The interplay of histone modifications - writers that read

Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 16; no. 11; pp. 1467 - 1481
Main Authors Zhang, Tianyi, Cooper, Sarah, Brockdorff, Neil
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.11.2015
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Subjects
Online AccessGet full text
ISSN1469-221X
1469-3178
DOI10.15252/embr.201540945

Cover

Abstract Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development. Graphical Abstract Post‐translational histone modifications correlate with gene expression states. This review discusses how these modifications are formed, reinforced and maintained, and how their crosstalk might define gene expression states.
AbstractList Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development. Graphical Abstract Post‐translational histone modifications correlate with gene expression states. This review discusses how these modifications are formed, reinforced and maintained, and how their crosstalk might define gene expression states.
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development. Post‐translational histone modifications correlate with gene expression states. This review discusses how these modifications are formed, reinforced and maintained, and how their crosstalk might define gene expression states.
Author Zhang, Tianyi
Brockdorff, Neil
Cooper, Sarah
Author_xml – sequence: 1
  givenname: Tianyi
  surname: Zhang
  fullname: Zhang, Tianyi
  organization: Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
– sequence: 2
  givenname: Sarah
  surname: Cooper
  fullname: Cooper, Sarah
  email: sarah.cooper@bioch.ox.ac.uk
  organization: Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
– sequence: 3
  givenname: Neil
  surname: Brockdorff
  fullname: Brockdorff, Neil
  organization: Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26474904$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URB-wZocisWGT1q9rx10glaqURwGpGgRiY3kSp-OS2IOdaTv_HreZjoZKFSvb8vnuOdfXu2jLB28ReknwPgEK9MD207hPMQGOFYcnaIdwoUpGZLW12lNKfm6j3ZQuMcagZPUMbVPBJVeY76DDycwWzg82zjuzLEJbzFwasknRh8a1rjaDCz4VZXEdXValYpiZoYjWNM_R09Z0yb5YrXvo-_uTyfGH8uzb6cfjo7OyBiBQgoDaYqikmVamYiApN7LJ50ZZNpXGMA6tEaKVFDNW8xZDTs_bimDLhWBsD70d684X0942tfVDNJ2eR9ebuNTBOP3vjXczfRGuNBecAMa5wJtVgRj-LGwadO9SbbvOeBsWSRPJsJCKwK3X6wfSy7CIPreXVbRSlVBKZtWrzUTrKPfPmgUwCuoYUoq21bUb7l4yB3SdJljfjU_fjk-vx5e5gwfcfenHicORuHadXf5Prk--vDvfhPEIp8z5Cxs3un3UrxyR_EvszdrPxN9aSCZB__h6qsUn-MUmn8_1hP0Fu-_Lag
CODEN ERMEAX
CitedBy_id crossref_primary_10_1093_nar_gkac702
crossref_primary_10_1038_s41588_023_01476_x
crossref_primary_10_1111_exd_13790
crossref_primary_10_1242_dev_158543
crossref_primary_10_3390_ijms23158339
crossref_primary_10_1007_s11033_020_05916_3
crossref_primary_10_1186_s13578_022_00756_z
crossref_primary_10_1016_j_cancergen_2025_01_002
crossref_primary_10_1093_nar_gky009
crossref_primary_10_1016_j_bbagrm_2023_194944
crossref_primary_10_1016_j_plantsci_2023_111954
crossref_primary_10_1080_10985549_2023_2270912
crossref_primary_10_3389_fcell_2020_590195
crossref_primary_10_1016_j_molcel_2023_06_032
crossref_primary_10_1097_YPG_0000000000000297
crossref_primary_10_1186_s13059_024_03461_x
crossref_primary_10_3389_fendo_2017_00304
crossref_primary_10_1111_acel_14365
crossref_primary_10_1371_journal_pone_0249985
crossref_primary_10_1093_bib_bbae638
crossref_primary_10_3390_cells10112901
crossref_primary_10_1134_S0026893316060121
crossref_primary_10_3390_ani10030521
crossref_primary_10_3390_plants10122766
crossref_primary_10_3389_fcell_2022_829536
crossref_primary_10_1016_j_nlm_2017_01_007
crossref_primary_10_3389_fonc_2020_535665
crossref_primary_10_1002_pro_3156
crossref_primary_10_1007_s00281_020_00783_3
crossref_primary_10_1016_j_plantsci_2018_12_001
crossref_primary_10_1016_j_jbc_2021_100285
crossref_primary_10_1007_s12298_023_01390_w
crossref_primary_10_1016_j_ceb_2020_11_008
crossref_primary_10_2174_1568009621666210203111220
crossref_primary_10_1021_acs_jproteome_4c00877
crossref_primary_10_1016_j_molcel_2018_03_020
crossref_primary_10_1080_15592294_2019_1614416
crossref_primary_10_1016_j_bbrc_2022_05_098
crossref_primary_10_1007_s00299_021_02696_3
crossref_primary_10_3390_biom10101453
crossref_primary_10_1007_s00109_021_02066_2
crossref_primary_10_1016_j_plgene_2021_100318
crossref_primary_10_1016_j_arr_2019_100957
crossref_primary_10_1016_j_bbagrm_2023_194922
crossref_primary_10_1038_s41598_021_95398_5
crossref_primary_10_1007_s00018_022_04590_x
crossref_primary_10_1080_09553002_2018_1549757
crossref_primary_10_1242_bio_048652
crossref_primary_10_3389_fimmu_2019_02718
crossref_primary_10_1073_pnas_2311249120
crossref_primary_10_1093_g3journal_jkae301
crossref_primary_10_3390_cancers10040101
crossref_primary_10_1590_0100_6991e_20243676
crossref_primary_10_3389_fendo_2018_00058
crossref_primary_10_1016_j_molcel_2020_08_002
crossref_primary_10_1016_j_bbadis_2019_07_002
crossref_primary_10_1016_j_biochi_2019_03_006
crossref_primary_10_1016_j_molcel_2022_12_032
crossref_primary_10_3389_fphys_2017_00999
crossref_primary_10_1891_2158_0782_9_3_144
crossref_primary_10_1016_j_tcb_2019_05_004
crossref_primary_10_3390_v9090248
crossref_primary_10_4137_JEN_S25513
crossref_primary_10_3389_fgene_2022_907547
crossref_primary_10_1016_j_envint_2021_106939
crossref_primary_10_1016_j_freeradbiomed_2020_11_016
crossref_primary_10_1128_mBio_03274_20
crossref_primary_10_3389_fpls_2023_1123729
crossref_primary_10_1074_jbc_AW118_003235
crossref_primary_10_1038_s41419_020_03231_0
crossref_primary_10_1038_s41417_021_00314_8
crossref_primary_10_1111_exd_14325
crossref_primary_10_1186_s13098_022_00947_1
crossref_primary_10_3390_biom13091382
crossref_primary_10_1016_j_celrep_2018_05_097
crossref_primary_10_1093_nar_gky288
crossref_primary_10_1089_omi_2016_0144
crossref_primary_10_1038_s41389_021_00370_7
crossref_primary_10_1002_jbmr_4263
crossref_primary_10_1242_jcs_253096
crossref_primary_10_3389_fgene_2019_00079
crossref_primary_10_1016_j_bcp_2020_114200
crossref_primary_10_1038_s41467_024_51789_6
crossref_primary_10_1038_s41419_020_2561_6
crossref_primary_10_1038_s41576_023_00664_z
crossref_primary_10_1007_s10555_023_10132_z
crossref_primary_10_1007_s12015_021_10234_7
crossref_primary_10_1016_j_ceb_2020_10_015
crossref_primary_10_1016_j_micres_2023_127440
crossref_primary_10_1038_s41540_023_00326_0
crossref_primary_10_1016_j_mad_2020_111286
crossref_primary_10_1042_BST20230877
crossref_primary_10_3390_pathogens11121436
crossref_primary_10_1016_j_ijpara_2020_09_006
crossref_primary_10_1007_s12033_017_0019_6
crossref_primary_10_1371_journal_pgen_1010906
crossref_primary_10_3390_cells8121559
crossref_primary_10_1038_nrneurol_2017_68
crossref_primary_10_1016_j_tig_2018_07_006
crossref_primary_10_1016_j_cmet_2019_03_009
crossref_primary_10_1016_j_phrs_2021_105846
crossref_primary_10_1186_s13059_019_1746_8
crossref_primary_10_3390_ph16020156
crossref_primary_10_1038_s41467_018_06235_9
crossref_primary_10_1016_j_jid_2016_04_026
crossref_primary_10_1186_s40246_024_00626_4
crossref_primary_10_1186_s12864_020_6771_1
crossref_primary_10_1080_17460441_2017_1303474
crossref_primary_10_1016_j_neulet_2020_135163
crossref_primary_10_3390_ijms17091446
crossref_primary_10_1007_s42994_023_00127_3
crossref_primary_10_7554_eLife_75115
crossref_primary_10_1039_C6LC01535B
crossref_primary_10_3389_fcell_2022_909696
crossref_primary_10_1016_j_neo_2021_06_007
crossref_primary_10_1186_s10020_024_00864_1
crossref_primary_10_1371_journal_pone_0212123
crossref_primary_10_1016_j_canlet_2020_05_025
crossref_primary_10_1111_his_13725
crossref_primary_10_1016_j_pbi_2020_08_007
crossref_primary_10_1111_tpj_16707
crossref_primary_10_1016_j_bbagrm_2023_194978
crossref_primary_10_5483_BMBRep_2024_0175
crossref_primary_10_3389_fgene_2023_1156095
crossref_primary_10_1002_1873_3468_14447
crossref_primary_10_1093_nar_gkaa248
crossref_primary_10_1158_2643_3230_BCD_23_0235
crossref_primary_10_1080_15592294_2016_1265713
crossref_primary_10_1371_journal_pbio_3001377
crossref_primary_10_1002_jcp_26836
crossref_primary_10_3390_jdb10020026
crossref_primary_10_1038_s41598_019_42711_y
crossref_primary_10_1242_dev_200696
crossref_primary_10_1093_nar_gkad1256
crossref_primary_10_3233_JAD_180259
crossref_primary_10_1016_j_yjmcc_2021_06_003
crossref_primary_10_1007_s12038_020_00099_2
crossref_primary_10_1186_s40246_018_0163_5
crossref_primary_10_1016_j_molcel_2024_09_015
crossref_primary_10_3390_ijms18061108
crossref_primary_10_1038_s41598_017_13916_w
crossref_primary_10_3390_cancers11010061
crossref_primary_10_1002_ctm2_1564
crossref_primary_10_1084_jem_20191453
crossref_primary_10_1016_j_bbrc_2025_151559
crossref_primary_10_1038_s41467_022_32322_z
crossref_primary_10_3389_fgene_2020_557846
crossref_primary_10_1016_j_plantsci_2019_04_007
crossref_primary_10_1016_j_ygeno_2021_05_034
crossref_primary_10_1098_rstb_2019_0345
crossref_primary_10_1016_j_neures_2018_09_010
crossref_primary_10_1096_fj_201901818RR
crossref_primary_10_1016_j_preteyeres_2018_03_002
crossref_primary_10_1002_pros_23271
crossref_primary_10_1523_JNEUROSCI_0843_17_2017
crossref_primary_10_3389_fonc_2021_653037
crossref_primary_10_1016_j_molcel_2021_12_037
crossref_primary_10_3390_epigenomes8030032
crossref_primary_10_1002_bies_201700053
crossref_primary_10_1038_s41598_021_94097_5
crossref_primary_10_3390_ijms23158704
crossref_primary_10_1021_acssynbio_1c00394
crossref_primary_10_3390_epigenomes7020010
crossref_primary_10_1016_j_envint_2024_109084
crossref_primary_10_1016_j_intimp_2023_110918
crossref_primary_10_1590_1678_4685_gmb_2022_0131
crossref_primary_10_1007_s00702_020_02184_0
crossref_primary_10_3390_ijms20102507
crossref_primary_10_1007_s00018_017_2515_z
crossref_primary_10_1093_jxb_eraf058
crossref_primary_10_1080_19490976_2021_1949096
crossref_primary_10_3390_v14091980
crossref_primary_10_1155_2016_5959721
crossref_primary_10_1016_j_jmb_2016_09_023
crossref_primary_10_1002_bies_202300178
crossref_primary_10_1371_journal_pone_0233880
crossref_primary_10_1016_j_pharmthera_2023_108547
crossref_primary_10_1016_j_bmc_2017_04_015
crossref_primary_10_1016_j_neubiorev_2022_104579
crossref_primary_10_1016_j_fgb_2021_103569
crossref_primary_10_1021_jacs_7b03430
crossref_primary_10_1073_pnas_2401861121
crossref_primary_10_1016_j_bpj_2021_10_019
crossref_primary_10_1111_1462_2920_15370
crossref_primary_10_1016_j_pharmthera_2018_11_003
crossref_primary_10_1016_j_csbj_2023_10_022
crossref_primary_10_3390_nu15071797
crossref_primary_10_1002_stem_2918
crossref_primary_10_1038_s41590_023_01430_3
crossref_primary_10_3839_jabc_2019_022
crossref_primary_10_1007_s42994_021_00048_z
crossref_primary_10_1016_j_ijbiomac_2024_136767
crossref_primary_10_1158_2159_8290_CD_23_0876
crossref_primary_10_1186_s13045_020_01027_5
crossref_primary_10_1371_journal_pcbi_1010450
crossref_primary_10_1021_acs_analchem_7b05224
crossref_primary_10_1093_nar_gkae1013
crossref_primary_10_1111_febs_14833
crossref_primary_10_1007_s42764_024_00131_x
crossref_primary_10_3390_nu15040887
crossref_primary_10_1016_j_devcel_2021_04_009
crossref_primary_10_1186_s13148_023_01568_9
crossref_primary_10_1093_humupd_dmy021
crossref_primary_10_1534_genetics_116_195735
crossref_primary_10_1186_s13148_020_00982_7
crossref_primary_10_3389_fonc_2022_894585
crossref_primary_10_1007_s00709_017_1092_1
crossref_primary_10_1038_s41419_019_1487_3
crossref_primary_10_1016_j_crmeth_2023_100535
crossref_primary_10_3390_ijms22136922
crossref_primary_10_18632_oncotarget_27493
crossref_primary_10_1007_s10620_018_5341_8
crossref_primary_10_1186_s13059_017_1211_5
crossref_primary_10_1172_JCI161713
crossref_primary_10_3389_fonc_2019_00705
crossref_primary_10_1007_s00498_023_00343_8
crossref_primary_10_1016_j_phrs_2020_104740
crossref_primary_10_1016_j_tcb_2021_04_001
crossref_primary_10_1038_s41419_020_03081_w
crossref_primary_10_1002_bies_201500162
crossref_primary_10_1016_j_cell_2023_01_007
crossref_primary_10_1177_17448069211056767
crossref_primary_10_1186_s13039_015_0208_6
crossref_primary_10_1016_j_ncrna_2018_02_003
crossref_primary_10_1016_j_jbc_2024_107484
crossref_primary_10_1016_j_chembiol_2017_08_020
crossref_primary_10_3390_v16010108
crossref_primary_10_1053_j_gastro_2017_12_019
crossref_primary_10_1186_s12964_019_0393_8
crossref_primary_10_1016_j_ymgme_2024_108360
crossref_primary_10_1186_s12920_020_00749_2
crossref_primary_10_22201_cuaieed_16076079e_2020_21_6_4
crossref_primary_10_1002_chem_201701655
crossref_primary_10_1590_0100_6991e_20243676_en
crossref_primary_10_1111_brv_12701
crossref_primary_10_3390_genes13081471
crossref_primary_10_1007_s00018_022_04645_z
crossref_primary_10_1042_ETLS20210258
crossref_primary_10_1111_nph_18286
crossref_primary_10_1016_j_ebiom_2020_103191
crossref_primary_10_1186_s12929_022_00812_3
crossref_primary_10_3389_fonc_2023_1169168
crossref_primary_10_1002_arch_22136
crossref_primary_10_1016_j_reprotox_2024_108656
crossref_primary_10_1186_s13148_021_01187_2
crossref_primary_10_1007_s00018_020_03566_z
crossref_primary_10_1007_s12374_023_09397_2
crossref_primary_10_1186_s13229_017_0119_y
crossref_primary_10_3389_fgene_2016_00133
crossref_primary_10_1093_pcp_pcz051
crossref_primary_10_3389_fpsyt_2022_1006109
crossref_primary_10_1158_1541_7786_MCR_19_0470
crossref_primary_10_1186_s13148_021_01089_3
crossref_primary_10_3390_genes13050764
crossref_primary_10_1093_nar_gkaa163
crossref_primary_10_1007_s13577_022_00727_z
crossref_primary_10_1016_j_mrrev_2017_10_001
crossref_primary_10_3390_cells10071718
crossref_primary_10_1074_jbc_RA117_001683
crossref_primary_10_1038_s41467_021_24099_4
crossref_primary_10_7554_eLife_47859
crossref_primary_10_1038_s42003_025_07677_w
crossref_primary_10_1590_acb370403
crossref_primary_10_1007_s00401_022_02489_2
crossref_primary_10_1016_j_ymben_2021_04_014
crossref_primary_10_1007_s43032_022_00988_x
crossref_primary_10_1007_s40291_020_00507_1
crossref_primary_10_1073_pnas_2022887118
crossref_primary_10_3389_fcell_2023_1052245
crossref_primary_10_3389_fpls_2022_959840
crossref_primary_10_1016_j_diabres_2016_11_009
crossref_primary_10_1371_journal_pcbi_1007119
crossref_primary_10_1002_wrna_1735
crossref_primary_10_1007_s00441_025_03952_8
crossref_primary_10_1093_nar_gkx601
crossref_primary_10_1146_annurev_micro_102215_095757
crossref_primary_10_1073_pnas_2415231121
crossref_primary_10_1007_s42764_021_00051_0
crossref_primary_10_3390_ijms22031259
crossref_primary_10_3390_biom13101526
crossref_primary_10_1016_j_stemcr_2017_01_026
crossref_primary_10_3389_fphar_2022_813659
crossref_primary_10_1016_j_banm_2020_04_004
crossref_primary_10_2217_epi_2020_0348
crossref_primary_10_1097_MCO_0000000000000281
crossref_primary_10_1128_MCB_00112_16
crossref_primary_10_2217_epi_2016_0062
crossref_primary_10_1016_j_celrep_2022_110828
crossref_primary_10_1007_s00432_017_2479_2
crossref_primary_10_1073_pnas_2020293118
crossref_primary_10_1016_j_devcel_2018_05_022
crossref_primary_10_1038_s41419_019_1305_y
crossref_primary_10_1016_j_biochi_2020_11_021
crossref_primary_10_3390_genes13091626
crossref_primary_10_1016_j_bbagrm_2020_194567
crossref_primary_10_1021_acschembio_9b00651
crossref_primary_10_1016_j_bone_2021_116299
crossref_primary_10_1038_s41419_018_0349_8
crossref_primary_10_1016_j_molcel_2022_07_008
crossref_primary_10_1002_cam4_5723
crossref_primary_10_1093_nar_gkx821
crossref_primary_10_3389_fgene_2020_00869
crossref_primary_10_3390_ijms24010603
crossref_primary_10_1038_s41398_023_02560_w
crossref_primary_10_1080_15257770_2019_1638514
crossref_primary_10_1093_neuonc_noae148
crossref_primary_10_1016_j_fct_2021_112695
crossref_primary_10_1038_s41422_020_0357_y
crossref_primary_10_1038_s41467_024_51785_w
crossref_primary_10_3390_cancers15215269
crossref_primary_10_1016_j_virusres_2016_10_017
crossref_primary_10_1111_ppl_14399
crossref_primary_10_1186_s13072_019_0274_9
crossref_primary_10_3390_biom13111590
crossref_primary_10_1007_s11240_023_02595_3
crossref_primary_10_3390_ijms25052840
crossref_primary_10_1016_j_jaci_2018_07_014
crossref_primary_10_3390_biom9120829
crossref_primary_10_1186_s13148_019_0639_8
crossref_primary_10_1371_journal_ppat_1005878
crossref_primary_10_3390_cells9122716
crossref_primary_10_1017_S2040174417000733
crossref_primary_10_2174_1566524023666221003102857
crossref_primary_10_1038_s44318_024_00148_8
crossref_primary_10_1016_j_coph_2021_07_014
crossref_primary_10_3390_toxics13030167
crossref_primary_10_3389_fmolb_2023_1270285
crossref_primary_10_1016_j_envpol_2020_115748
crossref_primary_10_1021_acs_analchem_1c01735
crossref_primary_10_1038_s41598_023_39979_6
crossref_primary_10_1042_CS20160222
crossref_primary_10_1007_s12018_017_9229_5
crossref_primary_10_1080_03602532_2018_1437446
crossref_primary_10_1158_0008_5472_CAN_19_0428
crossref_primary_10_1002_wrna_1815
crossref_primary_10_1371_journal_pgen_1009376
crossref_primary_10_1186_s13072_017_0116_6
crossref_primary_10_3390_cells11152404
crossref_primary_10_1103_PhysRevE_109_014405
crossref_primary_10_1007_s00412_017_0647_4
crossref_primary_10_1002_ptr_6434
crossref_primary_10_1038_s41588_021_00887_y
crossref_primary_10_3390_jof8111159
crossref_primary_10_1371_journal_pcbi_1009861
crossref_primary_10_1159_000529336
crossref_primary_10_1007_s12018_019_09263_1
crossref_primary_10_3389_fcell_2019_00002
crossref_primary_10_1038_s41597_020_0412_z
crossref_primary_10_3389_fmolb_2023_1170026
crossref_primary_10_1016_j_omton_2024_200871
crossref_primary_10_1016_j_bbcan_2020_188349
crossref_primary_10_3390_v9050125
crossref_primary_10_1172_jci_insight_123196
crossref_primary_10_3390_life13122279
crossref_primary_10_1016_j_neurobiolaging_2018_03_009
crossref_primary_10_1038_s41467_018_06186_1
crossref_primary_10_1002_pmic_201700379
crossref_primary_10_1186_s12886_025_03939_7
crossref_primary_10_3390_v12050555
crossref_primary_10_1186_s12931_024_03093_6
crossref_primary_10_3390_vaccines9050514
crossref_primary_10_1007_s00281_017_0656_7
crossref_primary_10_1038_s41467_022_28485_4
crossref_primary_10_1242_dev_129007
crossref_primary_10_3390_biom11091380
crossref_primary_10_4155_ppa_2019_0025
crossref_primary_10_1371_journal_pcbi_1011725
crossref_primary_10_1515_hsz_2023_0189
crossref_primary_10_1080_10408398_2021_1944974
crossref_primary_10_1186_s12935_019_0979_7
crossref_primary_10_1038_s41576_019_0105_7
crossref_primary_10_1152_physrev_00017_2022
crossref_primary_10_1016_j_cellsig_2019_109509
crossref_primary_10_1093_nar_gky715
crossref_primary_10_1213_ANE_0000000000006397
crossref_primary_10_3389_fgene_2022_994471
crossref_primary_10_3390_ijms25052750
crossref_primary_10_3389_fpls_2021_761059
crossref_primary_10_1038_s41418_024_01419_x
crossref_primary_10_1093_cvr_cvac142
crossref_primary_10_3390_a16090401
crossref_primary_10_1016_j_bcp_2022_115341
crossref_primary_10_1007_s00281_017_0621_5
crossref_primary_10_1017_S0967199423000448
crossref_primary_10_1016_j_ceb_2016_12_001
crossref_primary_10_1016_j_molcel_2017_05_014
crossref_primary_10_7717_peerj_3236
crossref_primary_10_1016_j_semcancer_2023_10_005
crossref_primary_10_1126_sciadv_adf2451
crossref_primary_10_1002_1878_0261_12041
crossref_primary_10_1242_jcs_205534
crossref_primary_10_1016_j_mce_2017_06_007
crossref_primary_10_1074_mcp_R120_002257
crossref_primary_10_1093_nar_gky526
crossref_primary_10_1111_boc_202400096
crossref_primary_10_1007_s00109_022_02247_7
crossref_primary_10_1016_j_bcp_2022_115295
crossref_primary_10_1097_QAI_0000000000002526
crossref_primary_10_1038_s41583_019_0121_9
crossref_primary_10_1038_s41585_019_0154_x
crossref_primary_10_1038_s41586_023_06546_y
crossref_primary_10_1016_j_ab_2018_01_018
crossref_primary_10_1038_s41556_020_0499_7
crossref_primary_10_1002_humu_24203
crossref_primary_10_1021_jacs_8b03715
crossref_primary_10_1093_biolre_ioaa053
crossref_primary_10_1002_pro_4760
crossref_primary_10_3390_ijms20235998
crossref_primary_10_1016_j_trecan_2019_10_009
crossref_primary_10_1016_j_biocel_2017_06_016
crossref_primary_10_1093_gbe_evy196
crossref_primary_10_3390_cells11010028
crossref_primary_10_21769_BioProtoc_2781
crossref_primary_10_2217_epi_2023_0235
crossref_primary_10_1080_15427528_2019_1678541
crossref_primary_10_1002_adbi_202300211
crossref_primary_10_1155_2021_9995903
crossref_primary_10_1007_s12035_019_01829_w
crossref_primary_10_3390_antiox11071355
crossref_primary_10_1242_dev_143347
crossref_primary_10_3390_biology13080638
crossref_primary_10_1007_s00299_021_02754_w
crossref_primary_10_1007_s11427_019_9582_9
crossref_primary_10_1007_s40495_023_00338_8
crossref_primary_10_1186_s13072_019_0275_8
crossref_primary_10_1038_s41419_021_04365_5
crossref_primary_10_7554_eLife_72792
crossref_primary_10_1007_s12015_020_10055_0
crossref_primary_10_1016_j_molmed_2024_06_004
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_1038_s41467_019_12355_7
crossref_primary_10_3390_onco3030011
crossref_primary_10_1371_journal_pone_0230930
crossref_primary_10_1007_s00294_018_0903_z
crossref_primary_10_18632_oncotarget_15818
crossref_primary_10_1080_15592294_2016_1226452
crossref_primary_10_1093_nar_gkx531
crossref_primary_10_4049_jimmunol_2001160
crossref_primary_10_1186_s13148_021_01170_x
crossref_primary_10_3389_fcell_2021_759237
crossref_primary_10_1093_bioinformatics_btaf033
crossref_primary_10_1038_cddis_2017_239
crossref_primary_10_1074_jbc_RA119_010302
crossref_primary_10_1016_j_jbiosc_2016_09_008
crossref_primary_10_1186_s40364_024_00621_w
crossref_primary_10_18632_oncotarget_11348
crossref_primary_10_1016_j_bcp_2023_115799
crossref_primary_10_3390_ijms23031791
crossref_primary_10_1093_nar_gkae276
crossref_primary_10_3390_genes13122388
crossref_primary_10_1186_s12967_019_1862_y
crossref_primary_10_1080_17501911_2024_2442297
crossref_primary_10_18632_oncotarget_24522
crossref_primary_10_1186_s13072_023_00512_8
crossref_primary_10_3390_ijms20163918
crossref_primary_10_1016_j_neubiorev_2023_105293
crossref_primary_10_3390_ijms22137118
crossref_primary_10_1016_j_semcdb_2019_03_004
crossref_primary_10_1002_jmor_21008
crossref_primary_10_3390_cancers15020425
crossref_primary_10_1016_j_gde_2023_102033
crossref_primary_10_1007_s00425_024_04549_1
crossref_primary_10_1111_jipb_12850
crossref_primary_10_1038_s41467_024_46910_8
crossref_primary_10_1016_j_canlet_2019_11_027
crossref_primary_10_26508_lsa_201800228
crossref_primary_10_1016_j_neubiorev_2023_105101
crossref_primary_10_15252_embj_2022110595
crossref_primary_10_1063_5_0087699
crossref_primary_10_3390_epigenomes2040020
crossref_primary_10_1016_j_tibs_2017_10_004
crossref_primary_10_1371_journal_pgen_1010647
crossref_primary_10_1080_19491034_2024_2374854
crossref_primary_10_1093_plcell_koab281
crossref_primary_10_1038_s12276_023_00987_1
crossref_primary_10_15252_emmm_202013785
crossref_primary_10_15252_embj_2019101564
crossref_primary_10_3389_fcell_2022_1026406
crossref_primary_10_1139_gen_2020_0104
crossref_primary_10_3389_fimmu_2021_662565
crossref_primary_10_3164_jcbn_17_113
crossref_primary_10_1016_j_genrep_2020_100815
crossref_primary_10_1186_s13046_022_02530_y
crossref_primary_10_3390_ijms18051069
crossref_primary_10_1186_s12935_023_03067_6
crossref_primary_10_1016_j_prp_2024_155446
crossref_primary_10_3389_fcell_2019_00081
crossref_primary_10_1016_j_atherosclerosis_2020_04_004
crossref_primary_10_1002_jez_2246
crossref_primary_10_1016_j_jgg_2021_04_004
crossref_primary_10_1523_ENEURO_0255_16_2017
crossref_primary_10_2217_epi_2018_0126
crossref_primary_10_1136_jmedgenet_2018_105668
crossref_primary_10_1080_15384101_2021_1986317
crossref_primary_10_1016_j_pharmthera_2019_01_002
crossref_primary_10_1038_s41598_017_06569_2
crossref_primary_10_1128_JVI_01812_19
crossref_primary_10_1177_0022034519862258
crossref_primary_10_1038_s41467_018_07829_z
crossref_primary_10_1126_sciimmunol_ado0398
crossref_primary_10_1210_endocr_bqaa210
crossref_primary_10_1111_cas_13925
crossref_primary_10_1080_15384047_2019_1640032
crossref_primary_10_3389_fcell_2021_739780
crossref_primary_10_1093_ijnp_pyy102
crossref_primary_10_1007_s10577_016_9548_2
crossref_primary_10_1186_s13148_021_01103_8
crossref_primary_10_1016_j_canlet_2018_04_032
crossref_primary_10_1021_acs_jmedchem_3c01095
crossref_primary_10_2174_0113892037274615240528113148
crossref_primary_10_1515_nf_2018_A001
crossref_primary_10_1177_13872877241288709
crossref_primary_10_1007_s13258_021_01213_w
crossref_primary_10_1016_j_pbi_2016_08_002
crossref_primary_10_1111_febs_14491
crossref_primary_10_2174_1871530319666190301145545
crossref_primary_10_3390_epigenomes1030020
crossref_primary_10_3390_ijms25095044
crossref_primary_10_1016_j_pnpbp_2017_12_013
crossref_primary_10_3390_ijms24021308
crossref_primary_10_1016_j_matbio_2018_02_004
crossref_primary_10_1016_j_gendis_2022_11_022
crossref_primary_10_3389_fcell_2021_626708
crossref_primary_10_1134_S0026893322030049
crossref_primary_10_1152_physrev_00024_2016
crossref_primary_10_1016_j_molonc_2016_09_003
crossref_primary_10_1093_advances_nmac039
crossref_primary_10_1038_s41477_020_00757_1
crossref_primary_10_1038_s41392_023_01651_w
crossref_primary_10_1007_s12013_024_01254_4
crossref_primary_10_1136_gutjnl_2018_317208
crossref_primary_10_1103_PhysRevE_106_024408
crossref_primary_10_3390_cells10092362
crossref_primary_10_1186_s13072_024_00542_w
crossref_primary_10_1186_s13148_018_0512_1
crossref_primary_10_1158_1078_0432_CCR_24_3324
crossref_primary_10_1137_23M1592389
crossref_primary_10_1016_j_ymeth_2024_03_001
Cites_doi 10.1038/nature06008
10.1038/nsmb.1961
10.1128/MCB.00949-07
10.1038/nsmb.2434
10.1021/ac401299w
10.1038/nsmb.2833
10.1016/j.molcel.2013.01.016
10.1016/j.molcel.2005.07.024
10.1016/j.cell.2006.02.041
10.1074/jbc.C200433200
10.1038/nature08398
10.1182/blood-2010-07-298349
10.1016/j.molcel.2010.04.009
10.1038/nature00883
10.1038/onc.2015.24
10.1016/j.bbamcr.2013.11.016
10.1073/pnas.1100099108
10.1136/jmg.40.6.436
10.1016/j.cell.2007.05.042
10.1016/j.cell.2005.10.002
10.1101/gad.347705
10.1128/MCB.24.12.5475-5484.2004
10.1074/mcp.M900489-MCP200
10.1186/1756-8935-6-24
10.4161/cc.8.11.8620
10.1101/gad.1035902
10.1093/nar/gkq244
10.1074/jbc.M110.194027
10.1101/gad.191163.112
10.1038/sj.emboj.7601187
10.1023/A:1022923508198
10.1016/j.molcel.2004.05.009
10.1128/MCB.21.8.2726-2735.2001
10.1093/nar/gkt1394
10.1073/pnas.0437846100
10.1074/jbc.M109.089433
10.1016/j.molcel.2015.02.013
10.1016/j.molcel.2014.10.001
10.1016/S1097-2765(03)00092-3
10.1126/science.1262088
10.1016/S1097-2765(03)00477-5
10.1093/nar/gku1354
10.1371/journal.pgen.1000242
10.1074/jbc.M113.475996
10.1016/j.cell.2010.08.020
10.1007/s10577-007-1126-1
10.1016/j.stem.2011.04.004
10.1016/S0014-5793(00)01449-6
10.1021/pr800044q
10.1074/mcp.M112.026716
10.1038/nature13045
10.1073/pnas.1016071107
10.1371/journal.pone.0022548
10.1038/ng.99
10.1073/pnas.1419703112
10.7554/eLife.01632
10.1038/ng.2777
10.1016/j.stem.2011.12.006
10.1128/EC.4.8.1446-1454.2005
10.1128/MCB.00601-13
10.1038/sj.embor.7400376
10.1016/S0960-9822(03)00432-9
10.1038/nature04254
10.1016/j.celrep.2012.09.019
10.1038/sj.ejhg.5201298
10.1016/j.cell.2005.06.026
10.1038/emboj.2011.193
10.1016/j.molcel.2006.06.017
10.1073/pnas.231473398
10.1016/S0014-5793(01)03309-9
10.1016/j.cell.2014.05.004
10.1101/gad.1284005
10.1016/j.molcel.2013.12.005
10.1016/j.molcel.2005.12.007
10.1101/gad.2027411
10.1073/pnas.0401866101
10.1371/journal.pgen.1001091
10.1101/gr.080861.108
10.1016/j.molcel.2003.08.007
10.1016/j.tig.2003.09.007
10.1242/dev.102681
10.1038/nsmb.1499
10.1007/s00018-014-1725-x
10.1038/emboj.2011.431
10.1101/gad.177220.111
10.1101/gad.1837309
10.1016/j.febslet.2006.10.027
10.1016/j.molcel.2012.10.026
10.1016/j.celrep.2014.04.012
10.1128/MCB.01684-06
10.1128/MCB.24.6.2478-2486.2004
10.1016/j.jmb.2010.03.036
10.1016/j.molcel.2012.01.002
10.1016/S0960-9822(02)00892-8
10.1016/j.molcel.2006.10.026
10.1038/nsmb.2435
10.1128/MCB.25.8.3305-3316.2005
10.1016/j.cell.2013.01.032
10.1073/pnas.1205707109
10.1128/MCB.00205-14
10.1128/MCB.00866-13
10.1038/nsmb.2653
10.1016/j.cell.2005.10.023
10.1074/jbc.M603099200
10.1016/j.cell.2005.10.025
10.1101/cshperspect.a017780
10.1074/jbc.M307344200
10.1016/j.molcel.2011.05.015
10.1242/dev.02584
10.1126/science.1084274
10.1101/gad.381706
10.1016/j.bbcan.2011.05.004
10.1073/pnas.1400648111
10.1093/nar/gkg332
10.1016/j.celrep.2012.11.026
10.1016/j.molcel.2013.10.030
10.1038/ncb1787
10.7554/eLife.00205
10.1038/sj.ejhg.5201050
10.1038/nsmb.2449
10.1126/science.1248357
10.1016/j.molcel.2005.11.012
10.1186/1756-8935-6-12
10.1016/j.cell.2012.09.002
10.1101/gad.177238.111
10.1074/jbc.C300270200
10.1016/j.str.2007.08.007
10.1371/journal.pgen.1002774
10.1128/MCB.20.6.2108-2121.2000
10.1073/pnas.1012798108
10.1016/j.cell.2007.05.009
10.1016/j.molcel.2011.03.025
10.1128/MCB.00389-12
10.1016/S1534-5807(03)00068-6
10.1038/nsmb.1384
10.1101/gad.2037511
10.1074/jbc.M112.384057
10.1093/nar/gks367
10.1073/pnas.0704351104
10.1128/MCB.24.13.5639-5649.2004
10.1038/nrm3274
10.1002/stem.2046
10.1128/MCB.24.5.1884-1896.2004
10.1074/jbc.M212134200
10.1074/jbc.M210256200
10.1016/j.stem.2010.03.018
10.1016/j.molcel.2004.06.020
10.1242/dev.048363
10.1038/ncb1076
10.1016/j.molcel.2005.11.021
10.1126/science.1225237
10.1016/j.devcel.2004.10.005
10.1016/j.molcel.2013.01.033
10.1038/ncb2702
10.1101/gad.217778.113
10.1016/j.molcel.2012.11.026
10.1074/jbc.C600286200
10.1016/j.cell.2010.05.016
10.1016/j.molcel.2010.08.020
10.1016/j.cell.2011.12.029
10.1016/j.molcel.2008.12.016
10.1101/gr.6654808
10.1074/jbc.M009472200
10.1101/gad.194209.112
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY 4.0 license 2015
2015 The Authors. Published under the terms of the CC BY 4.0 license
2015 The Authors. Published under the terms of the CC BY 4.0 license.
2015 EMBO
2015 The Authors. Published under the terms of the CC BY 4.0 license 2015
Copyright_xml – notice: The Authors. Published under the terms of the CC BY 4.0 license 2015
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2015 EMBO
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015
DBID BSCLL
C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.201540945
DatabaseName Istex
Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 1481
ExternalDocumentID PMC4641500
3854502201
26474904
10_15252_embr_201540945
EMBR201540945
ark_67375_WNG_6J5Z3TKR_T
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: European Research Council
  grantid: 340081
– fundername: Wellcome Trust
  grantid: 103768
– fundername: Wellcome Trust
  funderid: 103768
– fundername: European Research Council
  funderid: 340081
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
29G
2WC
33P
36B
39C
3O-
53G
5GY
5VS
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAJSJ
AAMMB
AANHP
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
R.K
RHI
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
X7M
ZGI
ZZTAW
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
3V.
88A
ABJNI
M0L
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5515-565ce0587ab8a835724a7d587d9e3b7aa345fa66f72033c4f051784f810e46633
IEDL.DBID C6C
ISSN 1469-221X
IngestDate Thu Aug 21 13:40:54 EDT 2025
Sun Sep 28 01:24:34 EDT 2025
Fri Jul 25 10:49:57 EDT 2025
Mon Jul 21 05:58:57 EDT 2025
Tue Jul 01 02:52:14 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
Wed Jan 22 16:31:55 EST 2025
Fri Feb 21 02:37:41 EST 2025
Sun Sep 21 06:17:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Trithorax
Polycomb
histone modifications
chromatin
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2015 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5515-565ce0587ab8a835724a7d587d9e3b7aa345fa66f72033c4f051784f810e46633
Notes European Research Council - No. 340081
istex:44797A4FF603C26FCB2C4AACD048E15AC1D9C3FB
ArticleID:EMBR201540945
ark:/67375/WNG-6J5Z3TKR-T
Wellcome Trust - No. 103768
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
These authors contributed equally to this work
OpenAccessLink https://doi.org/10.15252/embr.201540945
PMID 26474904
PQID 1728986997
PQPubID 26169
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4641500
proquest_miscellaneous_1730679153
proquest_journals_1728986997
pubmed_primary_26474904
crossref_citationtrail_10_15252_embr_201540945
crossref_primary_10_15252_embr_201540945
wiley_primary_10_15252_embr_201540945_EMBR201540945
springer_journals_10_15252_embr_201540945
istex_primary_ark_67375_WNG_6J5Z3TKR_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Chichester, UK
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley & Sons, Ltd
References Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nunez JK, Nickoloff J et al (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19: 1266-1272
Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107: 21931-21936
Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19: 849-856
Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884-1896
Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23: 289-296
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837
Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwammle V, Pasini D, Helin K, Jensen ON (2013) Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem 85: 8232-8239
Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO et al (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30: 2829-2842
Wu L, Zee BM, Wang Y, Garcia BA, Dou Y (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation. Mol Cell 43: 132-144
Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A et al (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. elife 3: e01632
Eberl HC, Spruijt CG, Kelstrup CD, Vermeulen M, Mann M (2013) A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 49: 368-378
Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49: 1134-1146
Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV, Bhang HE, Taylor JE, Hu M, Englund NP et al (2013) Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 45: 1386-1391
Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA (2009) SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 23: 2484-2489
Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J et al (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508: 263-268
Brien GL, Gambero G, O'Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19: 1273-1281
Douglas J, Coleman K, Tatton-Brown K, Hughes HE, Temple IK, Cole TR, Rahman N, Childhood Overgrowth C (2005) Evaluation of NSD2 and NSD3 in overgrowth syndromes. Eur J Hum Genet 13: 150-153
Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SI, Strahl BD (2005) Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4: 1446-1454
Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6: 73-77
Escamilla-Del-Arenal M, da Rocha ST, Spruijt CG, Masui O, Renaud O, Smits AH, Margueron R, Vermeulen M, Heard E (2013) Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 33: 5005-5020
Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101: 7357-7362
Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8: 676-687
Morishita M, di Luccio E (2011) Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta 1816: 158-163
Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53: 49-62
Jung HR, Pasini D, Helin K, Jensen ON (2010) Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 9: 838-850
Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38: 4958-4969
Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286: 7983-7989
Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19: 629-639
Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123-1136
Rechtsteiner A, Ercan S, Takasaki T, Phippen TM, Egelhofer TA, Wang W, Kimura H, Lieb JD, Strome S (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6: e1001091
de la Cruz CC, Kirmizis A, Simon MD, Isono K, Koseki H, Panning B (2007) The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution. Chromosome Res 15: 299-314
Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA et al (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 8: e1002774
Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035-4040
Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593-605
Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42: 330-341
Murton BL, Chin WL, Ponting CP, Itzhaki LS (2010) Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase. J Mol Biol 398: 481-488
Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N (2006) The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 580: 6233-6241
Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51-64
Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77-88
Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151: 181-193
Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98: 12902-12907
Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577-1589
Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40: 411-420
Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747-1753
Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192-1200
Crump NT, Hazzalin CA, Bowers EM, Alani RM, Cole PA, Mahadevan LC (2011) Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. Proc Natl Acad Sci USA 108: 7814-7819
Nekrasov M, Wild B, Muller J (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6: 348-353
Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S (2006) MES-4: an autosome-associated histone methyltransferase that participates in si
Gaydos, Rechtsteiner, Egelhofer, Carroll, Strome (CR138) 2012; 2
Katada, Sassone‐Corsi (CR20) 2010; 17
Gao, Zhang, Bonasio, Strino, Sawai, Parisi, Kluger, Reinberg (CR91) 2012; 45
Wu, Johansen, Helin (CR107) 2013; 49
Clouaire, Webb, Skene, Illingworth, Kerr, Andrews, Lee, Skalnik, Bird (CR29) 2012; 26
Wu, Zee, Wang, Garcia, Dou (CR42) 2011; 43
Wu, Lee, Zhou, Nguyen, Muir, Tan, Dou (CR43) 2013; 49
Yuan, Wu, Fu, Dai, Wu, Liu, Li, Xu, Zhang, Niu (CR90) 2012; 337
Song, Sun, Lu, Tian, Ding, Liu (CR19) 2015; 112
Eberl, Spruijt, Kelstrup, Vermeulen, Mann (CR31) 2013; 49
Bian, Xu, Ruan, Lee, Burke, Tempel, Barsyte, Li, Wu, Zhou (CR49) 2011; 30
Schneider, Arteaga‐Salas, Mentele, David, Nicetto, Imhof, Rupp (CR72) 2011; 6
Yuan, Pu, Zhang, Lou (CR45) 2009; 8
Mak, Baxter, Silva, Newall, Otte, Brockdorff (CR98) 2002; 12
Mozzetta, Pontis, Fritsch, Robin, Portoso, Proux, Margueron, Ait‐Si‐Ali (CR128) 2014; 53
CR157
Wen, Li, Xi, Jiang, Stratton, Peng, Tanaka, Ren, Xia, Wu (CR163) 2014; 508
Hock (CR158) 2012; 26
Murton, Chin, Ponting, Itzhaki (CR33) 2010; 398
Yuan, Ma, Yuan, Zhang, Chen, Ding, Feng, Shen, Chen, Li (CR141) 2013; 288
Ren, Vincenz, Kerppola (CR101) 2008; 28
de la Cruz, Kirmizis, Simon, Isono, Koseki, Panning (CR130) 2007; 15
van Nuland, van Schaik, Simonis, van Heesch, Cuppen, Boelens, Timmers, van Ingen (CR67) 2013; 6
Miller, Krogan, Dover, Erdjument‐Bromage, Tempst, Johnston, Greenblatt, Shilatifard (CR15) 2001; 98
Schoeftner, Sengupta, Kubicek, Mechtler, Spahn, Koseki, Jenuwein, Wutz (CR102) 2006; 25
Cai, Rothbart, Lu, Xu, Chen, Tripathy, Rockowitz, Zheng, Patel, Allis (CR144) 2013; 49
Bernstein, Mikkelsen, Xie, Kamal, Huebert, Cuff, Fry, Meissner, Wernig, Plath (CR30) 2006; 125
Deaton, Bird (CR24) 2011; 25
Kim, Kang, Jang, Kwak, Shin, Kim, Lee, Lee, Lee, Kim (CR149) 2015; 33
Hsu, Chubb, Muramoto, Pears, Mahadevan (CR54) 2012; 40
Jung, Sidoli, Haldbo, Sprenger, Schwammle, Pasini, Helin, Jensen (CR137) 2013; 85
Sims, Nishioka, Reinberg (CR12) 2003; 19
Barrera, Li, Smith, Arden, Cavenee, Zhang, Green, Ren (CR4) 2008; 18
Pokholok, Harbison, Levine, Cole, Hannett, Lee, Bell, Walker, Rolfe, Herbolsheimer (CR11) 2005; 122
Stec, Nagl, van Ommen, den Dunnen (CR70) 2000; 473
Alder, Lavial, Helness, Brookes, Pinho, Chandrashekran, Arnaud, Pombo, O'Neill, Azuara (CR125) 2010; 137
Zheng, Sweet, Popovic, Martinez‐Garcia, Tipton, Thomas, Licht, Kelleher (CR73) 2012; 109
Pauler, Sloane, Huang, Regha, Koerner, Tamir, Sommer, Aszodi, Jenuwein, Barlow (CR87) 2009; 19
Schulze, Hentrich, Nakanishi, Gupta, Emberly, Shilatifard, Kobor (CR36) 2011; 25
Tardat, Albert, Kunzmann, Liu, Kaustov, Thierry, Duan, Brykczynska, Arrowsmith, Peters (CR124) 2015; 58
Liang, Lin, Wei, Yoo, Cheng, Nguyen, Weisenberger, Egger, Takai, Gonzales (CR6) 2004; 101
He, Kallin, Tsukada, Zhang (CR65) 2008; 15
Clayton, Hazzalin, Mahadevan (CR55) 2006; 23
Tachibana, Ueda, Fukuda, Takeda, Ohta, Iwanari, Sakihama, Kodama, Hamakubo, Shinkai (CR110) 2005; 19
Shi, Kachirskaia, Walter, Kuo, Lake, Davrazou, Chan, Martin, Fingerman, Briggs (CR32) 2007; 282
Schmitges, Prusty, Faty, Stutzer, Lingaraju, Aiwazian, Sack, Hess, Li, Zhou (CR76) 2011; 42
Ferrari, Scelfo, Jammula, Cuomo, Barozzi, Stutzer, Fischle, Bonaldi, Pasini (CR83) 2014; 53
Ballare, Lange, Lapinaite, Martin, Morey, Pascual, Liefke, Simon, Shi, Gozani (CR147) 2012; 19
Gehani, Agrawal‐Singh, Dietrich, Christophersen, Helin, Hansen (CR151) 2010; 39
Morris, Shibata, Noma, Tsukamoto, Warren, Temple, Grewal, Strahl (CR60) 2005; 4
Wang, Brown, Cao, Zhang, Kassis, Jones (CR100) 2004; 14
Garcia, Thomas, Kelleher, Mizzen (CR160) 2008; 7
Raisner, Hartley, Meneghini, Bao, Liu, Schreiber, Rando, Madhani (CR162) 2005; 123
Reynolds, Salmon‐Divon, Dvinge, Hynes‐Allen, Balasooriya, Leaford, Behrens, Bertone, Hendrich (CR148) 2012; 31
Cao, Zhang (CR79) 2004; 15
Keogh, Kurdistani, Morris, Ahn, Podolny, Collins, Schuldiner, Chin, Punna, Thompson (CR63) 2005; 123
Schotta, Ebert, Reuter (CR116) 2003; 117
Chan, Fang, Gan, Hashizume, Yu, Schroeder, Gupta, Mueller, James, Jenkins (CR159) 2013; 27
Wang, Song, Milne, Wang, Li, Allis, Patel (CR34) 2010; 141
Dhayalan, Rajavelu, Rathert, Tamas, Jurkowska, Ragozin, Jeltsch (CR66) 2010; 285
Myers, Evans, Clayton, Thorne, Crane‐Robinson (CR7) 2001; 276
Jung, Pasini, Helin, Jensen (CR84) 2010; 9
Plath, Fang, Mlynarczyk‐Evans, Cao, Worringer, Wang, de la Cruz, Otte, Panning, Zhang (CR97) 2003; 300
Blackledge, Farcas, Kondo, King, McGouran, Hanssen, Ito, Cooper, Kondo, Koseki (CR104) 2014; 157
Deckert, Struhl (CR5) 2001; 21
Wang, Lawry, Cohen, Jia (CR134) 2014; 71
Lau, Cheung (CR150) 2011; 108
Pasini, Malatesta, Jung, Walfridsson, Willer, Olsson, Skotte, Wutz, Porse, Jensen (CR152) 2010; 38
Kuzmichev, Nishioka, Erdjument‐Bromage, Tempst, Reinberg (CR78) 2002; 16
Wang, An, Cao, Xia, Erdjument‐Bromage, Chatton, Tempst, Roeder, Zhang (CR113) 2003; 12
Fuks, Hurd, Deplus, Kouzarides (CR118) 2003; 31
Elgin, Reuter (CR135) 2013; 5
de Napoles, Mermoud, Wakao, Tang, Endoh, Appanah, Nesterova, Silva, Otte, Vidal (CR99) 2004; 7
Zeng, Zhou (CR44) 2002; 513
Martinez‐Garcia, Popovic, Min, Sweet, Thomas, Zamdborg, Heffner, Will, Lamy, Staudt (CR74) 2011; 117
Sun, Allis (CR37) 2002; 418
Carrozza, Li, Florens, Suganuma, Swanson, Lee, Shia, Anderson, Yates, Washburn (CR62) 2005; 123
Saksouk, Barth, Ziegler‐Birling, Olova, Nowak, Rey, Mateos‐Langerak, Urbach, Reik, Torres‐Padilla (CR122) 2014; 56
Shinkai, Tachibana (CR109) 2011; 25
Kim, Tang, Shimada, Fierz, Houck‐Loomis, Bar‐Dagen, Lee, Lee, Muir, Roeder (CR143) 2013; 33
Morey, Pascual, Cozzuto, Roma, Wutz, Benitah, Di Croce (CR92) 2012; 10
Yokoyama, Wang, Wysocka, Sanyal, Aufiero, Kitabayashi, Herr, Cleary (CR23) 2004; 24
Yuan, Xu, Huang, Liu, Chen, Zhu (CR77) 2011; 286
Hansen, Bracken, Pasini, Dietrich, Gehani, Monrad, Rappsilber, Lerdrup, Helin (CR89) 2008; 10
Nekrasov, Wild, Muller (CR80) 2005; 6
Turkmen, Gillessen‐Kaesbach, Meinecke, Albrecht, Neumann, Hesse, Palanduz, Balg, Majewski, Fuchs (CR153) 2003; 11
Voo, Carlone, Jacobsen, Flodin, Skalnik (CR2) 2000; 20
Douglas, Coleman, Tatton‐Brown, Hughes, Temple, Cole, Rahman, Childhood Overgrowth (CR155) 2005; 13
Puschendorf, Terranova, Boutsma, Mao, Isono, Brykczynska, Kolb, Otte, Koseki, Orkin (CR123) 2008; 40
Kizer, Phatnani, Shibata, Hall, Greenleaf, Strahl (CR59) 2005; 25
Boros, Arnoult, Stroobant, Collet, Decottignies (CR129) 2014; 34
Morey, Aloia, Cozzuto, Benitah, Di Croce (CR94) 2013; 3
Hirota, Lipp, Toh, Peters (CR120) 2005; 438
Ku, Koche, Rheinbay, Mendenhall, Endoh, Mikkelsen, Presser, Nusbaum, Xie, Chi (CR96) 2008; 4
Kim, Jung, Lee, Kang, Kim, Jeong, Kwon, Han, Kim, Kim (CR40) 2012; 287
Doyon, Cayrou, Ullah, Landry, Cote, Selleck, Lane, Tan, Yang, Cote (CR56) 2006; 21
Gansen, Toth, Schwarz, Langowski (CR48) 2015; 43
Guenther, Levine, Boyer, Jaenisch, Young (CR26) 2007; 130
Ali, Hom, Blakeslee, Ikenouye, Kutateladze (CR35) 2014; 1843
Di Cerbo, Mohn, Ryan, Montellier, Kacem, Tropberger, Kallis, Holzner, Hoerner, Feldmann (CR46) 2014; 3
Hawkins, Hon, Lee, Ngo, Lister, Pelizzola, Edsall, Kuan, Luu, Klugman (CR126) 2010; 6
Bender, Suh, Carroll, Fong, Fingerman, Briggs, Cao, Zhang, Reinke, Strome (CR139) 2006; 133
Brien, Gambero, O'Connell, Jerman, Turner, Egan, Dunne, Jurgens, Wynne, Piao (CR146) 2012; 19
Jaffe, Wang, Chan, Zhang, Huether, Kryukov, Bhang, Taylor, Hu, Englund (CR75) 2013; 45
Fuks, Hurd, Wolf, Nan, Bird, Kouzarides (CR119) 2003; 278
Ng, Dole, Struhl (CR10) 2003; 278
Rechtsteiner, Ercan, Takasaki, Phippen, Egelhofer, Wang, Kimura, Lieb, Strome (CR140) 2010; 6
Ng, Robert, Young, Struhl (CR18) 2003; 11
Crump, Hazzalin, Bowers, Alani, Cole, Mahadevan (CR53) 2011; 108
Karimi, Goyal, Maksakova, Bilenky, Leung, Tang, Shinkai, Mager, Jones, Hirst (CR112) 2011; 8
Bilodeau, Kagey, Frampton, Rahl, Young (CR115) 2009; 23
Narayanan, Ruyechan, Kristie (CR22) 2007; 104
Guan, Rastogi, Parthun, Freitas (CR39) 2013; 12
Batta, Zhang, Yen, Goffman, Pugh (CR9) 2011; 25
Arrigoni, Alam, Wamstad, Bardwell, Sundquist, Schreiber‐Agus (CR95) 2006; 580
Jacob, Bergamin, Donoghue, Mongeon, LeBlanc, Voigt, Underwood, Brunzelle, Michaels, Reinberg (CR164) 2014; 343
Tavares, Dimitrova, Oxley, Webster, Poot, Demmers, Bezstarosti, Taylor, Ura, Koide (CR93) 2012; 148
Schneider, Wood, Lee, Schuster, Dueker, Maguire, Swanson, Florens, Washburn, Shilatifard (CR14) 2005; 19
Tropberger, Pott, Keller, Kamieniarz‐Gdula, Caron, Richter, Li, Mittler, Liu, Buhler (CR47) 2013; 152
Peters, Kubicek, Mechtler, O'Sullivan, Derijck, Perez‐Burgos, Kohlmaier, Opravil, Tachibana, Shinkai (CR121) 2003; 12
He, Shen, Wan, Taranova, Wu, Zhang (CR108) 2013; 15
Arnaudo, Garcia (CR1) 2013; 6
Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche (CR16) 2007; 448
Han, Xing, Hu, Zhang, Liu, Chai (CR81) 2007; 15
Schneider, Bannister, Myers, Thorne, Crane‐Robinson, Kouzarides (CR17) 2004; 6
Taverna, Ilin, Rogers, Tanny, Lavender, Li, Baker, Boyle, Blair, Chait (CR50) 2006; 24
Vermeulen, Eberl, Matarese, Marks, Denissov, Butter, Lee, Olsen, Hyman, Stunnenberg (CR69) 2010; 142
Escamilla‐Del‐Arenal, da Rocha, Spruijt, Masui, Renaud, Smits, Margueron, Vermeulen, Heard (CR133) 2013; 33
Margueron, Justin, Ohno, Sharpe, Son, Drury, Voigt, Martin, Taylor, De Marco (CR88) 2009; 461
Denissov, Hofemeister, Marks, Kranz, Ciotta, Singh, Anastassiadis, Stunnenberg, Stewart (CR28) 2014; 141
Alekseyenko, Gorchakov, Kharchenko, Kuroda (CR82) 2014; 111
Wagner, Carpenter (CR57) 2012; 13
Cooper, Dienstbier, Hassan, Schermelleh, Sharif, Blackledge, De Marco, Elderkin, Koseki, Klose (CR103) 2014; 7
Hung, Binda, Champagne, Kuo, Johnson, Chang, Simon, Kutateladze, Gozani (CR52) 2009; 33
Li, Howe, Anderson, Yates, Workman (CR58) 2003; 278
Joshi, Struhl (CR61) 2005; 20
Farcas, Blackledge, Sudbery, Long, McGouran, Rose, Lee, Sims, Cerase, Sheahan (CR106) 2012; 1
Hu, Garruss, Gao, Morgan, Cook, Smith, Shilatifard (CR27) 2013; 20
Dodge, Kang, Beppu, Lei, Li (CR114) 2004; 24
Silva, Mak, Zvetkova, Appanah, Nesterova, Webster, Peters, Jenuwein, Otte, Brockdorff (CR86) 2003; 4
Voigt, LeRoy, Drury, Zee, Son, Beck, Young, Garcia, Reinberg (CR127) 2012; 151
Ng, Ciccone, Morshead, Oettinger, Stru
2002; 16
2007; 104
2013; 3
2011; 117
2010; 107
2010; 17
2002; 12
2004; 7
2004; 24
2002; 277
2004; 6
2012; 19
2012; 13
2003; 278
2013; 5
2013; 6
2012; 10
2014; 21
2006; 20
2006; 23
2006; 24
2006; 21
2006; 25
2008; 28
2006; 281
2012; 26
2009; 19
2003; 40
2010; 6
2010; 9
2015; 58
2007; 448
2010; 38
2007; 282
2010; 39
2013; 85
2010; 285
2002; 418
2000; 473
2011; 6
2012; 32
2011; 8
2003; 31
2012; 31
2014; 1843
2012; 109
2007; 15
2001; 21
2014; 42
2014; 157
2001; 276
2005; 19
2004; 279
2005; 122
2005; 123
2015; 112
2011; 1816
2005; 4
2006; 580
2005; 6
2009; 461
2008; 40
2014; 141
2012; 45
2003; 100
2014; 34
2005; 13
2012; 40
2012; 287
2003; 117
2013; 27
2015; 347
2013; 20
2015; 33
2002; 513
2003; 13
2013; 288
2010; 141
2005; 20
2008; 7
2010; 142
2003; 19
2008; 4
2006; 133
2003; 11
2005; 25
2003; 12
2013; 15
2014; 3
2013; 12
2007; 130
2010; 398
2015; 43
2003; 4
2013; 152
2011; 25
2014; 7
2012; 337
2014; 56
2006; 125
2011; 286
2001; 98
2007; 27
2014; 53
2004; 101
2009; 23
2007; 129
2013; 49
2013; 45
2008; 18
2000; 20
2011; 30
2008; 15
2005; 438
2008; 10
2014; 111
2012; 148
2009; 33
2012; 151
2012; 2
2011; 108
2014; 508
2012; 1
2013; 33
2004; 14
2004; 15
2010; 137
2011; 42
2011; 43
2009; 8
2015
2003; 300
2014; 71
2012; 8
2014; 343
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – reference: Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y et al (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445-1459
– reference: Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation. Mol Cell Biol 25: 3305-3316
– reference: Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik D, Bird A (2012) Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 26: 1714-1728
– reference: Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J (2007) Structural basis of EZH2 recognition by EED. Structure 15: 1306-1315
– reference: Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15: 245-250
– reference: Gansen A, Toth K, Schwarz N, Langowski J (2015) Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure-a FRET study. Nucleic Acids Res 43: 1433-1443
– reference: Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148: 664-678
– reference: Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19: 815-826
– reference: Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, Voigt P, Martin SR, Taylor WR, De Marco V et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461: 762-767
– reference: Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123: 233-248
– reference: van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H (2013) Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 6: 12
– reference: Wang J, Lawry ST, Cohen AL, Jia S (2014) Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 71: 4841-4852
– reference: Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438: 1176-1180
– reference: Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51-64
– reference: Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, Margueron R, Ait-Si-Ali S (2014) The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 53: 277-289
– reference: Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10: 1291-1300
– reference: Morey L, Aloia L, Cozzuto L, Benitah SA, Di Croce L (2013) RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep 3: 60-69
– reference: Eberl HC, Spruijt CG, Kelstrup CD, Vermeulen M, Mann M (2013) A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 49: 368-378
– reference: Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13: 115-126
– reference: Brien GL, Gambero G, O'Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19: 1273-1281
– reference: Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107: 21931-21936
– reference: Ng HH, Xu RM, Zhang Y, Struhl K (2002) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277: 34655-34657
– reference: Ballare C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19: 1257-1265
– reference: Kanu N, Gronroos E, Martinez P, Burrell RA, Yi Goh X, Bartkova J, Maya-Mendoza A, Mistrik M, Rowan AJ, Patel H et al (2015) SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene doi: 10.1038/onc.2015.24
– reference: Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S, Koseki H, Klose R et al (2014) Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 7: 1456-1470
– reference: Wu L, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, Dou Y (2013) ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3K4 methylation in higher eukaryotes. Mol Cell 49: 1108-1120
– reference: Yamamoto K, Sonoda M, Inokuchi J, Shirasawa S, Sasazuki T (2004) Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2. J Biol Chem 279: 401-406
– reference: Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101: 7357-7362
– reference: Narayanan A, Ruyechan WT, Kristie TM (2007) The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci USA 104: 10835-10840
– reference: Escamilla-Del-Arenal M, da Rocha ST, Spruijt CG, Masui O, Renaud O, Smits AH, Margueron R, Vermeulen M, Heard E (2013) Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 33: 5005-5020
– reference: Song ZT, Sun L, Lu SJ, Tian Y, Ding Y, Liu JX (2015) Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proc Natl Acad Sci USA 112: 2900-2905
– reference: Hsu DW, Chubb JR, Muramoto T, Pears CJ, Mahadevan LC (2012) Dynamic acetylation of lysine-4-trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote. Nucleic Acids Res 40: 7247-7256
– reference: Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV, Bhang HE, Taylor JE, Hu M, Englund NP et al (2013) Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 45: 1386-1391
– reference: Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23: 289-296
– reference: Wu L, Zee BM, Wang Y, Garcia BA, Dou Y (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation. Mol Cell 43: 132-144
– reference: Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122: 517-527
– reference: Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40: 411-420
– reference: Rio M, Clech L, Amiel J, Faivre L, Lyonnet S, Le Merrer M, Odent S, Lacombe D, Edery P, Brauner R et al (2003) Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J Med Genet 40: 436-440
– reference: Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6: 479-491
– reference: Myers FA, Evans DR, Clayton AL, Thorne AW, Crane-Robinson C (2001) Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes. J Biol Chem 276: 20197-20205
– reference: Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4: e1000242
– reference: Kalb R, Latwiel S, Baymaz HI, Jansen PW, Muller CW, Vermeulen M, Muller J (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21: 569-571
– reference: Arnaudo AM, Garcia BA (2013) Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6: 24
– reference: Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285: 26114-26120
– reference: Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98: 12902-12907
– reference: Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27: 985-990
– reference: Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581-592
– reference: Stec I, Nagl SB, van Ommen GJ, den Dunnen JT (2000) The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473: 1-5
– reference: Shi X, Kachirskaia I, Walter KL, Kuo JH, Lake A, Davrazou F, Chan SM, Martin DG, Fingerman IM, Briggs SD et al (2007) Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem 282: 2450-2455
– reference: Ali M, Hom RA, Blakeslee W, Ikenouye L, Kutateladze TG (2014) Diverse functions of PHD fingers of the MLL/KMT2 subfamily. Biochim Biophys Acta 1843: 366-371
– reference: Guan X, Rastogi N, Parthun MR, Freitas MA (2013) Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS). Mol Cell Proteomics 12: 2048-2059
– reference: Hu D, Garruss AS, Gao X, Morgan MA, Cook M, Smith ER, Shilatifard A (2013) The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 20: 1093-1097
– reference: Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, Anastassiadis K, Stunnenberg HG, Stewart AF (2014) Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141: 526-537
– reference: He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 15: 373-384
– reference: Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N (2006) The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 580: 6233-6241
– reference: Hock H (2012) A complex Polycomb issue: the two faces of EZH2 in cancer. Genes Dev 26: 751-755
– reference: Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO et al (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30: 2829-2842
– reference: Wirbelauer C, Bell O, Schubeler D (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19: 1761-1766
– reference: Alekseyenko AA, Gorchakov AA, Kharchenko PV, Kuroda MI (2014) Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification. Proc Natl Acad Sci USA 111: 2488-2493
– reference: Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837
– reference: Gaydos LJ, Rechtsteiner A, Egelhofer TA, Carroll CR, Strome S (2012) Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep 2: 1169-1177
– reference: Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11: 709-719
– reference: Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-135
– reference: Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33: 248-256
– reference: Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L, Heffner A, Will C, Lamy L, Staudt LM et al (2011) The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117: 211-220
– reference: Ren X, Vincenz C, Kerppola TK (2008) Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation. Mol Cell Biol 28: 2884-2895
– reference: Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA 100: 1820-1825
– reference: Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19: 849-856
– reference: Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A et al (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. elife 3: e01632
– reference: Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A, Rey E, Mateos-Langerak J, Urbach S, Reik W, Torres-Padilla ME et al (2014) Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56: 580-594
– reference: Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123-1136
– reference: Crump NT, Hazzalin CA, Bowers EM, Alani RM, Cole PA, Mahadevan LC (2011) Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. Proc Natl Acad Sci USA 108: 7814-7819
– reference: Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SI, Strahl BD (2005) Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4: 1446-1454
– reference: Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593-605
– reference: Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326
– reference: Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192-1200
– reference: Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4: 481-495
– reference: Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577-1589
– reference: Garcia BA, Thomas CE, Kelleher NL, Mizzen CA (2008) Tissue-specific expression and post-translational modification of histone H3 variants. J Proteome Res 7: 4225-4236
– reference: Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF (2011) Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25: 2254-2265
– reference: Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA (2009) SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 23: 2484-2489
– reference: Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035-4040
– reference: Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012) NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J 31: 593-605
– reference: Kim A, Kiefer CM, Dean A (2007) Distinctive signatures of histone methylation in transcribed coding and noncoding human beta-globin sequences. Mol Cell Biol 27: 1271-1279
– reference: Kim DH, Tang Z, Shimada M, Fierz B, Houck-Loomis B, Bar-Dagen M, Lee S, Lee SK, Muir TW, Roeder RG et al (2013) Histone H3K27 trimethylation inhibits H3 binding and function of SET1-like H3K4 methyltransferase complexes. Mol Cell Biol 33: 4936-4946
– reference: Morishita M, di Luccio E (2011) Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta 1816: 158-163
– reference: Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD et al (2013) An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 49: 571-582
– reference: Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24: 2478-2486
– reference: Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39: 886-900
– reference: Schulze JM, Hentrich T, Nakanishi S, Gupta A, Emberly E, Shilatifard A, Kobor MS (2011) Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev 25: 2242-2247
– reference: Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5: a017780
– reference: Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12: 1016-1020
– reference: Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21: 2726-2735
– reference: Alder O, Lavial F, Helness A, Brookes E, Pinho S, Chandrashekran A, Arnaud P, Pombo A, O'Neill L, Azuara V (2010) Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137: 2483-2492
– reference: Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Buhler M et al (2013) Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152: 859-872
– reference: de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7: 663-676
– reference: Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31: 2305-2312
– reference: Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278: 8897-8903
– reference: Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA, Di Croce L (2012) Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10: 47-62
– reference: Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104-108
– reference: Nekrasov M, Wild B, Muller J (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6: 348-353
– reference: Schotta G, Ebert A, Reuter G (2003) SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing. Genetica 117: 149-158
– reference: Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553-560
– reference: Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12: 475-487
– reference: Tardat M, Albert M, Kunzmann R, Liu Z, Kaustov L, Thierry R, Duan S, Brykczynska U, Arrowsmith CH, Peters AH (2015) Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol Cell 58: 157-171
– reference: Jacob Y, Bergamin E, Donoghue MT, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D et al (2014) Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343: 1249-1253
– reference: Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA et al (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 8: e1002774
– reference: Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, Feng L, Shen X, Chen S, Li G et al (2013) Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem 288: 30832-30842
– reference: Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, Heard E (2004) Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 24: 5475-5484
– reference: Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19: 629-639
– reference: Barrera LO, Li Z, Smith AD, Arden KC, Cavenee WK, Zhang MQ, Green RD, Ren B (2008) Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res 18: 46-59
– reference: Kim SK, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han YM, Kim YS, Kim D et al (2012) Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 287: 39698-39709
– reference: Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T et al (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337: 971-975
– reference: Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci USA 108: 2801-2806
– reference: Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW et al (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. elife 1: e00205
– reference: Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133: 3907-3917
– reference: Kim TW, Kang BH, Jang H, Kwak S, Shin J, Kim H, Lee SE, Lee SM, Lee JH, Kim JH et al (2015) Ctbp2 modulates NuRD-mediated deacetylation of H3K27 and facilitates PRC2-mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency. Stem Cells 33: 2442-2455
– reference: Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS, Howe L (2012) Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 32: 3479-3485
– reference: Voo KS, Carlone DL, Jacobsen BM, Flodin A, Skalnik DG (2000) Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol Cell Biol 20: 2108-2121
– reference: Kim J, Hake SB, Roeder RG (2005) The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20: 759-770
– reference: Ng HH, Dole S, Struhl K (2003) The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278: 33625-33628
– reference: Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2893-2905
– reference: Jung HR, Pasini D, Helin K, Jensen ON (2010) Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 9: 838-850
– reference: Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14: 637-646
– reference: Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42: 330-341
– reference: He J, Kallin EM, Tsukada Y, Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 15: 1169-1175
– reference: Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nunez JK, Nickoloff J et al (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19: 1266-1272
– reference: Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513: 124-128
– reference: Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD, Patel DJ (2010) Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141: 1183-1194
– reference: Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639-5649
– reference: Douglas J, Coleman K, Tatton-Brown K, Hughes HE, Temple IK, Cole TR, Rahman N, Childhood Overgrowth C (2005) Evaluation of NSD2 and NSD3 in overgrowth syndromes. Eur J Hum Genet 13: 150-153
– reference: Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT et al (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24: 785-796
– reference: Rechtsteiner A, Ercan S, Takasaki T, Phippen TM, Egelhofer TA, Wang W, Kimura H, Lieb JD, Strome S (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6: e1001091
– reference: Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8: 676-687
– reference: de la Cruz CC, Kirmizis A, Simon MD, Isono K, Koseki H, Panning B (2007) The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution. Chromosome Res 15: 299-314
– reference: Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49: 1134-1146
– reference: Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884-1896
– reference: Schneider TD, Arteaga-Salas JM, Mentele E, David R, Nicetto D, Imhof A, Rupp RA (2011) Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome. PLoS ONE 6: e22548
– reference: Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142: 967-980
– reference: Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747-1753
– reference: Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A, Aszodi A, Jenuwein T, Barlow DP (2009) H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 19: 221-233
– reference: Murton BL, Chin WL, Ponting CP, Itzhaki LS (2010) Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase. J Mol Biol 398: 481-488
– reference: Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J et al (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508: 263-268
– reference: Zheng Y, Sweet SM, Popovic R, Martinez-Garcia E, Tipton JD, Thomas PM, Licht JD, Kelleher NL (2012) Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci USA 109: 13549-13554
– reference: Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, Reinberg D (2015) Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347: 1017-1021
– reference: Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38: 4958-4969
– reference: Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15: 57-67
– reference: Boros J, Arnoult N, Stroobant V, Collet JF, Decottignies A (2014) Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Mol Cell Biol 34: 3662-3674
– reference: Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286: 7983-7989
– reference: Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53: 49-62
– reference: Okuda H, Kawaguchi M, Kanai A, Matsui H, Kawamura T, Inaba T, Kitabayashi I, Yokoyama A (2014) MLL fusion proteins link transcriptional coactivators to previously active CpG-rich promoters. Nucleic Acids Res 42: 4241-4256
– reference: Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77-88
– reference: Turkmen S, Gillessen-Kaesbach G, Meinecke P, Albrecht B, Neumann LM, Hesse V, Palanduz S, Balg S, Majewski F, Fuchs S et al (2003) Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. Eur J Hum Genet 11: 858-865
– reference: Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6: 73-77
– reference: Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17: 1414-1421
– reference: Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25: 1010-1022
– reference: Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25: 3110-3122
– reference: Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38: 179-190
– reference: Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151: 181-193
– reference: Dehe PM, Dichtl B, Schaft D, Roguev A, Pamblanco M, Lebrun R, Rodriguez-Gil A, Mkandawire M, Landsberg K, Shevchenko A et al (2006) Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 281: 35404-35412
– reference: Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20: 971-978
– reference: Shinkai Y, Tachibana M (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25: 781-788
– reference: Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45: 344-356
– reference: Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwammle V, Pasini D, Helin K, Jensen ON (2013) Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem 85: 8232-8239
– volume: 23
  start-page: 289
  year: 2006
  end-page: 296
  ident: CR55
  article-title: Enhanced histone acetylation and transcription: a dynamic perspective
  publication-title: Mol Cell
– volume: 11
  start-page: 858
  year: 2003
  end-page: 865
  ident: CR153
  article-title: Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes
  publication-title: Eur J Hum Genet
– volume: 27
  start-page: 985
  year: 2013
  end-page: 990
  ident: CR159
  article-title: The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression
  publication-title: Genes Dev
– volume: 6
  start-page: 12
  year: 2013
  ident: CR67
  article-title: Nucleosomal DNA binding drives the recognition of H3K36‐methylated nucleosomes by the PSIP1‐PWWP domain
  publication-title: Epigenetics Chromatin
– volume: 20
  start-page: 759
  year: 2005
  end-page: 770
  ident: CR41
  article-title: The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions
  publication-title: Mol Cell
– volume: 31
  start-page: 593
  year: 2012
  end-page: 605
  ident: CR148
  article-title: NuRD‐mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression
  publication-title: EMBO J
– volume: 25
  start-page: 2254
  year: 2011
  end-page: 2265
  ident: CR9
  article-title: Genome‐wide function of H2B ubiquitylation in promoter and genic regions
  publication-title: Genes Dev
– volume: 1843
  start-page: 366
  year: 2014
  end-page: 371
  ident: CR35
  article-title: Diverse functions of PHD fingers of the MLL/KMT2 subfamily
  publication-title: Biochim Biophys Acta
– volume: 278
  start-page: 4035
  year: 2003
  end-page: 4040
  ident: CR119
  article-title: The methyl‐CpG‐binding protein MeCP2 links DNA methylation to histone methylation
  publication-title: J Biol Chem
– volume: 56
  start-page: 580
  year: 2014
  end-page: 594
  ident: CR122
  article-title: Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation
  publication-title: Mol Cell
– volume: 111
  start-page: 2488
  year: 2014
  end-page: 2493
  ident: CR82
  article-title: Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP‐XL cross‐linking and affinity purification
  publication-title: Proc Natl Acad Sci USA
– volume: 71
  start-page: 4841
  year: 2014
  end-page: 4852
  ident: CR134
  article-title: Chromosome boundary elements and regulation of heterochromatin spreading
  publication-title: Cell Mol Life Sci
– volume: 49
  start-page: 1108
  year: 2013
  end-page: 1120
  ident: CR43
  article-title: ASH2L regulates ubiquitylation signaling to MLL: trans‐regulation of H3K4 methylation in higher eukaryotes
  publication-title: Mol Cell
– volume: 100
  start-page: 1820
  year: 2003
  end-page: 1825
  ident: CR8
  article-title: Lysine‐79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position‐effect variegation
  publication-title: Proc Natl Acad Sci USA
– volume: 276
  start-page: 20197
  year: 2001
  end-page: 20205
  ident: CR7
  article-title: Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes
  publication-title: J Biol Chem
– volume: 123
  start-page: 233
  year: 2005
  end-page: 248
  ident: CR162
  article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin
  publication-title: Cell
– volume: 281
  start-page: 35404
  year: 2006
  end-page: 35412
  ident: CR13
  article-title: Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation
  publication-title: J Biol Chem
– volume: 85
  start-page: 8232
  year: 2013
  end-page: 8239
  ident: CR137
  article-title: Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD‐MS/MS
  publication-title: Anal Chem
– volume: 14
  start-page: 637
  year: 2004
  end-page: 646
  ident: CR100
  article-title: Hierarchical recruitment of polycomb group silencing complexes
  publication-title: Mol Cell
– volume: 19
  start-page: 1273
  year: 2012
  end-page: 1281
  ident: CR146
  article-title: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation
  publication-title: Nat Struct Mol Biol
– volume: 4
  start-page: 481
  year: 2003
  end-page: 495
  ident: CR86
  article-title: Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed‐Enx1 polycomb group complexes
  publication-title: Dev Cell
– volume: 7
  start-page: 663
  year: 2004
  end-page: 676
  ident: CR99
  article-title: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation
  publication-title: Dev Cell
– volume: 461
  start-page: 762
  year: 2009
  end-page: 767
  ident: CR88
  article-title: Role of the polycomb protein EED in the propagation of repressive histone marks
  publication-title: Nature
– volume: 19
  start-page: 221
  year: 2009
  end-page: 233
  ident: CR87
  article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome
  publication-title: Genome Res
– volume: 1
  start-page: e00205
  year: 2012
  ident: CR106
  article-title: KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands
  publication-title: elife
– volume: 117
  start-page: 149
  year: 2003
  end-page: 158
  ident: CR116
  article-title: SU(VAR)3‐9 is a conserved key function in heterochromatic gene silencing
  publication-title: Genetica
– volume: 28
  start-page: 2884
  year: 2008
  end-page: 2895
  ident: CR101
  article-title: Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation
  publication-title: Mol Cell Biol
– volume: 18
  start-page: 46
  year: 2008
  end-page: 59
  ident: CR4
  article-title: Genome‐wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs
  publication-title: Genome Res
– volume: 108
  start-page: 7814
  year: 2011
  end-page: 7819
  ident: CR53
  article-title: Dynamic acetylation of all lysine‐4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP
  publication-title: Proc Natl Acad Sci USA
– volume: 141
  start-page: 526
  year: 2014
  end-page: 537
  ident: CR28
  article-title: Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant
  publication-title: Development
– volume: 43
  start-page: 132
  year: 2011
  end-page: 144
  ident: CR42
  article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation
  publication-title: Mol Cell
– volume: 21
  start-page: 2726
  year: 2001
  end-page: 2735
  ident: CR5
  article-title: Histone acetylation at promoters is differentially affected by specific activators and repressors
  publication-title: Mol Cell Biol
– volume: 16
  start-page: 2893
  year: 2002
  end-page: 2905
  ident: CR78
  article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein
  publication-title: Genes Dev
– volume: 24
  start-page: 1884
  year: 2004
  end-page: 1896
  ident: CR51
  article-title: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans
  publication-title: Mol Cell Biol
– volume: 1816
  start-page: 158
  year: 2011
  end-page: 163
  ident: CR156
  article-title: Cancers and the NSD family of histone lysine methyltransferases
  publication-title: Biochim Biophys Acta
– volume: 38
  start-page: 4958
  year: 2010
  end-page: 4969
  ident: CR152
  article-title: Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes
  publication-title: Nucleic Acids Res
– volume: 40
  start-page: 411
  year: 2008
  end-page: 420
  ident: CR123
  article-title: PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos
  publication-title: Nat Genet
– volume: 13
  start-page: 115
  year: 2012
  end-page: 126
  ident: CR57
  article-title: Understanding the language of Lys36 methylation at histone H3
  publication-title: Nat Rev Mol Cell Biol
– volume: 278
  start-page: 33625
  year: 2003
  end-page: 33628
  ident: CR10
  article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
  publication-title: J Biol Chem
– volume: 23
  start-page: 2484
  year: 2009
  end-page: 2489
  ident: CR115
  article-title: SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state
  publication-title: Genes Dev
– volume: 20
  start-page: 971
  year: 2005
  end-page: 978
  ident: CR61
  article-title: Eaf3 chromodomain interaction with methylated H3‐K36 links histone deacetylation to Pol II elongation
  publication-title: Mol Cell
– volume: 21
  start-page: 569
  year: 2014
  end-page: 571
  ident: CR105
  article-title: Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression
  publication-title: Nat Struct Mol Biol
– volume: 53
  start-page: 277
  year: 2014
  end-page: 289
  ident: CR128
  article-title: The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2‐mediated gene silencing
  publication-title: Mol Cell
– volume: 26
  start-page: 1714
  year: 2012
  end-page: 1728
  ident: CR29
  article-title: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells
  publication-title: Genes Dev
– volume: 25
  start-page: 3110
  year: 2006
  end-page: 3122
  ident: CR102
  article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing
  publication-title: EMBO J
– volume: 26
  start-page: 751
  year: 2012
  end-page: 755
  ident: CR158
  article-title: A complex Polycomb issue: the two faces of EZH2 in cancer
  publication-title: Genes Dev
– volume: 142
  start-page: 967
  year: 2010
  end-page: 980
  ident: CR69
  article-title: Quantitative interaction proteomics and genome‐wide profiling of epigenetic histone marks and their readers
  publication-title: Cell
– volume: 152
  start-page: 859
  year: 2013
  end-page: 872
  ident: CR47
  article-title: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer
  publication-title: Cell
– volume: 42
  start-page: 330
  year: 2011
  end-page: 341
  ident: CR76
  article-title: Histone methylation by PRC2 is inhibited by active chromatin marks
  publication-title: Mol Cell
– volume: 513
  start-page: 124
  year: 2002
  end-page: 128
  ident: CR44
  article-title: Bromodomain: an acetyl‐lysine binding domain
  publication-title: FEBS Lett
– volume: 53
  start-page: 49
  year: 2014
  end-page: 62
  ident: CR83
  article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity
  publication-title: Mol Cell
– volume: 19
  start-page: 1266
  year: 2012
  end-page: 1272
  ident: CR145
  article-title: Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1
  publication-title: Nat Struct Mol Biol
– volume: 10
  start-page: 47
  year: 2012
  end-page: 62
  ident: CR92
  article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 42
  start-page: 4241
  year: 2014
  end-page: 4256
  ident: CR21
  article-title: MLL fusion proteins link transcriptional coactivators to previously active CpG‐rich promoters
  publication-title: Nucleic Acids Res
– volume: 278
  start-page: 8897
  year: 2003
  end-page: 8903
  ident: CR58
  article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl‐terminal domain of RNA polymerase II
  publication-title: J Biol Chem
– volume: 24
  start-page: 2478
  year: 2004
  end-page: 2486
  ident: CR114
  article-title: Histone H3‐K9 methyltransferase ESET is essential for early development
  publication-title: Mol Cell Biol
– volume: 45
  start-page: 344
  year: 2012
  end-page: 356
  ident: CR91
  article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes
  publication-title: Mol Cell
– volume: 288
  start-page: 30832
  year: 2013
  end-page: 30842
  ident: CR141
  article-title: Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases
  publication-title: J Biol Chem
– volume: 151
  start-page: 181
  year: 2012
  end-page: 193
  ident: CR127
  article-title: Asymmetrically modified nucleosomes
  publication-title: Cell
– volume: 17
  start-page: 1414
  year: 2010
  end-page: 1421
  ident: CR20
  article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
  publication-title: Nat Struct Mol Biol
– volume: 300
  start-page: 131
  year: 2003
  end-page: 135
  ident: CR97
  article-title: Role of histone H3 lysine 27 methylation in X inactivation
  publication-title: Science
– volume: 21
  start-page: 51
  year: 2006
  end-page: 64
  ident: CR56
  article-title: ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation
  publication-title: Mol Cell
– volume: 286
  start-page: 7983
  year: 2011
  end-page: 7989
  ident: CR77
  article-title: H3K36 methylation antagonizes PRC2‐mediated H3K27 methylation
  publication-title: J Biol Chem
– volume: 2
  start-page: 1169
  year: 2012
  end-page: 1177
  ident: CR138
  article-title: Antagonism between MES‐4 and Polycomb repressive complex 2 promotes appropriate gene expression in germ cells
  publication-title: Cell Rep
– volume: 418
  start-page: 104
  year: 2002
  end-page: 108
  ident: CR37
  article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
  publication-title: Nature
– volume: 137
  start-page: 2483
  year: 2010
  end-page: 2492
  ident: CR125
  article-title: Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment
  publication-title: Development
– volume: 347
  start-page: 1017
  year: 2015
  end-page: 1021
  ident: CR136
  article-title: Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation
  publication-title: Science
– volume: 279
  start-page: 401
  year: 2004
  end-page: 406
  ident: CR131
  article-title: Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2
  publication-title: J Biol Chem
– volume: 33
  start-page: 248
  year: 2009
  end-page: 256
  ident: CR52
  article-title: ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation
  publication-title: Mol Cell
– volume: 109
  start-page: 13549
  year: 2012
  end-page: 13554
  ident: CR73
  article-title: Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 1192
  year: 2003
  end-page: 1200
  ident: CR117
  article-title: Suv39 h‐mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin
  publication-title: Curr Biol
– volume: 141
  start-page: 1183
  year: 2010
  end-page: 1194
  ident: CR34
  article-title: Pro isomerization in MLL1 PHD3‐bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression
  publication-title: Cell
– volume: 20
  start-page: 1093
  year: 2013
  end-page: 1097
  ident: CR27
  article-title: The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells
  publication-title: Nat Struct Mol Biol
– volume: 7
  start-page: 4225
  year: 2008
  end-page: 4236
  ident: CR160
  article-title: Tissue‐specific expression and post‐translational modification of histone H3 variants
  publication-title: J Proteome Res
– volume: 25
  start-page: 1010
  year: 2011
  end-page: 1022
  ident: CR24
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev
– volume: 25
  start-page: 2242
  year: 2011
  end-page: 2247
  ident: CR36
  article-title: Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123
  publication-title: Genes Dev
– volume: 24
  start-page: 5475
  year: 2004
  end-page: 5484
  ident: CR132
  article-title: Differential histone H3 Lys‐9 and Lys‐27 methylation profiles on the X chromosome
  publication-title: Mol Cell Biol
– volume: 49
  start-page: 571
  year: 2013
  end-page: 582
  ident: CR144
  article-title: An H3K36 methylation‐engaging Tudor motif of polycomb‐like proteins mediates PRC2 complex targeting
  publication-title: Mol Cell
– volume: 12
  start-page: 1016
  year: 2002
  end-page: 1020
  ident: CR98
  article-title: Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells
  publication-title: Curr Biol
– volume: 15
  start-page: 245
  year: 2008
  end-page: 250
  ident: CR111
  article-title: The ankyrin repeats of G9a and GLP histone methyltransferases are mono‐ and dimethyllysine binding modules
  publication-title: Nat Struct Mol Biol
– volume: 33
  start-page: 2442
  year: 2015
  end-page: 2455
  ident: CR149
  article-title: Ctbp2 modulates NuRD‐mediated deacetylation of H3K27 and facilitates PRC2‐mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency
  publication-title: Stem Cells
– volume: 31
  start-page: 2305
  year: 2003
  end-page: 2312
  ident: CR118
  article-title: The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase
  publication-title: Nucleic Acids Res
– volume: 157
  start-page: 1445
  year: 2014
  end-page: 1459
  ident: CR104
  article-title: Variant PRC1 complex‐dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation
  publication-title: Cell
– volume: 25
  start-page: 781
  year: 2011
  end-page: 788
  ident: CR109
  article-title: H3K9 methyltransferase G9a and the related molecule GLP
  publication-title: Genes Dev
– volume: 15
  start-page: 1306
  year: 2007
  end-page: 1315
  ident: CR81
  article-title: Structural basis of EZH2 recognition by EED
  publication-title: Structure
– volume: 30
  start-page: 2829
  year: 2011
  end-page: 2842
  ident: CR49
  article-title: Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
  publication-title: EMBO J
– volume: 123
  start-page: 593
  year: 2005
  end-page: 605
  ident: CR63
  article-title: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
  publication-title: Cell
– volume: 19
  start-page: 815
  year: 2005
  end-page: 826
  ident: CR110
  article-title: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3‐K9
  publication-title: Genes Dev
– volume: 19
  start-page: 849
  year: 2005
  end-page: 856
  ident: CR14
  article-title: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression
  publication-title: Mol Cell
– volume: 24
  start-page: 785
  year: 2006
  end-page: 796
  ident: CR50
  article-title: Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs
  publication-title: Mol Cell
– volume: 438
  start-page: 1176
  year: 2005
  end-page: 1180
  ident: CR120
  article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
  publication-title: Nature
– volume: 343
  start-page: 1249
  year: 2014
  end-page: 1253
  ident: CR164
  article-title: Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication
  publication-title: Science
– volume: 125
  start-page: 315
  year: 2006
  end-page: 326
  ident: CR30
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
– volume: 112
  start-page: 2900
  year: 2015
  end-page: 2905
  ident: CR19
  article-title: Transcription factor interaction with COMPASS‐like complex regulates histone H3K4 trimethylation for specific gene expression in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: a017780
  year: 2013
  ident: CR135
  article-title: Position‐effect variegation, heterochromatin formation, and gene silencing in
  publication-title: Cold Spring Harb Perspect Biol
– volume: 32
  start-page: 3479
  year: 2012
  end-page: 3485
  ident: CR68
  article-title: Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin
  publication-title: Mol Cell Biol
– volume: 117
  start-page: 211
  year: 2011
  end-page: 220
  ident: CR74
  article-title: The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells
  publication-title: Blood
– volume: 101
  start-page: 7357
  year: 2004
  end-page: 7362
  ident: CR6
  article-title: Distinct localization of histone H3 acetylation and H3‐K4 methylation to the transcription start sites in the human genome
  publication-title: Proc Natl Acad Sci USA
– volume: 33
  start-page: 4936
  year: 2013
  end-page: 4946
  ident: CR143
  article-title: Histone H3K27 trimethylation inhibits H3 binding and function of SET1‐like H3K4 methyltransferase complexes
  publication-title: Mol Cell Biol
– volume: 4
  start-page: e1000242
  year: 2008
  ident: CR96
  article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains
  publication-title: PLoS Genet
– volume: 98
  start-page: 12902
  year: 2001
  end-page: 12907
  ident: CR15
  article-title: COMPASS: a complex of proteins associated with a trithorax‐related SET domain protein
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 1169
  year: 2008
  end-page: 1175
  ident: CR65
  article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b)
  publication-title: Nat Struct Mol Biol
– volume: 122
  start-page: 517
  year: 2005
  end-page: 527
  ident: CR11
  article-title: Genome‐wide map of nucleosome acetylation and methylation in yeast
  publication-title: Cell
– volume: 148
  start-page: 664
  year: 2012
  end-page: 678
  ident: CR93
  article-title: RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3
  publication-title: Cell
– volume: 580
  start-page: 6233
  year: 2006
  end-page: 6241
  ident: CR95
  article-title: The Polycomb‐associated protein Rybp is a ubiquitin binding protein
  publication-title: FEBS Lett
– volume: 39
  start-page: 886
  year: 2010
  end-page: 900
  ident: CR151
  article-title: Polycomb group protein displacement and gene activation through MSK‐dependent H3K27me3S28 phosphorylation
  publication-title: Mol Cell
– volume: 6
  start-page: 479
  year: 2010
  end-page: 491
  ident: CR126
  article-title: Distinct epigenomic landscapes of pluripotent and lineage‐committed human cells
  publication-title: Cell Stem Cell
– ident: CR157
– volume: 19
  start-page: 1761
  year: 2005
  end-page: 1766
  ident: CR161
  article-title: Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter‐proximal bias
  publication-title: Genes Dev
– volume: 20
  start-page: 2108
  year: 2000
  end-page: 2121
  ident: CR2
  article-title: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl‐CpG binding domain protein 1
  publication-title: Mol Cell Biol
– volume: 11
  start-page: 709
  year: 2003
  end-page: 719
  ident: CR18
  article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
  publication-title: Mol Cell
– volume: 15
  start-page: 373
  year: 2013
  end-page: 384
  ident: CR108
  article-title: Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes
  publication-title: Nat Cell Biol
– volume: 15
  start-page: 299
  year: 2007
  end-page: 314
  ident: CR130
  article-title: The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution
  publication-title: Chromosome Res
– volume: 3
  start-page: e01632
  year: 2014
  ident: CR46
  article-title: Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription
  publication-title: elife
– volume: 3
  start-page: 60
  year: 2013
  end-page: 69
  ident: CR94
  article-title: RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells
  publication-title: Cell Rep
– volume: 19
  start-page: 1257
  year: 2012
  end-page: 1265
  ident: CR147
  article-title: Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity
  publication-title: Nat Struct Mol Biol
– volume: 4
  start-page: 1446
  year: 2005
  end-page: 1454
  ident: CR60
  article-title: Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe
  publication-title: Eukaryot Cell
– volume: 12
  start-page: 2048
  year: 2013
  end-page: 2059
  ident: CR39
  article-title: Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS)
  publication-title: Mol Cell Proteomics
– volume: 12
  start-page: 1577
  year: 2003
  end-page: 1589
  ident: CR121
  article-title: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
  publication-title: Mol Cell
– volume: 8
  start-page: e1002774
  year: 2012
  ident: CR142
  article-title: Histone H2A mono‐ubiquitination is a crucial step to mediate PRC1‐dependent repression of developmental genes to maintain ES cell identity
  publication-title: PLoS Genet
– volume: 33
  start-page: 5005
  year: 2013
  end-page: 5020
  ident: CR133
  article-title: Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2
  publication-title: Mol Cell Biol
– volume: 15
  start-page: 57
  year: 2004
  end-page: 67
  ident: CR79
  article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex
  publication-title: Mol Cell
– volume: 12
  start-page: 475
  year: 2003
  end-page: 487
  ident: CR113
  article-title: mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression
  publication-title: Mol Cell
– volume: 43
  start-page: 1433
  year: 2015
  end-page: 1443
  ident: CR48
  article-title: Opposing roles of H3‐ and H4‐acetylation in the regulation of nucleosome structure–a FRET study
  publication-title: Nucleic Acids Res
– volume: 24
  start-page: 5639
  year: 2004
  end-page: 5649
  ident: CR23
  article-title: Leukemia proto‐oncoprotein MLL forms a SET1‐like histone methyltransferase complex with menin to regulate Hox gene expression
  publication-title: Mol Cell Biol
– volume: 107
  start-page: 21931
  year: 2010
  end-page: 21936
  ident: CR3
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc Natl Acad Sci USA
– volume: 38
  start-page: 179
  year: 2010
  end-page: 190
  ident: CR64
  article-title: CpG islands recruit a histone H3 lysine 36 demethylase
  publication-title: Mol Cell
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  ident: CR16
  article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells
  publication-title: Nature
– volume: 49
  start-page: 368
  year: 2013
  end-page: 378
  ident: CR31
  article-title: A map of general and specialized chromatin readers in mouse tissues generated by label‐free interaction proteomics
  publication-title: Mol Cell
– volume: 58
  start-page: 157
  year: 2015
  end-page: 171
  ident: CR124
  article-title: Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent‐of‐origin‐dependent manner
  publication-title: Mol Cell
– volume: 108
  start-page: 2801
  year: 2011
  end-page: 2806
  ident: CR150
  article-title: Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing
  publication-title: Proc Natl Acad Sci USA
– volume: 398
  start-page: 481
  year: 2010
  end-page: 488
  ident: CR33
  article-title: Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase
  publication-title: J Mol Biol
– volume: 20
  start-page: 1123
  year: 2006
  end-page: 1136
  ident: CR85
  article-title: Genome‐wide mapping of Polycomb target genes unravels their roles in cell fate transitions
  publication-title: Genes Dev
– volume: 10
  start-page: 1291
  year: 2008
  end-page: 1300
  ident: CR89
  article-title: A model for transmission of the H3K27me3 epigenetic mark
  publication-title: Nat Cell Biol
– volume: 13
  start-page: 150
  year: 2005
  end-page: 153
  ident: CR155
  article-title: Evaluation of NSD2 and NSD3 in overgrowth syndromes
  publication-title: Eur J Hum Genet
– volume: 473
  start-page: 1
  year: 2000
  end-page: 5
  ident: CR70
  article-title: The PWWP domain: a potential protein‐protein interaction domain in nuclear proteins influencing differentiation?
  publication-title: FEBS Lett
– volume: 6
  start-page: e22548
  year: 2011
  ident: CR72
  article-title: Stage‐specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome
  publication-title: PLoS ONE
– volume: 282
  start-page: 2450
  year: 2007
  end-page: 2455
  ident: CR32
  article-title: Proteome‐wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36
  publication-title: J Biol Chem
– volume: 287
  start-page: 39698
  year: 2012
  end-page: 39709
  ident: CR40
  article-title: Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression
  publication-title: J Biol Chem
– volume: 45
  start-page: 1386
  year: 2013
  end-page: 1391
  ident: CR75
  article-title: Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia
  publication-title: Nat Genet
– volume: 8
  start-page: 676
  year: 2011
  end-page: 687
  ident: CR112
  article-title: DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs
  publication-title: Cell Stem Cell
– volume: 123
  start-page: 581
  year: 2005
  end-page: 592
  ident: CR62
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
– volume: 9
  start-page: 838
  year: 2010
  end-page: 850
  ident: CR84
  article-title: Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12‐deficient mouse embryonic stem cells reveals distinct, dynamic post‐translational modifications at Lys‐27 and Lys‐36
  publication-title: Mol Cell Proteomics
– volume: 34
  start-page: 3662
  year: 2014
  end-page: 3674
  ident: CR129
  article-title: Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin
  publication-title: Mol Cell Biol
– volume: 130
  start-page: 77
  year: 2007
  end-page: 88
  ident: CR26
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
– volume: 285
  start-page: 26114
  year: 2010
  end-page: 26120
  ident: CR66
  article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation
  publication-title: J Biol Chem
– volume: 27
  start-page: 1271
  year: 2007
  end-page: 1279
  ident: CR71
  article-title: Distinctive signatures of histone methylation in transcribed coding and noncoding human beta‐globin sequences
  publication-title: Mol Cell Biol
– volume: 6
  start-page: 24
  year: 2013
  ident: CR1
  article-title: Proteomic characterization of novel histone post‐translational modifications
  publication-title: Epigenetics Chromatin
– volume: 40
  start-page: 7247
  year: 2012
  end-page: 7256
  ident: CR54
  article-title: Dynamic acetylation of lysine‐4‐trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote
  publication-title: Nucleic Acids Res
– volume: 6
  start-page: 348
  year: 2005
  end-page: 353
  ident: CR80
  article-title: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2
  publication-title: EMBO Rep
– volume: 337
  start-page: 971
  year: 2012
  end-page: 975
  ident: CR90
  article-title: Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation
  publication-title: Science
– volume: 104
  start-page: 10835
  year: 2007
  end-page: 10840
  ident: CR22
  article-title: The coactivator host cell factor‐1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection
  publication-title: Proc Natl Acad Sci USA
– volume: 133
  start-page: 3907
  year: 2006
  end-page: 3917
  ident: CR139
  article-title: MES‐4: an autosome‐associated histone methyltransferase that participates in silencing the X chromosomes in the germ line
  publication-title: Development
– volume: 277
  start-page: 34655
  year: 2002
  end-page: 34657
  ident: CR38
  article-title: Ubiquitination of histone H2B by Rad6 is required for efficient Dot1‐mediated methylation of histone H3 lysine 79
  publication-title: J Biol Chem
– volume: 508
  start-page: 263
  year: 2014
  end-page: 268
  ident: CR163
  article-title: ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression
  publication-title: Nature
– volume: 40
  start-page: 436
  year: 2003
  end-page: 440
  ident: CR154
  article-title: Spectrum of NSD1 mutations in Sotos and Weaver syndromes
  publication-title: J Med Genet
– volume: 25
  start-page: 3305
  year: 2005
  end-page: 3316
  ident: CR59
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation
  publication-title: Mol Cell Biol
– volume: 7
  start-page: 1456
  year: 2014
  end-page: 1470
  ident: CR103
  article-title: Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment
  publication-title: Cell Rep
– volume: 6
  start-page: e1001091
  year: 2010
  ident: CR140
  article-title: The histone H3K36 methyltransferase MES‐4 acts epigenetically to transmit the memory of germline gene expression to progeny
  publication-title: PLoS Genet
– volume: 8
  start-page: 1747
  year: 2009
  end-page: 1753
  ident: CR45
  article-title: Histone H3‐K56 acetylation is important for genomic stability in mammals
  publication-title: Cell Cycle
– volume: 19
  start-page: 629
  year: 2003
  end-page: 639
  ident: CR12
  article-title: Histone lysine methylation: a signature for chromatin function
  publication-title: Trends Genet
– volume: 49
  start-page: 1134
  year: 2013
  end-page: 1146
  ident: CR107
  article-title: Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation
  publication-title: Mol Cell
– volume: 6
  start-page: 73
  year: 2004
  end-page: 77
  ident: CR17
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat Cell Biol
– volume: 129
  start-page: 823
  year: 2007
  end-page: 837
  ident: CR25
  article-title: High‐resolution profiling of histone methylations in the human genome
  publication-title: Cell
– volume: 300
  start-page: 131
  year: 2003
  end-page: 135
  article-title: Role of histone H3 lysine 27 methylation in X inactivation
  publication-title: Science
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells
  publication-title: Nature
– volume: 6
  start-page: 73
  year: 2004
  end-page: 77
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat Cell Biol
– volume: 53
  start-page: 277
  year: 2014
  end-page: 289
  article-title: The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2‐mediated gene silencing
  publication-title: Mol Cell
– volume: 8
  start-page: e1002774
  year: 2012
  article-title: Histone H2A mono‐ubiquitination is a crucial step to mediate PRC1‐dependent repression of developmental genes to maintain ES cell identity
  publication-title: PLoS Genet
– volume: 13
  start-page: 115
  year: 2012
  end-page: 126
  article-title: Understanding the language of Lys36 methylation at histone H3
  publication-title: Nat Rev Mol Cell Biol
– volume: 2
  start-page: 1169
  year: 2012
  end-page: 1177
  article-title: Antagonism between MES‐4 and Polycomb repressive complex 2 promotes appropriate gene expression in germ cells
  publication-title: Cell Rep
– volume: 152
  start-page: 859
  year: 2013
  end-page: 872
  article-title: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer
  publication-title: Cell
– volume: 9
  start-page: 838
  year: 2010
  end-page: 850
  article-title: Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12‐deficient mouse embryonic stem cells reveals distinct, dynamic post‐translational modifications at Lys‐27 and Lys‐36
  publication-title: Mol Cell Proteomics
– volume: 30
  start-page: 2829
  year: 2011
  end-page: 2842
  article-title: Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
  publication-title: EMBO J
– volume: 281
  start-page: 35404
  year: 2006
  end-page: 35412
  article-title: Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation
  publication-title: J Biol Chem
– year: 2015
  article-title: SETD2 loss‐of‐function promotes renal cancer branched evolution through replication stress and impaired DNA repair
  publication-title: Oncogene
– volume: 4
  start-page: e1000242
  year: 2008
  article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains
  publication-title: PLoS Genet
– volume: 56
  start-page: 580
  year: 2014
  end-page: 594
  article-title: Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation
  publication-title: Mol Cell
– volume: 26
  start-page: 1714
  year: 2012
  end-page: 1728
  article-title: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells
  publication-title: Genes Dev
– volume: 49
  start-page: 571
  year: 2013
  end-page: 582
  article-title: An H3K36 methylation‐engaging Tudor motif of polycomb‐like proteins mediates PRC2 complex targeting
  publication-title: Mol Cell
– volume: 19
  start-page: 629
  year: 2003
  end-page: 639
  article-title: Histone lysine methylation: a signature for chromatin function
  publication-title: Trends Genet
– volume: 45
  start-page: 1386
  year: 2013
  end-page: 1391
  article-title: Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia
  publication-title: Nat Genet
– volume: 7
  start-page: 4225
  year: 2008
  end-page: 4236
  article-title: Tissue‐specific expression and post‐translational modification of histone H3 variants
  publication-title: J Proteome Res
– volume: 123
  start-page: 581
  year: 2005
  end-page: 592
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
– volume: 42
  start-page: 4241
  year: 2014
  end-page: 4256
  article-title: MLL fusion proteins link transcriptional coactivators to previously active CpG‐rich promoters
  publication-title: Nucleic Acids Res
– volume: 33
  start-page: 248
  year: 2009
  end-page: 256
  article-title: ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation
  publication-title: Mol Cell
– volume: 19
  start-page: 815
  year: 2005
  end-page: 826
  article-title: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3‐K9
  publication-title: Genes Dev
– volume: 15
  start-page: 57
  year: 2004
  end-page: 67
  article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex
  publication-title: Mol Cell
– volume: 438
  start-page: 1176
  year: 2005
  end-page: 1180
  article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
  publication-title: Nature
– volume: 25
  start-page: 2254
  year: 2011
  end-page: 2265
  article-title: Genome‐wide function of H2B ubiquitylation in promoter and genic regions
  publication-title: Genes Dev
– volume: 288
  start-page: 30832
  year: 2013
  end-page: 30842
  article-title: Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases
  publication-title: J Biol Chem
– volume: 25
  start-page: 781
  year: 2011
  end-page: 788
  article-title: H3K9 methyltransferase G9a and the related molecule GLP
  publication-title: Genes Dev
– volume: 27
  start-page: 1271
  year: 2007
  end-page: 1279
  article-title: Distinctive signatures of histone methylation in transcribed coding and noncoding human beta‐globin sequences
  publication-title: Mol Cell Biol
– volume: 11
  start-page: 858
  year: 2003
  end-page: 865
  article-title: Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes
  publication-title: Eur J Hum Genet
– volume: 276
  start-page: 20197
  year: 2001
  end-page: 20205
  article-title: Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes
  publication-title: J Biol Chem
– volume: 19
  start-page: 849
  year: 2005
  end-page: 856
  article-title: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression
  publication-title: Mol Cell
– volume: 12
  start-page: 1577
  year: 2003
  end-page: 1589
  article-title: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
  publication-title: Mol Cell
– volume: 6
  start-page: 479
  year: 2010
  end-page: 491
  article-title: Distinct epigenomic landscapes of pluripotent and lineage‐committed human cells
  publication-title: Cell Stem Cell
– volume: 580
  start-page: 6233
  year: 2006
  end-page: 6241
  article-title: The Polycomb‐associated protein Rybp is a ubiquitin binding protein
  publication-title: FEBS Lett
– volume: 112
  start-page: 2900
  year: 2015
  end-page: 2905
  article-title: Transcription factor interaction with COMPASS‐like complex regulates histone H3K4 trimethylation for specific gene expression in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 1306
  year: 2007
  end-page: 1315
  article-title: Structural basis of EZH2 recognition by EED
  publication-title: Structure
– volume: 286
  start-page: 7983
  year: 2011
  end-page: 7989
  article-title: H3K36 methylation antagonizes PRC2‐mediated H3K27 methylation
  publication-title: J Biol Chem
– volume: 25
  start-page: 3305
  year: 2005
  end-page: 3316
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation
  publication-title: Mol Cell Biol
– volume: 13
  start-page: 1192
  year: 2003
  end-page: 1200
  article-title: Suv39 h‐mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin
  publication-title: Curr Biol
– volume: 279
  start-page: 401
  year: 2004
  end-page: 406
  article-title: Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2
  publication-title: J Biol Chem
– volume: 6
  start-page: 24
  year: 2013
  article-title: Proteomic characterization of novel histone post‐translational modifications
  publication-title: Epigenetics Chromatin
– volume: 1816
  start-page: 158
  year: 2011
  end-page: 163
  article-title: Cancers and the NSD family of histone lysine methyltransferases
  publication-title: Biochim Biophys Acta
– volume: 157
  start-page: 1445
  year: 2014
  end-page: 1459
  article-title: Variant PRC1 complex‐dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation
  publication-title: Cell
– volume: 15
  start-page: 1169
  year: 2008
  end-page: 1175
  article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b)
  publication-title: Nat Struct Mol Biol
– volume: 32
  start-page: 3479
  year: 2012
  end-page: 3485
  article-title: Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin
  publication-title: Mol Cell Biol
– volume: 461
  start-page: 762
  year: 2009
  end-page: 767
  article-title: Role of the polycomb protein EED in the propagation of repressive histone marks
  publication-title: Nature
– volume: 25
  start-page: 3110
  year: 2006
  end-page: 3122
  article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing
  publication-title: EMBO J
– volume: 337
  start-page: 971
  year: 2012
  end-page: 975
  article-title: Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation
  publication-title: Science
– volume: 26
  start-page: 751
  year: 2012
  end-page: 755
  article-title: A complex Polycomb issue: the two faces of EZH2 in cancer
  publication-title: Genes Dev
– volume: 3
  start-page: e01632
  year: 2014
  article-title: Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription
  publication-title: elife
– volume: 31
  start-page: 2305
  year: 2003
  end-page: 2312
  article-title: The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 759
  year: 2005
  end-page: 770
  article-title: The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions
  publication-title: Mol Cell
– volume: 125
  start-page: 315
  year: 2006
  end-page: 326
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
– volume: 123
  start-page: 593
  year: 2005
  end-page: 605
  article-title: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
  publication-title: Cell
– volume: 40
  start-page: 411
  year: 2008
  end-page: 420
  article-title: PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos
  publication-title: Nat Genet
– volume: 58
  start-page: 157
  year: 2015
  end-page: 171
  article-title: Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent‐of‐origin‐dependent manner
  publication-title: Mol Cell
– volume: 53
  start-page: 49
  year: 2014
  end-page: 62
  article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity
  publication-title: Mol Cell
– volume: 21
  start-page: 569
  year: 2014
  end-page: 571
  article-title: Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression
  publication-title: Nat Struct Mol Biol
– volume: 20
  start-page: 1123
  year: 2006
  end-page: 1136
  article-title: Genome‐wide mapping of Polycomb target genes unravels their roles in cell fate transitions
  publication-title: Genes Dev
– volume: 108
  start-page: 2801
  year: 2011
  end-page: 2806
  article-title: Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: e1001091
  year: 2010
  article-title: The histone H3K36 methyltransferase MES‐4 acts epigenetically to transmit the memory of germline gene expression to progeny
  publication-title: PLoS Genet
– volume: 20
  start-page: 971
  year: 2005
  end-page: 978
  article-title: Eaf3 chromodomain interaction with methylated H3‐K36 links histone deacetylation to Pol II elongation
  publication-title: Mol Cell
– volume: 101
  start-page: 7357
  year: 2004
  end-page: 7362
  article-title: Distinct localization of histone H3 acetylation and H3‐K4 methylation to the transcription start sites in the human genome
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 481
  year: 2003
  end-page: 495
  article-title: Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed‐Enx1 polycomb group complexes
  publication-title: Dev Cell
– volume: 25
  start-page: 1010
  year: 2011
  end-page: 1022
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev
– volume: 285
  start-page: 26114
  year: 2010
  end-page: 26120
  article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation
  publication-title: J Biol Chem
– volume: 277
  start-page: 34655
  year: 2002
  end-page: 34657
  article-title: Ubiquitination of histone H2B by Rad6 is required for efficient Dot1‐mediated methylation of histone H3 lysine 79
  publication-title: J Biol Chem
– volume: 23
  start-page: 2484
  year: 2009
  end-page: 2489
  article-title: SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state
  publication-title: Genes Dev
– volume: 7
  start-page: 663
  year: 2004
  end-page: 676
  article-title: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation
  publication-title: Dev Cell
– volume: 43
  start-page: 132
  year: 2011
  end-page: 144
  article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation
  publication-title: Mol Cell
– volume: 287
  start-page: 39698
  year: 2012
  end-page: 39709
  article-title: Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression
  publication-title: J Biol Chem
– volume: 513
  start-page: 124
  year: 2002
  end-page: 128
  article-title: Bromodomain: an acetyl‐lysine binding domain
  publication-title: FEBS Lett
– volume: 117
  start-page: 211
  year: 2011
  end-page: 220
  article-title: The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells
  publication-title: Blood
– volume: 137
  start-page: 2483
  year: 2010
  end-page: 2492
  article-title: Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment
  publication-title: Development
– volume: 130
  start-page: 77
  year: 2007
  end-page: 88
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
– volume: 49
  start-page: 1134
  year: 2013
  end-page: 1146
  article-title: Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation
  publication-title: Mol Cell
– volume: 278
  start-page: 4035
  year: 2003
  end-page: 4040
  article-title: The methyl‐CpG‐binding protein MeCP2 links DNA methylation to histone methylation
  publication-title: J Biol Chem
– volume: 151
  start-page: 181
  year: 2012
  end-page: 193
  article-title: Asymmetrically modified nucleosomes
  publication-title: Cell
– volume: 129
  start-page: 823
  year: 2007
  end-page: 837
  article-title: High‐resolution profiling of histone methylations in the human genome
  publication-title: Cell
– volume: 278
  start-page: 33625
  year: 2003
  end-page: 33628
  article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
  publication-title: J Biol Chem
– volume: 19
  start-page: 221
  year: 2009
  end-page: 233
  article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome
  publication-title: Genome Res
– volume: 31
  start-page: 593
  year: 2012
  end-page: 605
  article-title: NuRD‐mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression
  publication-title: EMBO J
– volume: 109
  start-page: 13549
  year: 2012
  end-page: 13554
  article-title: Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 2478
  year: 2004
  end-page: 2486
  article-title: Histone H3‐K9 methyltransferase ESET is essential for early development
  publication-title: Mol Cell Biol
– volume: 18
  start-page: 46
  year: 2008
  end-page: 59
  article-title: Genome‐wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs
  publication-title: Genome Res
– volume: 133
  start-page: 3907
  year: 2006
  end-page: 3917
  article-title: MES‐4: an autosome‐associated histone methyltransferase that participates in silencing the X chromosomes in the germ line
  publication-title: Development
– volume: 343
  start-page: 1249
  year: 2014
  end-page: 1253
  article-title: Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication
  publication-title: Science
– volume: 40
  start-page: 436
  year: 2003
  end-page: 440
  article-title: Spectrum of NSD1 mutations in Sotos and Weaver syndromes
  publication-title: J Med Genet
– volume: 398
  start-page: 481
  year: 2010
  end-page: 488
  article-title: Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase
  publication-title: J Mol Biol
– volume: 71
  start-page: 4841
  year: 2014
  end-page: 4852
  article-title: Chromosome boundary elements and regulation of heterochromatin spreading
  publication-title: Cell Mol Life Sci
– volume: 6
  start-page: e22548
  year: 2011
  article-title: Stage‐specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome
  publication-title: PLoS ONE
– volume: 34
  start-page: 3662
  year: 2014
  end-page: 3674
  article-title: Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin
  publication-title: Mol Cell Biol
– volume: 19
  start-page: 1761
  year: 2005
  end-page: 1766
  article-title: Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter‐proximal bias
  publication-title: Genes Dev
– volume: 33
  start-page: 5005
  year: 2013
  end-page: 5020
  article-title: Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2
  publication-title: Mol Cell Biol
– volume: 100
  start-page: 1820
  year: 2003
  end-page: 1825
  article-title: Lysine‐79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position‐effect variegation
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 2726
  year: 2001
  end-page: 2735
  article-title: Histone acetylation at promoters is differentially affected by specific activators and repressors
  publication-title: Mol Cell Biol
– volume: 117
  start-page: 149
  year: 2003
  end-page: 158
  article-title: SU(VAR)3‐9 is a conserved key function in heterochromatic gene silencing
  publication-title: Genetica
– volume: 25
  start-page: 2242
  year: 2011
  end-page: 2247
  article-title: Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123
  publication-title: Genes Dev
– volume: 11
  start-page: 709
  year: 2003
  end-page: 719
  article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
  publication-title: Mol Cell
– volume: 141
  start-page: 526
  year: 2014
  end-page: 537
  article-title: Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant
  publication-title: Development
– volume: 20
  start-page: 1093
  year: 2013
  end-page: 1097
  article-title: The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells
  publication-title: Nat Struct Mol Biol
– volume: 13
  start-page: 150
  year: 2005
  end-page: 153
  article-title: Evaluation of NSD2 and NSD3 in overgrowth syndromes
  publication-title: Eur J Hum Genet
– volume: 347
  start-page: 1017
  year: 2015
  end-page: 1021
  article-title: Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation
  publication-title: Science
– volume: 107
  start-page: 21931
  year: 2010
  end-page: 21936
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc Natl Acad Sci USA
– volume: 111
  start-page: 2488
  year: 2014
  end-page: 2493
  article-title: Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP‐XL cross‐linking and affinity purification
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 289
  year: 2006
  end-page: 296
  article-title: Enhanced histone acetylation and transcription: a dynamic perspective
  publication-title: Mol Cell
– volume: 6
  start-page: 12
  year: 2013
  article-title: Nucleosomal DNA binding drives the recognition of H3K36‐methylated nucleosomes by the PSIP1‐PWWP domain
  publication-title: Epigenetics Chromatin
– volume: 21
  start-page: 51
  year: 2006
  end-page: 64
  article-title: ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation
  publication-title: Mol Cell
– volume: 4
  start-page: 1446
  year: 2005
  end-page: 1454
  article-title: Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe
  publication-title: Eukaryot Cell
– volume: 16
  start-page: 2893
  year: 2002
  end-page: 2905
  article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein
  publication-title: Genes Dev
– volume: 19
  start-page: 1273
  year: 2012
  end-page: 1281
  article-title: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation
  publication-title: Nat Struct Mol Biol
– volume: 40
  start-page: 7247
  year: 2012
  end-page: 7256
  article-title: Dynamic acetylation of lysine‐4‐trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 299
  year: 2007
  end-page: 314
  article-title: The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution
  publication-title: Chromosome Res
– volume: 28
  start-page: 2884
  year: 2008
  end-page: 2895
  article-title: Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation
  publication-title: Mol Cell Biol
– volume: 148
  start-page: 664
  year: 2012
  end-page: 678
  article-title: RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3
  publication-title: Cell
– volume: 12
  start-page: 1016
  year: 2002
  end-page: 1020
  article-title: Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells
  publication-title: Curr Biol
– volume: 5
  start-page: a017780
  year: 2013
  article-title: Position‐effect variegation, heterochromatin formation, and gene silencing in
  publication-title: Cold Spring Harb Perspect Biol
– volume: 38
  start-page: 4958
  year: 2010
  end-page: 4969
  article-title: Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes
  publication-title: Nucleic Acids Res
– volume: 122
  start-page: 517
  year: 2005
  end-page: 527
  article-title: Genome‐wide map of nucleosome acetylation and methylation in yeast
  publication-title: Cell
– volume: 42
  start-page: 330
  year: 2011
  end-page: 341
  article-title: Histone methylation by PRC2 is inhibited by active chromatin marks
  publication-title: Mol Cell
– volume: 12
  start-page: 475
  year: 2003
  end-page: 487
  article-title: mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression
  publication-title: Mol Cell
– volume: 24
  start-page: 5639
  year: 2004
  end-page: 5649
  article-title: Leukemia proto‐oncoprotein MLL forms a SET1‐like histone methyltransferase complex with menin to regulate Hox gene expression
  publication-title: Mol Cell Biol
– volume: 141
  start-page: 1183
  year: 2010
  end-page: 1194
  article-title: Pro isomerization in MLL1 PHD3‐bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression
  publication-title: Cell
– volume: 12
  start-page: 2048
  year: 2013
  end-page: 2059
  article-title: Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS)
  publication-title: Mol Cell Proteomics
– volume: 33
  start-page: 2442
  year: 2015
  end-page: 2455
  article-title: Ctbp2 modulates NuRD‐mediated deacetylation of H3K27 and facilitates PRC2‐mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency
  publication-title: Stem Cells
– volume: 45
  start-page: 344
  year: 2012
  end-page: 356
  article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes
  publication-title: Mol Cell
– volume: 43
  start-page: 1433
  year: 2015
  end-page: 1443
  article-title: Opposing roles of H3‐ and H4‐acetylation in the regulation of nucleosome structure–a FRET study
  publication-title: Nucleic Acids Res
– volume: 38
  start-page: 179
  year: 2010
  end-page: 190
  article-title: CpG islands recruit a histone H3 lysine 36 demethylase
  publication-title: Mol Cell
– volume: 24
  start-page: 1884
  year: 2004
  end-page: 1896
  article-title: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans
  publication-title: Mol Cell Biol
– volume: 19
  start-page: 1257
  year: 2012
  end-page: 1265
  article-title: Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity
  publication-title: Nat Struct Mol Biol
– volume: 282
  start-page: 2450
  year: 2007
  end-page: 2455
  article-title: Proteome‐wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36
  publication-title: J Biol Chem
– volume: 10
  start-page: 1291
  year: 2008
  end-page: 1300
  article-title: A model for transmission of the H3K27me3 epigenetic mark
  publication-title: Nat Cell Biol
– volume: 27
  start-page: 985
  year: 2013
  end-page: 990
  article-title: The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression
  publication-title: Genes Dev
– volume: 85
  start-page: 8232
  year: 2013
  end-page: 8239
  article-title: Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD‐MS/MS
  publication-title: Anal Chem
– volume: 508
  start-page: 263
  year: 2014
  end-page: 268
  article-title: ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression
  publication-title: Nature
– volume: 24
  start-page: 785
  year: 2006
  end-page: 796
  article-title: Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs
  publication-title: Mol Cell
– volume: 14
  start-page: 637
  year: 2004
  end-page: 646
  article-title: Hierarchical recruitment of polycomb group silencing complexes
  publication-title: Mol Cell
– volume: 17
  start-page: 1414
  year: 2010
  end-page: 1421
  article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
  publication-title: Nat Struct Mol Biol
– volume: 8
  start-page: 1747
  year: 2009
  end-page: 1753
  article-title: Histone H3‐K56 acetylation is important for genomic stability in mammals
  publication-title: Cell Cycle
– volume: 142
  start-page: 967
  year: 2010
  end-page: 980
  article-title: Quantitative interaction proteomics and genome‐wide profiling of epigenetic histone marks and their readers
  publication-title: Cell
– volume: 108
  start-page: 7814
  year: 2011
  end-page: 7819
  article-title: Dynamic acetylation of all lysine‐4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 676
  year: 2011
  end-page: 687
  article-title: DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs
  publication-title: Cell Stem Cell
– volume: 104
  start-page: 10835
  year: 2007
  end-page: 10840
  article-title: The coactivator host cell factor‐1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 1456
  year: 2014
  end-page: 1470
  article-title: Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment
  publication-title: Cell Rep
– volume: 278
  start-page: 8897
  year: 2003
  end-page: 8903
  article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl‐terminal domain of RNA polymerase II
  publication-title: J Biol Chem
– volume: 15
  start-page: 373
  year: 2013
  end-page: 384
  article-title: Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes
  publication-title: Nat Cell Biol
– volume: 24
  start-page: 5475
  year: 2004
  end-page: 5484
  article-title: Differential histone H3 Lys‐9 and Lys‐27 methylation profiles on the X chromosome
  publication-title: Mol Cell Biol
– volume: 33
  start-page: 4936
  year: 2013
  end-page: 4946
  article-title: Histone H3K27 trimethylation inhibits H3 binding and function of SET1‐like H3K4 methyltransferase complexes
  publication-title: Mol Cell Biol
– volume: 473
  start-page: 1
  year: 2000
  end-page: 5
  article-title: The PWWP domain: a potential protein‐protein interaction domain in nuclear proteins influencing differentiation?
  publication-title: FEBS Lett
– volume: 49
  start-page: 1108
  year: 2013
  end-page: 1120
  article-title: ASH2L regulates ubiquitylation signaling to MLL: trans‐regulation of H3K4 methylation in higher eukaryotes
  publication-title: Mol Cell
– volume: 10
  start-page: 47
  year: 2012
  end-page: 62
  article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 3
  start-page: 60
  year: 2013
  end-page: 69
  article-title: RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells
  publication-title: Cell Rep
– volume: 20
  start-page: 2108
  year: 2000
  end-page: 2121
  article-title: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl‐CpG binding domain protein 1
  publication-title: Mol Cell Biol
– volume: 1843
  start-page: 366
  year: 2014
  end-page: 371
  article-title: Diverse functions of PHD fingers of the MLL/KMT2 subfamily
  publication-title: Biochim Biophys Acta
– volume: 15
  start-page: 245
  year: 2008
  end-page: 250
  article-title: The ankyrin repeats of G9a and GLP histone methyltransferases are mono‐ and dimethyllysine binding modules
  publication-title: Nat Struct Mol Biol
– volume: 123
  start-page: 233
  year: 2005
  end-page: 248
  article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin
  publication-title: Cell
– volume: 19
  start-page: 1266
  year: 2012
  end-page: 1272
  article-title: Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1
  publication-title: Nat Struct Mol Biol
– volume: 6
  start-page: 348
  year: 2005
  end-page: 353
  article-title: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2
  publication-title: EMBO Rep
– volume: 39
  start-page: 886
  year: 2010
  end-page: 900
  article-title: Polycomb group protein displacement and gene activation through MSK‐dependent H3K27me3S28 phosphorylation
  publication-title: Mol Cell
– volume: 98
  start-page: 12902
  year: 2001
  end-page: 12907
  article-title: COMPASS: a complex of proteins associated with a trithorax‐related SET domain protein
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  start-page: 368
  year: 2013
  end-page: 378
  article-title: A map of general and specialized chromatin readers in mouse tissues generated by label‐free interaction proteomics
  publication-title: Mol Cell
– volume: 418
  start-page: 104
  year: 2002
  end-page: 108
  article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
  publication-title: Nature
– volume: 1
  start-page: e00205
  year: 2012
  article-title: KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands
  publication-title: elife
– ident: e_1_2_10_17_1
  doi: 10.1038/nature06008
– ident: e_1_2_10_21_1
  doi: 10.1038/nsmb.1961
– ident: e_1_2_10_102_1
  doi: 10.1128/MCB.00949-07
– ident: e_1_2_10_148_1
  doi: 10.1038/nsmb.2434
– ident: e_1_2_10_138_1
  doi: 10.1021/ac401299w
– ident: e_1_2_10_106_1
  doi: 10.1038/nsmb.2833
– ident: e_1_2_10_108_1
  doi: 10.1016/j.molcel.2013.01.016
– ident: e_1_2_10_15_1
  doi: 10.1016/j.molcel.2005.07.024
– ident: e_1_2_10_31_1
  doi: 10.1016/j.cell.2006.02.041
– ident: e_1_2_10_39_1
  doi: 10.1074/jbc.C200433200
– ident: e_1_2_10_89_1
  doi: 10.1038/nature08398
– ident: e_1_2_10_75_1
  doi: 10.1182/blood-2010-07-298349
– ident: e_1_2_10_65_1
  doi: 10.1016/j.molcel.2010.04.009
– ident: e_1_2_10_38_1
  doi: 10.1038/nature00883
– ident: e_1_2_10_158_1
  doi: 10.1038/onc.2015.24
– ident: e_1_2_10_36_1
  doi: 10.1016/j.bbamcr.2013.11.016
– ident: e_1_2_10_54_1
  doi: 10.1073/pnas.1100099108
– ident: e_1_2_10_155_1
  doi: 10.1136/jmg.40.6.436
– ident: e_1_2_10_27_1
  doi: 10.1016/j.cell.2007.05.042
– ident: e_1_2_10_163_1
  doi: 10.1016/j.cell.2005.10.002
– ident: e_1_2_10_162_1
  doi: 10.1101/gad.347705
– ident: e_1_2_10_133_1
  doi: 10.1128/MCB.24.12.5475-5484.2004
– ident: e_1_2_10_85_1
  doi: 10.1074/mcp.M900489-MCP200
– ident: e_1_2_10_2_1
  doi: 10.1186/1756-8935-6-24
– ident: e_1_2_10_46_1
  doi: 10.4161/cc.8.11.8620
– ident: e_1_2_10_79_1
  doi: 10.1101/gad.1035902
– ident: e_1_2_10_153_1
  doi: 10.1093/nar/gkq244
– ident: e_1_2_10_78_1
  doi: 10.1074/jbc.M110.194027
– ident: e_1_2_10_159_1
  doi: 10.1101/gad.191163.112
– ident: e_1_2_10_103_1
  doi: 10.1038/sj.emboj.7601187
– ident: e_1_2_10_117_1
  doi: 10.1023/A:1022923508198
– ident: e_1_2_10_101_1
  doi: 10.1016/j.molcel.2004.05.009
– ident: e_1_2_10_6_1
  doi: 10.1128/MCB.21.8.2726-2735.2001
– ident: e_1_2_10_22_1
  doi: 10.1093/nar/gkt1394
– ident: e_1_2_10_9_1
  doi: 10.1073/pnas.0437846100
– ident: e_1_2_10_67_1
  doi: 10.1074/jbc.M109.089433
– ident: e_1_2_10_125_1
  doi: 10.1016/j.molcel.2015.02.013
– ident: e_1_2_10_123_1
  doi: 10.1016/j.molcel.2014.10.001
– ident: e_1_2_10_19_1
  doi: 10.1016/S1097-2765(03)00092-3
– ident: e_1_2_10_137_1
  doi: 10.1126/science.1262088
– ident: e_1_2_10_122_1
  doi: 10.1016/S1097-2765(03)00477-5
– ident: e_1_2_10_49_1
  doi: 10.1093/nar/gku1354
– ident: e_1_2_10_97_1
  doi: 10.1371/journal.pgen.1000242
– ident: e_1_2_10_142_1
  doi: 10.1074/jbc.M113.475996
– ident: e_1_2_10_70_1
  doi: 10.1016/j.cell.2010.08.020
– ident: e_1_2_10_131_1
  doi: 10.1007/s10577-007-1126-1
– ident: e_1_2_10_113_1
  doi: 10.1016/j.stem.2011.04.004
– ident: e_1_2_10_71_1
  doi: 10.1016/S0014-5793(00)01449-6
– ident: e_1_2_10_161_1
  doi: 10.1021/pr800044q
– ident: e_1_2_10_40_1
  doi: 10.1074/mcp.M112.026716
– ident: e_1_2_10_164_1
  doi: 10.1038/nature13045
– ident: e_1_2_10_4_1
  doi: 10.1073/pnas.1016071107
– ident: e_1_2_10_73_1
  doi: 10.1371/journal.pone.0022548
– ident: e_1_2_10_124_1
  doi: 10.1038/ng.99
– ident: e_1_2_10_20_1
  doi: 10.1073/pnas.1419703112
– ident: e_1_2_10_47_1
  doi: 10.7554/eLife.01632
– ident: e_1_2_10_76_1
  doi: 10.1038/ng.2777
– ident: e_1_2_10_93_1
  doi: 10.1016/j.stem.2011.12.006
– ident: e_1_2_10_61_1
  doi: 10.1128/EC.4.8.1446-1454.2005
– ident: e_1_2_10_144_1
  doi: 10.1128/MCB.00601-13
– ident: e_1_2_10_81_1
  doi: 10.1038/sj.embor.7400376
– ident: e_1_2_10_118_1
  doi: 10.1016/S0960-9822(03)00432-9
– ident: e_1_2_10_121_1
  doi: 10.1038/nature04254
– ident: e_1_2_10_139_1
  doi: 10.1016/j.celrep.2012.09.019
– ident: e_1_2_10_156_1
  doi: 10.1038/sj.ejhg.5201298
– ident: e_1_2_10_12_1
  doi: 10.1016/j.cell.2005.06.026
– ident: e_1_2_10_50_1
  doi: 10.1038/emboj.2011.193
– ident: e_1_2_10_56_1
  doi: 10.1016/j.molcel.2006.06.017
– ident: e_1_2_10_16_1
  doi: 10.1073/pnas.231473398
– ident: e_1_2_10_45_1
  doi: 10.1016/S0014-5793(01)03309-9
– ident: e_1_2_10_105_1
  doi: 10.1016/j.cell.2014.05.004
– ident: e_1_2_10_111_1
  doi: 10.1101/gad.1284005
– ident: e_1_2_10_129_1
  doi: 10.1016/j.molcel.2013.12.005
– ident: e_1_2_10_57_1
  doi: 10.1016/j.molcel.2005.12.007
– ident: e_1_2_10_110_1
  doi: 10.1101/gad.2027411
– ident: e_1_2_10_7_1
  doi: 10.1073/pnas.0401866101
– ident: e_1_2_10_141_1
  doi: 10.1371/journal.pgen.1001091
– ident: e_1_2_10_88_1
  doi: 10.1101/gr.080861.108
– ident: e_1_2_10_114_1
  doi: 10.1016/j.molcel.2003.08.007
– ident: e_1_2_10_13_1
  doi: 10.1016/j.tig.2003.09.007
– ident: e_1_2_10_29_1
  doi: 10.1242/dev.102681
– ident: e_1_2_10_66_1
  doi: 10.1038/nsmb.1499
– ident: e_1_2_10_135_1
  doi: 10.1007/s00018-014-1725-x
– ident: e_1_2_10_149_1
  doi: 10.1038/emboj.2011.431
– ident: e_1_2_10_37_1
  doi: 10.1101/gad.177220.111
– ident: e_1_2_10_116_1
  doi: 10.1101/gad.1837309
– ident: e_1_2_10_96_1
  doi: 10.1016/j.febslet.2006.10.027
– ident: e_1_2_10_32_1
  doi: 10.1016/j.molcel.2012.10.026
– ident: e_1_2_10_104_1
  doi: 10.1016/j.celrep.2014.04.012
– ident: e_1_2_10_72_1
  doi: 10.1128/MCB.01684-06
– ident: e_1_2_10_115_1
  doi: 10.1128/MCB.24.6.2478-2486.2004
– ident: e_1_2_10_34_1
  doi: 10.1016/j.jmb.2010.03.036
– ident: e_1_2_10_92_1
  doi: 10.1016/j.molcel.2012.01.002
– ident: e_1_2_10_99_1
  doi: 10.1016/S0960-9822(02)00892-8
– ident: e_1_2_10_51_1
  doi: 10.1016/j.molcel.2006.10.026
– ident: e_1_2_10_146_1
  doi: 10.1038/nsmb.2435
– ident: e_1_2_10_60_1
  doi: 10.1128/MCB.25.8.3305-3316.2005
– ident: e_1_2_10_48_1
  doi: 10.1016/j.cell.2013.01.032
– ident: e_1_2_10_74_1
  doi: 10.1073/pnas.1205707109
– ident: e_1_2_10_130_1
  doi: 10.1128/MCB.00205-14
– ident: e_1_2_10_134_1
  doi: 10.1128/MCB.00866-13
– ident: e_1_2_10_28_1
  doi: 10.1038/nsmb.2653
– ident: e_1_2_10_63_1
  doi: 10.1016/j.cell.2005.10.023
– ident: e_1_2_10_14_1
  doi: 10.1074/jbc.M603099200
– ident: e_1_2_10_64_1
  doi: 10.1016/j.cell.2005.10.025
– ident: e_1_2_10_136_1
  doi: 10.1101/cshperspect.a017780
– ident: e_1_2_10_132_1
  doi: 10.1074/jbc.M307344200
– ident: e_1_2_10_43_1
  doi: 10.1016/j.molcel.2011.05.015
– ident: e_1_2_10_140_1
  doi: 10.1242/dev.02584
– ident: e_1_2_10_98_1
  doi: 10.1126/science.1084274
– ident: e_1_2_10_86_1
  doi: 10.1101/gad.381706
– ident: e_1_2_10_157_1
  doi: 10.1016/j.bbcan.2011.05.004
– ident: e_1_2_10_83_1
  doi: 10.1073/pnas.1400648111
– ident: e_1_2_10_119_1
  doi: 10.1093/nar/gkg332
– ident: e_1_2_10_95_1
  doi: 10.1016/j.celrep.2012.11.026
– ident: e_1_2_10_84_1
  doi: 10.1016/j.molcel.2013.10.030
– ident: e_1_2_10_90_1
  doi: 10.1038/ncb1787
– ident: e_1_2_10_107_1
  doi: 10.7554/eLife.00205
– ident: e_1_2_10_154_1
  doi: 10.1038/sj.ejhg.5201050
– ident: e_1_2_10_147_1
  doi: 10.1038/nsmb.2449
– ident: e_1_2_10_165_1
  doi: 10.1126/science.1248357
– ident: e_1_2_10_42_1
  doi: 10.1016/j.molcel.2005.11.012
– ident: e_1_2_10_68_1
  doi: 10.1186/1756-8935-6-12
– ident: e_1_2_10_128_1
  doi: 10.1016/j.cell.2012.09.002
– ident: e_1_2_10_10_1
  doi: 10.1101/gad.177238.111
– ident: e_1_2_10_11_1
  doi: 10.1074/jbc.C300270200
– ident: e_1_2_10_82_1
  doi: 10.1016/j.str.2007.08.007
– ident: e_1_2_10_143_1
  doi: 10.1371/journal.pgen.1002774
– ident: e_1_2_10_3_1
  doi: 10.1128/MCB.20.6.2108-2121.2000
– ident: e_1_2_10_151_1
  doi: 10.1073/pnas.1012798108
– ident: e_1_2_10_26_1
  doi: 10.1016/j.cell.2007.05.009
– ident: e_1_2_10_77_1
  doi: 10.1016/j.molcel.2011.03.025
– ident: e_1_2_10_69_1
  doi: 10.1128/MCB.00389-12
– ident: e_1_2_10_87_1
  doi: 10.1016/S1534-5807(03)00068-6
– ident: e_1_2_10_112_1
  doi: 10.1038/nsmb.1384
– ident: e_1_2_10_25_1
  doi: 10.1101/gad.2037511
– ident: e_1_2_10_41_1
  doi: 10.1074/jbc.M112.384057
– ident: e_1_2_10_55_1
  doi: 10.1093/nar/gks367
– ident: e_1_2_10_23_1
  doi: 10.1073/pnas.0704351104
– ident: e_1_2_10_24_1
  doi: 10.1128/MCB.24.13.5639-5649.2004
– ident: e_1_2_10_58_1
  doi: 10.1038/nrm3274
– ident: e_1_2_10_150_1
  doi: 10.1002/stem.2046
– ident: e_1_2_10_52_1
  doi: 10.1128/MCB.24.5.1884-1896.2004
– ident: e_1_2_10_59_1
  doi: 10.1074/jbc.M212134200
– ident: e_1_2_10_120_1
  doi: 10.1074/jbc.M210256200
– ident: e_1_2_10_127_1
  doi: 10.1016/j.stem.2010.03.018
– ident: e_1_2_10_80_1
  doi: 10.1016/j.molcel.2004.06.020
– ident: e_1_2_10_126_1
  doi: 10.1242/dev.048363
– ident: e_1_2_10_18_1
  doi: 10.1038/ncb1076
– ident: e_1_2_10_62_1
  doi: 10.1016/j.molcel.2005.11.021
– ident: e_1_2_10_91_1
  doi: 10.1126/science.1225237
– ident: e_1_2_10_100_1
  doi: 10.1016/j.devcel.2004.10.005
– ident: e_1_2_10_44_1
  doi: 10.1016/j.molcel.2013.01.033
– ident: e_1_2_10_109_1
  doi: 10.1038/ncb2702
– ident: e_1_2_10_160_1
  doi: 10.1101/gad.217778.113
– ident: e_1_2_10_145_1
  doi: 10.1016/j.molcel.2012.11.026
– ident: e_1_2_10_33_1
  doi: 10.1074/jbc.C600286200
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cell.2010.05.016
– ident: e_1_2_10_152_1
  doi: 10.1016/j.molcel.2010.08.020
– ident: e_1_2_10_94_1
  doi: 10.1016/j.cell.2011.12.029
– ident: e_1_2_10_53_1
  doi: 10.1016/j.molcel.2008.12.016
– ident: e_1_2_10_5_1
  doi: 10.1101/gr.6654808
– ident: e_1_2_10_8_1
  doi: 10.1074/jbc.M009472200
– ident: e_1_2_10_30_1
  doi: 10.1101/gad.194209.112
SSID ssj0005978
Score 2.6477277
SecondaryResourceType review_article
Snippet Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1467
SubjectTerms Animals
Cell division
Chromatin
Chromatin - chemistry
Chromatin - genetics
Chromatin - physiology
EMBO09
EMBO31
EMBO44
Gene expression
Histone Code
histone modifications
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Histones - genetics
Histones - metabolism
Humans
Methylation
Mutation
Myeloid-Lymphoid Leukemia Protein - genetics
Myeloid-Lymphoid Leukemia Protein - metabolism
Polycomb
Polycomb-Group Proteins - genetics
Polycomb-Group Proteins - metabolism
Protein Processing, Post-Translational
Review
Reviews
Transcription, Genetic
Trithorax
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFD_ohuKL6PzXOSWCiD7UtU2aNuCLyuaY3CHjDocvIU1TNtx6x7136N78Dn5DP4nnpG206BB8a2iSpifnJL8kJ78D8LQusXlKGkRuFMJMZmlcZjWPpWskLicUl955fLIndw7E7mE-eBPSXZiOHyJsuJFl-PGaDNxUiyFiD7GGutOKCD0RA-ASJb8KqwjtOSl5Jj788vJQfjDG8UDFWZYe9uw-VMXmuILRxLRKMv76N9T5p_NkOEEd41s_QW3fgps9smSvO1W4DVdcuwbXuliTF2twfdKfot-BV6gb7Nh7G56YCzZrmGcdbh07ndXkOtTt4rEf376zL3O6o7xgyyOzZAgw67twsL01fbsT91EUYotoKI8RsVmX5GVhqtIg3ioyYYoa07VyvCqM4SJvjJQNHchyKxpi7SpFU6aJE4hH-D1YabEJD4AZl9lUVMblqRW1sWWWysxJZyWiyMTaCF4OItS2pxinSBcnmpYaJHNNMtdB5hE8DwXOOnaNy7M-830S8pn5Z3JKK3L9ce-dlrv5Jz59v6-nEWwMnaZ7e1xoisKlSqlUEcGT8BotiY5HTOtm55SHlk8Kp4AI7nd9HD6GsLEQKhERFKPeDxmIpXv8pj0-8mzdQiJGSpIIXgx68luzLvtX7hXpXzLRW5M3-yG1_l-lHsINeu6uV27AynJ-7h4hzlpWj70l_QRJDxxk
  priority: 102
  providerName: Wiley-Blackwell
Title The interplay of histone modifications - writers that read
URI https://api.istex.fr/ark:/67375/WNG-6J5Z3TKR-T/fulltext.pdf
https://link.springer.com/article/10.15252/embr.201540945
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201540945
https://www.ncbi.nlm.nih.gov/pubmed/26474904
https://www.proquest.com/docview/1728986997
https://www.proquest.com/docview/1730679153
https://pubmed.ncbi.nlm.nih.gov/PMC4641500
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7RViAuCMpfoFRGQggOoYljO7HEBZaW0morVG3FiovlOI5a0WbRdivojXfgDXkSZpxs6IpWiEsUy07szPjnc2b8DcCzqsDmaWURuVEIM8XTuOBVFitfK9xO6EwF5_Hhnto-EDtjOe5IkugszEX7veSSb_iTkmg7caXHjYhcghWJsy515YEa_PHl0GHKxVGvY87Tccfhc8kLFpafFZLk98uw5d8ukr2ddBHFhmVo6zbc6vAje9Mq_A5c880qXG8jSp6vwo1hZyu_C6-xB7Cj4FN4bM_ZpGaBW7jx7GRSkYNQ-6-O_frxk32b0knkUzY7tDOGMLK6Bwdbm6PBdtzFSogdYh4ZIy5zPpFFbsvCIqrKubB5helK-6zMrc2ErK1SNZldMydq4uYqRF2kiReIOrL7sNxgEx4Cs567VJTWy9SJyrqCp4p75Z1CrJg4F8GruQiN64jEKZ7FsaENBcnckMxNL_MIXvQPfG05NK4u-jzopC9np1_I9SyX5tPee6N25OdstLtvRhGszZVmulF3aijWli6U1nkET_tsHC9kBLGNn5xRGdokaZzoI3jQ6rivDMFhLnQiIsgXtN8XIC7uxZzm6DBwcguFSChJIng57ycXmnXVt2ahI_1LJmZz-Ha_Tz36jxoew026b49OrsHybHrmnyCGmpXrsMTFx_UwivD67sPubziHEqg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BK6AXBOUvpYCREIJDIHFsJ5a4wKplabt7qLZi1YvlOI5a0WbRdivojXfgDfsknUmyoStaIY6JndiZ8c83mfE3AK-KDLunlUXkRinMFI_DjBdJqHyp0JzQiaqDxwdD1d8TW2M5bkmS6CzMZf-95JK_98c50XbiTo-GiLwJy-S2JJL8nur9ieXQ9ZKLs16HnMfjlsPnihcsbD_LJMmfV2HLv0MkOz_pIoqtt6HNe3C3xY_sY6Pw-3DDV6twq8koebYKtwetr_wBfMARwA7rmMIje8YmJau5hSvPjicFBQg1_-rY-a_f7MeUTiKfsNmBnTGEkcVD2NvcGPX6YZsrIXSIeWSIuMz5SGapzTOLqCrlwqYFXhfaJ3lqbSJkaZUqye2aOFESN1cmyiyOvEDUkTyCpQq78ASY9dzFIrdexk4U1mU8Vtwr7xRixci5AN7NRWhcSyRO-SyODBkUJHNDMjedzAN40z3wveHQuL7q61onXT07_UahZ6k0X4efjdqS-8loe9eMAlifK820s-7EUK4tnSmt0wBedsU4X8gJYis_OaU6ZCRpXOgDeNzouGsMwWEqdCQCSBe031UgLu7FkurwoObkFgqRUBQF8HY-Ti5167pvTeqB9C-ZmI3Bp93uau0_WngBd_qjwY7Z-TLcfgordL85RrkOS7PpqX-GeGqWP6_n0gViYRPH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BV1RcUCmvQAEjIQSH0DwcJ5a4LNClbNkVKlux4mI5jqNWtNlqN1XbW_8D_5BfwkxesKIV4pjYiZ3x2P4mM_4G4HmWYPek0IjcKIWZCHw3CbLQFTYXaE7IUFTB46Ox2N7jw2k0bWJzFm20e-uSrM80EEtTUW4eZ3mbryfYtEcpkXni_o_mSXQdekkkJdpevX5_-GX4O8ZDVksxrgbSDQJ_2nD7XPKKpW2pRxI-uwxz_h062flPl9FttT0N1uBWgytZv1aE23DNFutwo840eb4Oq6PGh34H3qBmsIMq1vBQn7NZzirO4cKyo1lGgUP1Pzz28-IHO53TCeUFK_d1yRBeZndhb7A1ebftNjkUXINYKHIRrxnrRUms00Qj2ooDruMMrzNpwzTWOuRRroXIyR0bGp4TZ1fC88T3LEc0Et6DlQK78ACYtoHxeapt5BueaZMEvgissEYghvSMceB1K0JlGoJxynNxqMjQIJkrkrnqZO7Ay-6B45pb4-qqL6ox6erp-XcKSYsj9XX8QYlh9C2c7OyqiQMb7aCpZjYuFOXgkolADXHgWVeM84icI7qwsxOqQ8aTxA3Agfv1GHeNIWiMufS4A_HS6HcViKN7uaQ42K-4urlAhOR5Drxq9eSPbl31rWGlSP-Sidoavd3trh7-RwtPYfXz-4H69HG88whu0u36dOUGrJTzE_sYYVaZPmkm0y_-jR2F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+interplay+of+histone+modifications+-+writers+that+read&rft.jtitle=EMBO+reports&rft.au=Zhang%2C+Tianyi&rft.au=Cooper%2C+Sarah&rft.au=Brockdorff%2C+Neil&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=16&rft.issue=11&rft.spage=1467&rft.epage=1481&rft_id=info:doi/10.15252%2Fembr.201540945&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6J5Z3TKR_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon