AVT: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks
In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck ar...
Saved in:
Published in | Data in brief Vol. 40; p. 107801 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-3409 2352-3409 |
DOI | 10.1016/j.dib.2022.107801 |
Cover
Abstract | In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms. |
---|---|
AbstractList | In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms. In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms.In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms. |
ArticleNumber | 107801 |
Author | Zhao, Fen-hua Li, Jianning Pepe, Antonio Egger, Jan Gsaxner, Christina Radl, Lukas Jin, Yuan |
Author_xml | – sequence: 1 givenname: Lukas surname: Radl fullname: Radl, Lukas organization: Graz University of Technology (TU Graz), Graz, Styria, Austria – sequence: 2 givenname: Yuan orcidid: 0000-0001-8695-1525 surname: Jin fullname: Jin, Yuan organization: Graz University of Technology (TU Graz), Graz, Styria, Austria – sequence: 3 givenname: Antonio orcidid: 0000-0002-5843-6275 surname: Pepe fullname: Pepe, Antonio organization: Graz University of Technology (TU Graz), Graz, Styria, Austria – sequence: 4 givenname: Jianning surname: Li fullname: Li, Jianning organization: Graz University of Technology (TU Graz), Graz, Styria, Austria – sequence: 5 givenname: Christina orcidid: 0000-0002-2227-3523 surname: Gsaxner fullname: Gsaxner, Christina organization: Graz University of Technology (TU Graz), Graz, Styria, Austria – sequence: 6 givenname: Fen-hua surname: Zhao fullname: Zhao, Fen-hua organization: Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100 China – sequence: 7 givenname: Jan surname: Egger fullname: Egger, Jan email: egger@tugraz.at, egger@icg.tugraz.at organization: Graz University of Technology (TU Graz), Graz, Styria, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35059483$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQjVARLaU_gAvKkcsu46_EAQlptYK2UhGXhavl2JOtF29c7GQR_x6naVHLoZw8npn39GbmvSyO-tBjUbwmsCRAqne7pXXtkgKl-V9LIM-KE8oEXTAOzdGD-Lg4S2kHAETwnBQvimMmQDRcspNCrb5v3pdfRj84g_2AsdQh5rg8YEroyyEiluvNqrR60AmH0gTv0Qwu9OUvN1yX2xjG3ua-MX8SbveZRd-W9zr9SK-K5532Cc_u3tPi2-dPm_XF4urr-eV6dbUwQsCw6LQEylrBGKtly4Eg1dLWsm6gqjsK1nKqUTS6E8JQKjgTrbYdR4EMeEPYaXE589qgd-omur2Ov1XQTt0mQtwqPc3lUQnCLJOMigqBa8K1rjphOitZ1ckWIHN9nLluxnaPdtpL1P4R6eNK767VNhyUrKsspskEb-8IYvg5YhrU3iWD3usew5gUrSoCXDZ53P-3UkplXsI04puHsv7quT9mbqjnBhNDShE7Zdx8i6zSeUVATc5RO5WdoybnqNk5GUn-Qd6TP4X5MGMwn_XgMKpkHPYGrYvZIHnv7gn0H-de2h0 |
CitedBy_id | crossref_primary_10_1016_j_compmedimag_2024_102470 crossref_primary_10_1515_bmt_2024_0396 crossref_primary_10_3390_s23020633 crossref_primary_10_1007_s10278_024_01164_0 crossref_primary_10_1002_cnm_3860 crossref_primary_10_1038_s41597_024_03284_2 crossref_primary_10_1145_3615862 crossref_primary_10_3390_electronics13244919 crossref_primary_10_1109_TMI_2023_3339142 crossref_primary_10_1016_j_ejrad_2025_112006 crossref_primary_10_1016_j_media_2024_103378 crossref_primary_10_3389_fphys_2023_1125931 crossref_primary_10_1007_s00366_023_01834_7 crossref_primary_10_1080_10255842_2022_2128672 crossref_primary_10_17816_DD635589 |
Cites_doi | 10.7717/peerj-cs.773 10.1016/j.ejrad.2011.01.077 10.1007/s10237-020-01294-8 10.1186/s40537-019-0197-0 10.1016/j.media.2020.101773 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.dib.2022.107801 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2352-3409 |
ExternalDocumentID | oai_doaj_org_article_513d383256e04a14aa6f5cfd836f8b00 PMC8760499 35059483 10_1016_j_dib_2022_107801 S2352340922000130 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: KLI 678 |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E O9- OK1 RIG ROL RPM SSZ AAFWJ AAYWO AAYXX ACVFH ADCNI AEUPX AFPKN AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-fa8023b533378b401e2a8d7879067f20dd42ae59af55c225435badf4e5e304913 |
IEDL.DBID | M48 |
ISSN | 2352-3409 |
IngestDate | Wed Aug 27 01:31:46 EDT 2025 Thu Aug 21 18:36:49 EDT 2025 Fri Jul 11 01:32:05 EDT 2025 Fri Jul 11 08:46:50 EDT 2025 Mon Jul 21 05:45:42 EDT 2025 Tue Jul 01 00:59:04 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Sun Apr 06 06:54:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning CTA Vessel tree Abdominal aortic aneurysm Aorta Aortic dissection Segmentations Ground truth Masks |
Language | English |
License | This is an open access article under the CC BY license. 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-fa8023b533378b401e2a8d7879067f20dd42ae59af55c225435badf4e5e304913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5843-6275 0000-0001-8695-1525 0000-0002-2227-3523 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.dib.2022.107801 |
PMID | 35059483 |
PQID | 2622280671 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_513d383256e04a14aa6f5cfd836f8b00 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8760499 proquest_miscellaneous_2661048953 proquest_miscellaneous_2622280671 pubmed_primary_35059483 crossref_citationtrail_10_1016_j_dib_2022_107801 crossref_primary_10_1016_j_dib_2022_107801 elsevier_sciencedirect_doi_10_1016_j_dib_2022_107801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Data in brief |
PublicationTitleAlternate | Data Brief |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Greiner, Egger, Großkopf, Kaftan, Dörner, Freisleben (bib0005) 2008 Bäumler, Vedula, Sailer, Seo, Chiu, Mistelbauer, Chan, Fischbein, Marsden, Fleischmann (bib0013) 2020; 19 Eigen, Wels, Dohle, Suehling, Maier (bib0014) 2018; volume 10576 Shorten, Khoshgoftaar (bib0008) 2019; 6 Egger, Pepe, Gsaxner, Jin, Li, Kern (bib0007) 2021; 7 Renapurkar, Setser, O’Donnell, Egger, Lieber, Desai, Stillman, Schoenhagen, Flamm (bib0011) 2012; 81 . Egger, Kapur, Fedorov, Pieper, Miller, Veeraraghavan, Freisleben, Golby, Nimsky, Kikinis (bib0009) 2013 Heller, Isensee, Maier-Hein, Hou, Xie, Li, Nan, Mu, Lin, Han (bib0002) 2020 B. Zhao, L.H. Schwartz, M.G. Kris, Data From RIDER_Lung CT. The Cancer Imaging Archive., 2015, doi Online accessed on 10.07.2021. Jin, Pepe, Li, Gsaxner, Zhao, Kleesiek, Frangi, Egger (bib0006) Heller, Sathianathen, Kalapara, Walczak, Moore, Kaluzniak, Rosenberg, Blake, Rengel, Oestreich (bib0001) Jin, Pepe, Li, Gsaxner, Egger (bib0004) 2021; volume 11600 Pepe, Li, Rolf-Pissarczyk, Gsaxner, Chen, Holzapfel, Egger (bib0010) 2020; 65 G. Kindlmann, Definition of the NRRD File Format, 2004 Wild, Weber, Egger (bib0015) 2019 Radl, Jin, Pepe, Li, Gsaxner, Zhao, Egger (bib16) 2022; 1 Greiner (10.1016/j.dib.2022.107801_bib0005) 2008 Radl (10.1016/j.dib.2022.107801_bib16) 2022; 1 Shorten (10.1016/j.dib.2022.107801_bib0008) 2019; 6 Renapurkar (10.1016/j.dib.2022.107801_bib0011) 2012; 81 Egger (10.1016/j.dib.2022.107801_bib0007) 2021; 7 Eigen (10.1016/j.dib.2022.107801_bib0014) 2018; volume 10576 Heller (10.1016/j.dib.2022.107801_bib0001) Jin (10.1016/j.dib.2022.107801_bib0006) Bäumler (10.1016/j.dib.2022.107801_bib0013) 2020; 19 Jin (10.1016/j.dib.2022.107801_bib0004) 2021; volume 11600 Pepe (10.1016/j.dib.2022.107801_bib0010) 2020; 65 Wild (10.1016/j.dib.2022.107801_bib0015) 2019 10.1016/j.dib.2022.107801_bib0012 Heller (10.1016/j.dib.2022.107801_bib0002) 2020 Egger (10.1016/j.dib.2022.107801_bib0009) 2013 10.1016/j.dib.2022.107801_bib0003 |
References_xml | – start-page: 101821 year: 2020 ident: bib0002 article-title: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: results of the kits19 challenge publication-title: Med Image Anal – volume: volume 11600 start-page: 116001W year: 2021 ident: bib0004 article-title: Deep learning and particle filter-based aortic dissection vessel tree segmentation publication-title: Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging – reference: B. Zhao, L.H. Schwartz, M.G. Kris, Data From RIDER_Lung CT. The Cancer Imaging Archive., 2015, doi: – ident: bib0001 article-title: The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes – volume: 1 year: 2022 ident: bib16 publication-title: Aortic Vessel Tree (AVT) CTA Datasets and Segmentations, Figshare – volume: 81 start-page: e87 year: 2012 end-page: e93 ident: bib0011 article-title: Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm publication-title: Eur J Radiol – volume: 6 start-page: 1 year: 2019 end-page: 48 ident: bib0008 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data – year: 2013 ident: bib0009 article-title: Gbm volumetry using the 3D slicer medical image computing platform publication-title: Scientific reports – reference: . – reference: G. Kindlmann, Definition of the NRRD File Format, 2004, ( – volume: 65 start-page: 101773 year: 2020 ident: bib0010 article-title: Detection, segmentation, simulation and visualization of aortic dissections: a review publication-title: Med Image Anal – volume: 7 start-page: e773 year: 2021 ident: bib0007 article-title: Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact publication-title: PeerJ Comput. Sci. – reference: ), Online accessed on 10.07.2021. – volume: volume 10576 start-page: 105761X year: 2018 ident: bib0014 article-title: Geometric modeling of the aortic inner and outer vessel wall from CTA for aortic dissection analysis publication-title: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling – start-page: 51 year: 2008 end-page: 55 ident: bib0005 article-title: Segmentation of aortic aneurysms in CTA images with the statistic approach of the active appearance models publication-title: Proceedings of Bildverarbeitung für die Medizin (BVM) – volume: 19 start-page: 1607 year: 2020 end-page: 1628 ident: bib0013 article-title: Fluid–structure interaction simulations of patient-specific aortic dissection publication-title: Biomech Model Mechanobiol – start-page: 1 year: 2019 end-page: 8 ident: bib0015 article-title: A client/server based online environment for manual segmentation of medical images publication-title: CESCG 2019: 23rd Central European Seminar on Computer Graphics – ident: bib0006 article-title: Ai-based aortic vessel tree segmentation for cardiovascular diseases treatment: status quo – volume: 7 start-page: e773 year: 2021 ident: 10.1016/j.dib.2022.107801_bib0007 article-title: Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.773 – start-page: 1 year: 2019 ident: 10.1016/j.dib.2022.107801_bib0015 article-title: A client/server based online environment for manual segmentation of medical images – volume: 81 start-page: e87 issue: 2 year: 2012 ident: 10.1016/j.dib.2022.107801_bib0011 article-title: Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2011.01.077 – volume: 19 start-page: 1607 issue: 5 year: 2020 ident: 10.1016/j.dib.2022.107801_bib0013 article-title: Fluid–structure interaction simulations of patient-specific aortic dissection publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-020-01294-8 – volume: volume 11600 start-page: 116001W year: 2021 ident: 10.1016/j.dib.2022.107801_bib0004 article-title: Deep learning and particle filter-based aortic dissection vessel tree segmentation – volume: 1 year: 2022 ident: 10.1016/j.dib.2022.107801_bib16 publication-title: Aortic Vessel Tree (AVT) CTA Datasets and Segmentations, Figshare – ident: 10.1016/j.dib.2022.107801_bib0003 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.dib.2022.107801_bib0008 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – ident: 10.1016/j.dib.2022.107801_bib0001 – start-page: 51 year: 2008 ident: 10.1016/j.dib.2022.107801_bib0005 article-title: Segmentation of aortic aneurysms in CTA images with the statistic approach of the active appearance models – ident: 10.1016/j.dib.2022.107801_bib0006 – volume: 65 start-page: 101773 year: 2020 ident: 10.1016/j.dib.2022.107801_bib0010 article-title: Detection, segmentation, simulation and visualization of aortic dissections: a review publication-title: Med Image Anal doi: 10.1016/j.media.2020.101773 – start-page: 101821 year: 2020 ident: 10.1016/j.dib.2022.107801_bib0002 article-title: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: results of the kits19 challenge publication-title: Med Image Anal – year: 2013 ident: 10.1016/j.dib.2022.107801_bib0009 article-title: Gbm volumetry using the 3D slicer medical image computing platform – ident: 10.1016/j.dib.2022.107801_bib0012 – volume: volume 10576 start-page: 105761X year: 2018 ident: 10.1016/j.dib.2022.107801_bib0014 article-title: Geometric modeling of the aortic inner and outer vessel wall from CTA for aortic dissection analysis |
SSID | ssj0001542355 |
Score | 2.4584823 |
Snippet | In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107801 |
SubjectTerms | Abdominal aortic aneurysm angiography Aorta Aortic dissection computed tomography CTA Data data collection Deep learning geometry Ground truth humans Masks neck Segmentations statistical models trees Vessel tree |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp14QlAJLC3KlHgApIh92YnPbItCqh552ETfLjh3YAlnULPx-ZmxntQvS9tJTlNhJZM848yaeeUPIj9qAZNPGJNYJmTDEcAIJL2UtM2GZs4XzbJ-_y9GE_brlt0ulvjAmLNADh4k751lhwYsCy-xSpjOmddnwurGiKBsBOoNf31SmS85UyA8GmOBLnsIhTwrwYvotTR_cZacGfMM8h_NKxIIwvVHy3P0rtukj9nwfQrlkk663yVYEk3QYBrFDNlz7mezE5drRk8gpfbpL1PBmfEF9ti0-y_2leoZ30VfkDn-kuDdNL8dDihGjnZtT1A8fpdVS_FVLMfujtdDvBU46d_cUc5Za-qS7h-4LmVxfjS9HSaytkNTgk8yTRiPzmwGwV1TCgJPlci0srF4J5qvJU2tZrh2XuuG8zjFjnhttG-a4w425rNgjm-2sdQeEaom4ogLfyAiWSXDVHTNpZbUphclqMyBpP7mqjsTjWP_iUfURZn8UyEOhPFSQx4CcLW55Dqwb6zr_RIktOiJhtr8AaqSiGql_qdGAsF7eKmKPgCngUdN17_7e64aCdYmbLbp1s5dO5SX-W4PJXNsHwCsTkhcDsh_0aTGKgnsmHWipVjRtZZirLe303vODg4FDR_bwf8zLV_IJhxvi1L-RTVAzdwQwbG6O_Yp7A6ZXLK8 priority: 102 providerName: Directory of Open Access Journals |
Title | AVT: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks |
URI | https://dx.doi.org/10.1016/j.dib.2022.107801 https://www.ncbi.nlm.nih.gov/pubmed/35059483 https://www.proquest.com/docview/2622280671 https://www.proquest.com/docview/2661048953 https://pubmed.ncbi.nlm.nih.gov/PMC8760499 https://doaj.org/article/513d383256e04a14aa6f5cfd836f8b00 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N2wsviDE-CqwyEg-AFJQPO3EmIVSmTRMTPKAW9mbZsTMGXQpNh-C_585xCoGp4qlK4ziy7y73-9l3Z4AnlUHJxrWJrJNlxAnDSSp4WVZlIi13NnO-2ue7_GTG35yJsy3oj7cKE9heS-3oPKnZcv7ix7efr9DgX_6O1bJI-5HFp3hdSMrm2kHHlBMXexvQfpc0jNjBn4OKP2mUIbXp9zmv62XgqXxB_4HD-heQ_h1X-YejOr4FNwPCZJNOJXZhyzW3YTfYcMuehkLTz_ZATT5MD5hPwaW-3JLpBT3FvlNB8TmjDWt2OJ0wCiNt3YqR0vjQrYbR-i2jlJDGYrsrvGjd-WVIZGrYpW6_tHdgdnw0PTyJwoELUYVEZRXVmsrBGUSAWSENMi-XamnRpEv0aXUaW8tT7USpayGqlNLohdG25k442q1Lsruw3Swadx-YLglsFEiYjORJifzdcRMXVptcmqQyI4j7yVVVqEZOh2LMVR929lmhPBTJQ3XyGMHz9SNfu1Icmxq_JomtG1IVbf_HYnmuglEqkWQWGTqiPhdznXCt81pUtZVZXkv8Ho2A9_JWAZB0QAO7utj07se9big0VtqB0Y1bXLUqzWnBDSdzYxtEtFyWIhvBvU6f1qPIhC-vg3eKgaYNhjm801x88kXD0esRu33wH-99CDdoNF1s-iPYRi1y-wi9VmYMO5PT9x9Px37pYuzN6xd88iyq |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AVT%3A+Multicenter+aortic+vessel+tree+CTA+dataset+collection+with+ground+truth+segmentation+masks&rft.jtitle=Data+in+brief&rft.au=Radl%2C+Lukas&rft.au=Jin%2C+Yuan&rft.au=Pepe%2C+Antonio&rft.au=Li%2C+Jianning&rft.date=2022-02-01&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=40+p.107801-&rft_id=info:doi/10.1016%2Fj.dib.2022.107801&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon |