Structural Basis of Heterochromatin Formation by Human HP1
Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), i...
Saved in:
Published in | Molecular cell Vol. 69; no. 3; pp. 385 - 397.e8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1097-2765 1097-4164 1097-4164 |
DOI | 10.1016/j.molcel.2017.12.011 |
Cover
Abstract | Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
[Display omitted]
•The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1
HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique. |
---|---|
AbstractList | Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
[Display omitted]
•The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1
HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique. Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. |
Author | Ishimaru, Masakazu Nakayama, Jun-ichi Sugita, Yukihiko Wolf, Matthias Machida, Shinichi Kurumizaka, Hitoshi Takizawa, Yoshimasa Sekine, Satoshi |
Author_xml | – sequence: 1 givenname: Shinichi surname: Machida fullname: Machida, Shinichi organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan – sequence: 2 givenname: Yoshimasa surname: Takizawa fullname: Takizawa, Yoshimasa organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan – sequence: 3 givenname: Masakazu surname: Ishimaru fullname: Ishimaru, Masakazu organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan – sequence: 4 givenname: Yukihiko surname: Sugita fullname: Sugita, Yukihiko organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan – sequence: 5 givenname: Satoshi surname: Sekine fullname: Sekine, Satoshi organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan – sequence: 6 givenname: Jun-ichi surname: Nakayama fullname: Nakayama, Jun-ichi organization: National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan – sequence: 7 givenname: Matthias surname: Wolf fullname: Wolf, Matthias email: matthias.wolf@oist.jp organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan – sequence: 8 givenname: Hitoshi surname: Kurumizaka fullname: Kurumizaka, Hitoshi email: kurumizaka@waseda.jp organization: Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29336876$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1r3DAQxUVIab76H5TiYy_raGR9WDkUmpBkC4EWkpyFrB1RLbaVSnIg_3282U0POSQwMO_wewPz3hHZH-OIhHwFWgMFebquh9g77GtGQdXAagqwRw6BarXgIPn-TjMlxQE5ynlNKXDR6s_kgOmmka2Sh-TstqTJlSnZvjq3OeQq-mqJBVN0f1McbAljdRXTRsSx6p6q5TTYsVr-gRPyyds-45fdPib3V5d3F8vFze_rXxc_bxZOCCgLrYRAQO5FRzlXqvNqlqgb3ynsWmmF0pwKLpB5Z0Ew58GvUHYgveq0b47J9-3dhxT_TZiLGUKeH-_tiHHKhjHRzEMl_xAF3WrRMtXIGf22Q6duwJV5SGGw6cm8RjMDfAu4FHNO6P8jQM2mAbM22wbMpgEDzMwNzLazNzYXykt4JdnQf2T-sTXjnOdjwGSyCzg6XIWErphVDO8feAZlu6Jn |
CitedBy_id | crossref_primary_10_1016_j_mrfmmm_2020_111712 crossref_primary_10_1016_j_bbagen_2025_130790 crossref_primary_10_1091_mbc_E18_05_0331 crossref_primary_10_1016_j_molcel_2023_04_020 crossref_primary_10_3389_fcimb_2020_607526 crossref_primary_10_1016_j_bbrep_2019_100634 crossref_primary_10_1039_D3MR00011G crossref_primary_10_1073_pnas_2009513117 crossref_primary_10_1073_pnas_2211855120 crossref_primary_10_15252_embr_202051078 crossref_primary_10_1038_s41586_019_1411_0 crossref_primary_10_1002_adhm_202401192 crossref_primary_10_1038_s41467_019_08314_x crossref_primary_10_7554_eLife_47859 crossref_primary_10_1186_s13072_021_00424_5 crossref_primary_10_1038_s41467_023_36021_1 crossref_primary_10_1038_s41557_020_0474_8 crossref_primary_10_15252_embj_2021108813 crossref_primary_10_1016_j_pbi_2019_03_008 crossref_primary_10_1098_rsos_191976 crossref_primary_10_1016_j_bpj_2019_11_004 crossref_primary_10_1038_s42003_025_07732_6 crossref_primary_10_1186_s12915_024_02048_z crossref_primary_10_1016_j_bpj_2018_03_011 crossref_primary_10_1042_BST20220763 crossref_primary_10_1016_j_sbi_2019_10_010 crossref_primary_10_1016_j_sbi_2019_07_011 crossref_primary_10_1073_pnas_2004111117 crossref_primary_10_1093_nar_gkab587 crossref_primary_10_1038_s42003_020_01517_9 crossref_primary_10_3389_fgene_2022_1058741 crossref_primary_10_1016_j_cbpa_2019_01_022 crossref_primary_10_1016_j_biopha_2023_115343 crossref_primary_10_1021_acs_orglett_9b03152 crossref_primary_10_1016_j_molcel_2023_12_036 crossref_primary_10_1080_19491034_2021_1889858 crossref_primary_10_1016_j_annonc_2020_02_002 crossref_primary_10_1016_j_cis_2022_102777 crossref_primary_10_1038_s41467_021_25596_2 crossref_primary_10_1038_s41576_018_0089_8 crossref_primary_10_2217_ije_2019_0008 crossref_primary_10_1126_sciadv_adk8908 crossref_primary_10_3390_biom13020377 crossref_primary_10_1038_s41422_018_0104_9 crossref_primary_10_1016_j_molcel_2020_02_005 crossref_primary_10_1093_nar_gkaf154 crossref_primary_10_3390_ph14060495 crossref_primary_10_1038_s42003_020_0784_9 crossref_primary_10_1242_jcs_257717 crossref_primary_10_1002_sstr_202400203 crossref_primary_10_1016_j_bpj_2018_03_025 crossref_primary_10_1038_s41598_019_46573_2 crossref_primary_10_1016_j_bpj_2021_01_033 crossref_primary_10_1016_j_devcel_2018_10_004 crossref_primary_10_2147_BCTT_S381856 crossref_primary_10_1042_BCJ20220550 crossref_primary_10_1016_j_bpr_2021_100028 crossref_primary_10_1534_genetics_118_301146 crossref_primary_10_1098_rsob_230271 crossref_primary_10_1016_j_bbrc_2021_06_010 crossref_primary_10_1101_cshperspect_a040675 crossref_primary_10_1038_s41586_019_1275_3 crossref_primary_10_1016_j_isci_2022_104105 crossref_primary_10_7554_eLife_90820 crossref_primary_10_1093_jb_mvab040 crossref_primary_10_3389_fmolb_2021_741581 crossref_primary_10_1016_j_tibs_2023_02_007 crossref_primary_10_3390_cells9081866 crossref_primary_10_1016_j_ceb_2020_02_016 crossref_primary_10_1088_1478_3975_ac0aff crossref_primary_10_1093_genetics_iyab108 crossref_primary_10_1016_j_molcel_2021_02_038 crossref_primary_10_1007_s10875_024_01847_x crossref_primary_10_3390_toxins12050294 crossref_primary_10_1007_s00204_024_03713_6 crossref_primary_10_1016_j_mrl_2024_200153 crossref_primary_10_1016_j_celrep_2021_109540 crossref_primary_10_1016_j_jbc_2025_108300 crossref_primary_10_1002_chem_202003071 crossref_primary_10_1016_j_bpj_2022_05_039 crossref_primary_10_1093_jb_mvy117 crossref_primary_10_1093_nar_gky632 crossref_primary_10_3390_biom13050810 crossref_primary_10_1128_spectrum_03288_22 crossref_primary_10_1016_j_jmb_2021_166827 crossref_primary_10_1016_j_jprot_2021_104170 crossref_primary_10_1016_j_sbi_2025_103006 crossref_primary_10_1093_nar_gkae720 crossref_primary_10_3390_v12080884 crossref_primary_10_1042_EBC20180067 crossref_primary_10_1080_15384101_2020_1836441 crossref_primary_10_1016_j_isci_2022_104590 crossref_primary_10_3390_biology12081058 crossref_primary_10_1038_s41586_021_03460_z crossref_primary_10_1016_j_jmb_2020_10_012 crossref_primary_10_1016_j_molcel_2021_07_034 crossref_primary_10_1042_BST20191226 crossref_primary_10_1042_EBC20180065 crossref_primary_10_1103_PhysRevX_12_041033 crossref_primary_10_1093_gbe_evz010 crossref_primary_10_1186_s12915_022_01435_8 crossref_primary_10_1021_acscentsci_1c01332 crossref_primary_10_3390_cells9081881 crossref_primary_10_3390_cells9112480 crossref_primary_10_1038_s41467_020_18863_1 crossref_primary_10_52601_bpr_2024_240038 crossref_primary_10_7554_eLife_63972 crossref_primary_10_1016_j_isci_2022_104563 crossref_primary_10_1016_j_str_2019_10_016 crossref_primary_10_1177_25168657221109766 crossref_primary_10_3389_fbioe_2022_1035543 crossref_primary_10_1038_s12276_024_01226_x crossref_primary_10_1016_j_celrep_2023_113428 crossref_primary_10_1038_s41467_024_51246_4 crossref_primary_10_1073_pnas_1920725117 crossref_primary_10_3389_fgene_2022_903923 crossref_primary_10_1111_gtc_13109 crossref_primary_10_3390_genes13040639 crossref_primary_10_1007_s12551_020_00675_8 crossref_primary_10_1038_s41594_022_00892_7 crossref_primary_10_1016_j_gde_2019_06_001 crossref_primary_10_3390_ijms22136922 crossref_primary_10_1016_j_gim_2023_100861 crossref_primary_10_1103_PhysRevE_109_014405 crossref_primary_10_1016_j_gde_2024_102194 crossref_primary_10_1016_j_arr_2024_102206 crossref_primary_10_1146_annurev_genom_121321_094603 crossref_primary_10_3389_fgene_2022_876862 crossref_primary_10_1002_cbic_202000332 crossref_primary_10_3389_fcell_2021_729338 crossref_primary_10_1016_j_bbagrm_2022_194851 crossref_primary_10_1021_acsomega_1c05381 crossref_primary_10_1021_acschembio_2c00203 crossref_primary_10_1073_pnas_2208672119 crossref_primary_10_3389_fgene_2022_870640 crossref_primary_10_1080_19491034_2023_2165602 crossref_primary_10_1038_s10038_022_01083_4 crossref_primary_10_15252_embj_2021110286 crossref_primary_10_1038_s41587_021_01031_1 crossref_primary_10_1103_PhysRevE_100_060401 crossref_primary_10_1016_j_jmro_2022_100057 crossref_primary_10_1016_j_molcel_2024_05_002 crossref_primary_10_1039_D1SC00731A crossref_primary_10_3389_fcell_2021_739780 crossref_primary_10_1242_bio_060011 crossref_primary_10_1007_s12551_020_00663_y crossref_primary_10_3390_ijms21218241 crossref_primary_10_7554_eLife_90820_3 crossref_primary_10_1016_j_sbi_2019_05_017 crossref_primary_10_1016_j_tranon_2023_101715 crossref_primary_10_1242_dev_181180 crossref_primary_10_1101_sqb_2019_84_040360 crossref_primary_10_1016_j_canlet_2024_217088 crossref_primary_10_1016_j_str_2024_09_013 crossref_primary_10_3390_cells9061497 crossref_primary_10_1016_j_freeradbiomed_2019_01_031 crossref_primary_10_1093_bfgp_elz023 crossref_primary_10_1021_jacs_3c06481 crossref_primary_10_1016_j_sbi_2021_06_004 crossref_primary_10_1016_j_cancergen_2022_06_004 crossref_primary_10_1042_BST20210772 crossref_primary_10_1073_pnas_2308858120 crossref_primary_10_1080_19491034_2022_2143106 crossref_primary_10_1111_boc_201900063 crossref_primary_10_2183_pjab_98_001 crossref_primary_10_1016_j_semcdb_2018_07_004 crossref_primary_10_7554_eLife_47980 crossref_primary_10_1134_S0026893322030049 crossref_primary_10_5940_jcrsj_64_65 crossref_primary_10_3390_ijms25031833 crossref_primary_10_1016_j_cellin_2024_100213 crossref_primary_10_3390_genes10121049 crossref_primary_10_1063_5_0172696 crossref_primary_10_1016_j_jmb_2019_10_018 crossref_primary_10_1073_pnas_2317911121 crossref_primary_10_1073_pnas_2213075120 crossref_primary_10_1038_s12276_020_00497_4 crossref_primary_10_18632_oncotarget_24717 crossref_primary_10_1002_bies_202200043 crossref_primary_10_1038_s41586_024_08183_5 crossref_primary_10_1242_jcs_240416 crossref_primary_10_1093_nar_gkad793 crossref_primary_10_1098_rsob_190116 crossref_primary_10_1016_j_isci_2021_102070 |
Cites_doi | 10.1006/jsbi.1996.0013 10.1038/nrg2008 10.1016/S1097-2765(00)80204-X 10.1038/nmeth1139 10.1002/bies.201000138 10.1038/nature10002 10.1038/nrm1355 10.1038/sj.emboj.7600088 10.1371/journal.pgen.1000769 10.1074/jbc.M113.512137 10.1038/nmeth.2727 10.1016/j.jmb.2010.08.039 10.1038/nsmb.2532 10.1038/ncb2075 10.1002/jcc.20084 10.1016/S0960-9822(00)00467-X 10.1038/ncomms11310 10.1021/acs.biochem.5b01126 10.1038/nsmb.2565 10.1016/j.tcb.2014.01.002 10.1016/j.celrep.2013.05.003 10.1006/jsbi.1996.0030 10.1038/nature22989 10.1038/47412 10.1093/emboj/19.7.1587 10.1038/nature08448 10.1016/j.cell.2007.02.005 10.1016/j.tig.2014.03.002 10.1016/j.ab.2004.08.039 10.1016/S0006-291X(02)03021-8 10.1038/35065138 10.1016/j.cell.2006.12.041 10.1016/j.ultramic.2013.06.004 10.1093/jb/mvu032 10.1126/science.aak9867 10.1038/nsmb.2244 10.1038/nrm2763 10.1038/nrm3941 10.1126/science.1069473 10.1038/nsmb1337 10.1186/1756-8935-8-3 10.1093/oxfordjournals.jbchem.a021378 10.1128/MCB.01576-06 10.1093/nar/gku995 10.1016/j.tcb.2014.07.006 10.1038/38444 10.1016/S0021-9258(18)53396-2 10.1016/bs.mie.2016.04.012 10.1016/S1047-8477(03)00069-8 10.1007/s004120050372 10.1091/mbc.e11-01-0009 10.1038/nature722 10.1038/nature12032 10.1038/nrg3673 10.1107/S0907444904013253 10.1093/nar/gkn060 10.1016/S1097-2765(01)00218-0 10.1006/jmbi.1997.1494 10.1038/nrm3382 10.1016/j.jsb.2006.05.009 10.1126/science.1060118 10.1073/pnas.1003064107 10.1038/nature22822 10.1038/35065132 10.1038/ng1046 10.1002/j.1460-2075.1996.tb00876.x 10.1016/j.molcel.2010.12.016 10.1016/j.jsb.2005.07.007 10.1038/nmeth.2089 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2017.12.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 397.e8 |
ExternalDocumentID | 29336876 10_1016_j_molcel_2017_12_011 S1097276517309395 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c551t-9755e1e4f5b04477bf7f5be93fb7eb86a57940545e2fca152cf1fde6b16f7b9f3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Fri Sep 05 05:27:57 EDT 2025 Fri Sep 05 11:40:43 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 Tue Jul 01 03:40:51 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ACF H3K9me3 HP1 nucleosome histone chromatin cryo-EM epigenetics heterochromatin |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c551t-9755e1e4f5b04477bf7f5be93fb7eb86a57940545e2fca152cf1fde6b16f7b9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276517309395 |
PMID | 29336876 |
PQID | 1989582736 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2253253064 proquest_miscellaneous_1989582736 pubmed_primary_29336876 crossref_primary_10_1016_j_molcel_2017_12_011 crossref_citationtrail_10_1016_j_molcel_2017_12_011 elsevier_sciencedirect_doi_10_1016_j_molcel_2017_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Valouev, Johnson, Boyd, Smith, Fire, Sidow (bib67) 2011; 474 Azzaz, Vitalini, Thomas, Price, Blacketer, Cryderman, Zirbel, Woodcock, Elcock, Wallrath, Shogren-Knaak (bib2) 2014; 289 Yamamoto, Sonoda (bib71) 2003; 301 Grewal, Jia (bib16) 2007; 8 Nozawa, Nagao, Masuda, Iwasaki, Hirota, Nozaki, Kimura, Obuse (bib49) 2010; 12 Scheres (bib53) 2016; 579 Kleywegt, Harris, Zou, Taylor, Wählby, Jones (bib24) 2004; 60 Canzio, Chang, Shankar, Kuchenbecker, Simon, Madhani, Narlikar, Al-Sady (bib6) 2011; 41 Frank, Radermacher, Penczek, Zhu, Li, Ladjadj, Leith (bib15) 1996; 116 Luger, Dechassa, Tremethick (bib34) 2012; 13 Nishibuchi, Nakayama (bib47) 2014; 156 Bhaumik, Smith, Shilatifard (bib4) 2007; 14 Luger, Mäder, Richmond, Sargent, Richmond (bib33) 1997; 389 Canzio, Larson, Narlikar (bib8) 2014; 24 Maison, Romeo, Bailly, Dubarry, Quivy, Almouzni (bib37) 2012; 19 Saksouk, Simboeck, Déjardin (bib52) 2015; 8 Machida, Hayashida, Takaku, Fukuto, Sun, Kinomura, Tashiro, Kurumizaka (bib35) 2016; 55 Lavigne, Eskeland, Azebi, Saint-André, Jang, Batsché, Fan, Kingston, Imhof, Muchardt (bib31) 2009; 5 Strahl, Allis (bib58) 2000; 403 Kang, Chaudhary, Dong, Kim, Brautigam, Yu (bib21) 2011; 22 Minc, Allory, Worman, Courvalin, Buendia (bib40) 1999; 108 Brasher, Smith, Fogh, Nietlispach, Thiru, Nielsen, Broadhurst, Ball, Murzina, Laue (bib5) 2000; 19 Kouzarides (bib25) 2007; 128 Lachner, O’Carroll, Rea, Mechtler, Jenuwein (bib29) 2001; 410 Nielsen, Nietlispach, Mott, Callaghan, Bannister, Kouzarides, Murzin, Murzina, Laue (bib46) 2002; 416 Cowieson, Partridge, Allshire, McLaughlin (bib11) 2000; 10 Mastronarde (bib38) 2005; 152 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib51) 2004; 25 Jacobs, Khorasanizadeh (bib20) 2002; 295 Nielsen, Oulad-Abdelghani, Ortiz, Remboutsika, Chambon, Losson (bib45) 2001; 7 Maison, Almouzni (bib36) 2004; 5 Simon, Kingston (bib55) 2009; 10 Kremer, Mastronarde, McIntosh (bib26) 1996; 116 Canzio, Liao, Naber, Pate, Larson, Wu, Marina, Garcia, Madhani, Cooke (bib7) 2013; 496 Maze, Noh, Soshnev, Allis (bib39) 2014; 15 Collins, Poot, Kukimoto, García-Jiménez, Dellaire, Varga-Weisz (bib10) 2002; 32 Aygün, Mehta, Grewal (bib1) 2013; 20 Demeler, van Holde (bib13) 2004; 335 Schneider, Rasband, Eliceiri (bib54) 2012; 9 Kucukelbir, Sigworth, Tagare (bib27) 2014; 11 Izzo, Kamieniarz-Gdula, Ramírez, Noureen, Kind, Manke, van Steensel, Schneider (bib19) 2013; 3 Vasudevan, Chua, Davey (bib68) 2010; 403 Kwon, Workman (bib28) 2011; 33 Venkatesh, Workman (bib69) 2015; 16 Murzina, Verreault, Laue, Stillman (bib43) 1999; 4 Nishibuchi, Machida, Osakabe, Murakoshi, Hiragami-Hamada, Nakagawa, Fischle, Nishimura, Kurumizaka, Tagami, Nakayama (bib48) 2014; 42 Mishima, Jayasinghe, Lu, Otani, Shirakawa, Kawakami, Kimura, Hojo, Carlton, Tajima, Suetake (bib42) 2015; 43 Zheng, Palovcak, Armache, Cheng, Agard (bib72) 2016 Hansen, Lohr (bib17) 1993; 268 Kastner, Fischer, Golas, Sander, Dube, Boehringer, Hartmuth, Deckert, Hauer, Wolf (bib22) 2008; 5 Ura, Nightingale, Wolffe (bib66) 1996; 15 Bannister, Zegerman, Partridge, Miska, Thomas, Allshire, Kouzarides (bib3) 2001; 410 Mindell, Grigorieff (bib41) 2003; 142 Larson, Elnatan, Keenen, Trnka, Johnston, Burlingame, Agard, Redding, Narlikar (bib30) 2017; 547 Sugimoto, Yamada, Muro, Himeno (bib60) 1996; 120 Talbert, Henikoff (bib63) 2014; 24 Kato, Osakabe, Arimura, Mizukami, Horikoshi, Saikusa, Akashi, Nishimura, Park, Nogami (bib23) 2017; 356 Wolffe (bib70) 1998 Thiru, Nietlispach, Mott, Okuwaki, Lyon, Nielsen, Hirshberg, Verreault, Murzina, Laue (bib65) 2004; 23 Eskeland, Eberharter, Imhof (bib14) 2007; 27 Nozawa, Nagao, Igami, Shibata, Shirai, Nozaki, Sado, Kimura, Obuse (bib50) 2013; 20 Soboleva, Nekrasov, Ryan, Tremethick (bib57) 2014; 30 Lowary, Widom (bib32) 1998; 276 Simon, Chu, Racki, de la Cruz, Burlingame, Panning, Narlikar, Shokat (bib56) 2007; 128 Tachiwana, Osakabe, Kimura, Kurumizaka (bib61) 2008; 36 Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib9) 2013; 135 Tachiwana, Kagawa, Osakabe, Kawaguchi, Shiga, Hayashi-Takanaka, Kimura, Kurumizaka (bib62) 2010; 107 Hiragami-Hamada, Soeroes, Nikolov, Wilkins, Kreuz, Chen, De La Rosa-Velázquez, Zenn, Kost, Pohl (bib18) 2016; 7 Nakayama, Rice, Strahl, Allis, Grewal (bib44) 2001; 292 Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (bib64) 2007; 157 Dawson, Bannister, Göttgens, Foster, Bartke, Green, Kouzarides (bib12) 2009; 461 Strom, Emelyanov, Mir, Fyodorov, Darzacq, Karpen (bib59) 2017; 547 Aygün (10.1016/j.molcel.2017.12.011_bib1) 2013; 20 Cowieson (10.1016/j.molcel.2017.12.011_bib11) 2000; 10 Collins (10.1016/j.molcel.2017.12.011_bib10) 2002; 32 Minc (10.1016/j.molcel.2017.12.011_bib40) 1999; 108 Nakayama (10.1016/j.molcel.2017.12.011_bib44) 2001; 292 Yamamoto (10.1016/j.molcel.2017.12.011_bib71) 2003; 301 Kastner (10.1016/j.molcel.2017.12.011_bib22) 2008; 5 Grewal (10.1016/j.molcel.2017.12.011_bib16) 2007; 8 Lavigne (10.1016/j.molcel.2017.12.011_bib31) 2009; 5 Machida (10.1016/j.molcel.2017.12.011_bib35) 2016; 55 Kouzarides (10.1016/j.molcel.2017.12.011_bib25) 2007; 128 Maze (10.1016/j.molcel.2017.12.011_bib39) 2014; 15 Mastronarde (10.1016/j.molcel.2017.12.011_bib38) 2005; 152 Canzio (10.1016/j.molcel.2017.12.011_bib8) 2014; 24 Saksouk (10.1016/j.molcel.2017.12.011_bib52) 2015; 8 Hansen (10.1016/j.molcel.2017.12.011_bib17) 1993; 268 Murzina (10.1016/j.molcel.2017.12.011_bib43) 1999; 4 Nishibuchi (10.1016/j.molcel.2017.12.011_bib48) 2014; 42 Simon (10.1016/j.molcel.2017.12.011_bib55) 2009; 10 Luger (10.1016/j.molcel.2017.12.011_bib33) 1997; 389 Luger (10.1016/j.molcel.2017.12.011_bib34) 2012; 13 Simon (10.1016/j.molcel.2017.12.011_bib56) 2007; 128 Bannister (10.1016/j.molcel.2017.12.011_bib3) 2001; 410 Nishibuchi (10.1016/j.molcel.2017.12.011_bib47) 2014; 156 Mishima (10.1016/j.molcel.2017.12.011_bib42) 2015; 43 Lachner (10.1016/j.molcel.2017.12.011_bib29) 2001; 410 Kucukelbir (10.1016/j.molcel.2017.12.011_bib27) 2014; 11 Nielsen (10.1016/j.molcel.2017.12.011_bib45) 2001; 7 Frank (10.1016/j.molcel.2017.12.011_bib15) 1996; 116 Demeler (10.1016/j.molcel.2017.12.011_bib13) 2004; 335 Scheres (10.1016/j.molcel.2017.12.011_bib53) 2016; 579 Kwon (10.1016/j.molcel.2017.12.011_bib28) 2011; 33 Strahl (10.1016/j.molcel.2017.12.011_bib58) 2000; 403 Kremer (10.1016/j.molcel.2017.12.011_bib26) 1996; 116 Maison (10.1016/j.molcel.2017.12.011_bib36) 2004; 5 Izzo (10.1016/j.molcel.2017.12.011_bib19) 2013; 3 Canzio (10.1016/j.molcel.2017.12.011_bib6) 2011; 41 Eskeland (10.1016/j.molcel.2017.12.011_bib14) 2007; 27 Vasudevan (10.1016/j.molcel.2017.12.011_bib68) 2010; 403 Ura (10.1016/j.molcel.2017.12.011_bib66) 1996; 15 Dawson (10.1016/j.molcel.2017.12.011_bib12) 2009; 461 Tang (10.1016/j.molcel.2017.12.011_bib64) 2007; 157 Wolffe (10.1016/j.molcel.2017.12.011_bib70) 1998 Nielsen (10.1016/j.molcel.2017.12.011_bib46) 2002; 416 Jacobs (10.1016/j.molcel.2017.12.011_bib20) 2002; 295 Tachiwana (10.1016/j.molcel.2017.12.011_bib61) 2008; 36 Talbert (10.1016/j.molcel.2017.12.011_bib63) 2014; 24 Thiru (10.1016/j.molcel.2017.12.011_bib65) 2004; 23 Larson (10.1016/j.molcel.2017.12.011_bib30) 2017; 547 Tachiwana (10.1016/j.molcel.2017.12.011_bib62) 2010; 107 Soboleva (10.1016/j.molcel.2017.12.011_bib57) 2014; 30 Venkatesh (10.1016/j.molcel.2017.12.011_bib69) 2015; 16 Schneider (10.1016/j.molcel.2017.12.011_bib54) 2012; 9 Strom (10.1016/j.molcel.2017.12.011_bib59) 2017; 547 Canzio (10.1016/j.molcel.2017.12.011_bib7) 2013; 496 Zheng (10.1016/j.molcel.2017.12.011_bib72) 2016 Mindell (10.1016/j.molcel.2017.12.011_bib41) 2003; 142 Pettersen (10.1016/j.molcel.2017.12.011_bib51) 2004; 25 Chen (10.1016/j.molcel.2017.12.011_bib9) 2013; 135 Kato (10.1016/j.molcel.2017.12.011_bib23) 2017; 356 Nozawa (10.1016/j.molcel.2017.12.011_bib50) 2013; 20 Kleywegt (10.1016/j.molcel.2017.12.011_bib24) 2004; 60 Bhaumik (10.1016/j.molcel.2017.12.011_bib4) 2007; 14 Valouev (10.1016/j.molcel.2017.12.011_bib67) 2011; 474 Maison (10.1016/j.molcel.2017.12.011_bib37) 2012; 19 Sugimoto (10.1016/j.molcel.2017.12.011_bib60) 1996; 120 Brasher (10.1016/j.molcel.2017.12.011_bib5) 2000; 19 Azzaz (10.1016/j.molcel.2017.12.011_bib2) 2014; 289 Hiragami-Hamada (10.1016/j.molcel.2017.12.011_bib18) 2016; 7 Nozawa (10.1016/j.molcel.2017.12.011_bib49) 2010; 12 Kang (10.1016/j.molcel.2017.12.011_bib21) 2011; 22 Lowary (10.1016/j.molcel.2017.12.011_bib32) 1998; 276 |
References_xml | – volume: 128 start-page: 693 year: 2007 end-page: 705 ident: bib25 article-title: Chromatin modifications and their function publication-title: Cell – volume: 547 start-page: 236 year: 2017 end-page: 240 ident: bib30 article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin publication-title: Nature – volume: 108 start-page: 220 year: 1999 end-page: 234 ident: bib40 article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells publication-title: Chromosoma – volume: 135 start-page: 24 year: 2013 end-page: 35 ident: bib9 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy – volume: 301 start-page: 287 year: 2003 end-page: 292 ident: bib71 article-title: Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1 publication-title: Biochem. Biophys. Res. Commun. – volume: 410 start-page: 120 year: 2001 end-page: 124 ident: bib3 article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain publication-title: Nature – volume: 33 start-page: 280 year: 2011 end-page: 289 ident: bib28 article-title: The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription publication-title: BioEssays – volume: 7 start-page: 11310 year: 2016 ident: bib18 article-title: Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin publication-title: Nat. Commun. – volume: 55 start-page: 637 year: 2016 end-page: 646 ident: bib35 article-title: Relaxed chromatin formation and weak suppression of homologous pairing by the testis-specific linker histone H1T publication-title: Biochemistry – volume: 107 start-page: 10454 year: 2010 end-page: 10459 ident: bib62 article-title: Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T publication-title: Proc. Natl. Acad. Sci. USA – year: 2016 ident: bib72 article-title: Anisotropic correction of beam-induced motion for improved single-particle electron cryo-microscopy publication-title: bioRxiv – volume: 289 start-page: 6850 year: 2014 end-page: 6861 ident: bib2 article-title: Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation publication-title: J. Biol. Chem. – volume: 41 start-page: 67 year: 2011 end-page: 81 ident: bib6 article-title: Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly publication-title: Mol. Cell – volume: 547 start-page: 241 year: 2017 end-page: 245 ident: bib59 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature – volume: 410 start-page: 116 year: 2001 end-page: 120 ident: bib29 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature – volume: 12 start-page: 719 year: 2010 end-page: 727 ident: bib49 article-title: Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation publication-title: Nat. Cell Biol. – volume: 30 start-page: 199 year: 2014 end-page: 209 ident: bib57 article-title: Histone variants at the transcription start-site publication-title: Trends Genet. – volume: 152 start-page: 36 year: 2005 end-page: 51 ident: bib38 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. – volume: 3 start-page: 2142 year: 2013 end-page: 2154 ident: bib19 article-title: The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells publication-title: Cell Rep. – volume: 36 start-page: 2208 year: 2008 end-page: 2218 ident: bib61 article-title: Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro publication-title: Nucleic Acids Res. – volume: 356 start-page: 205 year: 2017 end-page: 208 ident: bib23 article-title: Crystal structure of the overlapping dinucleosome composed of hexasome and octasome publication-title: Science – volume: 496 start-page: 377 year: 2013 end-page: 381 ident: bib7 article-title: A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly publication-title: Nature – volume: 10 start-page: 517 year: 2000 end-page: 525 ident: bib11 article-title: Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis publication-title: Curr. Biol. – volume: 403 start-page: 1 year: 2010 end-page: 10 ident: bib68 article-title: Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence publication-title: J. Mol. Biol. – volume: 23 start-page: 489 year: 2004 end-page: 499 ident: bib65 article-title: Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin publication-title: EMBO J. – volume: 579 start-page: 125 year: 2016 end-page: 157 ident: bib53 article-title: Processing of structurally heterogeneous cryo-EM data in RELION publication-title: Methods Enzymol. – volume: 13 start-page: 436 year: 2012 end-page: 447 ident: bib34 article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? publication-title: Nat. Rev. Mol. Cell Biol. – volume: 5 start-page: 296 year: 2004 end-page: 304 ident: bib36 article-title: HP1 and the dynamics of heterochromatin maintenance publication-title: Nat. Rev. Mol. Cell Biol. – year: 1998 ident: bib70 article-title: Chromatin: Structure and Function – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: bib33 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature – volume: 335 start-page: 279 year: 2004 end-page: 288 ident: bib13 article-title: Sedimentation velocity analysis of highly heterogeneous systems publication-title: Anal. Biochem. – volume: 120 start-page: 153 year: 1996 end-page: 159 ident: bib60 article-title: Human homolog of Drosophila heterochromatin-associated protein 1 (HP1) is a DNA-binding protein which possesses a DNA-binding motif with weak similarity to that of human centromere protein C (CENP-C) publication-title: J. Biochem. – volume: 20 start-page: 547 year: 2013 end-page: 554 ident: bib1 article-title: HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin publication-title: Nat. Struct. Mol. Biol. – volume: 461 start-page: 819 year: 2009 end-page: 822 ident: bib12 article-title: JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin publication-title: Nature – volume: 14 start-page: 1008 year: 2007 end-page: 1016 ident: bib4 article-title: Covalent modifications of histones during development and disease pathogenesis publication-title: Nat. Struct. Mol. Biol. – volume: 157 start-page: 38 year: 2007 end-page: 46 ident: bib64 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. – volume: 27 start-page: 453 year: 2007 end-page: 465 ident: bib14 article-title: HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors publication-title: Mol. Cell. Biol. – volume: 142 start-page: 334 year: 2003 end-page: 347 ident: bib41 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J. Struct. Biol. – volume: 24 start-page: 377 year: 2014 end-page: 386 ident: bib8 article-title: Mechanisms of functional promiscuity by HP1 proteins publication-title: Trends Cell Biol. – volume: 276 start-page: 19 year: 1998 end-page: 42 ident: bib32 article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning publication-title: J. Mol. Biol. – volume: 8 start-page: 35 year: 2007 end-page: 46 ident: bib16 article-title: Heterochromatin revisited publication-title: Nat. Rev. Genet. – volume: 20 start-page: 566 year: 2013 end-page: 573 ident: bib50 article-title: Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway publication-title: Nat. Struct. Mol. Biol. – volume: 24 start-page: 642 year: 2014 end-page: 650 ident: bib63 article-title: Environmental responses mediated by histone variants publication-title: Trends Cell Biol. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib51 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 5 start-page: e1000769 year: 2009 ident: bib31 article-title: Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression publication-title: PLoS Genet. – volume: 403 start-page: 41 year: 2000 end-page: 45 ident: bib58 article-title: The language of covalent histone modifications publication-title: Nature – volume: 116 start-page: 71 year: 1996 end-page: 76 ident: bib26 article-title: Computer visualization of three-dimensional image data using IMOD publication-title: J. Struct. Biol. – volume: 416 start-page: 103 year: 2002 end-page: 107 ident: bib46 article-title: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9 publication-title: Nature – volume: 4 start-page: 529 year: 1999 end-page: 540 ident: bib43 article-title: Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins publication-title: Mol. Cell – volume: 116 start-page: 190 year: 1996 end-page: 199 ident: bib15 article-title: SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields publication-title: J. Struct. Biol. – volume: 5 start-page: 53 year: 2008 end-page: 55 ident: bib22 article-title: GraFix: sample preparation for single-particle electron cryomicroscopy publication-title: Nat. Methods – volume: 19 start-page: 1587 year: 2000 end-page: 1597 ident: bib5 article-title: The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer publication-title: EMBO J. – volume: 7 start-page: 729 year: 2001 end-page: 739 ident: bib45 article-title: Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins publication-title: Mol. Cell – volume: 43 start-page: 10200 year: 2015 end-page: 10212 ident: bib42 article-title: Nucleosome compaction facilitates HP1γ binding to methylated H3K9 publication-title: Nucleic Acids Res. – volume: 15 start-page: 4959 year: 1996 end-page: 4969 ident: bib66 article-title: Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression publication-title: EMBO J. – volume: 268 start-page: 5840 year: 1993 end-page: 5848 ident: bib17 article-title: Assembly and structural properties of subsaturated chromatin arrays publication-title: J. Biol. Chem. – volume: 8 start-page: 3 year: 2015 ident: bib52 article-title: Constitutive heterochromatin formation and transcription in mammals publication-title: Epigenetics Chromatin – volume: 295 start-page: 2080 year: 2002 end-page: 2083 ident: bib20 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science – volume: 60 start-page: 2240 year: 2004 end-page: 2249 ident: bib24 article-title: The Uppsala Electron-Density Server publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib54 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 16 start-page: 178 year: 2015 end-page: 189 ident: bib69 article-title: Histone exchange, chromatin structure and the regulation of transcription publication-title: Nat. Rev. Mol. Cell Biol. – volume: 42 start-page: 12498 year: 2014 end-page: 12511 ident: bib48 article-title: N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity publication-title: Nucleic Acids Res. – volume: 10 start-page: 697 year: 2009 end-page: 708 ident: bib55 article-title: Mechanisms of polycomb gene silencing: knowns and unknowns publication-title: Nat. Rev. Mol. Cell Biol. – volume: 128 start-page: 1003 year: 2007 end-page: 1012 ident: bib56 article-title: The site-specific installation of methyl-lysine analogs into recombinant histones publication-title: Cell – volume: 22 start-page: 1181 year: 2011 end-page: 1190 ident: bib21 article-title: Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells publication-title: Mol. Biol. Cell – volume: 156 start-page: 11 year: 2014 end-page: 20 ident: bib47 article-title: Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly publication-title: J. Biochem. – volume: 474 start-page: 516 year: 2011 end-page: 520 ident: bib67 article-title: Determinants of nucleosome organization in primary human cells publication-title: Nature – volume: 32 start-page: 627 year: 2002 end-page: 632 ident: bib10 article-title: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin publication-title: Nat. Genet. – volume: 15 start-page: 259 year: 2014 end-page: 271 ident: bib39 article-title: Every amino acid matters: essential contributions of histone variants to mammalian development and disease publication-title: Nat. Rev. Genet. – volume: 11 start-page: 63 year: 2014 end-page: 65 ident: bib27 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat. Methods – volume: 19 start-page: 458 year: 2012 end-page: 460 ident: bib37 article-title: The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin publication-title: Nat. Struct. Mol. Biol. – volume: 292 start-page: 110 year: 2001 end-page: 113 ident: bib44 article-title: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly publication-title: Science – volume: 116 start-page: 71 year: 1996 ident: 10.1016/j.molcel.2017.12.011_bib26 article-title: Computer visualization of three-dimensional image data using IMOD publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1996.0013 – volume: 8 start-page: 35 year: 2007 ident: 10.1016/j.molcel.2017.12.011_bib16 article-title: Heterochromatin revisited publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2008 – volume: 4 start-page: 529 year: 1999 ident: 10.1016/j.molcel.2017.12.011_bib43 article-title: Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80204-X – volume: 5 start-page: 53 year: 2008 ident: 10.1016/j.molcel.2017.12.011_bib22 article-title: GraFix: sample preparation for single-particle electron cryomicroscopy publication-title: Nat. Methods doi: 10.1038/nmeth1139 – volume: 33 start-page: 280 year: 2011 ident: 10.1016/j.molcel.2017.12.011_bib28 article-title: The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription publication-title: BioEssays doi: 10.1002/bies.201000138 – volume: 474 start-page: 516 year: 2011 ident: 10.1016/j.molcel.2017.12.011_bib67 article-title: Determinants of nucleosome organization in primary human cells publication-title: Nature doi: 10.1038/nature10002 – volume: 43 start-page: 10200 year: 2015 ident: 10.1016/j.molcel.2017.12.011_bib42 article-title: Nucleosome compaction facilitates HP1γ binding to methylated H3K9 publication-title: Nucleic Acids Res. – volume: 5 start-page: 296 year: 2004 ident: 10.1016/j.molcel.2017.12.011_bib36 article-title: HP1 and the dynamics of heterochromatin maintenance publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1355 – volume: 23 start-page: 489 year: 2004 ident: 10.1016/j.molcel.2017.12.011_bib65 article-title: Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin publication-title: EMBO J. doi: 10.1038/sj.emboj.7600088 – volume: 5 start-page: e1000769 year: 2009 ident: 10.1016/j.molcel.2017.12.011_bib31 article-title: Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000769 – volume: 289 start-page: 6850 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib2 article-title: Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.512137 – volume: 11 start-page: 63 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib27 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat. Methods doi: 10.1038/nmeth.2727 – volume: 403 start-page: 1 year: 2010 ident: 10.1016/j.molcel.2017.12.011_bib68 article-title: Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.08.039 – volume: 20 start-page: 566 year: 2013 ident: 10.1016/j.molcel.2017.12.011_bib50 article-title: Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2532 – volume: 12 start-page: 719 year: 2010 ident: 10.1016/j.molcel.2017.12.011_bib49 article-title: Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2075 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.molcel.2017.12.011_bib51 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 10 start-page: 517 year: 2000 ident: 10.1016/j.molcel.2017.12.011_bib11 article-title: Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00467-X – volume: 7 start-page: 11310 year: 2016 ident: 10.1016/j.molcel.2017.12.011_bib18 article-title: Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin publication-title: Nat. Commun. doi: 10.1038/ncomms11310 – volume: 55 start-page: 637 year: 2016 ident: 10.1016/j.molcel.2017.12.011_bib35 article-title: Relaxed chromatin formation and weak suppression of homologous pairing by the testis-specific linker histone H1T publication-title: Biochemistry doi: 10.1021/acs.biochem.5b01126 – volume: 20 start-page: 547 year: 2013 ident: 10.1016/j.molcel.2017.12.011_bib1 article-title: HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2565 – volume: 24 start-page: 377 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib8 article-title: Mechanisms of functional promiscuity by HP1 proteins publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.01.002 – volume: 3 start-page: 2142 year: 2013 ident: 10.1016/j.molcel.2017.12.011_bib19 article-title: The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.003 – volume: 116 start-page: 190 year: 1996 ident: 10.1016/j.molcel.2017.12.011_bib15 article-title: SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1996.0030 – volume: 547 start-page: 241 year: 2017 ident: 10.1016/j.molcel.2017.12.011_bib59 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature doi: 10.1038/nature22989 – volume: 403 start-page: 41 year: 2000 ident: 10.1016/j.molcel.2017.12.011_bib58 article-title: The language of covalent histone modifications publication-title: Nature doi: 10.1038/47412 – volume: 19 start-page: 1587 year: 2000 ident: 10.1016/j.molcel.2017.12.011_bib5 article-title: The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer publication-title: EMBO J. doi: 10.1093/emboj/19.7.1587 – volume: 461 start-page: 819 year: 2009 ident: 10.1016/j.molcel.2017.12.011_bib12 article-title: JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin publication-title: Nature doi: 10.1038/nature08448 – volume: 128 start-page: 693 year: 2007 ident: 10.1016/j.molcel.2017.12.011_bib25 article-title: Chromatin modifications and their function publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 30 start-page: 199 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib57 article-title: Histone variants at the transcription start-site publication-title: Trends Genet. doi: 10.1016/j.tig.2014.03.002 – volume: 335 start-page: 279 year: 2004 ident: 10.1016/j.molcel.2017.12.011_bib13 article-title: Sedimentation velocity analysis of highly heterogeneous systems publication-title: Anal. Biochem. doi: 10.1016/j.ab.2004.08.039 – volume: 301 start-page: 287 year: 2003 ident: 10.1016/j.molcel.2017.12.011_bib71 article-title: Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)03021-8 – volume: 410 start-page: 120 year: 2001 ident: 10.1016/j.molcel.2017.12.011_bib3 article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain publication-title: Nature doi: 10.1038/35065138 – volume: 128 start-page: 1003 year: 2007 ident: 10.1016/j.molcel.2017.12.011_bib56 article-title: The site-specific installation of methyl-lysine analogs into recombinant histones publication-title: Cell doi: 10.1016/j.cell.2006.12.041 – volume: 135 start-page: 24 year: 2013 ident: 10.1016/j.molcel.2017.12.011_bib9 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.06.004 – volume: 156 start-page: 11 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib47 article-title: Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly publication-title: J. Biochem. doi: 10.1093/jb/mvu032 – volume: 356 start-page: 205 year: 2017 ident: 10.1016/j.molcel.2017.12.011_bib23 article-title: Crystal structure of the overlapping dinucleosome composed of hexasome and octasome publication-title: Science doi: 10.1126/science.aak9867 – volume: 19 start-page: 458 year: 2012 ident: 10.1016/j.molcel.2017.12.011_bib37 article-title: The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2244 – volume: 10 start-page: 697 year: 2009 ident: 10.1016/j.molcel.2017.12.011_bib55 article-title: Mechanisms of polycomb gene silencing: knowns and unknowns publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2763 – volume: 16 start-page: 178 year: 2015 ident: 10.1016/j.molcel.2017.12.011_bib69 article-title: Histone exchange, chromatin structure and the regulation of transcription publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3941 – volume: 295 start-page: 2080 year: 2002 ident: 10.1016/j.molcel.2017.12.011_bib20 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science doi: 10.1126/science.1069473 – volume: 14 start-page: 1008 year: 2007 ident: 10.1016/j.molcel.2017.12.011_bib4 article-title: Covalent modifications of histones during development and disease pathogenesis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1337 – volume: 8 start-page: 3 year: 2015 ident: 10.1016/j.molcel.2017.12.011_bib52 article-title: Constitutive heterochromatin formation and transcription in mammals publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-8-3 – volume: 120 start-page: 153 year: 1996 ident: 10.1016/j.molcel.2017.12.011_bib60 article-title: Human homolog of Drosophila heterochromatin-associated protein 1 (HP1) is a DNA-binding protein which possesses a DNA-binding motif with weak similarity to that of human centromere protein C (CENP-C) publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a021378 – volume: 27 start-page: 453 year: 2007 ident: 10.1016/j.molcel.2017.12.011_bib14 article-title: HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01576-06 – volume: 42 start-page: 12498 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib48 article-title: N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku995 – volume: 24 start-page: 642 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib63 article-title: Environmental responses mediated by histone variants publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.07.006 – volume: 389 start-page: 251 year: 1997 ident: 10.1016/j.molcel.2017.12.011_bib33 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 268 start-page: 5840 year: 1993 ident: 10.1016/j.molcel.2017.12.011_bib17 article-title: Assembly and structural properties of subsaturated chromatin arrays publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53396-2 – volume: 579 start-page: 125 year: 2016 ident: 10.1016/j.molcel.2017.12.011_bib53 article-title: Processing of structurally heterogeneous cryo-EM data in RELION publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.04.012 – volume: 142 start-page: 334 year: 2003 ident: 10.1016/j.molcel.2017.12.011_bib41 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/S1047-8477(03)00069-8 – volume: 108 start-page: 220 year: 1999 ident: 10.1016/j.molcel.2017.12.011_bib40 article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells publication-title: Chromosoma doi: 10.1007/s004120050372 – volume: 22 start-page: 1181 year: 2011 ident: 10.1016/j.molcel.2017.12.011_bib21 article-title: Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-01-0009 – volume: 416 start-page: 103 year: 2002 ident: 10.1016/j.molcel.2017.12.011_bib46 article-title: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9 publication-title: Nature doi: 10.1038/nature722 – year: 2016 ident: 10.1016/j.molcel.2017.12.011_bib72 article-title: Anisotropic correction of beam-induced motion for improved single-particle electron cryo-microscopy publication-title: bioRxiv – volume: 496 start-page: 377 year: 2013 ident: 10.1016/j.molcel.2017.12.011_bib7 article-title: A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly publication-title: Nature doi: 10.1038/nature12032 – volume: 15 start-page: 259 year: 2014 ident: 10.1016/j.molcel.2017.12.011_bib39 article-title: Every amino acid matters: essential contributions of histone variants to mammalian development and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3673 – volume: 60 start-page: 2240 year: 2004 ident: 10.1016/j.molcel.2017.12.011_bib24 article-title: The Uppsala Electron-Density Server publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904013253 – volume: 36 start-page: 2208 year: 2008 ident: 10.1016/j.molcel.2017.12.011_bib61 article-title: Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn060 – volume: 7 start-page: 729 year: 2001 ident: 10.1016/j.molcel.2017.12.011_bib45 article-title: Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00218-0 – volume: 276 start-page: 19 year: 1998 ident: 10.1016/j.molcel.2017.12.011_bib32 article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1494 – volume: 13 start-page: 436 year: 2012 ident: 10.1016/j.molcel.2017.12.011_bib34 article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3382 – volume: 157 start-page: 38 year: 2007 ident: 10.1016/j.molcel.2017.12.011_bib64 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.05.009 – volume: 292 start-page: 110 year: 2001 ident: 10.1016/j.molcel.2017.12.011_bib44 article-title: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly publication-title: Science doi: 10.1126/science.1060118 – volume: 107 start-page: 10454 year: 2010 ident: 10.1016/j.molcel.2017.12.011_bib62 article-title: Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1003064107 – volume: 547 start-page: 236 year: 2017 ident: 10.1016/j.molcel.2017.12.011_bib30 article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin publication-title: Nature doi: 10.1038/nature22822 – volume: 410 start-page: 116 year: 2001 ident: 10.1016/j.molcel.2017.12.011_bib29 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature doi: 10.1038/35065132 – volume: 32 start-page: 627 year: 2002 ident: 10.1016/j.molcel.2017.12.011_bib10 article-title: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin publication-title: Nat. Genet. doi: 10.1038/ng1046 – volume: 15 start-page: 4959 year: 1996 ident: 10.1016/j.molcel.2017.12.011_bib66 article-title: Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00876.x – volume: 41 start-page: 67 year: 2011 ident: 10.1016/j.molcel.2017.12.011_bib6 article-title: Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.12.016 – volume: 152 start-page: 36 year: 2005 ident: 10.1016/j.molcel.2017.12.011_bib38 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.molcel.2017.12.011_bib54 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – year: 1998 ident: 10.1016/j.molcel.2017.12.011_bib70 |
SSID | ssj0014589 |
Score | 2.6287012 |
Snippet | Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 385 |
SubjectTerms | ACF chromatin cryo-EM DNA electron microscopy epigenetics eukaryotic cells genome H3K9me3 heterochromatin histone histones HP1 humans lysine nucleosome nucleosomes transcription (genetics) |
Title | Structural Basis of Heterochromatin Formation by Human HP1 |
URI | https://dx.doi.org/10.1016/j.molcel.2017.12.011 https://www.ncbi.nlm.nih.gov/pubmed/29336876 https://www.proquest.com/docview/1989582736 https://www.proquest.com/docview/2253253064 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifju_iOBrmWnzsfrmhmMIijAHewtNmuBktsPNh_333qXtwIchCH1oyxXCJbn7NXe_O0JuBUuEVBZjhsJEPFd5lJoU9pWLlWeWc54hUfj5RY4m_Gkqpi0yaLgwmFZZ2_7KpgdrXb_p1trsLmaz7hhjp7GSgimM5qVINEdWKZL4pv1NJIGL0AYPhSOUbuhzIcfrs5xbhwEIpsKhIGPb3NM2-Bnc0HCf7NX4kT5UQzwgLVcckp2qo-T6iNyPQz1YrKVB-9lytqSlpyNMeSnt-1eJ8LSgw4awSM2ahlN8Onplx2QyfHwbjKK6PUJkAeasolQJ4ZjjXpg7zpUyXsGtSxNvlDM9mQnYa4DIhIu9zcBPW8987qRh0iuT-uSEtIuycGeE8ph7QFYW0Inn8AeS2tx7h5PmVBLnWYckjVa0rWuHYwuLuW6SxD50pUuNutQs1qDLDok2Xy2q2hl_yKtG4frXGtBg3v_48qaZHw3bA2MeWeHK76XGlDDRA4wmt8uASUvgAnDWIafV5G7GC2gokeAxzv89tguyC0-9KtP7krRhGbgrADIrcx1W6g_oWe9B |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR367PCF7LmjZptt5UXOoTQYW9hSZNcGVtxdWD_96ZPhY8LILQQ2kmECaTma-ZF8Cx5JGMlSWfoTSByFUeJCbBc-VC5bkVQmSUKHx3H6fP4nogBzNw0ebCUFhlo_trnV5p6-ZLt-Fm93047D6S7zRUseSKvHmJnIV5RAMnJNpXg_OJK0HIqg8eUQdE3ubPVUFeb-XIOvJAcFXdCnI-zT5Nw5-VHeqvwHIDINlZvcZVmHHFGizULSW_1-H0sSoIS8U02Hk2Ho5Z6VlKMS-lffkoCZ8WrN9mLDLzzaprfJY-8A147l8-XaRB0x8hsIhzPoNESem4E16aEyGUMl7hq0sib5QzvTiTeNgQkkkXepuhobae-9zFhsdemcRHmzBXlIXbBiZC4RFaWYQnXuAvSGJz7x3tmlNRmGcdiFquaNsUD6ceFiPdRom96pqXmnipeaiRlx0IJrPe6-IZf9CrluH6lxBo1O9_zDxq90fj-SCnR1a48musKSZM9hCkxdNpUKdF-CA668BWvbmT9SIcimI0GTv_XtshLKZPd7f69ur-ZheWcKRXh33vwRyKhNtHVPNpDiqp_QEAlPJk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+of+Heterochromatin+Formation+by+Human+HP1&rft.jtitle=Molecular+cell&rft.au=Machida%2C+Shinichi&rft.au=Takizawa%2C+Yoshimasa&rft.au=Ishimaru%2C+Masakazu&rft.au=Sugita%2C+Yukihiko&rft.date=2018-02-01&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=69&rft.issue=3&rft.spage=385&rft_id=info:doi/10.1016%2Fj.molcel.2017.12.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |