. Cell
– volume: 547
  start-page: 241
  year: 2017
  end-page: 245
  ident: bib59
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
– volume: 410
  start-page: 116
  year: 2001
  end-page: 120
  ident: bib29
  article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
  publication-title: Nature
– volume: 12
  start-page: 719
  year: 2010
  end-page: 727
  ident: bib49
  article-title: Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation
  publication-title: Nat. Cell Biol.
– volume: 30
  start-page: 199
  year: 2014
  end-page: 209
  ident: bib57
  article-title: Histone variants at the transcription start-site
  publication-title: Trends Genet.
– volume: 152
  start-page: 36
  year: 2005
  end-page: 51
  ident: bib38
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J. Struct. Biol.
– volume: 3
  start-page: 2142
  year: 2013
  end-page: 2154
  ident: bib19
  article-title: The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells
  publication-title: Cell Rep.
– volume: 36
  start-page: 2208
  year: 2008
  end-page: 2218
  ident: bib61
  article-title: Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro
  publication-title: Nucleic Acids Res.
– volume: 356
  start-page: 205
  year: 2017
  end-page: 208
  ident: bib23
  article-title: Crystal structure of the overlapping dinucleosome composed of hexasome and octasome
  publication-title: Science
– volume: 496
  start-page: 377
  year: 2013
  end-page: 381
  ident: bib7
  article-title: A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly
  publication-title: Nature
– volume: 10
  start-page: 517
  year: 2000
  end-page: 525
  ident: bib11
  article-title: Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis
  publication-title: Curr. Biol.
– volume: 403
  start-page: 1
  year: 2010
  end-page: 10
  ident: bib68
  article-title: Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence
  publication-title: J. Mol. Biol.
– volume: 23
  start-page: 489
  year: 2004
  end-page: 499
  ident: bib65
  article-title: Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin
  publication-title: EMBO J.
– volume: 579
  start-page: 125
  year: 2016
  end-page: 157
  ident: bib53
  article-title: Processing of structurally heterogeneous cryo-EM data in RELION
  publication-title: Methods Enzymol.
– volume: 13
  start-page: 436
  year: 2012
  end-page: 447
  ident: bib34
  article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 5
  start-page: 296
  year: 2004
  end-page: 304
  ident: bib36
  article-title: HP1 and the dynamics of heterochromatin maintenance
  publication-title: Nat. Rev. Mol. Cell Biol.
– year: 1998
  ident: bib70
  article-title: Chromatin: Structure and Function
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib33
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
– volume: 335
  start-page: 279
  year: 2004
  end-page: 288
  ident: bib13
  article-title: Sedimentation velocity analysis of highly heterogeneous systems
  publication-title: Anal. Biochem.
– volume: 120
  start-page: 153
  year: 1996
  end-page: 159
  ident: bib60
  article-title: Human homolog of Drosophila heterochromatin-associated protein 1 (HP1) is a DNA-binding protein which possesses a DNA-binding motif with weak similarity to that of human centromere protein C (CENP-C)
  publication-title: J. Biochem.
– volume: 20
  start-page: 547
  year: 2013
  end-page: 554
  ident: bib1
  article-title: HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin
  publication-title: Nat. Struct. Mol. Biol.
– volume: 461
  start-page: 819
  year: 2009
  end-page: 822
  ident: bib12
  article-title: JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin
  publication-title: Nature
– volume: 14
  start-page: 1008
  year: 2007
  end-page: 1016
  ident: bib4
  article-title: Covalent modifications of histones during development and disease pathogenesis
  publication-title: Nat. Struct. Mol. Biol.
– volume: 157
  start-page: 38
  year: 2007
  end-page: 46
  ident: bib64
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J. Struct. Biol.
– volume: 27
  start-page: 453
  year: 2007
  end-page: 465
  ident: bib14
  article-title: HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors
  publication-title: Mol. Cell. Biol.
– volume: 142
  start-page: 334
  year: 2003
  end-page: 347
  ident: bib41
  article-title: Accurate determination of local defocus and specimen tilt in electron microscopy
  publication-title: J. Struct. Biol.
– volume: 24
  start-page: 377
  year: 2014
  end-page: 386
  ident: bib8
  article-title: Mechanisms of functional promiscuity by HP1 proteins
  publication-title: Trends Cell Biol.
– volume: 276
  start-page: 19
  year: 1998
  end-page: 42
  ident: bib32
  article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
  publication-title: J. Mol. Biol.
– volume: 8
  start-page: 35
  year: 2007
  end-page: 46
  ident: bib16
  article-title: Heterochromatin revisited
  publication-title: Nat. Rev. Genet.
– volume: 20
  start-page: 566
  year: 2013
  end-page: 573
  ident: bib50
  article-title: Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway
  publication-title: Nat. Struct. Mol. Biol.
– volume: 24
  start-page: 642
  year: 2014
  end-page: 650
  ident: bib63
  article-title: Environmental responses mediated by histone variants
  publication-title: Trends Cell Biol.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib51
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: e1000769
  year: 2009
  ident: bib31
  article-title: Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression
  publication-title: PLoS Genet.
– volume: 403
  start-page: 41
  year: 2000
  end-page: 45
  ident: bib58
  article-title: The language of covalent histone modifications
  publication-title: Nature
– volume: 116
  start-page: 71
  year: 1996
  end-page: 76
  ident: bib26
  article-title: Computer visualization of three-dimensional image data using IMOD
  publication-title: J. Struct. Biol.
– volume: 416
  start-page: 103
  year: 2002
  end-page: 107
  ident: bib46
  article-title: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9
  publication-title: Nature
– volume: 4
  start-page: 529
  year: 1999
  end-page: 540
  ident: bib43
  article-title: Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins
  publication-title: Mol. Cell
– volume: 116
  start-page: 190
  year: 1996
  end-page: 199
  ident: bib15
  article-title: SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields
  publication-title: J. Struct. Biol.
– volume: 5
  start-page: 53
  year: 2008
  end-page: 55
  ident: bib22
  article-title: GraFix: sample preparation for single-particle electron cryomicroscopy
  publication-title: Nat. Methods
– volume: 19
  start-page: 1587
  year: 2000
  end-page: 1597
  ident: bib5
  article-title: The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer
  publication-title: EMBO J.
– volume: 7
  start-page: 729
  year: 2001
  end-page: 739
  ident: bib45
  article-title: Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins
  publication-title: Mol. Cell
– volume: 43
  start-page: 10200
  year: 2015
  end-page: 10212
  ident: bib42
  article-title: Nucleosome compaction facilitates HP1γ binding to methylated H3K9
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 4959
  year: 1996
  end-page: 4969
  ident: bib66
  article-title: Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression
  publication-title: EMBO J.
– volume: 268
  start-page: 5840
  year: 1993
  end-page: 5848
  ident: bib17
  article-title: Assembly and structural properties of subsaturated chromatin arrays
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 3
  year: 2015
  ident: bib52
  article-title: Constitutive heterochromatin formation and transcription in mammals
  publication-title: Epigenetics Chromatin
– volume: 295
  start-page: 2080
  year: 2002
  end-page: 2083
  ident: bib20
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
– volume: 60
  start-page: 2240
  year: 2004
  end-page: 2249
  ident: bib24
  article-title: The Uppsala Electron-Density Server
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib54
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 16
  start-page: 178
  year: 2015
  end-page: 189
  ident: bib69
  article-title: Histone exchange, chromatin structure and the regulation of transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 42
  start-page: 12498
  year: 2014
  end-page: 12511
  ident: bib48
  article-title: N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 697
  year: 2009
  end-page: 708
  ident: bib55
  article-title: Mechanisms of polycomb gene silencing: knowns and unknowns
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 128
  start-page: 1003
  year: 2007
  end-page: 1012
  ident: bib56
  article-title: The site-specific installation of methyl-lysine analogs into recombinant histones
  publication-title: Cell
– volume: 22
  start-page: 1181
  year: 2011
  end-page: 1190
  ident: bib21
  article-title: Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells
  publication-title: Mol. Biol. Cell
– volume: 156
  start-page: 11
  year: 2014
  end-page: 20
  ident: bib47
  article-title: Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly
  publication-title: J. Biochem.
– volume: 474
  start-page: 516
  year: 2011
  end-page: 520
  ident: bib67
  article-title: Determinants of nucleosome organization in primary human cells
  publication-title: Nature
– volume: 32
  start-page: 627
  year: 2002
  end-page: 632
  ident: bib10
  article-title: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin
  publication-title: Nat. Genet.
– volume: 15
  start-page: 259
  year: 2014
  end-page: 271
  ident: bib39
  article-title: Every amino acid matters: essential contributions of histone variants to mammalian development and disease
  publication-title: Nat. Rev. Genet.
– volume: 11
  start-page: 63
  year: 2014
  end-page: 65
  ident: bib27
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
– volume: 19
  start-page: 458
  year: 2012
  end-page: 460
  ident: bib37
  article-title: The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin
  publication-title: Nat. Struct. Mol. Biol.
– volume: 292
  start-page: 110
  year: 2001
  end-page: 113
  ident: bib44
  article-title: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
  publication-title: Science
– volume: 116
  start-page: 71
  year: 1996
  ident: 10.1016/j.molcel.2017.12.011_bib26
  article-title: Computer visualization of three-dimensional image data using IMOD
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1996.0013
– volume: 8
  start-page: 35
  year: 2007
  ident: 10.1016/j.molcel.2017.12.011_bib16
  article-title: Heterochromatin revisited
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2008
– volume: 4
  start-page: 529
  year: 1999
  ident: 10.1016/j.molcel.2017.12.011_bib43
  article-title: Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80204-X
– volume: 5
  start-page: 53
  year: 2008
  ident: 10.1016/j.molcel.2017.12.011_bib22
  article-title: GraFix: sample preparation for single-particle electron cryomicroscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1139
– volume: 33
  start-page: 280
  year: 2011
  ident: 10.1016/j.molcel.2017.12.011_bib28
  article-title: The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription
  publication-title: BioEssays
  doi: 10.1002/bies.201000138
– volume: 474
  start-page: 516
  year: 2011
  ident: 10.1016/j.molcel.2017.12.011_bib67
  article-title: Determinants of nucleosome organization in primary human cells
  publication-title: Nature
  doi: 10.1038/nature10002
– volume: 43
  start-page: 10200
  year: 2015
  ident: 10.1016/j.molcel.2017.12.011_bib42
  article-title: Nucleosome compaction facilitates HP1γ binding to methylated H3K9
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 296
  year: 2004
  ident: 10.1016/j.molcel.2017.12.011_bib36
  article-title: HP1 and the dynamics of heterochromatin maintenance
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1355
– volume: 23
  start-page: 489
  year: 2004
  ident: 10.1016/j.molcel.2017.12.011_bib65
  article-title: Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600088
– volume: 5
  start-page: e1000769
  year: 2009
  ident: 10.1016/j.molcel.2017.12.011_bib31
  article-title: Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000769
– volume: 289
  start-page: 6850
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib2
  article-title: Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.512137
– volume: 11
  start-page: 63
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib27
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2727
– volume: 403
  start-page: 1
  year: 2010
  ident: 10.1016/j.molcel.2017.12.011_bib68
  article-title: Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.08.039
– volume: 20
  start-page: 566
  year: 2013
  ident: 10.1016/j.molcel.2017.12.011_bib50
  article-title: Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2532
– volume: 12
  start-page: 719
  year: 2010
  ident: 10.1016/j.molcel.2017.12.011_bib49
  article-title: Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2075
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.molcel.2017.12.011_bib51
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 10
  start-page: 517
  year: 2000
  ident: 10.1016/j.molcel.2017.12.011_bib11
  article-title: Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00467-X
– volume: 7
  start-page: 11310
  year: 2016
  ident: 10.1016/j.molcel.2017.12.011_bib18
  article-title: Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11310
– volume: 55
  start-page: 637
  year: 2016
  ident: 10.1016/j.molcel.2017.12.011_bib35
  article-title: Relaxed chromatin formation and weak suppression of homologous pairing by the testis-specific linker histone H1T
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b01126
– volume: 20
  start-page: 547
  year: 2013
  ident: 10.1016/j.molcel.2017.12.011_bib1
  article-title: HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2565
– volume: 24
  start-page: 377
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib8
  article-title: Mechanisms of functional promiscuity by HP1 proteins
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.01.002
– volume: 3
  start-page: 2142
  year: 2013
  ident: 10.1016/j.molcel.2017.12.011_bib19
  article-title: The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.003
– volume: 116
  start-page: 190
  year: 1996
  ident: 10.1016/j.molcel.2017.12.011_bib15
  article-title: SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1996.0030
– volume: 547
  start-page: 241
  year: 2017
  ident: 10.1016/j.molcel.2017.12.011_bib59
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
  doi: 10.1038/nature22989
– volume: 403
  start-page: 41
  year: 2000
  ident: 10.1016/j.molcel.2017.12.011_bib58
  article-title: The language of covalent histone modifications
  publication-title: Nature
  doi: 10.1038/47412
– volume: 19
  start-page: 1587
  year: 2000
  ident: 10.1016/j.molcel.2017.12.011_bib5
  article-title: The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.7.1587
– volume: 461
  start-page: 819
  year: 2009
  ident: 10.1016/j.molcel.2017.12.011_bib12
  article-title: JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin
  publication-title: Nature
  doi: 10.1038/nature08448
– volume: 128
  start-page: 693
  year: 2007
  ident: 10.1016/j.molcel.2017.12.011_bib25
  article-title: Chromatin modifications and their function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 30
  start-page: 199
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib57
  article-title: Histone variants at the transcription start-site
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2014.03.002
– volume: 335
  start-page: 279
  year: 2004
  ident: 10.1016/j.molcel.2017.12.011_bib13
  article-title: Sedimentation velocity analysis of highly heterogeneous systems
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.08.039
– volume: 301
  start-page: 287
  year: 2003
  ident: 10.1016/j.molcel.2017.12.011_bib71
  article-title: Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(02)03021-8
– volume: 410
  start-page: 120
  year: 2001
  ident: 10.1016/j.molcel.2017.12.011_bib3
  article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
  publication-title: Nature
  doi: 10.1038/35065138
– volume: 128
  start-page: 1003
  year: 2007
  ident: 10.1016/j.molcel.2017.12.011_bib56
  article-title: The site-specific installation of methyl-lysine analogs into recombinant histones
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.041
– volume: 135
  start-page: 24
  year: 2013
  ident: 10.1016/j.molcel.2017.12.011_bib9
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.004
– volume: 156
  start-page: 11
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib47
  article-title: Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvu032
– volume: 356
  start-page: 205
  year: 2017
  ident: 10.1016/j.molcel.2017.12.011_bib23
  article-title: Crystal structure of the overlapping dinucleosome composed of hexasome and octasome
  publication-title: Science
  doi: 10.1126/science.aak9867
– volume: 19
  start-page: 458
  year: 2012
  ident: 10.1016/j.molcel.2017.12.011_bib37
  article-title: The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2244
– volume: 10
  start-page: 697
  year: 2009
  ident: 10.1016/j.molcel.2017.12.011_bib55
  article-title: Mechanisms of polycomb gene silencing: knowns and unknowns
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2763
– volume: 16
  start-page: 178
  year: 2015
  ident: 10.1016/j.molcel.2017.12.011_bib69
  article-title: Histone exchange, chromatin structure and the regulation of transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3941
– volume: 295
  start-page: 2080
  year: 2002
  ident: 10.1016/j.molcel.2017.12.011_bib20
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
  doi: 10.1126/science.1069473
– volume: 14
  start-page: 1008
  year: 2007
  ident: 10.1016/j.molcel.2017.12.011_bib4
  article-title: Covalent modifications of histones during development and disease pathogenesis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1337
– volume: 8
  start-page: 3
  year: 2015
  ident: 10.1016/j.molcel.2017.12.011_bib52
  article-title: Constitutive heterochromatin formation and transcription in mammals
  publication-title: Epigenetics Chromatin
  doi: 10.1186/1756-8935-8-3
– volume: 120
  start-page: 153
  year: 1996
  ident: 10.1016/j.molcel.2017.12.011_bib60
  article-title: Human homolog of Drosophila heterochromatin-associated protein 1 (HP1) is a DNA-binding protein which possesses a DNA-binding motif with weak similarity to that of human centromere protein C (CENP-C)
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a021378
– volume: 27
  start-page: 453
  year: 2007
  ident: 10.1016/j.molcel.2017.12.011_bib14
  article-title: HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01576-06
– volume: 42
  start-page: 12498
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib48
  article-title: N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku995
– volume: 24
  start-page: 642
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib63
  article-title: Environmental responses mediated by histone variants
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.07.006
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.molcel.2017.12.011_bib33
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– volume: 268
  start-page: 5840
  year: 1993
  ident: 10.1016/j.molcel.2017.12.011_bib17
  article-title: Assembly and structural properties of subsaturated chromatin arrays
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)53396-2
– volume: 579
  start-page: 125
  year: 2016
  ident: 10.1016/j.molcel.2017.12.011_bib53
  article-title: Processing of structurally heterogeneous cryo-EM data in RELION
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.04.012
– volume: 142
  start-page: 334
  year: 2003
  ident: 10.1016/j.molcel.2017.12.011_bib41
  article-title: Accurate determination of local defocus and specimen tilt in electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/S1047-8477(03)00069-8
– volume: 108
  start-page: 220
  year: 1999
  ident: 10.1016/j.molcel.2017.12.011_bib40
  article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells
  publication-title: Chromosoma
  doi: 10.1007/s004120050372
– volume: 22
  start-page: 1181
  year: 2011
  ident: 10.1016/j.molcel.2017.12.011_bib21
  article-title: Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-01-0009
– volume: 416
  start-page: 103
  year: 2002
  ident: 10.1016/j.molcel.2017.12.011_bib46
  article-title: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9
  publication-title: Nature
  doi: 10.1038/nature722
– year: 2016
  ident: 10.1016/j.molcel.2017.12.011_bib72
  article-title: Anisotropic correction of beam-induced motion for improved single-particle electron cryo-microscopy
  publication-title: bioRxiv
– volume: 496
  start-page: 377
  year: 2013
  ident: 10.1016/j.molcel.2017.12.011_bib7
  article-title: A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly
  publication-title: Nature
  doi: 10.1038/nature12032
– volume: 15
  start-page: 259
  year: 2014
  ident: 10.1016/j.molcel.2017.12.011_bib39
  article-title: Every amino acid matters: essential contributions of histone variants to mammalian development and disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3673
– volume: 60
  start-page: 2240
  year: 2004
  ident: 10.1016/j.molcel.2017.12.011_bib24
  article-title: The Uppsala Electron-Density Server
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904013253
– volume: 36
  start-page: 2208
  year: 2008
  ident: 10.1016/j.molcel.2017.12.011_bib61
  article-title: Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn060
– volume: 7
  start-page: 729
  year: 2001
  ident: 10.1016/j.molcel.2017.12.011_bib45
  article-title: Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00218-0
– volume: 276
  start-page: 19
  year: 1998
  ident: 10.1016/j.molcel.2017.12.011_bib32
  article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1494
– volume: 13
  start-page: 436
  year: 2012
  ident: 10.1016/j.molcel.2017.12.011_bib34
  article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3382
– volume: 157
  start-page: 38
  year: 2007
  ident: 10.1016/j.molcel.2017.12.011_bib64
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.05.009
– volume: 292
  start-page: 110
  year: 2001
  ident: 10.1016/j.molcel.2017.12.011_bib44
  article-title: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
  publication-title: Science
  doi: 10.1126/science.1060118
– volume: 107
  start-page: 10454
  year: 2010
  ident: 10.1016/j.molcel.2017.12.011_bib62
  article-title: Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1003064107
– volume: 547
  start-page: 236
  year: 2017
  ident: 10.1016/j.molcel.2017.12.011_bib30
  article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
  publication-title: Nature
  doi: 10.1038/nature22822
– volume: 410
  start-page: 116
  year: 2001
  ident: 10.1016/j.molcel.2017.12.011_bib29
  article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
  publication-title: Nature
  doi: 10.1038/35065132
– volume: 32
  start-page: 627
  year: 2002
  ident: 10.1016/j.molcel.2017.12.011_bib10
  article-title: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin
  publication-title: Nat. Genet.
  doi: 10.1038/ng1046
– volume: 15
  start-page: 4959
  year: 1996
  ident: 10.1016/j.molcel.2017.12.011_bib66
  article-title: Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00876.x
– volume: 41
  start-page: 67
  year: 2011
  ident: 10.1016/j.molcel.2017.12.011_bib6
  article-title: Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.12.016
– volume: 152
  start-page: 36
  year: 2005
  ident: 10.1016/j.molcel.2017.12.011_bib38
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.07.007
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.molcel.2017.12.011_bib54
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– year: 1998
  ident: 10.1016/j.molcel.2017.12.011_bib70
SSID ssj0014589
Score 2.6287012
Snippet Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms ACF
chromatin
cryo-EM
DNA
electron microscopy
epigenetics
eukaryotic cells
genome
H3K9me3
heterochromatin
histone
histones
HP1
humans
lysine
nucleosome
nucleosomes
transcription (genetics)
Title Structural Basis of Heterochromatin Formation by Human HP1
URI https://dx.doi.org/10.1016/j.molcel.2017.12.011
https://www.ncbi.nlm.nih.gov/pubmed/29336876
https://www.proquest.com/docview/1989582736
https://www.proquest.com/docview/2253253064
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifju_iOBrmWnzsfrmhmMIijAHewtNmuBktsPNh_333qXtwIchCH1oyxXCJbn7NXe_O0JuBUuEVBZjhsJEPFd5lJoU9pWLlWeWc54hUfj5RY4m_Gkqpi0yaLgwmFZZ2_7KpgdrXb_p1trsLmaz7hhjp7GSgimM5qVINEdWKZL4pv1NJIGL0AYPhSOUbuhzIcfrs5xbhwEIpsKhIGPb3NM2-Bnc0HCf7NX4kT5UQzwgLVcckp2qo-T6iNyPQz1YrKVB-9lytqSlpyNMeSnt-1eJ8LSgw4awSM2ahlN8Onplx2QyfHwbjKK6PUJkAeasolQJ4ZjjXpg7zpUyXsGtSxNvlDM9mQnYa4DIhIu9zcBPW8987qRh0iuT-uSEtIuycGeE8ph7QFYW0Inn8AeS2tx7h5PmVBLnWYckjVa0rWuHYwuLuW6SxD50pUuNutQs1qDLDok2Xy2q2hl_yKtG4frXGtBg3v_48qaZHw3bA2MeWeHK76XGlDDRA4wmt8uASUvgAnDWIafV5G7GC2gokeAxzv89tguyC0-9KtP7krRhGbgrADIrcx1W6g_oWe9B
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR367PCF7LmjZptt5UXOoTQYW9hSZNcGVtxdWD_96ZPhY8LILQQ2kmECaTma-ZF8Cx5JGMlSWfoTSByFUeJCbBc-VC5bkVQmSUKHx3H6fP4nogBzNw0ebCUFhlo_trnV5p6-ZLt-Fm93047D6S7zRUseSKvHmJnIV5RAMnJNpXg_OJK0HIqg8eUQdE3ubPVUFeb-XIOvJAcFXdCnI-zT5Nw5-VHeqvwHIDINlZvcZVmHHFGizULSW_1-H0sSoIS8U02Hk2Ho5Z6VlKMS-lffkoCZ8WrN9mLDLzzaprfJY-8A147l8-XaRB0x8hsIhzPoNESem4E16aEyGUMl7hq0sib5QzvTiTeNgQkkkXepuhobae-9zFhsdemcRHmzBXlIXbBiZC4RFaWYQnXuAvSGJz7x3tmlNRmGcdiFquaNsUD6ceFiPdRom96pqXmnipeaiRlx0IJrPe6-IZf9CrluH6lxBo1O9_zDxq90fj-SCnR1a48musKSZM9hCkxdNpUKdF-CA668BWvbmT9SIcimI0GTv_XtshLKZPd7f69ur-ZheWcKRXh33vwRyKhNtHVPNpDiqp_QEAlPJk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+of+Heterochromatin+Formation+by+Human+HP1&rft.jtitle=Molecular+cell&rft.au=Machida%2C+Shinichi&rft.au=Takizawa%2C+Yoshimasa&rft.au=Ishimaru%2C+Masakazu&rft.au=Sugita%2C+Yukihiko&rft.date=2018-02-01&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=69&rft.issue=3&rft.spage=385&rft_id=info:doi/10.1016%2Fj.molcel.2017.12.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon