The interplay of histone modifications - writers that read
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and...
Saved in:
Published in | EMBO reports Vol. 16; no. 11; pp. 1467 - 1481 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
01.11.2015
Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1469-221X 1469-3178 |
DOI | 10.15252/embr.201540945 |
Cover
Abstract | Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development.
Graphical Abstract
Post‐translational histone modifications correlate with gene expression states. This review discusses how these modifications are formed, reinforced and maintained, and how their crosstalk might define gene expression states. |
---|---|
AbstractList | Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development. Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development. Graphical Abstract Post‐translational histone modifications correlate with gene expression states. This review discusses how these modifications are formed, reinforced and maintained, and how their crosstalk might define gene expression states. Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development. Post‐translational histone modifications correlate with gene expression states. This review discusses how these modifications are formed, reinforced and maintained, and how their crosstalk might define gene expression states. |
Author | Zhang, Tianyi Brockdorff, Neil Cooper, Sarah |
Author_xml | – sequence: 1 givenname: Tianyi surname: Zhang fullname: Zhang, Tianyi organization: Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK – sequence: 2 givenname: Sarah surname: Cooper fullname: Cooper, Sarah email: sarah.cooper@bioch.ox.ac.uk organization: Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK – sequence: 3 givenname: Neil surname: Brockdorff fullname: Brockdorff, Neil organization: Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26474904$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URB-wZocisWGT1q9rx10glaqURwGpGgRiY3kSp-OS2IOdaTv_HreZjoZKFSvb8vnuOdfXu2jLB28ReknwPgEK9MD207hPMQGOFYcnaIdwoUpGZLW12lNKfm6j3ZQuMcagZPUMbVPBJVeY76DDycwWzg82zjuzLEJbzFwasknRh8a1rjaDCz4VZXEdXValYpiZoYjWNM_R09Z0yb5YrXvo-_uTyfGH8uzb6cfjo7OyBiBQgoDaYqikmVamYiApN7LJ50ZZNpXGMA6tEaKVFDNW8xZDTs_bimDLhWBsD70d684X0942tfVDNJ2eR9ebuNTBOP3vjXczfRGuNBecAMa5wJtVgRj-LGwadO9SbbvOeBsWSRPJsJCKwK3X6wfSy7CIPreXVbRSlVBKZtWrzUTrKPfPmgUwCuoYUoq21bUb7l4yB3SdJljfjU_fjk-vx5e5gwfcfenHicORuHadXf5Prk--vDvfhPEIp8z5Cxs3un3UrxyR_EvszdrPxN9aSCZB__h6qsUn-MUmn8_1hP0Fu-_Lag |
CODEN | ERMEAX |
CitedBy_id | crossref_primary_10_1093_nar_gkac702 crossref_primary_10_1038_s41588_023_01476_x crossref_primary_10_1111_exd_13790 crossref_primary_10_1242_dev_158543 crossref_primary_10_3390_ijms23158339 crossref_primary_10_1007_s11033_020_05916_3 crossref_primary_10_1186_s13578_022_00756_z crossref_primary_10_1016_j_cancergen_2025_01_002 crossref_primary_10_1093_nar_gky009 crossref_primary_10_1016_j_bbagrm_2023_194944 crossref_primary_10_1016_j_plantsci_2023_111954 crossref_primary_10_1080_10985549_2023_2270912 crossref_primary_10_3389_fcell_2020_590195 crossref_primary_10_1016_j_molcel_2023_06_032 crossref_primary_10_1097_YPG_0000000000000297 crossref_primary_10_1186_s13059_024_03461_x crossref_primary_10_3389_fendo_2017_00304 crossref_primary_10_1111_acel_14365 crossref_primary_10_1371_journal_pone_0249985 crossref_primary_10_1093_bib_bbae638 crossref_primary_10_3390_cells10112901 crossref_primary_10_1134_S0026893316060121 crossref_primary_10_3390_ani10030521 crossref_primary_10_3390_plants10122766 crossref_primary_10_3389_fcell_2022_829536 crossref_primary_10_1016_j_nlm_2017_01_007 crossref_primary_10_3389_fonc_2020_535665 crossref_primary_10_1002_pro_3156 crossref_primary_10_1007_s00281_020_00783_3 crossref_primary_10_1016_j_plantsci_2018_12_001 crossref_primary_10_1016_j_jbc_2021_100285 crossref_primary_10_1007_s12298_023_01390_w crossref_primary_10_1016_j_ceb_2020_11_008 crossref_primary_10_2174_1568009621666210203111220 crossref_primary_10_1021_acs_jproteome_4c00877 crossref_primary_10_1016_j_molcel_2018_03_020 crossref_primary_10_1080_15592294_2019_1614416 crossref_primary_10_1016_j_bbrc_2022_05_098 crossref_primary_10_1007_s00299_021_02696_3 crossref_primary_10_3390_biom10101453 crossref_primary_10_1007_s00109_021_02066_2 crossref_primary_10_1016_j_plgene_2021_100318 crossref_primary_10_1016_j_arr_2019_100957 crossref_primary_10_1016_j_bbagrm_2023_194922 crossref_primary_10_1038_s41598_021_95398_5 crossref_primary_10_1007_s00018_022_04590_x crossref_primary_10_1080_09553002_2018_1549757 crossref_primary_10_1242_bio_048652 crossref_primary_10_3389_fimmu_2019_02718 crossref_primary_10_1073_pnas_2311249120 crossref_primary_10_1093_g3journal_jkae301 crossref_primary_10_3390_cancers10040101 crossref_primary_10_1590_0100_6991e_20243676 crossref_primary_10_3389_fendo_2018_00058 crossref_primary_10_1016_j_molcel_2020_08_002 crossref_primary_10_1016_j_bbadis_2019_07_002 crossref_primary_10_1016_j_biochi_2019_03_006 crossref_primary_10_1016_j_molcel_2022_12_032 crossref_primary_10_3389_fphys_2017_00999 crossref_primary_10_1891_2158_0782_9_3_144 crossref_primary_10_1016_j_tcb_2019_05_004 crossref_primary_10_3390_v9090248 crossref_primary_10_4137_JEN_S25513 crossref_primary_10_3389_fgene_2022_907547 crossref_primary_10_1016_j_envint_2021_106939 crossref_primary_10_1016_j_freeradbiomed_2020_11_016 crossref_primary_10_1128_mBio_03274_20 crossref_primary_10_3389_fpls_2023_1123729 crossref_primary_10_1074_jbc_AW118_003235 crossref_primary_10_1038_s41419_020_03231_0 crossref_primary_10_1038_s41417_021_00314_8 crossref_primary_10_1111_exd_14325 crossref_primary_10_1186_s13098_022_00947_1 crossref_primary_10_3390_biom13091382 crossref_primary_10_1016_j_celrep_2018_05_097 crossref_primary_10_1093_nar_gky288 crossref_primary_10_1089_omi_2016_0144 crossref_primary_10_1038_s41389_021_00370_7 crossref_primary_10_1002_jbmr_4263 crossref_primary_10_1242_jcs_253096 crossref_primary_10_3389_fgene_2019_00079 crossref_primary_10_1016_j_bcp_2020_114200 crossref_primary_10_1038_s41467_024_51789_6 crossref_primary_10_1038_s41419_020_2561_6 crossref_primary_10_1038_s41576_023_00664_z crossref_primary_10_1007_s10555_023_10132_z crossref_primary_10_1007_s12015_021_10234_7 crossref_primary_10_1016_j_ceb_2020_10_015 crossref_primary_10_1016_j_micres_2023_127440 crossref_primary_10_1038_s41540_023_00326_0 crossref_primary_10_1016_j_mad_2020_111286 crossref_primary_10_1042_BST20230877 crossref_primary_10_3390_pathogens11121436 crossref_primary_10_1016_j_ijpara_2020_09_006 crossref_primary_10_1007_s12033_017_0019_6 crossref_primary_10_1371_journal_pgen_1010906 crossref_primary_10_3390_cells8121559 crossref_primary_10_1038_nrneurol_2017_68 crossref_primary_10_1016_j_tig_2018_07_006 crossref_primary_10_1016_j_cmet_2019_03_009 crossref_primary_10_1016_j_phrs_2021_105846 crossref_primary_10_1186_s13059_019_1746_8 crossref_primary_10_3390_ph16020156 crossref_primary_10_1038_s41467_018_06235_9 crossref_primary_10_1016_j_jid_2016_04_026 crossref_primary_10_1186_s40246_024_00626_4 crossref_primary_10_1186_s12864_020_6771_1 crossref_primary_10_1080_17460441_2017_1303474 crossref_primary_10_1016_j_neulet_2020_135163 crossref_primary_10_3390_ijms17091446 crossref_primary_10_1007_s42994_023_00127_3 crossref_primary_10_7554_eLife_75115 crossref_primary_10_1039_C6LC01535B crossref_primary_10_3389_fcell_2022_909696 crossref_primary_10_1016_j_neo_2021_06_007 crossref_primary_10_1186_s10020_024_00864_1 crossref_primary_10_1371_journal_pone_0212123 crossref_primary_10_1016_j_canlet_2020_05_025 crossref_primary_10_1111_his_13725 crossref_primary_10_1016_j_pbi_2020_08_007 crossref_primary_10_1111_tpj_16707 crossref_primary_10_1016_j_bbagrm_2023_194978 crossref_primary_10_5483_BMBRep_2024_0175 crossref_primary_10_3389_fgene_2023_1156095 crossref_primary_10_1002_1873_3468_14447 crossref_primary_10_1093_nar_gkaa248 crossref_primary_10_1158_2643_3230_BCD_23_0235 crossref_primary_10_1080_15592294_2016_1265713 crossref_primary_10_1371_journal_pbio_3001377 crossref_primary_10_1002_jcp_26836 crossref_primary_10_3390_jdb10020026 crossref_primary_10_1038_s41598_019_42711_y crossref_primary_10_1242_dev_200696 crossref_primary_10_1093_nar_gkad1256 crossref_primary_10_3233_JAD_180259 crossref_primary_10_1016_j_yjmcc_2021_06_003 crossref_primary_10_1007_s12038_020_00099_2 crossref_primary_10_1186_s40246_018_0163_5 crossref_primary_10_1016_j_molcel_2024_09_015 crossref_primary_10_3390_ijms18061108 crossref_primary_10_1038_s41598_017_13916_w crossref_primary_10_3390_cancers11010061 crossref_primary_10_1002_ctm2_1564 crossref_primary_10_1084_jem_20191453 crossref_primary_10_1016_j_bbrc_2025_151559 crossref_primary_10_1038_s41467_022_32322_z crossref_primary_10_3389_fgene_2020_557846 crossref_primary_10_1016_j_plantsci_2019_04_007 crossref_primary_10_1016_j_ygeno_2021_05_034 crossref_primary_10_1098_rstb_2019_0345 crossref_primary_10_1016_j_neures_2018_09_010 crossref_primary_10_1096_fj_201901818RR crossref_primary_10_1016_j_preteyeres_2018_03_002 crossref_primary_10_1002_pros_23271 crossref_primary_10_1523_JNEUROSCI_0843_17_2017 crossref_primary_10_3389_fonc_2021_653037 crossref_primary_10_1016_j_molcel_2021_12_037 crossref_primary_10_3390_epigenomes8030032 crossref_primary_10_1002_bies_201700053 crossref_primary_10_1038_s41598_021_94097_5 crossref_primary_10_3390_ijms23158704 crossref_primary_10_1021_acssynbio_1c00394 crossref_primary_10_3390_epigenomes7020010 crossref_primary_10_1016_j_envint_2024_109084 crossref_primary_10_1016_j_intimp_2023_110918 crossref_primary_10_1590_1678_4685_gmb_2022_0131 crossref_primary_10_1007_s00702_020_02184_0 crossref_primary_10_3390_ijms20102507 crossref_primary_10_1007_s00018_017_2515_z crossref_primary_10_1093_jxb_eraf058 crossref_primary_10_1080_19490976_2021_1949096 crossref_primary_10_3390_v14091980 crossref_primary_10_1155_2016_5959721 crossref_primary_10_1016_j_jmb_2016_09_023 crossref_primary_10_1002_bies_202300178 crossref_primary_10_1371_journal_pone_0233880 crossref_primary_10_1016_j_pharmthera_2023_108547 crossref_primary_10_1016_j_bmc_2017_04_015 crossref_primary_10_1016_j_neubiorev_2022_104579 crossref_primary_10_1016_j_fgb_2021_103569 crossref_primary_10_1021_jacs_7b03430 crossref_primary_10_1073_pnas_2401861121 crossref_primary_10_1016_j_bpj_2021_10_019 crossref_primary_10_1111_1462_2920_15370 crossref_primary_10_1016_j_pharmthera_2018_11_003 crossref_primary_10_1016_j_csbj_2023_10_022 crossref_primary_10_3390_nu15071797 crossref_primary_10_1002_stem_2918 crossref_primary_10_1038_s41590_023_01430_3 crossref_primary_10_3839_jabc_2019_022 crossref_primary_10_1007_s42994_021_00048_z crossref_primary_10_1016_j_ijbiomac_2024_136767 crossref_primary_10_1158_2159_8290_CD_23_0876 crossref_primary_10_1186_s13045_020_01027_5 crossref_primary_10_1371_journal_pcbi_1010450 crossref_primary_10_1021_acs_analchem_7b05224 crossref_primary_10_1093_nar_gkae1013 crossref_primary_10_1111_febs_14833 crossref_primary_10_1007_s42764_024_00131_x crossref_primary_10_3390_nu15040887 crossref_primary_10_1016_j_devcel_2021_04_009 crossref_primary_10_1186_s13148_023_01568_9 crossref_primary_10_1093_humupd_dmy021 crossref_primary_10_1534_genetics_116_195735 crossref_primary_10_1186_s13148_020_00982_7 crossref_primary_10_3389_fonc_2022_894585 crossref_primary_10_1007_s00709_017_1092_1 crossref_primary_10_1038_s41419_019_1487_3 crossref_primary_10_1016_j_crmeth_2023_100535 crossref_primary_10_3390_ijms22136922 crossref_primary_10_18632_oncotarget_27493 crossref_primary_10_1007_s10620_018_5341_8 crossref_primary_10_1186_s13059_017_1211_5 crossref_primary_10_1172_JCI161713 crossref_primary_10_3389_fonc_2019_00705 crossref_primary_10_1007_s00498_023_00343_8 crossref_primary_10_1016_j_phrs_2020_104740 crossref_primary_10_1016_j_tcb_2021_04_001 crossref_primary_10_1038_s41419_020_03081_w crossref_primary_10_1002_bies_201500162 crossref_primary_10_1016_j_cell_2023_01_007 crossref_primary_10_1177_17448069211056767 crossref_primary_10_1186_s13039_015_0208_6 crossref_primary_10_1016_j_ncrna_2018_02_003 crossref_primary_10_1016_j_jbc_2024_107484 crossref_primary_10_1016_j_chembiol_2017_08_020 crossref_primary_10_3390_v16010108 crossref_primary_10_1053_j_gastro_2017_12_019 crossref_primary_10_1186_s12964_019_0393_8 crossref_primary_10_1016_j_ymgme_2024_108360 crossref_primary_10_1186_s12920_020_00749_2 crossref_primary_10_22201_cuaieed_16076079e_2020_21_6_4 crossref_primary_10_1002_chem_201701655 crossref_primary_10_1590_0100_6991e_20243676_en crossref_primary_10_1111_brv_12701 crossref_primary_10_3390_genes13081471 crossref_primary_10_1007_s00018_022_04645_z crossref_primary_10_1042_ETLS20210258 crossref_primary_10_1111_nph_18286 crossref_primary_10_1016_j_ebiom_2020_103191 crossref_primary_10_1186_s12929_022_00812_3 crossref_primary_10_3389_fonc_2023_1169168 crossref_primary_10_1002_arch_22136 crossref_primary_10_1016_j_reprotox_2024_108656 crossref_primary_10_1186_s13148_021_01187_2 crossref_primary_10_1007_s00018_020_03566_z crossref_primary_10_1007_s12374_023_09397_2 crossref_primary_10_1186_s13229_017_0119_y crossref_primary_10_3389_fgene_2016_00133 crossref_primary_10_1093_pcp_pcz051 crossref_primary_10_3389_fpsyt_2022_1006109 crossref_primary_10_1158_1541_7786_MCR_19_0470 crossref_primary_10_1186_s13148_021_01089_3 crossref_primary_10_3390_genes13050764 crossref_primary_10_1093_nar_gkaa163 crossref_primary_10_1007_s13577_022_00727_z crossref_primary_10_1016_j_mrrev_2017_10_001 crossref_primary_10_3390_cells10071718 crossref_primary_10_1074_jbc_RA117_001683 crossref_primary_10_1038_s41467_021_24099_4 crossref_primary_10_7554_eLife_47859 crossref_primary_10_1038_s42003_025_07677_w crossref_primary_10_1590_acb370403 crossref_primary_10_1007_s00401_022_02489_2 crossref_primary_10_1016_j_ymben_2021_04_014 crossref_primary_10_1007_s43032_022_00988_x crossref_primary_10_1007_s40291_020_00507_1 crossref_primary_10_1073_pnas_2022887118 crossref_primary_10_3389_fcell_2023_1052245 crossref_primary_10_3389_fpls_2022_959840 crossref_primary_10_1016_j_diabres_2016_11_009 crossref_primary_10_1371_journal_pcbi_1007119 crossref_primary_10_1002_wrna_1735 crossref_primary_10_1007_s00441_025_03952_8 crossref_primary_10_1093_nar_gkx601 crossref_primary_10_1146_annurev_micro_102215_095757 crossref_primary_10_1073_pnas_2415231121 crossref_primary_10_1007_s42764_021_00051_0 crossref_primary_10_3390_ijms22031259 crossref_primary_10_3390_biom13101526 crossref_primary_10_1016_j_stemcr_2017_01_026 crossref_primary_10_3389_fphar_2022_813659 crossref_primary_10_1016_j_banm_2020_04_004 crossref_primary_10_2217_epi_2020_0348 crossref_primary_10_1097_MCO_0000000000000281 crossref_primary_10_1128_MCB_00112_16 crossref_primary_10_2217_epi_2016_0062 crossref_primary_10_1016_j_celrep_2022_110828 crossref_primary_10_1007_s00432_017_2479_2 crossref_primary_10_1073_pnas_2020293118 crossref_primary_10_1016_j_devcel_2018_05_022 crossref_primary_10_1038_s41419_019_1305_y crossref_primary_10_1016_j_biochi_2020_11_021 crossref_primary_10_3390_genes13091626 crossref_primary_10_1016_j_bbagrm_2020_194567 crossref_primary_10_1021_acschembio_9b00651 crossref_primary_10_1016_j_bone_2021_116299 crossref_primary_10_1038_s41419_018_0349_8 crossref_primary_10_1016_j_molcel_2022_07_008 crossref_primary_10_1002_cam4_5723 crossref_primary_10_1093_nar_gkx821 crossref_primary_10_3389_fgene_2020_00869 crossref_primary_10_3390_ijms24010603 crossref_primary_10_1038_s41398_023_02560_w crossref_primary_10_1080_15257770_2019_1638514 crossref_primary_10_1093_neuonc_noae148 crossref_primary_10_1016_j_fct_2021_112695 crossref_primary_10_1038_s41422_020_0357_y crossref_primary_10_1038_s41467_024_51785_w crossref_primary_10_3390_cancers15215269 crossref_primary_10_1016_j_virusres_2016_10_017 crossref_primary_10_1111_ppl_14399 crossref_primary_10_1186_s13072_019_0274_9 crossref_primary_10_3390_biom13111590 crossref_primary_10_1007_s11240_023_02595_3 crossref_primary_10_3390_ijms25052840 crossref_primary_10_1016_j_jaci_2018_07_014 crossref_primary_10_3390_biom9120829 crossref_primary_10_1186_s13148_019_0639_8 crossref_primary_10_1371_journal_ppat_1005878 crossref_primary_10_3390_cells9122716 crossref_primary_10_1017_S2040174417000733 crossref_primary_10_2174_1566524023666221003102857 crossref_primary_10_1038_s44318_024_00148_8 crossref_primary_10_1016_j_coph_2021_07_014 crossref_primary_10_3390_toxics13030167 crossref_primary_10_3389_fmolb_2023_1270285 crossref_primary_10_1016_j_envpol_2020_115748 crossref_primary_10_1021_acs_analchem_1c01735 crossref_primary_10_1038_s41598_023_39979_6 crossref_primary_10_1042_CS20160222 crossref_primary_10_1007_s12018_017_9229_5 crossref_primary_10_1080_03602532_2018_1437446 crossref_primary_10_1158_0008_5472_CAN_19_0428 crossref_primary_10_1002_wrna_1815 crossref_primary_10_1371_journal_pgen_1009376 crossref_primary_10_1186_s13072_017_0116_6 crossref_primary_10_3390_cells11152404 crossref_primary_10_1103_PhysRevE_109_014405 crossref_primary_10_1007_s00412_017_0647_4 crossref_primary_10_1002_ptr_6434 crossref_primary_10_1038_s41588_021_00887_y crossref_primary_10_3390_jof8111159 crossref_primary_10_1371_journal_pcbi_1009861 crossref_primary_10_1159_000529336 crossref_primary_10_1007_s12018_019_09263_1 crossref_primary_10_3389_fcell_2019_00002 crossref_primary_10_1038_s41597_020_0412_z crossref_primary_10_3389_fmolb_2023_1170026 crossref_primary_10_1016_j_omton_2024_200871 crossref_primary_10_1016_j_bbcan_2020_188349 crossref_primary_10_3390_v9050125 crossref_primary_10_1172_jci_insight_123196 crossref_primary_10_3390_life13122279 crossref_primary_10_1016_j_neurobiolaging_2018_03_009 crossref_primary_10_1038_s41467_018_06186_1 crossref_primary_10_1002_pmic_201700379 crossref_primary_10_1186_s12886_025_03939_7 crossref_primary_10_3390_v12050555 crossref_primary_10_1186_s12931_024_03093_6 crossref_primary_10_3390_vaccines9050514 crossref_primary_10_1007_s00281_017_0656_7 crossref_primary_10_1038_s41467_022_28485_4 crossref_primary_10_1242_dev_129007 crossref_primary_10_3390_biom11091380 crossref_primary_10_4155_ppa_2019_0025 crossref_primary_10_1371_journal_pcbi_1011725 crossref_primary_10_1515_hsz_2023_0189 crossref_primary_10_1080_10408398_2021_1944974 crossref_primary_10_1186_s12935_019_0979_7 crossref_primary_10_1038_s41576_019_0105_7 crossref_primary_10_1152_physrev_00017_2022 crossref_primary_10_1016_j_cellsig_2019_109509 crossref_primary_10_1093_nar_gky715 crossref_primary_10_1213_ANE_0000000000006397 crossref_primary_10_3389_fgene_2022_994471 crossref_primary_10_3390_ijms25052750 crossref_primary_10_3389_fpls_2021_761059 crossref_primary_10_1038_s41418_024_01419_x crossref_primary_10_1093_cvr_cvac142 crossref_primary_10_3390_a16090401 crossref_primary_10_1016_j_bcp_2022_115341 crossref_primary_10_1007_s00281_017_0621_5 crossref_primary_10_1017_S0967199423000448 crossref_primary_10_1016_j_ceb_2016_12_001 crossref_primary_10_1016_j_molcel_2017_05_014 crossref_primary_10_7717_peerj_3236 crossref_primary_10_1016_j_semcancer_2023_10_005 crossref_primary_10_1126_sciadv_adf2451 crossref_primary_10_1002_1878_0261_12041 crossref_primary_10_1242_jcs_205534 crossref_primary_10_1016_j_mce_2017_06_007 crossref_primary_10_1074_mcp_R120_002257 crossref_primary_10_1093_nar_gky526 crossref_primary_10_1111_boc_202400096 crossref_primary_10_1007_s00109_022_02247_7 crossref_primary_10_1016_j_bcp_2022_115295 crossref_primary_10_1097_QAI_0000000000002526 crossref_primary_10_1038_s41583_019_0121_9 crossref_primary_10_1038_s41585_019_0154_x crossref_primary_10_1038_s41586_023_06546_y crossref_primary_10_1016_j_ab_2018_01_018 crossref_primary_10_1038_s41556_020_0499_7 crossref_primary_10_1002_humu_24203 crossref_primary_10_1021_jacs_8b03715 crossref_primary_10_1093_biolre_ioaa053 crossref_primary_10_1002_pro_4760 crossref_primary_10_3390_ijms20235998 crossref_primary_10_1016_j_trecan_2019_10_009 crossref_primary_10_1016_j_biocel_2017_06_016 crossref_primary_10_1093_gbe_evy196 crossref_primary_10_3390_cells11010028 crossref_primary_10_21769_BioProtoc_2781 crossref_primary_10_2217_epi_2023_0235 crossref_primary_10_1080_15427528_2019_1678541 crossref_primary_10_1002_adbi_202300211 crossref_primary_10_1155_2021_9995903 crossref_primary_10_1007_s12035_019_01829_w crossref_primary_10_3390_antiox11071355 crossref_primary_10_1242_dev_143347 crossref_primary_10_3390_biology13080638 crossref_primary_10_1007_s00299_021_02754_w crossref_primary_10_1007_s11427_019_9582_9 crossref_primary_10_1007_s40495_023_00338_8 crossref_primary_10_1186_s13072_019_0275_8 crossref_primary_10_1038_s41419_021_04365_5 crossref_primary_10_7554_eLife_72792 crossref_primary_10_1007_s12015_020_10055_0 crossref_primary_10_1016_j_molmed_2024_06_004 crossref_primary_10_1042_BCJ20220550 crossref_primary_10_1038_s41467_019_12355_7 crossref_primary_10_3390_onco3030011 crossref_primary_10_1371_journal_pone_0230930 crossref_primary_10_1007_s00294_018_0903_z crossref_primary_10_18632_oncotarget_15818 crossref_primary_10_1080_15592294_2016_1226452 crossref_primary_10_1093_nar_gkx531 crossref_primary_10_4049_jimmunol_2001160 crossref_primary_10_1186_s13148_021_01170_x crossref_primary_10_3389_fcell_2021_759237 crossref_primary_10_1093_bioinformatics_btaf033 crossref_primary_10_1038_cddis_2017_239 crossref_primary_10_1074_jbc_RA119_010302 crossref_primary_10_1016_j_jbiosc_2016_09_008 crossref_primary_10_1186_s40364_024_00621_w crossref_primary_10_18632_oncotarget_11348 crossref_primary_10_1016_j_bcp_2023_115799 crossref_primary_10_3390_ijms23031791 crossref_primary_10_1093_nar_gkae276 crossref_primary_10_3390_genes13122388 crossref_primary_10_1186_s12967_019_1862_y crossref_primary_10_1080_17501911_2024_2442297 crossref_primary_10_18632_oncotarget_24522 crossref_primary_10_1186_s13072_023_00512_8 crossref_primary_10_3390_ijms20163918 crossref_primary_10_1016_j_neubiorev_2023_105293 crossref_primary_10_3390_ijms22137118 crossref_primary_10_1016_j_semcdb_2019_03_004 crossref_primary_10_1002_jmor_21008 crossref_primary_10_3390_cancers15020425 crossref_primary_10_1016_j_gde_2023_102033 crossref_primary_10_1007_s00425_024_04549_1 crossref_primary_10_1111_jipb_12850 crossref_primary_10_1038_s41467_024_46910_8 crossref_primary_10_1016_j_canlet_2019_11_027 crossref_primary_10_26508_lsa_201800228 crossref_primary_10_1016_j_neubiorev_2023_105101 crossref_primary_10_15252_embj_2022110595 crossref_primary_10_1063_5_0087699 crossref_primary_10_3390_epigenomes2040020 crossref_primary_10_1016_j_tibs_2017_10_004 crossref_primary_10_1371_journal_pgen_1010647 crossref_primary_10_1080_19491034_2024_2374854 crossref_primary_10_1093_plcell_koab281 crossref_primary_10_1038_s12276_023_00987_1 crossref_primary_10_15252_emmm_202013785 crossref_primary_10_15252_embj_2019101564 crossref_primary_10_3389_fcell_2022_1026406 crossref_primary_10_1139_gen_2020_0104 crossref_primary_10_3389_fimmu_2021_662565 crossref_primary_10_3164_jcbn_17_113 crossref_primary_10_1016_j_genrep_2020_100815 crossref_primary_10_1186_s13046_022_02530_y crossref_primary_10_3390_ijms18051069 crossref_primary_10_1186_s12935_023_03067_6 crossref_primary_10_1016_j_prp_2024_155446 crossref_primary_10_3389_fcell_2019_00081 crossref_primary_10_1016_j_atherosclerosis_2020_04_004 crossref_primary_10_1002_jez_2246 crossref_primary_10_1016_j_jgg_2021_04_004 crossref_primary_10_1523_ENEURO_0255_16_2017 crossref_primary_10_2217_epi_2018_0126 crossref_primary_10_1136_jmedgenet_2018_105668 crossref_primary_10_1080_15384101_2021_1986317 crossref_primary_10_1016_j_pharmthera_2019_01_002 crossref_primary_10_1038_s41598_017_06569_2 crossref_primary_10_1128_JVI_01812_19 crossref_primary_10_1177_0022034519862258 crossref_primary_10_1038_s41467_018_07829_z crossref_primary_10_1126_sciimmunol_ado0398 crossref_primary_10_1210_endocr_bqaa210 crossref_primary_10_1111_cas_13925 crossref_primary_10_1080_15384047_2019_1640032 crossref_primary_10_3389_fcell_2021_739780 crossref_primary_10_1093_ijnp_pyy102 crossref_primary_10_1007_s10577_016_9548_2 crossref_primary_10_1186_s13148_021_01103_8 crossref_primary_10_1016_j_canlet_2018_04_032 crossref_primary_10_1021_acs_jmedchem_3c01095 crossref_primary_10_2174_0113892037274615240528113148 crossref_primary_10_1515_nf_2018_A001 crossref_primary_10_1177_13872877241288709 crossref_primary_10_1007_s13258_021_01213_w crossref_primary_10_1016_j_pbi_2016_08_002 crossref_primary_10_1111_febs_14491 crossref_primary_10_2174_1871530319666190301145545 crossref_primary_10_3390_epigenomes1030020 crossref_primary_10_3390_ijms25095044 crossref_primary_10_1016_j_pnpbp_2017_12_013 crossref_primary_10_3390_ijms24021308 crossref_primary_10_1016_j_matbio_2018_02_004 crossref_primary_10_1016_j_gendis_2022_11_022 crossref_primary_10_3389_fcell_2021_626708 crossref_primary_10_1134_S0026893322030049 crossref_primary_10_1152_physrev_00024_2016 crossref_primary_10_1016_j_molonc_2016_09_003 crossref_primary_10_1093_advances_nmac039 crossref_primary_10_1038_s41477_020_00757_1 crossref_primary_10_1038_s41392_023_01651_w crossref_primary_10_1007_s12013_024_01254_4 crossref_primary_10_1136_gutjnl_2018_317208 crossref_primary_10_1103_PhysRevE_106_024408 crossref_primary_10_3390_cells10092362 crossref_primary_10_1186_s13072_024_00542_w crossref_primary_10_1186_s13148_018_0512_1 crossref_primary_10_1158_1078_0432_CCR_24_3324 crossref_primary_10_1137_23M1592389 crossref_primary_10_1016_j_ymeth_2024_03_001 |
Cites_doi | 10.1038/nature06008 10.1038/nsmb.1961 10.1128/MCB.00949-07 10.1038/nsmb.2434 10.1021/ac401299w 10.1038/nsmb.2833 10.1016/j.molcel.2013.01.016 10.1016/j.molcel.2005.07.024 10.1016/j.cell.2006.02.041 10.1074/jbc.C200433200 10.1038/nature08398 10.1182/blood-2010-07-298349 10.1016/j.molcel.2010.04.009 10.1038/nature00883 10.1038/onc.2015.24 10.1016/j.bbamcr.2013.11.016 10.1073/pnas.1100099108 10.1136/jmg.40.6.436 10.1016/j.cell.2007.05.042 10.1016/j.cell.2005.10.002 10.1101/gad.347705 10.1128/MCB.24.12.5475-5484.2004 10.1074/mcp.M900489-MCP200 10.1186/1756-8935-6-24 10.4161/cc.8.11.8620 10.1101/gad.1035902 10.1093/nar/gkq244 10.1074/jbc.M110.194027 10.1101/gad.191163.112 10.1038/sj.emboj.7601187 10.1023/A:1022923508198 10.1016/j.molcel.2004.05.009 10.1128/MCB.21.8.2726-2735.2001 10.1093/nar/gkt1394 10.1073/pnas.0437846100 10.1074/jbc.M109.089433 10.1016/j.molcel.2015.02.013 10.1016/j.molcel.2014.10.001 10.1016/S1097-2765(03)00092-3 10.1126/science.1262088 10.1016/S1097-2765(03)00477-5 10.1093/nar/gku1354 10.1371/journal.pgen.1000242 10.1074/jbc.M113.475996 10.1016/j.cell.2010.08.020 10.1007/s10577-007-1126-1 10.1016/j.stem.2011.04.004 10.1016/S0014-5793(00)01449-6 10.1021/pr800044q 10.1074/mcp.M112.026716 10.1038/nature13045 10.1073/pnas.1016071107 10.1371/journal.pone.0022548 10.1038/ng.99 10.1073/pnas.1419703112 10.7554/eLife.01632 10.1038/ng.2777 10.1016/j.stem.2011.12.006 10.1128/EC.4.8.1446-1454.2005 10.1128/MCB.00601-13 10.1038/sj.embor.7400376 10.1016/S0960-9822(03)00432-9 10.1038/nature04254 10.1016/j.celrep.2012.09.019 10.1038/sj.ejhg.5201298 10.1016/j.cell.2005.06.026 10.1038/emboj.2011.193 10.1016/j.molcel.2006.06.017 10.1073/pnas.231473398 10.1016/S0014-5793(01)03309-9 10.1016/j.cell.2014.05.004 10.1101/gad.1284005 10.1016/j.molcel.2013.12.005 10.1016/j.molcel.2005.12.007 10.1101/gad.2027411 10.1073/pnas.0401866101 10.1371/journal.pgen.1001091 10.1101/gr.080861.108 10.1016/j.molcel.2003.08.007 10.1016/j.tig.2003.09.007 10.1242/dev.102681 10.1038/nsmb.1499 10.1007/s00018-014-1725-x 10.1038/emboj.2011.431 10.1101/gad.177220.111 10.1101/gad.1837309 10.1016/j.febslet.2006.10.027 10.1016/j.molcel.2012.10.026 10.1016/j.celrep.2014.04.012 10.1128/MCB.01684-06 10.1128/MCB.24.6.2478-2486.2004 10.1016/j.jmb.2010.03.036 10.1016/j.molcel.2012.01.002 10.1016/S0960-9822(02)00892-8 10.1016/j.molcel.2006.10.026 10.1038/nsmb.2435 10.1128/MCB.25.8.3305-3316.2005 10.1016/j.cell.2013.01.032 10.1073/pnas.1205707109 10.1128/MCB.00205-14 10.1128/MCB.00866-13 10.1038/nsmb.2653 10.1016/j.cell.2005.10.023 10.1074/jbc.M603099200 10.1016/j.cell.2005.10.025 10.1101/cshperspect.a017780 10.1074/jbc.M307344200 10.1016/j.molcel.2011.05.015 10.1242/dev.02584 10.1126/science.1084274 10.1101/gad.381706 10.1016/j.bbcan.2011.05.004 10.1073/pnas.1400648111 10.1093/nar/gkg332 10.1016/j.celrep.2012.11.026 10.1016/j.molcel.2013.10.030 10.1038/ncb1787 10.7554/eLife.00205 10.1038/sj.ejhg.5201050 10.1038/nsmb.2449 10.1126/science.1248357 10.1016/j.molcel.2005.11.012 10.1186/1756-8935-6-12 10.1016/j.cell.2012.09.002 10.1101/gad.177238.111 10.1074/jbc.C300270200 10.1016/j.str.2007.08.007 10.1371/journal.pgen.1002774 10.1128/MCB.20.6.2108-2121.2000 10.1073/pnas.1012798108 10.1016/j.cell.2007.05.009 10.1016/j.molcel.2011.03.025 10.1128/MCB.00389-12 10.1016/S1534-5807(03)00068-6 10.1038/nsmb.1384 10.1101/gad.2037511 10.1074/jbc.M112.384057 10.1093/nar/gks367 10.1073/pnas.0704351104 10.1128/MCB.24.13.5639-5649.2004 10.1038/nrm3274 10.1002/stem.2046 10.1128/MCB.24.5.1884-1896.2004 10.1074/jbc.M212134200 10.1074/jbc.M210256200 10.1016/j.stem.2010.03.018 10.1016/j.molcel.2004.06.020 10.1242/dev.048363 10.1038/ncb1076 10.1016/j.molcel.2005.11.021 10.1126/science.1225237 10.1016/j.devcel.2004.10.005 10.1016/j.molcel.2013.01.033 10.1038/ncb2702 10.1101/gad.217778.113 10.1016/j.molcel.2012.11.026 10.1074/jbc.C600286200 10.1016/j.cell.2010.05.016 10.1016/j.molcel.2010.08.020 10.1016/j.cell.2011.12.029 10.1016/j.molcel.2008.12.016 10.1101/gr.6654808 10.1074/jbc.M009472200 10.1101/gad.194209.112 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY 4.0 license 2015 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 The Authors. Published under the terms of the CC BY 4.0 license. 2015 EMBO 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY 4.0 license 2015 – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2015 EMBO – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 |
DBID | BSCLL C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embr.201540945 |
DatabaseName | Istex Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1469-3178 |
EndPage | 1481 |
ExternalDocumentID | PMC4641500 3854502201 26474904 10_15252_embr_201540945 EMBR201540945 ark_67375_WNG_6J5Z3TKR_T |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: European Research Council grantid: 340081 – fundername: Wellcome Trust grantid: 103768 – fundername: Wellcome Trust funderid: 103768 – fundername: European Research Council funderid: 340081 |
GroupedDBID | --- -DZ -Q- .55 0R~ 1OC 29G 2WC 33P 36B 39C 3O- 53G 5GY 5VS 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAESR AAEVG AAHBH AAJSJ AAMMB AANHP AANLZ AAONW AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 DCZOG DIK DPXWK DRFUL DRSTM DWQXO E3Z EBLON EBS EJD EMB EMOBN F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HK~ HMCUK HVGLF HYE H~9 KQ8 L7B LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X R.K RHI RNI RNS ROL RPM RZO SV3 TR2 UKHRP WBKPD WIH WIK WIN WOHZO WOQ WXSBR X7M ZGI ZZTAW 24P AAHHS ACCFJ ADZOD AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV RHF WYJ 3V. 88A ABJNI M0L RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5515-565ce0587ab8a835724a7d587d9e3b7aa345fa66f72033c4f051784f810e46633 |
IEDL.DBID | C6C |
ISSN | 1469-221X |
IngestDate | Thu Aug 21 13:40:54 EDT 2025 Sun Sep 28 01:24:34 EDT 2025 Fri Jul 25 10:49:57 EDT 2025 Mon Jul 21 05:58:57 EDT 2025 Tue Jul 01 02:52:14 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Wed Jan 22 16:31:55 EST 2025 Fri Feb 21 02:37:41 EST 2025 Sun Sep 21 06:17:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Trithorax Polycomb histone modifications chromatin |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2015 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5515-565ce0587ab8a835724a7d587d9e3b7aa345fa66f72033c4f051784f810e46633 |
Notes | European Research Council - No. 340081 istex:44797A4FF603C26FCB2C4AACD048E15AC1D9C3FB ArticleID:EMBR201540945 ark:/67375/WNG-6J5Z3TKR-T Wellcome Trust - No. 103768 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 These authors contributed equally to this work |
OpenAccessLink | https://doi.org/10.15252/embr.201540945 |
PMID | 26474904 |
PQID | 1728986997 |
PQPubID | 26169 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4641500 proquest_miscellaneous_1730679153 proquest_journals_1728986997 pubmed_primary_26474904 crossref_citationtrail_10_15252_embr_201540945 crossref_primary_10_15252_embr_201540945 wiley_primary_10_15252_embr_201540945_EMBR201540945 springer_journals_10_15252_embr_201540945 istex_primary_ark_67375_WNG_6J5Z3TKR_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Chichester, UK |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO rep |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley & Sons, Ltd |
References | Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nunez JK, Nickoloff J et al (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19: 1266-1272 Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107: 21931-21936 Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19: 849-856 Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884-1896 Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23: 289-296 Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837 Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwammle V, Pasini D, Helin K, Jensen ON (2013) Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem 85: 8232-8239 Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO et al (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30: 2829-2842 Wu L, Zee BM, Wang Y, Garcia BA, Dou Y (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation. Mol Cell 43: 132-144 Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A et al (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. elife 3: e01632 Eberl HC, Spruijt CG, Kelstrup CD, Vermeulen M, Mann M (2013) A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 49: 368-378 Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49: 1134-1146 Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV, Bhang HE, Taylor JE, Hu M, Englund NP et al (2013) Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 45: 1386-1391 Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA (2009) SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 23: 2484-2489 Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J et al (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508: 263-268 Brien GL, Gambero G, O'Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19: 1273-1281 Douglas J, Coleman K, Tatton-Brown K, Hughes HE, Temple IK, Cole TR, Rahman N, Childhood Overgrowth C (2005) Evaluation of NSD2 and NSD3 in overgrowth syndromes. Eur J Hum Genet 13: 150-153 Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SI, Strahl BD (2005) Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4: 1446-1454 Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6: 73-77 Escamilla-Del-Arenal M, da Rocha ST, Spruijt CG, Masui O, Renaud O, Smits AH, Margueron R, Vermeulen M, Heard E (2013) Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 33: 5005-5020 Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101: 7357-7362 Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8: 676-687 Morishita M, di Luccio E (2011) Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta 1816: 158-163 Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53: 49-62 Jung HR, Pasini D, Helin K, Jensen ON (2010) Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 9: 838-850 Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38: 4958-4969 Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286: 7983-7989 Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19: 629-639 Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123-1136 Rechtsteiner A, Ercan S, Takasaki T, Phippen TM, Egelhofer TA, Wang W, Kimura H, Lieb JD, Strome S (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6: e1001091 de la Cruz CC, Kirmizis A, Simon MD, Isono K, Koseki H, Panning B (2007) The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution. Chromosome Res 15: 299-314 Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA et al (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 8: e1002774 Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035-4040 Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593-605 Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42: 330-341 Murton BL, Chin WL, Ponting CP, Itzhaki LS (2010) Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase. J Mol Biol 398: 481-488 Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N (2006) The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 580: 6233-6241 Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51-64 Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77-88 Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151: 181-193 Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98: 12902-12907 Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577-1589 Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40: 411-420 Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747-1753 Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192-1200 Crump NT, Hazzalin CA, Bowers EM, Alani RM, Cole PA, Mahadevan LC (2011) Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. Proc Natl Acad Sci USA 108: 7814-7819 Nekrasov M, Wild B, Muller J (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6: 348-353 Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S (2006) MES-4: an autosome-associated histone methyltransferase that participates in si Gaydos, Rechtsteiner, Egelhofer, Carroll, Strome (CR138) 2012; 2 Katada, Sassone‐Corsi (CR20) 2010; 17 Gao, Zhang, Bonasio, Strino, Sawai, Parisi, Kluger, Reinberg (CR91) 2012; 45 Wu, Johansen, Helin (CR107) 2013; 49 Clouaire, Webb, Skene, Illingworth, Kerr, Andrews, Lee, Skalnik, Bird (CR29) 2012; 26 Wu, Zee, Wang, Garcia, Dou (CR42) 2011; 43 Wu, Lee, Zhou, Nguyen, Muir, Tan, Dou (CR43) 2013; 49 Yuan, Wu, Fu, Dai, Wu, Liu, Li, Xu, Zhang, Niu (CR90) 2012; 337 Song, Sun, Lu, Tian, Ding, Liu (CR19) 2015; 112 Eberl, Spruijt, Kelstrup, Vermeulen, Mann (CR31) 2013; 49 Bian, Xu, Ruan, Lee, Burke, Tempel, Barsyte, Li, Wu, Zhou (CR49) 2011; 30 Schneider, Arteaga‐Salas, Mentele, David, Nicetto, Imhof, Rupp (CR72) 2011; 6 Yuan, Pu, Zhang, Lou (CR45) 2009; 8 Mak, Baxter, Silva, Newall, Otte, Brockdorff (CR98) 2002; 12 Mozzetta, Pontis, Fritsch, Robin, Portoso, Proux, Margueron, Ait‐Si‐Ali (CR128) 2014; 53 CR157 Wen, Li, Xi, Jiang, Stratton, Peng, Tanaka, Ren, Xia, Wu (CR163) 2014; 508 Hock (CR158) 2012; 26 Murton, Chin, Ponting, Itzhaki (CR33) 2010; 398 Yuan, Ma, Yuan, Zhang, Chen, Ding, Feng, Shen, Chen, Li (CR141) 2013; 288 Ren, Vincenz, Kerppola (CR101) 2008; 28 de la Cruz, Kirmizis, Simon, Isono, Koseki, Panning (CR130) 2007; 15 van Nuland, van Schaik, Simonis, van Heesch, Cuppen, Boelens, Timmers, van Ingen (CR67) 2013; 6 Miller, Krogan, Dover, Erdjument‐Bromage, Tempst, Johnston, Greenblatt, Shilatifard (CR15) 2001; 98 Schoeftner, Sengupta, Kubicek, Mechtler, Spahn, Koseki, Jenuwein, Wutz (CR102) 2006; 25 Cai, Rothbart, Lu, Xu, Chen, Tripathy, Rockowitz, Zheng, Patel, Allis (CR144) 2013; 49 Bernstein, Mikkelsen, Xie, Kamal, Huebert, Cuff, Fry, Meissner, Wernig, Plath (CR30) 2006; 125 Deaton, Bird (CR24) 2011; 25 Kim, Kang, Jang, Kwak, Shin, Kim, Lee, Lee, Lee, Kim (CR149) 2015; 33 Hsu, Chubb, Muramoto, Pears, Mahadevan (CR54) 2012; 40 Jung, Sidoli, Haldbo, Sprenger, Schwammle, Pasini, Helin, Jensen (CR137) 2013; 85 Sims, Nishioka, Reinberg (CR12) 2003; 19 Barrera, Li, Smith, Arden, Cavenee, Zhang, Green, Ren (CR4) 2008; 18 Pokholok, Harbison, Levine, Cole, Hannett, Lee, Bell, Walker, Rolfe, Herbolsheimer (CR11) 2005; 122 Stec, Nagl, van Ommen, den Dunnen (CR70) 2000; 473 Alder, Lavial, Helness, Brookes, Pinho, Chandrashekran, Arnaud, Pombo, O'Neill, Azuara (CR125) 2010; 137 Zheng, Sweet, Popovic, Martinez‐Garcia, Tipton, Thomas, Licht, Kelleher (CR73) 2012; 109 Pauler, Sloane, Huang, Regha, Koerner, Tamir, Sommer, Aszodi, Jenuwein, Barlow (CR87) 2009; 19 Schulze, Hentrich, Nakanishi, Gupta, Emberly, Shilatifard, Kobor (CR36) 2011; 25 Tardat, Albert, Kunzmann, Liu, Kaustov, Thierry, Duan, Brykczynska, Arrowsmith, Peters (CR124) 2015; 58 Liang, Lin, Wei, Yoo, Cheng, Nguyen, Weisenberger, Egger, Takai, Gonzales (CR6) 2004; 101 He, Kallin, Tsukada, Zhang (CR65) 2008; 15 Clayton, Hazzalin, Mahadevan (CR55) 2006; 23 Tachibana, Ueda, Fukuda, Takeda, Ohta, Iwanari, Sakihama, Kodama, Hamakubo, Shinkai (CR110) 2005; 19 Shi, Kachirskaia, Walter, Kuo, Lake, Davrazou, Chan, Martin, Fingerman, Briggs (CR32) 2007; 282 Schmitges, Prusty, Faty, Stutzer, Lingaraju, Aiwazian, Sack, Hess, Li, Zhou (CR76) 2011; 42 Ferrari, Scelfo, Jammula, Cuomo, Barozzi, Stutzer, Fischle, Bonaldi, Pasini (CR83) 2014; 53 Ballare, Lange, Lapinaite, Martin, Morey, Pascual, Liefke, Simon, Shi, Gozani (CR147) 2012; 19 Gehani, Agrawal‐Singh, Dietrich, Christophersen, Helin, Hansen (CR151) 2010; 39 Morris, Shibata, Noma, Tsukamoto, Warren, Temple, Grewal, Strahl (CR60) 2005; 4 Wang, Brown, Cao, Zhang, Kassis, Jones (CR100) 2004; 14 Garcia, Thomas, Kelleher, Mizzen (CR160) 2008; 7 Raisner, Hartley, Meneghini, Bao, Liu, Schreiber, Rando, Madhani (CR162) 2005; 123 Reynolds, Salmon‐Divon, Dvinge, Hynes‐Allen, Balasooriya, Leaford, Behrens, Bertone, Hendrich (CR148) 2012; 31 Cao, Zhang (CR79) 2004; 15 Keogh, Kurdistani, Morris, Ahn, Podolny, Collins, Schuldiner, Chin, Punna, Thompson (CR63) 2005; 123 Schotta, Ebert, Reuter (CR116) 2003; 117 Chan, Fang, Gan, Hashizume, Yu, Schroeder, Gupta, Mueller, James, Jenkins (CR159) 2013; 27 Wang, Song, Milne, Wang, Li, Allis, Patel (CR34) 2010; 141 Dhayalan, Rajavelu, Rathert, Tamas, Jurkowska, Ragozin, Jeltsch (CR66) 2010; 285 Myers, Evans, Clayton, Thorne, Crane‐Robinson (CR7) 2001; 276 Jung, Pasini, Helin, Jensen (CR84) 2010; 9 Plath, Fang, Mlynarczyk‐Evans, Cao, Worringer, Wang, de la Cruz, Otte, Panning, Zhang (CR97) 2003; 300 Blackledge, Farcas, Kondo, King, McGouran, Hanssen, Ito, Cooper, Kondo, Koseki (CR104) 2014; 157 Deckert, Struhl (CR5) 2001; 21 Wang, Lawry, Cohen, Jia (CR134) 2014; 71 Lau, Cheung (CR150) 2011; 108 Pasini, Malatesta, Jung, Walfridsson, Willer, Olsson, Skotte, Wutz, Porse, Jensen (CR152) 2010; 38 Kuzmichev, Nishioka, Erdjument‐Bromage, Tempst, Reinberg (CR78) 2002; 16 Wang, An, Cao, Xia, Erdjument‐Bromage, Chatton, Tempst, Roeder, Zhang (CR113) 2003; 12 Fuks, Hurd, Deplus, Kouzarides (CR118) 2003; 31 Elgin, Reuter (CR135) 2013; 5 de Napoles, Mermoud, Wakao, Tang, Endoh, Appanah, Nesterova, Silva, Otte, Vidal (CR99) 2004; 7 Zeng, Zhou (CR44) 2002; 513 Martinez‐Garcia, Popovic, Min, Sweet, Thomas, Zamdborg, Heffner, Will, Lamy, Staudt (CR74) 2011; 117 Sun, Allis (CR37) 2002; 418 Carrozza, Li, Florens, Suganuma, Swanson, Lee, Shia, Anderson, Yates, Washburn (CR62) 2005; 123 Saksouk, Barth, Ziegler‐Birling, Olova, Nowak, Rey, Mateos‐Langerak, Urbach, Reik, Torres‐Padilla (CR122) 2014; 56 Shinkai, Tachibana (CR109) 2011; 25 Kim, Tang, Shimada, Fierz, Houck‐Loomis, Bar‐Dagen, Lee, Lee, Muir, Roeder (CR143) 2013; 33 Morey, Pascual, Cozzuto, Roma, Wutz, Benitah, Di Croce (CR92) 2012; 10 Yokoyama, Wang, Wysocka, Sanyal, Aufiero, Kitabayashi, Herr, Cleary (CR23) 2004; 24 Yuan, Xu, Huang, Liu, Chen, Zhu (CR77) 2011; 286 Hansen, Bracken, Pasini, Dietrich, Gehani, Monrad, Rappsilber, Lerdrup, Helin (CR89) 2008; 10 Nekrasov, Wild, Muller (CR80) 2005; 6 Turkmen, Gillessen‐Kaesbach, Meinecke, Albrecht, Neumann, Hesse, Palanduz, Balg, Majewski, Fuchs (CR153) 2003; 11 Voo, Carlone, Jacobsen, Flodin, Skalnik (CR2) 2000; 20 Douglas, Coleman, Tatton‐Brown, Hughes, Temple, Cole, Rahman, Childhood Overgrowth (CR155) 2005; 13 Puschendorf, Terranova, Boutsma, Mao, Isono, Brykczynska, Kolb, Otte, Koseki, Orkin (CR123) 2008; 40 Kizer, Phatnani, Shibata, Hall, Greenleaf, Strahl (CR59) 2005; 25 Boros, Arnoult, Stroobant, Collet, Decottignies (CR129) 2014; 34 Morey, Aloia, Cozzuto, Benitah, Di Croce (CR94) 2013; 3 Hirota, Lipp, Toh, Peters (CR120) 2005; 438 Ku, Koche, Rheinbay, Mendenhall, Endoh, Mikkelsen, Presser, Nusbaum, Xie, Chi (CR96) 2008; 4 Kim, Jung, Lee, Kang, Kim, Jeong, Kwon, Han, Kim, Kim (CR40) 2012; 287 Doyon, Cayrou, Ullah, Landry, Cote, Selleck, Lane, Tan, Yang, Cote (CR56) 2006; 21 Gansen, Toth, Schwarz, Langowski (CR48) 2015; 43 Guenther, Levine, Boyer, Jaenisch, Young (CR26) 2007; 130 Ali, Hom, Blakeslee, Ikenouye, Kutateladze (CR35) 2014; 1843 Di Cerbo, Mohn, Ryan, Montellier, Kacem, Tropberger, Kallis, Holzner, Hoerner, Feldmann (CR46) 2014; 3 Hawkins, Hon, Lee, Ngo, Lister, Pelizzola, Edsall, Kuan, Luu, Klugman (CR126) 2010; 6 Bender, Suh, Carroll, Fong, Fingerman, Briggs, Cao, Zhang, Reinke, Strome (CR139) 2006; 133 Brien, Gambero, O'Connell, Jerman, Turner, Egan, Dunne, Jurgens, Wynne, Piao (CR146) 2012; 19 Jaffe, Wang, Chan, Zhang, Huether, Kryukov, Bhang, Taylor, Hu, Englund (CR75) 2013; 45 Fuks, Hurd, Wolf, Nan, Bird, Kouzarides (CR119) 2003; 278 Ng, Dole, Struhl (CR10) 2003; 278 Rechtsteiner, Ercan, Takasaki, Phippen, Egelhofer, Wang, Kimura, Lieb, Strome (CR140) 2010; 6 Ng, Robert, Young, Struhl (CR18) 2003; 11 Crump, Hazzalin, Bowers, Alani, Cole, Mahadevan (CR53) 2011; 108 Karimi, Goyal, Maksakova, Bilenky, Leung, Tang, Shinkai, Mager, Jones, Hirst (CR112) 2011; 8 Bilodeau, Kagey, Frampton, Rahl, Young (CR115) 2009; 23 Narayanan, Ruyechan, Kristie (CR22) 2007; 104 Guan, Rastogi, Parthun, Freitas (CR39) 2013; 12 Batta, Zhang, Yen, Goffman, Pugh (CR9) 2011; 25 Arrigoni, Alam, Wamstad, Bardwell, Sundquist, Schreiber‐Agus (CR95) 2006; 580 Jacob, Bergamin, Donoghue, Mongeon, LeBlanc, Voigt, Underwood, Brunzelle, Michaels, Reinberg (CR164) 2014; 343 Tavares, Dimitrova, Oxley, Webster, Poot, Demmers, Bezstarosti, Taylor, Ura, Koide (CR93) 2012; 148 Schneider, Wood, Lee, Schuster, Dueker, Maguire, Swanson, Florens, Washburn, Shilatifard (CR14) 2005; 19 Tropberger, Pott, Keller, Kamieniarz‐Gdula, Caron, Richter, Li, Mittler, Liu, Buhler (CR47) 2013; 152 Peters, Kubicek, Mechtler, O'Sullivan, Derijck, Perez‐Burgos, Kohlmaier, Opravil, Tachibana, Shinkai (CR121) 2003; 12 He, Shen, Wan, Taranova, Wu, Zhang (CR108) 2013; 15 Arnaudo, Garcia (CR1) 2013; 6 Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche (CR16) 2007; 448 Han, Xing, Hu, Zhang, Liu, Chai (CR81) 2007; 15 Schneider, Bannister, Myers, Thorne, Crane‐Robinson, Kouzarides (CR17) 2004; 6 Taverna, Ilin, Rogers, Tanny, Lavender, Li, Baker, Boyle, Blair, Chait (CR50) 2006; 24 Vermeulen, Eberl, Matarese, Marks, Denissov, Butter, Lee, Olsen, Hyman, Stunnenberg (CR69) 2010; 142 Escamilla‐Del‐Arenal, da Rocha, Spruijt, Masui, Renaud, Smits, Margueron, Vermeulen, Heard (CR133) 2013; 33 Margueron, Justin, Ohno, Sharpe, Son, Drury, Voigt, Martin, Taylor, De Marco (CR88) 2009; 461 Denissov, Hofemeister, Marks, Kranz, Ciotta, Singh, Anastassiadis, Stunnenberg, Stewart (CR28) 2014; 141 Alekseyenko, Gorchakov, Kharchenko, Kuroda (CR82) 2014; 111 Wagner, Carpenter (CR57) 2012; 13 Cooper, Dienstbier, Hassan, Schermelleh, Sharif, Blackledge, De Marco, Elderkin, Koseki, Klose (CR103) 2014; 7 Hung, Binda, Champagne, Kuo, Johnson, Chang, Simon, Kutateladze, Gozani (CR52) 2009; 33 Li, Howe, Anderson, Yates, Workman (CR58) 2003; 278 Joshi, Struhl (CR61) 2005; 20 Farcas, Blackledge, Sudbery, Long, McGouran, Rose, Lee, Sims, Cerase, Sheahan (CR106) 2012; 1 Hu, Garruss, Gao, Morgan, Cook, Smith, Shilatifard (CR27) 2013; 20 Dodge, Kang, Beppu, Lei, Li (CR114) 2004; 24 Silva, Mak, Zvetkova, Appanah, Nesterova, Webster, Peters, Jenuwein, Otte, Brockdorff (CR86) 2003; 4 Voigt, LeRoy, Drury, Zee, Son, Beck, Young, Garcia, Reinberg (CR127) 2012; 151 Ng, Ciccone, Morshead, Oettinger, Stru 2002; 16 2007; 104 2013; 3 2011; 117 2010; 107 2010; 17 2002; 12 2004; 7 2004; 24 2002; 277 2004; 6 2012; 19 2012; 13 2003; 278 2013; 5 2013; 6 2012; 10 2014; 21 2006; 20 2006; 23 2006; 24 2006; 21 2006; 25 2008; 28 2006; 281 2012; 26 2009; 19 2003; 40 2010; 6 2010; 9 2015; 58 2007; 448 2010; 38 2007; 282 2010; 39 2013; 85 2010; 285 2002; 418 2000; 473 2011; 6 2012; 32 2011; 8 2003; 31 2012; 31 2014; 1843 2012; 109 2007; 15 2001; 21 2014; 42 2014; 157 2001; 276 2005; 19 2004; 279 2005; 122 2005; 123 2015; 112 2011; 1816 2005; 4 2006; 580 2005; 6 2009; 461 2008; 40 2014; 141 2012; 45 2003; 100 2014; 34 2005; 13 2012; 40 2012; 287 2003; 117 2013; 27 2015; 347 2013; 20 2015; 33 2002; 513 2003; 13 2013; 288 2010; 141 2005; 20 2008; 7 2010; 142 2003; 19 2008; 4 2006; 133 2003; 11 2005; 25 2003; 12 2013; 15 2014; 3 2013; 12 2007; 130 2010; 398 2015; 43 2003; 4 2013; 152 2011; 25 2014; 7 2012; 337 2014; 56 2006; 125 2011; 286 2001; 98 2007; 27 2014; 53 2004; 101 2009; 23 2007; 129 2013; 49 2013; 45 2008; 18 2000; 20 2011; 30 2008; 15 2005; 438 2008; 10 2014; 111 2012; 148 2009; 33 2012; 151 2012; 2 2011; 108 2014; 508 2012; 1 2013; 33 2004; 14 2004; 15 2010; 137 2011; 42 2011; 43 2009; 8 2015 2003; 300 2014; 71 2012; 8 2014; 343 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – reference: Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y et al (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445-1459 – reference: Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation. Mol Cell Biol 25: 3305-3316 – reference: Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik D, Bird A (2012) Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 26: 1714-1728 – reference: Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J (2007) Structural basis of EZH2 recognition by EED. Structure 15: 1306-1315 – reference: Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15: 245-250 – reference: Gansen A, Toth K, Schwarz N, Langowski J (2015) Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure-a FRET study. Nucleic Acids Res 43: 1433-1443 – reference: Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148: 664-678 – reference: Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19: 815-826 – reference: Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, Voigt P, Martin SR, Taylor WR, De Marco V et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461: 762-767 – reference: Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123: 233-248 – reference: van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H (2013) Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 6: 12 – reference: Wang J, Lawry ST, Cohen AL, Jia S (2014) Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 71: 4841-4852 – reference: Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438: 1176-1180 – reference: Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51-64 – reference: Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, Margueron R, Ait-Si-Ali S (2014) The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 53: 277-289 – reference: Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10: 1291-1300 – reference: Morey L, Aloia L, Cozzuto L, Benitah SA, Di Croce L (2013) RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep 3: 60-69 – reference: Eberl HC, Spruijt CG, Kelstrup CD, Vermeulen M, Mann M (2013) A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 49: 368-378 – reference: Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13: 115-126 – reference: Brien GL, Gambero G, O'Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19: 1273-1281 – reference: Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107: 21931-21936 – reference: Ng HH, Xu RM, Zhang Y, Struhl K (2002) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277: 34655-34657 – reference: Ballare C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19: 1257-1265 – reference: Kanu N, Gronroos E, Martinez P, Burrell RA, Yi Goh X, Bartkova J, Maya-Mendoza A, Mistrik M, Rowan AJ, Patel H et al (2015) SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene doi: 10.1038/onc.2015.24 – reference: Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S, Koseki H, Klose R et al (2014) Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 7: 1456-1470 – reference: Wu L, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, Dou Y (2013) ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3K4 methylation in higher eukaryotes. Mol Cell 49: 1108-1120 – reference: Yamamoto K, Sonoda M, Inokuchi J, Shirasawa S, Sasazuki T (2004) Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2. J Biol Chem 279: 401-406 – reference: Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101: 7357-7362 – reference: Narayanan A, Ruyechan WT, Kristie TM (2007) The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci USA 104: 10835-10840 – reference: Escamilla-Del-Arenal M, da Rocha ST, Spruijt CG, Masui O, Renaud O, Smits AH, Margueron R, Vermeulen M, Heard E (2013) Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 33: 5005-5020 – reference: Song ZT, Sun L, Lu SJ, Tian Y, Ding Y, Liu JX (2015) Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proc Natl Acad Sci USA 112: 2900-2905 – reference: Hsu DW, Chubb JR, Muramoto T, Pears CJ, Mahadevan LC (2012) Dynamic acetylation of lysine-4-trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote. Nucleic Acids Res 40: 7247-7256 – reference: Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV, Bhang HE, Taylor JE, Hu M, Englund NP et al (2013) Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 45: 1386-1391 – reference: Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23: 289-296 – reference: Wu L, Zee BM, Wang Y, Garcia BA, Dou Y (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation. Mol Cell 43: 132-144 – reference: Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122: 517-527 – reference: Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40: 411-420 – reference: Rio M, Clech L, Amiel J, Faivre L, Lyonnet S, Le Merrer M, Odent S, Lacombe D, Edery P, Brauner R et al (2003) Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J Med Genet 40: 436-440 – reference: Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6: 479-491 – reference: Myers FA, Evans DR, Clayton AL, Thorne AW, Crane-Robinson C (2001) Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes. J Biol Chem 276: 20197-20205 – reference: Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4: e1000242 – reference: Kalb R, Latwiel S, Baymaz HI, Jansen PW, Muller CW, Vermeulen M, Muller J (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21: 569-571 – reference: Arnaudo AM, Garcia BA (2013) Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6: 24 – reference: Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285: 26114-26120 – reference: Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98: 12902-12907 – reference: Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27: 985-990 – reference: Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581-592 – reference: Stec I, Nagl SB, van Ommen GJ, den Dunnen JT (2000) The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473: 1-5 – reference: Shi X, Kachirskaia I, Walter KL, Kuo JH, Lake A, Davrazou F, Chan SM, Martin DG, Fingerman IM, Briggs SD et al (2007) Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem 282: 2450-2455 – reference: Ali M, Hom RA, Blakeslee W, Ikenouye L, Kutateladze TG (2014) Diverse functions of PHD fingers of the MLL/KMT2 subfamily. Biochim Biophys Acta 1843: 366-371 – reference: Guan X, Rastogi N, Parthun MR, Freitas MA (2013) Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS). Mol Cell Proteomics 12: 2048-2059 – reference: Hu D, Garruss AS, Gao X, Morgan MA, Cook M, Smith ER, Shilatifard A (2013) The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 20: 1093-1097 – reference: Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, Anastassiadis K, Stunnenberg HG, Stewart AF (2014) Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141: 526-537 – reference: He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 15: 373-384 – reference: Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N (2006) The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 580: 6233-6241 – reference: Hock H (2012) A complex Polycomb issue: the two faces of EZH2 in cancer. Genes Dev 26: 751-755 – reference: Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO et al (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30: 2829-2842 – reference: Wirbelauer C, Bell O, Schubeler D (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19: 1761-1766 – reference: Alekseyenko AA, Gorchakov AA, Kharchenko PV, Kuroda MI (2014) Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification. Proc Natl Acad Sci USA 111: 2488-2493 – reference: Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837 – reference: Gaydos LJ, Rechtsteiner A, Egelhofer TA, Carroll CR, Strome S (2012) Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep 2: 1169-1177 – reference: Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11: 709-719 – reference: Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-135 – reference: Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33: 248-256 – reference: Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L, Heffner A, Will C, Lamy L, Staudt LM et al (2011) The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117: 211-220 – reference: Ren X, Vincenz C, Kerppola TK (2008) Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation. Mol Cell Biol 28: 2884-2895 – reference: Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA 100: 1820-1825 – reference: Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19: 849-856 – reference: Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A et al (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. elife 3: e01632 – reference: Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A, Rey E, Mateos-Langerak J, Urbach S, Reik W, Torres-Padilla ME et al (2014) Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56: 580-594 – reference: Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123-1136 – reference: Crump NT, Hazzalin CA, Bowers EM, Alani RM, Cole PA, Mahadevan LC (2011) Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. Proc Natl Acad Sci USA 108: 7814-7819 – reference: Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SI, Strahl BD (2005) Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4: 1446-1454 – reference: Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593-605 – reference: Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326 – reference: Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192-1200 – reference: Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4: 481-495 – reference: Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577-1589 – reference: Garcia BA, Thomas CE, Kelleher NL, Mizzen CA (2008) Tissue-specific expression and post-translational modification of histone H3 variants. J Proteome Res 7: 4225-4236 – reference: Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF (2011) Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25: 2254-2265 – reference: Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA (2009) SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 23: 2484-2489 – reference: Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035-4040 – reference: Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012) NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J 31: 593-605 – reference: Kim A, Kiefer CM, Dean A (2007) Distinctive signatures of histone methylation in transcribed coding and noncoding human beta-globin sequences. Mol Cell Biol 27: 1271-1279 – reference: Kim DH, Tang Z, Shimada M, Fierz B, Houck-Loomis B, Bar-Dagen M, Lee S, Lee SK, Muir TW, Roeder RG et al (2013) Histone H3K27 trimethylation inhibits H3 binding and function of SET1-like H3K4 methyltransferase complexes. Mol Cell Biol 33: 4936-4946 – reference: Morishita M, di Luccio E (2011) Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta 1816: 158-163 – reference: Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD et al (2013) An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 49: 571-582 – reference: Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24: 2478-2486 – reference: Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39: 886-900 – reference: Schulze JM, Hentrich T, Nakanishi S, Gupta A, Emberly E, Shilatifard A, Kobor MS (2011) Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev 25: 2242-2247 – reference: Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5: a017780 – reference: Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12: 1016-1020 – reference: Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21: 2726-2735 – reference: Alder O, Lavial F, Helness A, Brookes E, Pinho S, Chandrashekran A, Arnaud P, Pombo A, O'Neill L, Azuara V (2010) Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137: 2483-2492 – reference: Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Buhler M et al (2013) Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152: 859-872 – reference: de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7: 663-676 – reference: Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31: 2305-2312 – reference: Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278: 8897-8903 – reference: Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA, Di Croce L (2012) Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10: 47-62 – reference: Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104-108 – reference: Nekrasov M, Wild B, Muller J (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6: 348-353 – reference: Schotta G, Ebert A, Reuter G (2003) SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing. Genetica 117: 149-158 – reference: Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553-560 – reference: Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12: 475-487 – reference: Tardat M, Albert M, Kunzmann R, Liu Z, Kaustov L, Thierry R, Duan S, Brykczynska U, Arrowsmith CH, Peters AH (2015) Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol Cell 58: 157-171 – reference: Jacob Y, Bergamin E, Donoghue MT, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D et al (2014) Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343: 1249-1253 – reference: Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA et al (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 8: e1002774 – reference: Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, Feng L, Shen X, Chen S, Li G et al (2013) Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem 288: 30832-30842 – reference: Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, Heard E (2004) Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 24: 5475-5484 – reference: Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19: 629-639 – reference: Barrera LO, Li Z, Smith AD, Arden KC, Cavenee WK, Zhang MQ, Green RD, Ren B (2008) Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res 18: 46-59 – reference: Kim SK, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han YM, Kim YS, Kim D et al (2012) Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 287: 39698-39709 – reference: Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T et al (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337: 971-975 – reference: Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci USA 108: 2801-2806 – reference: Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW et al (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. elife 1: e00205 – reference: Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133: 3907-3917 – reference: Kim TW, Kang BH, Jang H, Kwak S, Shin J, Kim H, Lee SE, Lee SM, Lee JH, Kim JH et al (2015) Ctbp2 modulates NuRD-mediated deacetylation of H3K27 and facilitates PRC2-mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency. Stem Cells 33: 2442-2455 – reference: Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS, Howe L (2012) Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 32: 3479-3485 – reference: Voo KS, Carlone DL, Jacobsen BM, Flodin A, Skalnik DG (2000) Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol Cell Biol 20: 2108-2121 – reference: Kim J, Hake SB, Roeder RG (2005) The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20: 759-770 – reference: Ng HH, Dole S, Struhl K (2003) The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278: 33625-33628 – reference: Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2893-2905 – reference: Jung HR, Pasini D, Helin K, Jensen ON (2010) Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 9: 838-850 – reference: Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14: 637-646 – reference: Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42: 330-341 – reference: He J, Kallin EM, Tsukada Y, Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 15: 1169-1175 – reference: Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nunez JK, Nickoloff J et al (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19: 1266-1272 – reference: Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513: 124-128 – reference: Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD, Patel DJ (2010) Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141: 1183-1194 – reference: Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639-5649 – reference: Douglas J, Coleman K, Tatton-Brown K, Hughes HE, Temple IK, Cole TR, Rahman N, Childhood Overgrowth C (2005) Evaluation of NSD2 and NSD3 in overgrowth syndromes. Eur J Hum Genet 13: 150-153 – reference: Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT et al (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24: 785-796 – reference: Rechtsteiner A, Ercan S, Takasaki T, Phippen TM, Egelhofer TA, Wang W, Kimura H, Lieb JD, Strome S (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6: e1001091 – reference: Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8: 676-687 – reference: de la Cruz CC, Kirmizis A, Simon MD, Isono K, Koseki H, Panning B (2007) The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution. Chromosome Res 15: 299-314 – reference: Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49: 1134-1146 – reference: Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884-1896 – reference: Schneider TD, Arteaga-Salas JM, Mentele E, David R, Nicetto D, Imhof A, Rupp RA (2011) Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome. PLoS ONE 6: e22548 – reference: Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142: 967-980 – reference: Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747-1753 – reference: Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A, Aszodi A, Jenuwein T, Barlow DP (2009) H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 19: 221-233 – reference: Murton BL, Chin WL, Ponting CP, Itzhaki LS (2010) Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase. J Mol Biol 398: 481-488 – reference: Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J et al (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508: 263-268 – reference: Zheng Y, Sweet SM, Popovic R, Martinez-Garcia E, Tipton JD, Thomas PM, Licht JD, Kelleher NL (2012) Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci USA 109: 13549-13554 – reference: Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, Reinberg D (2015) Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347: 1017-1021 – reference: Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38: 4958-4969 – reference: Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15: 57-67 – reference: Boros J, Arnoult N, Stroobant V, Collet JF, Decottignies A (2014) Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Mol Cell Biol 34: 3662-3674 – reference: Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286: 7983-7989 – reference: Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53: 49-62 – reference: Okuda H, Kawaguchi M, Kanai A, Matsui H, Kawamura T, Inaba T, Kitabayashi I, Yokoyama A (2014) MLL fusion proteins link transcriptional coactivators to previously active CpG-rich promoters. Nucleic Acids Res 42: 4241-4256 – reference: Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77-88 – reference: Turkmen S, Gillessen-Kaesbach G, Meinecke P, Albrecht B, Neumann LM, Hesse V, Palanduz S, Balg S, Majewski F, Fuchs S et al (2003) Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. Eur J Hum Genet 11: 858-865 – reference: Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6: 73-77 – reference: Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17: 1414-1421 – reference: Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25: 1010-1022 – reference: Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25: 3110-3122 – reference: Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38: 179-190 – reference: Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151: 181-193 – reference: Dehe PM, Dichtl B, Schaft D, Roguev A, Pamblanco M, Lebrun R, Rodriguez-Gil A, Mkandawire M, Landsberg K, Shevchenko A et al (2006) Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 281: 35404-35412 – reference: Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20: 971-978 – reference: Shinkai Y, Tachibana M (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25: 781-788 – reference: Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45: 344-356 – reference: Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwammle V, Pasini D, Helin K, Jensen ON (2013) Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem 85: 8232-8239 – volume: 23 start-page: 289 year: 2006 end-page: 296 ident: CR55 article-title: Enhanced histone acetylation and transcription: a dynamic perspective publication-title: Mol Cell – volume: 11 start-page: 858 year: 2003 end-page: 865 ident: CR153 article-title: Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes publication-title: Eur J Hum Genet – volume: 27 start-page: 985 year: 2013 end-page: 990 ident: CR159 article-title: The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression publication-title: Genes Dev – volume: 6 start-page: 12 year: 2013 ident: CR67 article-title: Nucleosomal DNA binding drives the recognition of H3K36‐methylated nucleosomes by the PSIP1‐PWWP domain publication-title: Epigenetics Chromatin – volume: 20 start-page: 759 year: 2005 end-page: 770 ident: CR41 article-title: The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions publication-title: Mol Cell – volume: 31 start-page: 593 year: 2012 end-page: 605 ident: CR148 article-title: NuRD‐mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression publication-title: EMBO J – volume: 25 start-page: 2254 year: 2011 end-page: 2265 ident: CR9 article-title: Genome‐wide function of H2B ubiquitylation in promoter and genic regions publication-title: Genes Dev – volume: 1843 start-page: 366 year: 2014 end-page: 371 ident: CR35 article-title: Diverse functions of PHD fingers of the MLL/KMT2 subfamily publication-title: Biochim Biophys Acta – volume: 278 start-page: 4035 year: 2003 end-page: 4040 ident: CR119 article-title: The methyl‐CpG‐binding protein MeCP2 links DNA methylation to histone methylation publication-title: J Biol Chem – volume: 56 start-page: 580 year: 2014 end-page: 594 ident: CR122 article-title: Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation publication-title: Mol Cell – volume: 111 start-page: 2488 year: 2014 end-page: 2493 ident: CR82 article-title: Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP‐XL cross‐linking and affinity purification publication-title: Proc Natl Acad Sci USA – volume: 71 start-page: 4841 year: 2014 end-page: 4852 ident: CR134 article-title: Chromosome boundary elements and regulation of heterochromatin spreading publication-title: Cell Mol Life Sci – volume: 49 start-page: 1108 year: 2013 end-page: 1120 ident: CR43 article-title: ASH2L regulates ubiquitylation signaling to MLL: trans‐regulation of H3K4 methylation in higher eukaryotes publication-title: Mol Cell – volume: 100 start-page: 1820 year: 2003 end-page: 1825 ident: CR8 article-title: Lysine‐79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position‐effect variegation publication-title: Proc Natl Acad Sci USA – volume: 276 start-page: 20197 year: 2001 end-page: 20205 ident: CR7 article-title: Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes publication-title: J Biol Chem – volume: 123 start-page: 233 year: 2005 end-page: 248 ident: CR162 article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin publication-title: Cell – volume: 281 start-page: 35404 year: 2006 end-page: 35412 ident: CR13 article-title: Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation publication-title: J Biol Chem – volume: 85 start-page: 8232 year: 2013 end-page: 8239 ident: CR137 article-title: Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD‐MS/MS publication-title: Anal Chem – volume: 14 start-page: 637 year: 2004 end-page: 646 ident: CR100 article-title: Hierarchical recruitment of polycomb group silencing complexes publication-title: Mol Cell – volume: 19 start-page: 1273 year: 2012 end-page: 1281 ident: CR146 article-title: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation publication-title: Nat Struct Mol Biol – volume: 4 start-page: 481 year: 2003 end-page: 495 ident: CR86 article-title: Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed‐Enx1 polycomb group complexes publication-title: Dev Cell – volume: 7 start-page: 663 year: 2004 end-page: 676 ident: CR99 article-title: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation publication-title: Dev Cell – volume: 461 start-page: 762 year: 2009 end-page: 767 ident: CR88 article-title: Role of the polycomb protein EED in the propagation of repressive histone marks publication-title: Nature – volume: 19 start-page: 221 year: 2009 end-page: 233 ident: CR87 article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome publication-title: Genome Res – volume: 1 start-page: e00205 year: 2012 ident: CR106 article-title: KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands publication-title: elife – volume: 117 start-page: 149 year: 2003 end-page: 158 ident: CR116 article-title: SU(VAR)3‐9 is a conserved key function in heterochromatic gene silencing publication-title: Genetica – volume: 28 start-page: 2884 year: 2008 end-page: 2895 ident: CR101 article-title: Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation publication-title: Mol Cell Biol – volume: 18 start-page: 46 year: 2008 end-page: 59 ident: CR4 article-title: Genome‐wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs publication-title: Genome Res – volume: 108 start-page: 7814 year: 2011 end-page: 7819 ident: CR53 article-title: Dynamic acetylation of all lysine‐4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP publication-title: Proc Natl Acad Sci USA – volume: 141 start-page: 526 year: 2014 end-page: 537 ident: CR28 article-title: Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant publication-title: Development – volume: 43 start-page: 132 year: 2011 end-page: 144 ident: CR42 article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation publication-title: Mol Cell – volume: 21 start-page: 2726 year: 2001 end-page: 2735 ident: CR5 article-title: Histone acetylation at promoters is differentially affected by specific activators and repressors publication-title: Mol Cell Biol – volume: 16 start-page: 2893 year: 2002 end-page: 2905 ident: CR78 article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein publication-title: Genes Dev – volume: 24 start-page: 1884 year: 2004 end-page: 1896 ident: CR51 article-title: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans publication-title: Mol Cell Biol – volume: 1816 start-page: 158 year: 2011 end-page: 163 ident: CR156 article-title: Cancers and the NSD family of histone lysine methyltransferases publication-title: Biochim Biophys Acta – volume: 38 start-page: 4958 year: 2010 end-page: 4969 ident: CR152 article-title: Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes publication-title: Nucleic Acids Res – volume: 40 start-page: 411 year: 2008 end-page: 420 ident: CR123 article-title: PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos publication-title: Nat Genet – volume: 13 start-page: 115 year: 2012 end-page: 126 ident: CR57 article-title: Understanding the language of Lys36 methylation at histone H3 publication-title: Nat Rev Mol Cell Biol – volume: 278 start-page: 33625 year: 2003 end-page: 33628 ident: CR10 article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B publication-title: J Biol Chem – volume: 23 start-page: 2484 year: 2009 end-page: 2489 ident: CR115 article-title: SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state publication-title: Genes Dev – volume: 20 start-page: 971 year: 2005 end-page: 978 ident: CR61 article-title: Eaf3 chromodomain interaction with methylated H3‐K36 links histone deacetylation to Pol II elongation publication-title: Mol Cell – volume: 21 start-page: 569 year: 2014 end-page: 571 ident: CR105 article-title: Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression publication-title: Nat Struct Mol Biol – volume: 53 start-page: 277 year: 2014 end-page: 289 ident: CR128 article-title: The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2‐mediated gene silencing publication-title: Mol Cell – volume: 26 start-page: 1714 year: 2012 end-page: 1728 ident: CR29 article-title: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells publication-title: Genes Dev – volume: 25 start-page: 3110 year: 2006 end-page: 3122 ident: CR102 article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing publication-title: EMBO J – volume: 26 start-page: 751 year: 2012 end-page: 755 ident: CR158 article-title: A complex Polycomb issue: the two faces of EZH2 in cancer publication-title: Genes Dev – volume: 142 start-page: 967 year: 2010 end-page: 980 ident: CR69 article-title: Quantitative interaction proteomics and genome‐wide profiling of epigenetic histone marks and their readers publication-title: Cell – volume: 152 start-page: 859 year: 2013 end-page: 872 ident: CR47 article-title: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer publication-title: Cell – volume: 42 start-page: 330 year: 2011 end-page: 341 ident: CR76 article-title: Histone methylation by PRC2 is inhibited by active chromatin marks publication-title: Mol Cell – volume: 513 start-page: 124 year: 2002 end-page: 128 ident: CR44 article-title: Bromodomain: an acetyl‐lysine binding domain publication-title: FEBS Lett – volume: 53 start-page: 49 year: 2014 end-page: 62 ident: CR83 article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity publication-title: Mol Cell – volume: 19 start-page: 1266 year: 2012 end-page: 1272 ident: CR145 article-title: Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1 publication-title: Nat Struct Mol Biol – volume: 10 start-page: 47 year: 2012 end-page: 62 ident: CR92 article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells publication-title: Cell Stem Cell – volume: 42 start-page: 4241 year: 2014 end-page: 4256 ident: CR21 article-title: MLL fusion proteins link transcriptional coactivators to previously active CpG‐rich promoters publication-title: Nucleic Acids Res – volume: 278 start-page: 8897 year: 2003 end-page: 8903 ident: CR58 article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl‐terminal domain of RNA polymerase II publication-title: J Biol Chem – volume: 24 start-page: 2478 year: 2004 end-page: 2486 ident: CR114 article-title: Histone H3‐K9 methyltransferase ESET is essential for early development publication-title: Mol Cell Biol – volume: 45 start-page: 344 year: 2012 end-page: 356 ident: CR91 article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes publication-title: Mol Cell – volume: 288 start-page: 30832 year: 2013 end-page: 30842 ident: CR141 article-title: Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases publication-title: J Biol Chem – volume: 151 start-page: 181 year: 2012 end-page: 193 ident: CR127 article-title: Asymmetrically modified nucleosomes publication-title: Cell – volume: 17 start-page: 1414 year: 2010 end-page: 1421 ident: CR20 article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression publication-title: Nat Struct Mol Biol – volume: 300 start-page: 131 year: 2003 end-page: 135 ident: CR97 article-title: Role of histone H3 lysine 27 methylation in X inactivation publication-title: Science – volume: 21 start-page: 51 year: 2006 end-page: 64 ident: CR56 article-title: ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation publication-title: Mol Cell – volume: 286 start-page: 7983 year: 2011 end-page: 7989 ident: CR77 article-title: H3K36 methylation antagonizes PRC2‐mediated H3K27 methylation publication-title: J Biol Chem – volume: 2 start-page: 1169 year: 2012 end-page: 1177 ident: CR138 article-title: Antagonism between MES‐4 and Polycomb repressive complex 2 promotes appropriate gene expression in germ cells publication-title: Cell Rep – volume: 418 start-page: 104 year: 2002 end-page: 108 ident: CR37 article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast publication-title: Nature – volume: 137 start-page: 2483 year: 2010 end-page: 2492 ident: CR125 article-title: Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment publication-title: Development – volume: 347 start-page: 1017 year: 2015 end-page: 1021 ident: CR136 article-title: Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation publication-title: Science – volume: 279 start-page: 401 year: 2004 end-page: 406 ident: CR131 article-title: Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2 publication-title: J Biol Chem – volume: 33 start-page: 248 year: 2009 end-page: 256 ident: CR52 article-title: ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation publication-title: Mol Cell – volume: 109 start-page: 13549 year: 2012 end-page: 13554 ident: CR73 article-title: Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3 publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 1192 year: 2003 end-page: 1200 ident: CR117 article-title: Suv39 h‐mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin publication-title: Curr Biol – volume: 141 start-page: 1183 year: 2010 end-page: 1194 ident: CR34 article-title: Pro isomerization in MLL1 PHD3‐bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression publication-title: Cell – volume: 20 start-page: 1093 year: 2013 end-page: 1097 ident: CR27 article-title: The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells publication-title: Nat Struct Mol Biol – volume: 7 start-page: 4225 year: 2008 end-page: 4236 ident: CR160 article-title: Tissue‐specific expression and post‐translational modification of histone H3 variants publication-title: J Proteome Res – volume: 25 start-page: 1010 year: 2011 end-page: 1022 ident: CR24 article-title: CpG islands and the regulation of transcription publication-title: Genes Dev – volume: 25 start-page: 2242 year: 2011 end-page: 2247 ident: CR36 article-title: Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123 publication-title: Genes Dev – volume: 24 start-page: 5475 year: 2004 end-page: 5484 ident: CR132 article-title: Differential histone H3 Lys‐9 and Lys‐27 methylation profiles on the X chromosome publication-title: Mol Cell Biol – volume: 49 start-page: 571 year: 2013 end-page: 582 ident: CR144 article-title: An H3K36 methylation‐engaging Tudor motif of polycomb‐like proteins mediates PRC2 complex targeting publication-title: Mol Cell – volume: 12 start-page: 1016 year: 2002 end-page: 1020 ident: CR98 article-title: Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells publication-title: Curr Biol – volume: 15 start-page: 245 year: 2008 end-page: 250 ident: CR111 article-title: The ankyrin repeats of G9a and GLP histone methyltransferases are mono‐ and dimethyllysine binding modules publication-title: Nat Struct Mol Biol – volume: 33 start-page: 2442 year: 2015 end-page: 2455 ident: CR149 article-title: Ctbp2 modulates NuRD‐mediated deacetylation of H3K27 and facilitates PRC2‐mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency publication-title: Stem Cells – volume: 31 start-page: 2305 year: 2003 end-page: 2312 ident: CR118 article-title: The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase publication-title: Nucleic Acids Res – volume: 157 start-page: 1445 year: 2014 end-page: 1459 ident: CR104 article-title: Variant PRC1 complex‐dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation publication-title: Cell – volume: 25 start-page: 781 year: 2011 end-page: 788 ident: CR109 article-title: H3K9 methyltransferase G9a and the related molecule GLP publication-title: Genes Dev – volume: 15 start-page: 1306 year: 2007 end-page: 1315 ident: CR81 article-title: Structural basis of EZH2 recognition by EED publication-title: Structure – volume: 30 start-page: 2829 year: 2011 end-page: 2842 ident: CR49 article-title: Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation publication-title: EMBO J – volume: 123 start-page: 593 year: 2005 end-page: 605 ident: CR63 article-title: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex publication-title: Cell – volume: 19 start-page: 815 year: 2005 end-page: 826 ident: CR110 article-title: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3‐K9 publication-title: Genes Dev – volume: 19 start-page: 849 year: 2005 end-page: 856 ident: CR14 article-title: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression publication-title: Mol Cell – volume: 24 start-page: 785 year: 2006 end-page: 796 ident: CR50 article-title: Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs publication-title: Mol Cell – volume: 438 start-page: 1176 year: 2005 end-page: 1180 ident: CR120 article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin publication-title: Nature – volume: 343 start-page: 1249 year: 2014 end-page: 1253 ident: CR164 article-title: Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication publication-title: Science – volume: 125 start-page: 315 year: 2006 end-page: 326 ident: CR30 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells publication-title: Cell – volume: 112 start-page: 2900 year: 2015 end-page: 2905 ident: CR19 article-title: Transcription factor interaction with COMPASS‐like complex regulates histone H3K4 trimethylation for specific gene expression in plants publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: a017780 year: 2013 ident: CR135 article-title: Position‐effect variegation, heterochromatin formation, and gene silencing in publication-title: Cold Spring Harb Perspect Biol – volume: 32 start-page: 3479 year: 2012 end-page: 3485 ident: CR68 article-title: Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin publication-title: Mol Cell Biol – volume: 117 start-page: 211 year: 2011 end-page: 220 ident: CR74 article-title: The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells publication-title: Blood – volume: 101 start-page: 7357 year: 2004 end-page: 7362 ident: CR6 article-title: Distinct localization of histone H3 acetylation and H3‐K4 methylation to the transcription start sites in the human genome publication-title: Proc Natl Acad Sci USA – volume: 33 start-page: 4936 year: 2013 end-page: 4946 ident: CR143 article-title: Histone H3K27 trimethylation inhibits H3 binding and function of SET1‐like H3K4 methyltransferase complexes publication-title: Mol Cell Biol – volume: 4 start-page: e1000242 year: 2008 ident: CR96 article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains publication-title: PLoS Genet – volume: 98 start-page: 12902 year: 2001 end-page: 12907 ident: CR15 article-title: COMPASS: a complex of proteins associated with a trithorax‐related SET domain protein publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 1169 year: 2008 end-page: 1175 ident: CR65 article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b) publication-title: Nat Struct Mol Biol – volume: 122 start-page: 517 year: 2005 end-page: 527 ident: CR11 article-title: Genome‐wide map of nucleosome acetylation and methylation in yeast publication-title: Cell – volume: 148 start-page: 664 year: 2012 end-page: 678 ident: CR93 article-title: RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 publication-title: Cell – volume: 580 start-page: 6233 year: 2006 end-page: 6241 ident: CR95 article-title: The Polycomb‐associated protein Rybp is a ubiquitin binding protein publication-title: FEBS Lett – volume: 39 start-page: 886 year: 2010 end-page: 900 ident: CR151 article-title: Polycomb group protein displacement and gene activation through MSK‐dependent H3K27me3S28 phosphorylation publication-title: Mol Cell – volume: 6 start-page: 479 year: 2010 end-page: 491 ident: CR126 article-title: Distinct epigenomic landscapes of pluripotent and lineage‐committed human cells publication-title: Cell Stem Cell – ident: CR157 – volume: 19 start-page: 1761 year: 2005 end-page: 1766 ident: CR161 article-title: Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter‐proximal bias publication-title: Genes Dev – volume: 20 start-page: 2108 year: 2000 end-page: 2121 ident: CR2 article-title: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl‐CpG binding domain protein 1 publication-title: Mol Cell Biol – volume: 11 start-page: 709 year: 2003 end-page: 719 ident: CR18 article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity publication-title: Mol Cell – volume: 15 start-page: 373 year: 2013 end-page: 384 ident: CR108 article-title: Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes publication-title: Nat Cell Biol – volume: 15 start-page: 299 year: 2007 end-page: 314 ident: CR130 article-title: The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution publication-title: Chromosome Res – volume: 3 start-page: e01632 year: 2014 ident: CR46 article-title: Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription publication-title: elife – volume: 3 start-page: 60 year: 2013 end-page: 69 ident: CR94 article-title: RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells publication-title: Cell Rep – volume: 19 start-page: 1257 year: 2012 end-page: 1265 ident: CR147 article-title: Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity publication-title: Nat Struct Mol Biol – volume: 4 start-page: 1446 year: 2005 end-page: 1454 ident: CR60 article-title: Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe publication-title: Eukaryot Cell – volume: 12 start-page: 2048 year: 2013 end-page: 2059 ident: CR39 article-title: Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS) publication-title: Mol Cell Proteomics – volume: 12 start-page: 1577 year: 2003 end-page: 1589 ident: CR121 article-title: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin publication-title: Mol Cell – volume: 8 start-page: e1002774 year: 2012 ident: CR142 article-title: Histone H2A mono‐ubiquitination is a crucial step to mediate PRC1‐dependent repression of developmental genes to maintain ES cell identity publication-title: PLoS Genet – volume: 33 start-page: 5005 year: 2013 end-page: 5020 ident: CR133 article-title: Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2 publication-title: Mol Cell Biol – volume: 15 start-page: 57 year: 2004 end-page: 67 ident: CR79 article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex publication-title: Mol Cell – volume: 12 start-page: 475 year: 2003 end-page: 487 ident: CR113 article-title: mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression publication-title: Mol Cell – volume: 43 start-page: 1433 year: 2015 end-page: 1443 ident: CR48 article-title: Opposing roles of H3‐ and H4‐acetylation in the regulation of nucleosome structure–a FRET study publication-title: Nucleic Acids Res – volume: 24 start-page: 5639 year: 2004 end-page: 5649 ident: CR23 article-title: Leukemia proto‐oncoprotein MLL forms a SET1‐like histone methyltransferase complex with menin to regulate Hox gene expression publication-title: Mol Cell Biol – volume: 107 start-page: 21931 year: 2010 end-page: 21936 ident: CR3 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc Natl Acad Sci USA – volume: 38 start-page: 179 year: 2010 end-page: 190 ident: CR64 article-title: CpG islands recruit a histone H3 lysine 36 demethylase publication-title: Mol Cell – volume: 448 start-page: 553 year: 2007 end-page: 560 ident: CR16 article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells publication-title: Nature – volume: 49 start-page: 368 year: 2013 end-page: 378 ident: CR31 article-title: A map of general and specialized chromatin readers in mouse tissues generated by label‐free interaction proteomics publication-title: Mol Cell – volume: 58 start-page: 157 year: 2015 end-page: 171 ident: CR124 article-title: Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent‐of‐origin‐dependent manner publication-title: Mol Cell – volume: 108 start-page: 2801 year: 2011 end-page: 2806 ident: CR150 article-title: Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing publication-title: Proc Natl Acad Sci USA – volume: 398 start-page: 481 year: 2010 end-page: 488 ident: CR33 article-title: Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase publication-title: J Mol Biol – volume: 20 start-page: 1123 year: 2006 end-page: 1136 ident: CR85 article-title: Genome‐wide mapping of Polycomb target genes unravels their roles in cell fate transitions publication-title: Genes Dev – volume: 10 start-page: 1291 year: 2008 end-page: 1300 ident: CR89 article-title: A model for transmission of the H3K27me3 epigenetic mark publication-title: Nat Cell Biol – volume: 13 start-page: 150 year: 2005 end-page: 153 ident: CR155 article-title: Evaluation of NSD2 and NSD3 in overgrowth syndromes publication-title: Eur J Hum Genet – volume: 473 start-page: 1 year: 2000 end-page: 5 ident: CR70 article-title: The PWWP domain: a potential protein‐protein interaction domain in nuclear proteins influencing differentiation? publication-title: FEBS Lett – volume: 6 start-page: e22548 year: 2011 ident: CR72 article-title: Stage‐specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome publication-title: PLoS ONE – volume: 282 start-page: 2450 year: 2007 end-page: 2455 ident: CR32 article-title: Proteome‐wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36 publication-title: J Biol Chem – volume: 287 start-page: 39698 year: 2012 end-page: 39709 ident: CR40 article-title: Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression publication-title: J Biol Chem – volume: 45 start-page: 1386 year: 2013 end-page: 1391 ident: CR75 article-title: Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia publication-title: Nat Genet – volume: 8 start-page: 676 year: 2011 end-page: 687 ident: CR112 article-title: DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs publication-title: Cell Stem Cell – volume: 123 start-page: 581 year: 2005 end-page: 592 ident: CR62 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell – volume: 9 start-page: 838 year: 2010 end-page: 850 ident: CR84 article-title: Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12‐deficient mouse embryonic stem cells reveals distinct, dynamic post‐translational modifications at Lys‐27 and Lys‐36 publication-title: Mol Cell Proteomics – volume: 34 start-page: 3662 year: 2014 end-page: 3674 ident: CR129 article-title: Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin publication-title: Mol Cell Biol – volume: 130 start-page: 77 year: 2007 end-page: 88 ident: CR26 article-title: A chromatin landmark and transcription initiation at most promoters in human cells publication-title: Cell – volume: 285 start-page: 26114 year: 2010 end-page: 26120 ident: CR66 article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation publication-title: J Biol Chem – volume: 27 start-page: 1271 year: 2007 end-page: 1279 ident: CR71 article-title: Distinctive signatures of histone methylation in transcribed coding and noncoding human beta‐globin sequences publication-title: Mol Cell Biol – volume: 6 start-page: 24 year: 2013 ident: CR1 article-title: Proteomic characterization of novel histone post‐translational modifications publication-title: Epigenetics Chromatin – volume: 40 start-page: 7247 year: 2012 end-page: 7256 ident: CR54 article-title: Dynamic acetylation of lysine‐4‐trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote publication-title: Nucleic Acids Res – volume: 6 start-page: 348 year: 2005 end-page: 353 ident: CR80 article-title: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2 publication-title: EMBO Rep – volume: 337 start-page: 971 year: 2012 end-page: 975 ident: CR90 article-title: Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation publication-title: Science – volume: 104 start-page: 10835 year: 2007 end-page: 10840 ident: CR22 article-title: The coactivator host cell factor‐1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection publication-title: Proc Natl Acad Sci USA – volume: 133 start-page: 3907 year: 2006 end-page: 3917 ident: CR139 article-title: MES‐4: an autosome‐associated histone methyltransferase that participates in silencing the X chromosomes in the germ line publication-title: Development – volume: 277 start-page: 34655 year: 2002 end-page: 34657 ident: CR38 article-title: Ubiquitination of histone H2B by Rad6 is required for efficient Dot1‐mediated methylation of histone H3 lysine 79 publication-title: J Biol Chem – volume: 508 start-page: 263 year: 2014 end-page: 268 ident: CR163 article-title: ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression publication-title: Nature – volume: 40 start-page: 436 year: 2003 end-page: 440 ident: CR154 article-title: Spectrum of NSD1 mutations in Sotos and Weaver syndromes publication-title: J Med Genet – volume: 25 start-page: 3305 year: 2005 end-page: 3316 ident: CR59 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation publication-title: Mol Cell Biol – volume: 7 start-page: 1456 year: 2014 end-page: 1470 ident: CR103 article-title: Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment publication-title: Cell Rep – volume: 6 start-page: e1001091 year: 2010 ident: CR140 article-title: The histone H3K36 methyltransferase MES‐4 acts epigenetically to transmit the memory of germline gene expression to progeny publication-title: PLoS Genet – volume: 8 start-page: 1747 year: 2009 end-page: 1753 ident: CR45 article-title: Histone H3‐K56 acetylation is important for genomic stability in mammals publication-title: Cell Cycle – volume: 19 start-page: 629 year: 2003 end-page: 639 ident: CR12 article-title: Histone lysine methylation: a signature for chromatin function publication-title: Trends Genet – volume: 49 start-page: 1134 year: 2013 end-page: 1146 ident: CR107 article-title: Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation publication-title: Mol Cell – volume: 6 start-page: 73 year: 2004 end-page: 77 ident: CR17 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat Cell Biol – volume: 129 start-page: 823 year: 2007 end-page: 837 ident: CR25 article-title: High‐resolution profiling of histone methylations in the human genome publication-title: Cell – volume: 300 start-page: 131 year: 2003 end-page: 135 article-title: Role of histone H3 lysine 27 methylation in X inactivation publication-title: Science – volume: 448 start-page: 553 year: 2007 end-page: 560 article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells publication-title: Nature – volume: 6 start-page: 73 year: 2004 end-page: 77 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat Cell Biol – volume: 53 start-page: 277 year: 2014 end-page: 289 article-title: The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2‐mediated gene silencing publication-title: Mol Cell – volume: 8 start-page: e1002774 year: 2012 article-title: Histone H2A mono‐ubiquitination is a crucial step to mediate PRC1‐dependent repression of developmental genes to maintain ES cell identity publication-title: PLoS Genet – volume: 13 start-page: 115 year: 2012 end-page: 126 article-title: Understanding the language of Lys36 methylation at histone H3 publication-title: Nat Rev Mol Cell Biol – volume: 2 start-page: 1169 year: 2012 end-page: 1177 article-title: Antagonism between MES‐4 and Polycomb repressive complex 2 promotes appropriate gene expression in germ cells publication-title: Cell Rep – volume: 152 start-page: 859 year: 2013 end-page: 872 article-title: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer publication-title: Cell – volume: 9 start-page: 838 year: 2010 end-page: 850 article-title: Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12‐deficient mouse embryonic stem cells reveals distinct, dynamic post‐translational modifications at Lys‐27 and Lys‐36 publication-title: Mol Cell Proteomics – volume: 30 start-page: 2829 year: 2011 end-page: 2842 article-title: Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation publication-title: EMBO J – volume: 281 start-page: 35404 year: 2006 end-page: 35412 article-title: Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation publication-title: J Biol Chem – year: 2015 article-title: SETD2 loss‐of‐function promotes renal cancer branched evolution through replication stress and impaired DNA repair publication-title: Oncogene – volume: 4 start-page: e1000242 year: 2008 article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains publication-title: PLoS Genet – volume: 56 start-page: 580 year: 2014 end-page: 594 article-title: Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation publication-title: Mol Cell – volume: 26 start-page: 1714 year: 2012 end-page: 1728 article-title: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells publication-title: Genes Dev – volume: 49 start-page: 571 year: 2013 end-page: 582 article-title: An H3K36 methylation‐engaging Tudor motif of polycomb‐like proteins mediates PRC2 complex targeting publication-title: Mol Cell – volume: 19 start-page: 629 year: 2003 end-page: 639 article-title: Histone lysine methylation: a signature for chromatin function publication-title: Trends Genet – volume: 45 start-page: 1386 year: 2013 end-page: 1391 article-title: Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia publication-title: Nat Genet – volume: 7 start-page: 4225 year: 2008 end-page: 4236 article-title: Tissue‐specific expression and post‐translational modification of histone H3 variants publication-title: J Proteome Res – volume: 123 start-page: 581 year: 2005 end-page: 592 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell – volume: 42 start-page: 4241 year: 2014 end-page: 4256 article-title: MLL fusion proteins link transcriptional coactivators to previously active CpG‐rich promoters publication-title: Nucleic Acids Res – volume: 33 start-page: 248 year: 2009 end-page: 256 article-title: ING4 mediates crosstalk between histone H3K4 trimethylation and H3 acetylation to attenuate cellular transformation publication-title: Mol Cell – volume: 19 start-page: 815 year: 2005 end-page: 826 article-title: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3‐K9 publication-title: Genes Dev – volume: 15 start-page: 57 year: 2004 end-page: 67 article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex publication-title: Mol Cell – volume: 438 start-page: 1176 year: 2005 end-page: 1180 article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin publication-title: Nature – volume: 25 start-page: 2254 year: 2011 end-page: 2265 article-title: Genome‐wide function of H2B ubiquitylation in promoter and genic regions publication-title: Genes Dev – volume: 288 start-page: 30832 year: 2013 end-page: 30842 article-title: Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases publication-title: J Biol Chem – volume: 25 start-page: 781 year: 2011 end-page: 788 article-title: H3K9 methyltransferase G9a and the related molecule GLP publication-title: Genes Dev – volume: 27 start-page: 1271 year: 2007 end-page: 1279 article-title: Distinctive signatures of histone methylation in transcribed coding and noncoding human beta‐globin sequences publication-title: Mol Cell Biol – volume: 11 start-page: 858 year: 2003 end-page: 865 article-title: Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes publication-title: Eur J Hum Genet – volume: 276 start-page: 20197 year: 2001 end-page: 20205 article-title: Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes publication-title: J Biol Chem – volume: 19 start-page: 849 year: 2005 end-page: 856 article-title: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression publication-title: Mol Cell – volume: 12 start-page: 1577 year: 2003 end-page: 1589 article-title: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin publication-title: Mol Cell – volume: 6 start-page: 479 year: 2010 end-page: 491 article-title: Distinct epigenomic landscapes of pluripotent and lineage‐committed human cells publication-title: Cell Stem Cell – volume: 580 start-page: 6233 year: 2006 end-page: 6241 article-title: The Polycomb‐associated protein Rybp is a ubiquitin binding protein publication-title: FEBS Lett – volume: 112 start-page: 2900 year: 2015 end-page: 2905 article-title: Transcription factor interaction with COMPASS‐like complex regulates histone H3K4 trimethylation for specific gene expression in plants publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 1306 year: 2007 end-page: 1315 article-title: Structural basis of EZH2 recognition by EED publication-title: Structure – volume: 286 start-page: 7983 year: 2011 end-page: 7989 article-title: H3K36 methylation antagonizes PRC2‐mediated H3K27 methylation publication-title: J Biol Chem – volume: 25 start-page: 3305 year: 2005 end-page: 3316 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation publication-title: Mol Cell Biol – volume: 13 start-page: 1192 year: 2003 end-page: 1200 article-title: Suv39 h‐mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin publication-title: Curr Biol – volume: 279 start-page: 401 year: 2004 end-page: 406 article-title: Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2 publication-title: J Biol Chem – volume: 6 start-page: 24 year: 2013 article-title: Proteomic characterization of novel histone post‐translational modifications publication-title: Epigenetics Chromatin – volume: 1816 start-page: 158 year: 2011 end-page: 163 article-title: Cancers and the NSD family of histone lysine methyltransferases publication-title: Biochim Biophys Acta – volume: 157 start-page: 1445 year: 2014 end-page: 1459 article-title: Variant PRC1 complex‐dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation publication-title: Cell – volume: 15 start-page: 1169 year: 2008 end-page: 1175 article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b) publication-title: Nat Struct Mol Biol – volume: 32 start-page: 3479 year: 2012 end-page: 3485 article-title: Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin publication-title: Mol Cell Biol – volume: 461 start-page: 762 year: 2009 end-page: 767 article-title: Role of the polycomb protein EED in the propagation of repressive histone marks publication-title: Nature – volume: 25 start-page: 3110 year: 2006 end-page: 3122 article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing publication-title: EMBO J – volume: 337 start-page: 971 year: 2012 end-page: 975 article-title: Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation publication-title: Science – volume: 26 start-page: 751 year: 2012 end-page: 755 article-title: A complex Polycomb issue: the two faces of EZH2 in cancer publication-title: Genes Dev – volume: 3 start-page: e01632 year: 2014 article-title: Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription publication-title: elife – volume: 31 start-page: 2305 year: 2003 end-page: 2312 article-title: The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase publication-title: Nucleic Acids Res – volume: 20 start-page: 759 year: 2005 end-page: 770 article-title: The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions publication-title: Mol Cell – volume: 125 start-page: 315 year: 2006 end-page: 326 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells publication-title: Cell – volume: 123 start-page: 593 year: 2005 end-page: 605 article-title: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex publication-title: Cell – volume: 40 start-page: 411 year: 2008 end-page: 420 article-title: PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos publication-title: Nat Genet – volume: 58 start-page: 157 year: 2015 end-page: 171 article-title: Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent‐of‐origin‐dependent manner publication-title: Mol Cell – volume: 53 start-page: 49 year: 2014 end-page: 62 article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity publication-title: Mol Cell – volume: 21 start-page: 569 year: 2014 end-page: 571 article-title: Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression publication-title: Nat Struct Mol Biol – volume: 20 start-page: 1123 year: 2006 end-page: 1136 article-title: Genome‐wide mapping of Polycomb target genes unravels their roles in cell fate transitions publication-title: Genes Dev – volume: 108 start-page: 2801 year: 2011 end-page: 2806 article-title: Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: e1001091 year: 2010 article-title: The histone H3K36 methyltransferase MES‐4 acts epigenetically to transmit the memory of germline gene expression to progeny publication-title: PLoS Genet – volume: 20 start-page: 971 year: 2005 end-page: 978 article-title: Eaf3 chromodomain interaction with methylated H3‐K36 links histone deacetylation to Pol II elongation publication-title: Mol Cell – volume: 101 start-page: 7357 year: 2004 end-page: 7362 article-title: Distinct localization of histone H3 acetylation and H3‐K4 methylation to the transcription start sites in the human genome publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 481 year: 2003 end-page: 495 article-title: Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed‐Enx1 polycomb group complexes publication-title: Dev Cell – volume: 25 start-page: 1010 year: 2011 end-page: 1022 article-title: CpG islands and the regulation of transcription publication-title: Genes Dev – volume: 285 start-page: 26114 year: 2010 end-page: 26120 article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation publication-title: J Biol Chem – volume: 277 start-page: 34655 year: 2002 end-page: 34657 article-title: Ubiquitination of histone H2B by Rad6 is required for efficient Dot1‐mediated methylation of histone H3 lysine 79 publication-title: J Biol Chem – volume: 23 start-page: 2484 year: 2009 end-page: 2489 article-title: SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state publication-title: Genes Dev – volume: 7 start-page: 663 year: 2004 end-page: 676 article-title: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation publication-title: Dev Cell – volume: 43 start-page: 132 year: 2011 end-page: 144 article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3K4 and K79 methylation publication-title: Mol Cell – volume: 287 start-page: 39698 year: 2012 end-page: 39709 article-title: Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression publication-title: J Biol Chem – volume: 513 start-page: 124 year: 2002 end-page: 128 article-title: Bromodomain: an acetyl‐lysine binding domain publication-title: FEBS Lett – volume: 117 start-page: 211 year: 2011 end-page: 220 article-title: The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells publication-title: Blood – volume: 137 start-page: 2483 year: 2010 end-page: 2492 article-title: Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment publication-title: Development – volume: 130 start-page: 77 year: 2007 end-page: 88 article-title: A chromatin landmark and transcription initiation at most promoters in human cells publication-title: Cell – volume: 49 start-page: 1134 year: 2013 end-page: 1146 article-title: Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation publication-title: Mol Cell – volume: 278 start-page: 4035 year: 2003 end-page: 4040 article-title: The methyl‐CpG‐binding protein MeCP2 links DNA methylation to histone methylation publication-title: J Biol Chem – volume: 151 start-page: 181 year: 2012 end-page: 193 article-title: Asymmetrically modified nucleosomes publication-title: Cell – volume: 129 start-page: 823 year: 2007 end-page: 837 article-title: High‐resolution profiling of histone methylations in the human genome publication-title: Cell – volume: 278 start-page: 33625 year: 2003 end-page: 33628 article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B publication-title: J Biol Chem – volume: 19 start-page: 221 year: 2009 end-page: 233 article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome publication-title: Genome Res – volume: 31 start-page: 593 year: 2012 end-page: 605 article-title: NuRD‐mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression publication-title: EMBO J – volume: 109 start-page: 13549 year: 2012 end-page: 13554 article-title: Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3 publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 2478 year: 2004 end-page: 2486 article-title: Histone H3‐K9 methyltransferase ESET is essential for early development publication-title: Mol Cell Biol – volume: 18 start-page: 46 year: 2008 end-page: 59 article-title: Genome‐wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs publication-title: Genome Res – volume: 133 start-page: 3907 year: 2006 end-page: 3917 article-title: MES‐4: an autosome‐associated histone methyltransferase that participates in silencing the X chromosomes in the germ line publication-title: Development – volume: 343 start-page: 1249 year: 2014 end-page: 1253 article-title: Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication publication-title: Science – volume: 40 start-page: 436 year: 2003 end-page: 440 article-title: Spectrum of NSD1 mutations in Sotos and Weaver syndromes publication-title: J Med Genet – volume: 398 start-page: 481 year: 2010 end-page: 488 article-title: Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase publication-title: J Mol Biol – volume: 71 start-page: 4841 year: 2014 end-page: 4852 article-title: Chromosome boundary elements and regulation of heterochromatin spreading publication-title: Cell Mol Life Sci – volume: 6 start-page: e22548 year: 2011 article-title: Stage‐specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome publication-title: PLoS ONE – volume: 34 start-page: 3662 year: 2014 end-page: 3674 article-title: Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin publication-title: Mol Cell Biol – volume: 19 start-page: 1761 year: 2005 end-page: 1766 article-title: Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter‐proximal bias publication-title: Genes Dev – volume: 33 start-page: 5005 year: 2013 end-page: 5020 article-title: Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2 publication-title: Mol Cell Biol – volume: 100 start-page: 1820 year: 2003 end-page: 1825 article-title: Lysine‐79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position‐effect variegation publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 2726 year: 2001 end-page: 2735 article-title: Histone acetylation at promoters is differentially affected by specific activators and repressors publication-title: Mol Cell Biol – volume: 117 start-page: 149 year: 2003 end-page: 158 article-title: SU(VAR)3‐9 is a conserved key function in heterochromatic gene silencing publication-title: Genetica – volume: 25 start-page: 2242 year: 2011 end-page: 2247 article-title: Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123 publication-title: Genes Dev – volume: 11 start-page: 709 year: 2003 end-page: 719 article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity publication-title: Mol Cell – volume: 141 start-page: 526 year: 2014 end-page: 537 article-title: Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant publication-title: Development – volume: 20 start-page: 1093 year: 2013 end-page: 1097 article-title: The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells publication-title: Nat Struct Mol Biol – volume: 13 start-page: 150 year: 2005 end-page: 153 article-title: Evaluation of NSD2 and NSD3 in overgrowth syndromes publication-title: Eur J Hum Genet – volume: 347 start-page: 1017 year: 2015 end-page: 1021 article-title: Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation publication-title: Science – volume: 107 start-page: 21931 year: 2010 end-page: 21936 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 2488 year: 2014 end-page: 2493 article-title: Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP‐XL cross‐linking and affinity purification publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 289 year: 2006 end-page: 296 article-title: Enhanced histone acetylation and transcription: a dynamic perspective publication-title: Mol Cell – volume: 6 start-page: 12 year: 2013 article-title: Nucleosomal DNA binding drives the recognition of H3K36‐methylated nucleosomes by the PSIP1‐PWWP domain publication-title: Epigenetics Chromatin – volume: 21 start-page: 51 year: 2006 end-page: 64 article-title: ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation publication-title: Mol Cell – volume: 4 start-page: 1446 year: 2005 end-page: 1454 article-title: Histone H3K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe publication-title: Eukaryot Cell – volume: 16 start-page: 2893 year: 2002 end-page: 2905 article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein publication-title: Genes Dev – volume: 19 start-page: 1273 year: 2012 end-page: 1281 article-title: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation publication-title: Nat Struct Mol Biol – volume: 40 start-page: 7247 year: 2012 end-page: 7256 article-title: Dynamic acetylation of lysine‐4‐trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote publication-title: Nucleic Acids Res – volume: 15 start-page: 299 year: 2007 end-page: 314 article-title: The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution publication-title: Chromosome Res – volume: 28 start-page: 2884 year: 2008 end-page: 2895 article-title: Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation publication-title: Mol Cell Biol – volume: 148 start-page: 664 year: 2012 end-page: 678 article-title: RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 publication-title: Cell – volume: 12 start-page: 1016 year: 2002 end-page: 1020 article-title: Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells publication-title: Curr Biol – volume: 5 start-page: a017780 year: 2013 article-title: Position‐effect variegation, heterochromatin formation, and gene silencing in publication-title: Cold Spring Harb Perspect Biol – volume: 38 start-page: 4958 year: 2010 end-page: 4969 article-title: Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes publication-title: Nucleic Acids Res – volume: 122 start-page: 517 year: 2005 end-page: 527 article-title: Genome‐wide map of nucleosome acetylation and methylation in yeast publication-title: Cell – volume: 42 start-page: 330 year: 2011 end-page: 341 article-title: Histone methylation by PRC2 is inhibited by active chromatin marks publication-title: Mol Cell – volume: 12 start-page: 475 year: 2003 end-page: 487 article-title: mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression publication-title: Mol Cell – volume: 24 start-page: 5639 year: 2004 end-page: 5649 article-title: Leukemia proto‐oncoprotein MLL forms a SET1‐like histone methyltransferase complex with menin to regulate Hox gene expression publication-title: Mol Cell Biol – volume: 141 start-page: 1183 year: 2010 end-page: 1194 article-title: Pro isomerization in MLL1 PHD3‐bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression publication-title: Cell – volume: 12 start-page: 2048 year: 2013 end-page: 2059 article-title: Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS) publication-title: Mol Cell Proteomics – volume: 33 start-page: 2442 year: 2015 end-page: 2455 article-title: Ctbp2 modulates NuRD‐mediated deacetylation of H3K27 and facilitates PRC2‐mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency publication-title: Stem Cells – volume: 45 start-page: 344 year: 2012 end-page: 356 article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes publication-title: Mol Cell – volume: 43 start-page: 1433 year: 2015 end-page: 1443 article-title: Opposing roles of H3‐ and H4‐acetylation in the regulation of nucleosome structure–a FRET study publication-title: Nucleic Acids Res – volume: 38 start-page: 179 year: 2010 end-page: 190 article-title: CpG islands recruit a histone H3 lysine 36 demethylase publication-title: Mol Cell – volume: 24 start-page: 1884 year: 2004 end-page: 1896 article-title: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans publication-title: Mol Cell Biol – volume: 19 start-page: 1257 year: 2012 end-page: 1265 article-title: Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity publication-title: Nat Struct Mol Biol – volume: 282 start-page: 2450 year: 2007 end-page: 2455 article-title: Proteome‐wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36 publication-title: J Biol Chem – volume: 10 start-page: 1291 year: 2008 end-page: 1300 article-title: A model for transmission of the H3K27me3 epigenetic mark publication-title: Nat Cell Biol – volume: 27 start-page: 985 year: 2013 end-page: 990 article-title: The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression publication-title: Genes Dev – volume: 85 start-page: 8232 year: 2013 end-page: 8239 article-title: Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD‐MS/MS publication-title: Anal Chem – volume: 508 start-page: 263 year: 2014 end-page: 268 article-title: ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression publication-title: Nature – volume: 24 start-page: 785 year: 2006 end-page: 796 article-title: Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs publication-title: Mol Cell – volume: 14 start-page: 637 year: 2004 end-page: 646 article-title: Hierarchical recruitment of polycomb group silencing complexes publication-title: Mol Cell – volume: 17 start-page: 1414 year: 2010 end-page: 1421 article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression publication-title: Nat Struct Mol Biol – volume: 8 start-page: 1747 year: 2009 end-page: 1753 article-title: Histone H3‐K56 acetylation is important for genomic stability in mammals publication-title: Cell Cycle – volume: 142 start-page: 967 year: 2010 end-page: 980 article-title: Quantitative interaction proteomics and genome‐wide profiling of epigenetic histone marks and their readers publication-title: Cell – volume: 108 start-page: 7814 year: 2011 end-page: 7819 article-title: Dynamic acetylation of all lysine‐4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 676 year: 2011 end-page: 687 article-title: DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs publication-title: Cell Stem Cell – volume: 104 start-page: 10835 year: 2007 end-page: 10840 article-title: The coactivator host cell factor‐1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 1456 year: 2014 end-page: 1470 article-title: Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment publication-title: Cell Rep – volume: 278 start-page: 8897 year: 2003 end-page: 8903 article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl‐terminal domain of RNA polymerase II publication-title: J Biol Chem – volume: 15 start-page: 373 year: 2013 end-page: 384 article-title: Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes publication-title: Nat Cell Biol – volume: 24 start-page: 5475 year: 2004 end-page: 5484 article-title: Differential histone H3 Lys‐9 and Lys‐27 methylation profiles on the X chromosome publication-title: Mol Cell Biol – volume: 33 start-page: 4936 year: 2013 end-page: 4946 article-title: Histone H3K27 trimethylation inhibits H3 binding and function of SET1‐like H3K4 methyltransferase complexes publication-title: Mol Cell Biol – volume: 473 start-page: 1 year: 2000 end-page: 5 article-title: The PWWP domain: a potential protein‐protein interaction domain in nuclear proteins influencing differentiation? publication-title: FEBS Lett – volume: 49 start-page: 1108 year: 2013 end-page: 1120 article-title: ASH2L regulates ubiquitylation signaling to MLL: trans‐regulation of H3K4 methylation in higher eukaryotes publication-title: Mol Cell – volume: 10 start-page: 47 year: 2012 end-page: 62 article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells publication-title: Cell Stem Cell – volume: 3 start-page: 60 year: 2013 end-page: 69 article-title: RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells publication-title: Cell Rep – volume: 20 start-page: 2108 year: 2000 end-page: 2121 article-title: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl‐CpG binding domain protein 1 publication-title: Mol Cell Biol – volume: 1843 start-page: 366 year: 2014 end-page: 371 article-title: Diverse functions of PHD fingers of the MLL/KMT2 subfamily publication-title: Biochim Biophys Acta – volume: 15 start-page: 245 year: 2008 end-page: 250 article-title: The ankyrin repeats of G9a and GLP histone methyltransferases are mono‐ and dimethyllysine binding modules publication-title: Nat Struct Mol Biol – volume: 123 start-page: 233 year: 2005 end-page: 248 article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin publication-title: Cell – volume: 19 start-page: 1266 year: 2012 end-page: 1272 article-title: Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1 publication-title: Nat Struct Mol Biol – volume: 6 start-page: 348 year: 2005 end-page: 353 article-title: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2 publication-title: EMBO Rep – volume: 39 start-page: 886 year: 2010 end-page: 900 article-title: Polycomb group protein displacement and gene activation through MSK‐dependent H3K27me3S28 phosphorylation publication-title: Mol Cell – volume: 98 start-page: 12902 year: 2001 end-page: 12907 article-title: COMPASS: a complex of proteins associated with a trithorax‐related SET domain protein publication-title: Proc Natl Acad Sci USA – volume: 49 start-page: 368 year: 2013 end-page: 378 article-title: A map of general and specialized chromatin readers in mouse tissues generated by label‐free interaction proteomics publication-title: Mol Cell – volume: 418 start-page: 104 year: 2002 end-page: 108 article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast publication-title: Nature – volume: 1 start-page: e00205 year: 2012 article-title: KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands publication-title: elife – ident: e_1_2_10_17_1 doi: 10.1038/nature06008 – ident: e_1_2_10_21_1 doi: 10.1038/nsmb.1961 – ident: e_1_2_10_102_1 doi: 10.1128/MCB.00949-07 – ident: e_1_2_10_148_1 doi: 10.1038/nsmb.2434 – ident: e_1_2_10_138_1 doi: 10.1021/ac401299w – ident: e_1_2_10_106_1 doi: 10.1038/nsmb.2833 – ident: e_1_2_10_108_1 doi: 10.1016/j.molcel.2013.01.016 – ident: e_1_2_10_15_1 doi: 10.1016/j.molcel.2005.07.024 – ident: e_1_2_10_31_1 doi: 10.1016/j.cell.2006.02.041 – ident: e_1_2_10_39_1 doi: 10.1074/jbc.C200433200 – ident: e_1_2_10_89_1 doi: 10.1038/nature08398 – ident: e_1_2_10_75_1 doi: 10.1182/blood-2010-07-298349 – ident: e_1_2_10_65_1 doi: 10.1016/j.molcel.2010.04.009 – ident: e_1_2_10_38_1 doi: 10.1038/nature00883 – ident: e_1_2_10_158_1 doi: 10.1038/onc.2015.24 – ident: e_1_2_10_36_1 doi: 10.1016/j.bbamcr.2013.11.016 – ident: e_1_2_10_54_1 doi: 10.1073/pnas.1100099108 – ident: e_1_2_10_155_1 doi: 10.1136/jmg.40.6.436 – ident: e_1_2_10_27_1 doi: 10.1016/j.cell.2007.05.042 – ident: e_1_2_10_163_1 doi: 10.1016/j.cell.2005.10.002 – ident: e_1_2_10_162_1 doi: 10.1101/gad.347705 – ident: e_1_2_10_133_1 doi: 10.1128/MCB.24.12.5475-5484.2004 – ident: e_1_2_10_85_1 doi: 10.1074/mcp.M900489-MCP200 – ident: e_1_2_10_2_1 doi: 10.1186/1756-8935-6-24 – ident: e_1_2_10_46_1 doi: 10.4161/cc.8.11.8620 – ident: e_1_2_10_79_1 doi: 10.1101/gad.1035902 – ident: e_1_2_10_153_1 doi: 10.1093/nar/gkq244 – ident: e_1_2_10_78_1 doi: 10.1074/jbc.M110.194027 – ident: e_1_2_10_159_1 doi: 10.1101/gad.191163.112 – ident: e_1_2_10_103_1 doi: 10.1038/sj.emboj.7601187 – ident: e_1_2_10_117_1 doi: 10.1023/A:1022923508198 – ident: e_1_2_10_101_1 doi: 10.1016/j.molcel.2004.05.009 – ident: e_1_2_10_6_1 doi: 10.1128/MCB.21.8.2726-2735.2001 – ident: e_1_2_10_22_1 doi: 10.1093/nar/gkt1394 – ident: e_1_2_10_9_1 doi: 10.1073/pnas.0437846100 – ident: e_1_2_10_67_1 doi: 10.1074/jbc.M109.089433 – ident: e_1_2_10_125_1 doi: 10.1016/j.molcel.2015.02.013 – ident: e_1_2_10_123_1 doi: 10.1016/j.molcel.2014.10.001 – ident: e_1_2_10_19_1 doi: 10.1016/S1097-2765(03)00092-3 – ident: e_1_2_10_137_1 doi: 10.1126/science.1262088 – ident: e_1_2_10_122_1 doi: 10.1016/S1097-2765(03)00477-5 – ident: e_1_2_10_49_1 doi: 10.1093/nar/gku1354 – ident: e_1_2_10_97_1 doi: 10.1371/journal.pgen.1000242 – ident: e_1_2_10_142_1 doi: 10.1074/jbc.M113.475996 – ident: e_1_2_10_70_1 doi: 10.1016/j.cell.2010.08.020 – ident: e_1_2_10_131_1 doi: 10.1007/s10577-007-1126-1 – ident: e_1_2_10_113_1 doi: 10.1016/j.stem.2011.04.004 – ident: e_1_2_10_71_1 doi: 10.1016/S0014-5793(00)01449-6 – ident: e_1_2_10_161_1 doi: 10.1021/pr800044q – ident: e_1_2_10_40_1 doi: 10.1074/mcp.M112.026716 – ident: e_1_2_10_164_1 doi: 10.1038/nature13045 – ident: e_1_2_10_4_1 doi: 10.1073/pnas.1016071107 – ident: e_1_2_10_73_1 doi: 10.1371/journal.pone.0022548 – ident: e_1_2_10_124_1 doi: 10.1038/ng.99 – ident: e_1_2_10_20_1 doi: 10.1073/pnas.1419703112 – ident: e_1_2_10_47_1 doi: 10.7554/eLife.01632 – ident: e_1_2_10_76_1 doi: 10.1038/ng.2777 – ident: e_1_2_10_93_1 doi: 10.1016/j.stem.2011.12.006 – ident: e_1_2_10_61_1 doi: 10.1128/EC.4.8.1446-1454.2005 – ident: e_1_2_10_144_1 doi: 10.1128/MCB.00601-13 – ident: e_1_2_10_81_1 doi: 10.1038/sj.embor.7400376 – ident: e_1_2_10_118_1 doi: 10.1016/S0960-9822(03)00432-9 – ident: e_1_2_10_121_1 doi: 10.1038/nature04254 – ident: e_1_2_10_139_1 doi: 10.1016/j.celrep.2012.09.019 – ident: e_1_2_10_156_1 doi: 10.1038/sj.ejhg.5201298 – ident: e_1_2_10_12_1 doi: 10.1016/j.cell.2005.06.026 – ident: e_1_2_10_50_1 doi: 10.1038/emboj.2011.193 – ident: e_1_2_10_56_1 doi: 10.1016/j.molcel.2006.06.017 – ident: e_1_2_10_16_1 doi: 10.1073/pnas.231473398 – ident: e_1_2_10_45_1 doi: 10.1016/S0014-5793(01)03309-9 – ident: e_1_2_10_105_1 doi: 10.1016/j.cell.2014.05.004 – ident: e_1_2_10_111_1 doi: 10.1101/gad.1284005 – ident: e_1_2_10_129_1 doi: 10.1016/j.molcel.2013.12.005 – ident: e_1_2_10_57_1 doi: 10.1016/j.molcel.2005.12.007 – ident: e_1_2_10_110_1 doi: 10.1101/gad.2027411 – ident: e_1_2_10_7_1 doi: 10.1073/pnas.0401866101 – ident: e_1_2_10_141_1 doi: 10.1371/journal.pgen.1001091 – ident: e_1_2_10_88_1 doi: 10.1101/gr.080861.108 – ident: e_1_2_10_114_1 doi: 10.1016/j.molcel.2003.08.007 – ident: e_1_2_10_13_1 doi: 10.1016/j.tig.2003.09.007 – ident: e_1_2_10_29_1 doi: 10.1242/dev.102681 – ident: e_1_2_10_66_1 doi: 10.1038/nsmb.1499 – ident: e_1_2_10_135_1 doi: 10.1007/s00018-014-1725-x – ident: e_1_2_10_149_1 doi: 10.1038/emboj.2011.431 – ident: e_1_2_10_37_1 doi: 10.1101/gad.177220.111 – ident: e_1_2_10_116_1 doi: 10.1101/gad.1837309 – ident: e_1_2_10_96_1 doi: 10.1016/j.febslet.2006.10.027 – ident: e_1_2_10_32_1 doi: 10.1016/j.molcel.2012.10.026 – ident: e_1_2_10_104_1 doi: 10.1016/j.celrep.2014.04.012 – ident: e_1_2_10_72_1 doi: 10.1128/MCB.01684-06 – ident: e_1_2_10_115_1 doi: 10.1128/MCB.24.6.2478-2486.2004 – ident: e_1_2_10_34_1 doi: 10.1016/j.jmb.2010.03.036 – ident: e_1_2_10_92_1 doi: 10.1016/j.molcel.2012.01.002 – ident: e_1_2_10_99_1 doi: 10.1016/S0960-9822(02)00892-8 – ident: e_1_2_10_51_1 doi: 10.1016/j.molcel.2006.10.026 – ident: e_1_2_10_146_1 doi: 10.1038/nsmb.2435 – ident: e_1_2_10_60_1 doi: 10.1128/MCB.25.8.3305-3316.2005 – ident: e_1_2_10_48_1 doi: 10.1016/j.cell.2013.01.032 – ident: e_1_2_10_74_1 doi: 10.1073/pnas.1205707109 – ident: e_1_2_10_130_1 doi: 10.1128/MCB.00205-14 – ident: e_1_2_10_134_1 doi: 10.1128/MCB.00866-13 – ident: e_1_2_10_28_1 doi: 10.1038/nsmb.2653 – ident: e_1_2_10_63_1 doi: 10.1016/j.cell.2005.10.023 – ident: e_1_2_10_14_1 doi: 10.1074/jbc.M603099200 – ident: e_1_2_10_64_1 doi: 10.1016/j.cell.2005.10.025 – ident: e_1_2_10_136_1 doi: 10.1101/cshperspect.a017780 – ident: e_1_2_10_132_1 doi: 10.1074/jbc.M307344200 – ident: e_1_2_10_43_1 doi: 10.1016/j.molcel.2011.05.015 – ident: e_1_2_10_140_1 doi: 10.1242/dev.02584 – ident: e_1_2_10_98_1 doi: 10.1126/science.1084274 – ident: e_1_2_10_86_1 doi: 10.1101/gad.381706 – ident: e_1_2_10_157_1 doi: 10.1016/j.bbcan.2011.05.004 – ident: e_1_2_10_83_1 doi: 10.1073/pnas.1400648111 – ident: e_1_2_10_119_1 doi: 10.1093/nar/gkg332 – ident: e_1_2_10_95_1 doi: 10.1016/j.celrep.2012.11.026 – ident: e_1_2_10_84_1 doi: 10.1016/j.molcel.2013.10.030 – ident: e_1_2_10_90_1 doi: 10.1038/ncb1787 – ident: e_1_2_10_107_1 doi: 10.7554/eLife.00205 – ident: e_1_2_10_154_1 doi: 10.1038/sj.ejhg.5201050 – ident: e_1_2_10_147_1 doi: 10.1038/nsmb.2449 – ident: e_1_2_10_165_1 doi: 10.1126/science.1248357 – ident: e_1_2_10_42_1 doi: 10.1016/j.molcel.2005.11.012 – ident: e_1_2_10_68_1 doi: 10.1186/1756-8935-6-12 – ident: e_1_2_10_128_1 doi: 10.1016/j.cell.2012.09.002 – ident: e_1_2_10_10_1 doi: 10.1101/gad.177238.111 – ident: e_1_2_10_11_1 doi: 10.1074/jbc.C300270200 – ident: e_1_2_10_82_1 doi: 10.1016/j.str.2007.08.007 – ident: e_1_2_10_143_1 doi: 10.1371/journal.pgen.1002774 – ident: e_1_2_10_3_1 doi: 10.1128/MCB.20.6.2108-2121.2000 – ident: e_1_2_10_151_1 doi: 10.1073/pnas.1012798108 – ident: e_1_2_10_26_1 doi: 10.1016/j.cell.2007.05.009 – ident: e_1_2_10_77_1 doi: 10.1016/j.molcel.2011.03.025 – ident: e_1_2_10_69_1 doi: 10.1128/MCB.00389-12 – ident: e_1_2_10_87_1 doi: 10.1016/S1534-5807(03)00068-6 – ident: e_1_2_10_112_1 doi: 10.1038/nsmb.1384 – ident: e_1_2_10_25_1 doi: 10.1101/gad.2037511 – ident: e_1_2_10_41_1 doi: 10.1074/jbc.M112.384057 – ident: e_1_2_10_55_1 doi: 10.1093/nar/gks367 – ident: e_1_2_10_23_1 doi: 10.1073/pnas.0704351104 – ident: e_1_2_10_24_1 doi: 10.1128/MCB.24.13.5639-5649.2004 – ident: e_1_2_10_58_1 doi: 10.1038/nrm3274 – ident: e_1_2_10_150_1 doi: 10.1002/stem.2046 – ident: e_1_2_10_52_1 doi: 10.1128/MCB.24.5.1884-1896.2004 – ident: e_1_2_10_59_1 doi: 10.1074/jbc.M212134200 – ident: e_1_2_10_120_1 doi: 10.1074/jbc.M210256200 – ident: e_1_2_10_127_1 doi: 10.1016/j.stem.2010.03.018 – ident: e_1_2_10_80_1 doi: 10.1016/j.molcel.2004.06.020 – ident: e_1_2_10_126_1 doi: 10.1242/dev.048363 – ident: e_1_2_10_18_1 doi: 10.1038/ncb1076 – ident: e_1_2_10_62_1 doi: 10.1016/j.molcel.2005.11.021 – ident: e_1_2_10_91_1 doi: 10.1126/science.1225237 – ident: e_1_2_10_100_1 doi: 10.1016/j.devcel.2004.10.005 – ident: e_1_2_10_44_1 doi: 10.1016/j.molcel.2013.01.033 – ident: e_1_2_10_109_1 doi: 10.1038/ncb2702 – ident: e_1_2_10_160_1 doi: 10.1101/gad.217778.113 – ident: e_1_2_10_145_1 doi: 10.1016/j.molcel.2012.11.026 – ident: e_1_2_10_33_1 doi: 10.1074/jbc.C600286200 – ident: e_1_2_10_35_1 doi: 10.1016/j.cell.2010.05.016 – ident: e_1_2_10_152_1 doi: 10.1016/j.molcel.2010.08.020 – ident: e_1_2_10_94_1 doi: 10.1016/j.cell.2011.12.029 – ident: e_1_2_10_53_1 doi: 10.1016/j.molcel.2008.12.016 – ident: e_1_2_10_5_1 doi: 10.1101/gr.6654808 – ident: e_1_2_10_8_1 doi: 10.1074/jbc.M009472200 – ident: e_1_2_10_30_1 doi: 10.1101/gad.194209.112 |
SSID | ssj0005978 |
Score | 2.6477277 |
SecondaryResourceType | review_article |
Snippet | Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1467 |
SubjectTerms | Animals Cell division Chromatin Chromatin - chemistry Chromatin - genetics Chromatin - physiology EMBO09 EMBO31 EMBO44 Gene expression Histone Code histone modifications Histone-Lysine N-Methyltransferase - genetics Histone-Lysine N-Methyltransferase - metabolism Histones - genetics Histones - metabolism Humans Methylation Mutation Myeloid-Lymphoid Leukemia Protein - genetics Myeloid-Lymphoid Leukemia Protein - metabolism Polycomb Polycomb-Group Proteins - genetics Polycomb-Group Proteins - metabolism Protein Processing, Post-Translational Review Reviews Transcription, Genetic Trithorax |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFD_ohuKL6PzXOSWCiD7UtU2aNuCLyuaY3CHjDocvIU1TNtx6x7136N78Dn5DP4nnpG206BB8a2iSpifnJL8kJ78D8LQusXlKGkRuFMJMZmlcZjWPpWskLicUl955fLIndw7E7mE-eBPSXZiOHyJsuJFl-PGaDNxUiyFiD7GGutOKCD0RA-ASJb8KqwjtOSl5Jj788vJQfjDG8UDFWZYe9uw-VMXmuILRxLRKMv76N9T5p_NkOEEd41s_QW3fgps9smSvO1W4DVdcuwbXuliTF2twfdKfot-BV6gb7Nh7G56YCzZrmGcdbh07ndXkOtTt4rEf376zL3O6o7xgyyOzZAgw67twsL01fbsT91EUYotoKI8RsVmX5GVhqtIg3ioyYYoa07VyvCqM4SJvjJQNHchyKxpi7SpFU6aJE4hH-D1YabEJD4AZl9lUVMblqRW1sWWWysxJZyWiyMTaCF4OItS2pxinSBcnmpYaJHNNMtdB5hE8DwXOOnaNy7M-830S8pn5Z3JKK3L9ce-dlrv5Jz59v6-nEWwMnaZ7e1xoisKlSqlUEcGT8BotiY5HTOtm55SHlk8Kp4AI7nd9HD6GsLEQKhERFKPeDxmIpXv8pj0-8mzdQiJGSpIIXgx68luzLvtX7hXpXzLRW5M3-yG1_l-lHsINeu6uV27AynJ-7h4hzlpWj70l_QRJDxxk priority: 102 providerName: Wiley-Blackwell |
Title | The interplay of histone modifications - writers that read |
URI | https://api.istex.fr/ark:/67375/WNG-6J5Z3TKR-T/fulltext.pdf https://link.springer.com/article/10.15252/embr.201540945 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201540945 https://www.ncbi.nlm.nih.gov/pubmed/26474904 https://www.proquest.com/docview/1728986997 https://www.proquest.com/docview/1730679153 https://pubmed.ncbi.nlm.nih.gov/PMC4641500 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7RViAuCMpfoFRGQggOoYljO7HEBZaW0morVG3FiovlOI5a0WbRdivojXfgDXkSZpxs6IpWiEsUy07szPjnc2b8DcCzqsDmaWURuVEIM8XTuOBVFitfK9xO6EwF5_Hhnto-EDtjOe5IkugszEX7veSSb_iTkmg7caXHjYhcghWJsy515YEa_PHl0GHKxVGvY87Tccfhc8kLFpafFZLk98uw5d8ukr2ddBHFhmVo6zbc6vAje9Mq_A5c880qXG8jSp6vwo1hZyu_C6-xB7Cj4FN4bM_ZpGaBW7jx7GRSkYNQ-6-O_frxk32b0knkUzY7tDOGMLK6Bwdbm6PBdtzFSogdYh4ZIy5zPpFFbsvCIqrKubB5helK-6zMrc2ErK1SNZldMydq4uYqRF2kiReIOrL7sNxgEx4Cs567VJTWy9SJyrqCp4p75Z1CrJg4F8GruQiN64jEKZ7FsaENBcnckMxNL_MIXvQPfG05NK4u-jzopC9np1_I9SyX5tPee6N25OdstLtvRhGszZVmulF3aijWli6U1nkET_tsHC9kBLGNn5xRGdokaZzoI3jQ6rivDMFhLnQiIsgXtN8XIC7uxZzm6DBwcguFSChJIng57ycXmnXVt2ahI_1LJmZz-Ha_Tz36jxoew026b49OrsHybHrmnyCGmpXrsMTFx_UwivD67sPubziHEqg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BK6AXBOUvpYCREIJDIHFsJ5a4wKplabt7qLZi1YvlOI5a0WbRdivojXfgDfsknUmyoStaIY6JndiZ8c83mfE3AK-KDLunlUXkRinMFI_DjBdJqHyp0JzQiaqDxwdD1d8TW2M5bkmS6CzMZf-95JK_98c50XbiTo-GiLwJy-S2JJL8nur9ieXQ9ZKLs16HnMfjlsPnihcsbD_LJMmfV2HLv0MkOz_pIoqtt6HNe3C3xY_sY6Pw-3DDV6twq8koebYKtwetr_wBfMARwA7rmMIje8YmJau5hSvPjicFBQg1_-rY-a_f7MeUTiKfsNmBnTGEkcVD2NvcGPX6YZsrIXSIeWSIuMz5SGapzTOLqCrlwqYFXhfaJ3lqbSJkaZUqye2aOFESN1cmyiyOvEDUkTyCpQq78ASY9dzFIrdexk4U1mU8Vtwr7xRixci5AN7NRWhcSyRO-SyODBkUJHNDMjedzAN40z3wveHQuL7q61onXT07_UahZ6k0X4efjdqS-8loe9eMAlifK820s-7EUK4tnSmt0wBedsU4X8gJYis_OaU6ZCRpXOgDeNzouGsMwWEqdCQCSBe031UgLu7FkurwoObkFgqRUBQF8HY-Ti5167pvTeqB9C-ZmI3Bp93uau0_WngBd_qjwY7Z-TLcfgordL85RrkOS7PpqX-GeGqWP6_n0gViYRPH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BV1RcUCmvQAEjIQSH0DwcJ5a4LNClbNkVKlux4mI5jqNWtNlqN1XbW_8D_5BfwkxesKIV4pjYiZ3x2P4mM_4G4HmWYPek0IjcKIWZCHw3CbLQFTYXaE7IUFTB46Ox2N7jw2k0bWJzFm20e-uSrM80EEtTUW4eZ3mbryfYtEcpkXni_o_mSXQdekkkJdpevX5_-GX4O8ZDVksxrgbSDQJ_2nD7XPKKpW2pRxI-uwxz_h062flPl9FttT0N1uBWgytZv1aE23DNFutwo840eb4Oq6PGh34H3qBmsIMq1vBQn7NZzirO4cKyo1lGgUP1Pzz28-IHO53TCeUFK_d1yRBeZndhb7A1ebftNjkUXINYKHIRrxnrRUms00Qj2ooDruMMrzNpwzTWOuRRroXIyR0bGp4TZ1fC88T3LEc0Et6DlQK78ACYtoHxeapt5BueaZMEvgissEYghvSMceB1K0JlGoJxynNxqMjQIJkrkrnqZO7Ay-6B45pb4-qqL6ox6erp-XcKSYsj9XX8QYlh9C2c7OyqiQMb7aCpZjYuFOXgkolADXHgWVeM84icI7qwsxOqQ8aTxA3Agfv1GHeNIWiMufS4A_HS6HcViKN7uaQ42K-4urlAhOR5Drxq9eSPbl31rWGlSP-Sidoavd3trh7-RwtPYfXz-4H69HG88whu0u36dOUGrJTzE_sYYVaZPmkm0y_-jR2F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+interplay+of+histone+modifications+-+writers+that+read&rft.jtitle=EMBO+reports&rft.au=Zhang%2C+Tianyi&rft.au=Cooper%2C+Sarah&rft.au=Brockdorff%2C+Neil&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=16&rft.issue=11&rft.spage=1467&rft.epage=1481&rft_id=info:doi/10.15252%2Fembr.201540945&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6J5Z3TKR_T |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |