AVT: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks

In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck ar...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 40; p. 107801
Main Authors Radl, Lukas, Jin, Yuan, Pepe, Antonio, Li, Jianning, Gsaxner, Christina, Zhao, Fen-hua, Egger, Jan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.02.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2352-3409
2352-3409
DOI10.1016/j.dib.2022.107801

Cover

Abstract In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms.
AbstractList In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms.
In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms.In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms.
ArticleNumber 107801
Author Zhao, Fen-hua
Li, Jianning
Pepe, Antonio
Egger, Jan
Gsaxner, Christina
Radl, Lukas
Jin, Yuan
Author_xml – sequence: 1
  givenname: Lukas
  surname: Radl
  fullname: Radl, Lukas
  organization: Graz University of Technology (TU Graz), Graz, Styria, Austria
– sequence: 2
  givenname: Yuan
  orcidid: 0000-0001-8695-1525
  surname: Jin
  fullname: Jin, Yuan
  organization: Graz University of Technology (TU Graz), Graz, Styria, Austria
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0002-5843-6275
  surname: Pepe
  fullname: Pepe, Antonio
  organization: Graz University of Technology (TU Graz), Graz, Styria, Austria
– sequence: 4
  givenname: Jianning
  surname: Li
  fullname: Li, Jianning
  organization: Graz University of Technology (TU Graz), Graz, Styria, Austria
– sequence: 5
  givenname: Christina
  orcidid: 0000-0002-2227-3523
  surname: Gsaxner
  fullname: Gsaxner, Christina
  organization: Graz University of Technology (TU Graz), Graz, Styria, Austria
– sequence: 6
  givenname: Fen-hua
  surname: Zhao
  fullname: Zhao, Fen-hua
  organization: Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100 China
– sequence: 7
  givenname: Jan
  surname: Egger
  fullname: Egger, Jan
  email: egger@tugraz.at, egger@icg.tugraz.at
  organization: Graz University of Technology (TU Graz), Graz, Styria, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35059483$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVARLaU_gAvKkcsu46_EAQlptYK2UhGXhavl2JOtF29c7GQR_x6naVHLoZw8npn39GbmvSyO-tBjUbwmsCRAqne7pXXtkgKl-V9LIM-KE8oEXTAOzdGD-Lg4S2kHAETwnBQvimMmQDRcspNCrb5v3pdfRj84g_2AsdQh5rg8YEroyyEiluvNqrR60AmH0gTv0Qwu9OUvN1yX2xjG3ua-MX8SbveZRd-W9zr9SK-K5532Cc_u3tPi2-dPm_XF4urr-eV6dbUwQsCw6LQEylrBGKtly4Eg1dLWsm6gqjsK1nKqUTS6E8JQKjgTrbYdR4EMeEPYaXE589qgd-omur2Ov1XQTt0mQtwqPc3lUQnCLJOMigqBa8K1rjphOitZ1ckWIHN9nLluxnaPdtpL1P4R6eNK767VNhyUrKsspskEb-8IYvg5YhrU3iWD3usew5gUrSoCXDZ53P-3UkplXsI04puHsv7quT9mbqjnBhNDShE7Zdx8i6zSeUVATc5RO5WdoybnqNk5GUn-Qd6TP4X5MGMwn_XgMKpkHPYGrYvZIHnv7gn0H-de2h0
CitedBy_id crossref_primary_10_1016_j_compmedimag_2024_102470
crossref_primary_10_1515_bmt_2024_0396
crossref_primary_10_3390_s23020633
crossref_primary_10_1007_s10278_024_01164_0
crossref_primary_10_1002_cnm_3860
crossref_primary_10_1038_s41597_024_03284_2
crossref_primary_10_1145_3615862
crossref_primary_10_3390_electronics13244919
crossref_primary_10_1109_TMI_2023_3339142
crossref_primary_10_1016_j_ejrad_2025_112006
crossref_primary_10_1016_j_media_2024_103378
crossref_primary_10_3389_fphys_2023_1125931
crossref_primary_10_1007_s00366_023_01834_7
crossref_primary_10_1080_10255842_2022_2128672
crossref_primary_10_17816_DD635589
Cites_doi 10.7717/peerj-cs.773
10.1016/j.ejrad.2011.01.077
10.1007/s10237-020-01294-8
10.1186/s40537-019-0197-0
10.1016/j.media.2020.101773
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.dib.2022.107801
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2352-3409
ExternalDocumentID oai_doaj_org_article_513d383256e04a14aa6f5cfd836f8b00
PMC8760499
35059483
10_1016_j_dib_2022_107801
S2352340922000130
Genre Journal Article
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: KLI 678
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-fa8023b533378b401e2a8d7879067f20dd42ae59af55c225435badf4e5e304913
IEDL.DBID M48
ISSN 2352-3409
IngestDate Wed Aug 27 01:31:46 EDT 2025
Thu Aug 21 18:36:49 EDT 2025
Fri Jul 11 01:32:05 EDT 2025
Fri Jul 11 08:46:50 EDT 2025
Mon Jul 21 05:45:42 EDT 2025
Tue Jul 01 00:59:04 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Sun Apr 06 06:54:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CTA
Vessel tree
Abdominal aortic aneurysm
Aorta
Aortic dissection
Segmentations
Ground truth
Masks
Language English
License This is an open access article under the CC BY license.
2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-fa8023b533378b401e2a8d7879067f20dd42ae59af55c225435badf4e5e304913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5843-6275
0000-0001-8695-1525
0000-0002-2227-3523
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.dib.2022.107801
PMID 35059483
PQID 2622280671
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_513d383256e04a14aa6f5cfd836f8b00
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8760499
proquest_miscellaneous_2661048953
proquest_miscellaneous_2622280671
pubmed_primary_35059483
crossref_citationtrail_10_1016_j_dib_2022_107801
crossref_primary_10_1016_j_dib_2022_107801
elsevier_sciencedirect_doi_10_1016_j_dib_2022_107801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Data in brief
PublicationTitleAlternate Data Brief
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Greiner, Egger, Großkopf, Kaftan, Dörner, Freisleben (bib0005) 2008
Bäumler, Vedula, Sailer, Seo, Chiu, Mistelbauer, Chan, Fischbein, Marsden, Fleischmann (bib0013) 2020; 19
Eigen, Wels, Dohle, Suehling, Maier (bib0014) 2018; volume 10576
Shorten, Khoshgoftaar (bib0008) 2019; 6
Egger, Pepe, Gsaxner, Jin, Li, Kern (bib0007) 2021; 7
Renapurkar, Setser, O’Donnell, Egger, Lieber, Desai, Stillman, Schoenhagen, Flamm (bib0011) 2012; 81
.
Egger, Kapur, Fedorov, Pieper, Miller, Veeraraghavan, Freisleben, Golby, Nimsky, Kikinis (bib0009) 2013
Heller, Isensee, Maier-Hein, Hou, Xie, Li, Nan, Mu, Lin, Han (bib0002) 2020
B. Zhao, L.H. Schwartz, M.G. Kris, Data From RIDER_Lung CT. The Cancer Imaging Archive., 2015, doi
Online accessed on 10.07.2021.
Jin, Pepe, Li, Gsaxner, Zhao, Kleesiek, Frangi, Egger (bib0006)
Heller, Sathianathen, Kalapara, Walczak, Moore, Kaluzniak, Rosenberg, Blake, Rengel, Oestreich (bib0001)
Jin, Pepe, Li, Gsaxner, Egger (bib0004) 2021; volume 11600
Pepe, Li, Rolf-Pissarczyk, Gsaxner, Chen, Holzapfel, Egger (bib0010) 2020; 65
G. Kindlmann, Definition of the NRRD File Format, 2004
Wild, Weber, Egger (bib0015) 2019
Radl, Jin, Pepe, Li, Gsaxner, Zhao, Egger (bib16) 2022; 1
Greiner (10.1016/j.dib.2022.107801_bib0005) 2008
Radl (10.1016/j.dib.2022.107801_bib16) 2022; 1
Shorten (10.1016/j.dib.2022.107801_bib0008) 2019; 6
Renapurkar (10.1016/j.dib.2022.107801_bib0011) 2012; 81
Egger (10.1016/j.dib.2022.107801_bib0007) 2021; 7
Eigen (10.1016/j.dib.2022.107801_bib0014) 2018; volume 10576
Heller (10.1016/j.dib.2022.107801_bib0001)
Jin (10.1016/j.dib.2022.107801_bib0006)
Bäumler (10.1016/j.dib.2022.107801_bib0013) 2020; 19
Jin (10.1016/j.dib.2022.107801_bib0004) 2021; volume 11600
Pepe (10.1016/j.dib.2022.107801_bib0010) 2020; 65
Wild (10.1016/j.dib.2022.107801_bib0015) 2019
10.1016/j.dib.2022.107801_bib0012
Heller (10.1016/j.dib.2022.107801_bib0002) 2020
Egger (10.1016/j.dib.2022.107801_bib0009) 2013
10.1016/j.dib.2022.107801_bib0003
References_xml – start-page: 101821
  year: 2020
  ident: bib0002
  article-title: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: results of the kits19 challenge
  publication-title: Med Image Anal
– volume: volume 11600
  start-page: 116001W
  year: 2021
  ident: bib0004
  article-title: Deep learning and particle filter-based aortic dissection vessel tree segmentation
  publication-title: Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging
– reference: B. Zhao, L.H. Schwartz, M.G. Kris, Data From RIDER_Lung CT. The Cancer Imaging Archive., 2015, doi:
– ident: bib0001
  article-title: The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes
– volume: 1
  year: 2022
  ident: bib16
  publication-title: Aortic Vessel Tree (AVT) CTA Datasets and Segmentations, Figshare
– volume: 81
  start-page: e87
  year: 2012
  end-page: e93
  ident: bib0011
  article-title: Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm
  publication-title: Eur J Radiol
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: bib0008
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
– year: 2013
  ident: bib0009
  article-title: Gbm volumetry using the 3D slicer medical image computing platform
  publication-title: Scientific reports
– reference: .
– reference: G. Kindlmann, Definition of the NRRD File Format, 2004, (
– volume: 65
  start-page: 101773
  year: 2020
  ident: bib0010
  article-title: Detection, segmentation, simulation and visualization of aortic dissections: a review
  publication-title: Med Image Anal
– volume: 7
  start-page: e773
  year: 2021
  ident: bib0007
  article-title: Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
  publication-title: PeerJ Comput. Sci.
– reference: ), Online accessed on 10.07.2021.
– volume: volume 10576
  start-page: 105761X
  year: 2018
  ident: bib0014
  article-title: Geometric modeling of the aortic inner and outer vessel wall from CTA for aortic dissection analysis
  publication-title: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling
– start-page: 51
  year: 2008
  end-page: 55
  ident: bib0005
  article-title: Segmentation of aortic aneurysms in CTA images with the statistic approach of the active appearance models
  publication-title: Proceedings of Bildverarbeitung für die Medizin (BVM)
– volume: 19
  start-page: 1607
  year: 2020
  end-page: 1628
  ident: bib0013
  article-title: Fluid–structure interaction simulations of patient-specific aortic dissection
  publication-title: Biomech Model Mechanobiol
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0015
  article-title: A client/server based online environment for manual segmentation of medical images
  publication-title: CESCG 2019: 23rd Central European Seminar on Computer Graphics
– ident: bib0006
  article-title: Ai-based aortic vessel tree segmentation for cardiovascular diseases treatment: status quo
– volume: 7
  start-page: e773
  year: 2021
  ident: 10.1016/j.dib.2022.107801_bib0007
  article-title: Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.773
– start-page: 1
  year: 2019
  ident: 10.1016/j.dib.2022.107801_bib0015
  article-title: A client/server based online environment for manual segmentation of medical images
– volume: 81
  start-page: e87
  issue: 2
  year: 2012
  ident: 10.1016/j.dib.2022.107801_bib0011
  article-title: Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2011.01.077
– volume: 19
  start-page: 1607
  issue: 5
  year: 2020
  ident: 10.1016/j.dib.2022.107801_bib0013
  article-title: Fluid–structure interaction simulations of patient-specific aortic dissection
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-020-01294-8
– volume: volume 11600
  start-page: 116001W
  year: 2021
  ident: 10.1016/j.dib.2022.107801_bib0004
  article-title: Deep learning and particle filter-based aortic dissection vessel tree segmentation
– volume: 1
  year: 2022
  ident: 10.1016/j.dib.2022.107801_bib16
  publication-title: Aortic Vessel Tree (AVT) CTA Datasets and Segmentations, Figshare
– ident: 10.1016/j.dib.2022.107801_bib0003
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.dib.2022.107801_bib0008
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: 10.1016/j.dib.2022.107801_bib0001
– start-page: 51
  year: 2008
  ident: 10.1016/j.dib.2022.107801_bib0005
  article-title: Segmentation of aortic aneurysms in CTA images with the statistic approach of the active appearance models
– ident: 10.1016/j.dib.2022.107801_bib0006
– volume: 65
  start-page: 101773
  year: 2020
  ident: 10.1016/j.dib.2022.107801_bib0010
  article-title: Detection, segmentation, simulation and visualization of aortic dissections: a review
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101773
– start-page: 101821
  year: 2020
  ident: 10.1016/j.dib.2022.107801_bib0002
  article-title: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: results of the kits19 challenge
  publication-title: Med Image Anal
– year: 2013
  ident: 10.1016/j.dib.2022.107801_bib0009
  article-title: Gbm volumetry using the 3D slicer medical image computing platform
– ident: 10.1016/j.dib.2022.107801_bib0012
– volume: volume 10576
  start-page: 105761X
  year: 2018
  ident: 10.1016/j.dib.2022.107801_bib0014
  article-title: Geometric modeling of the aortic inner and outer vessel wall from CTA for aortic dissection analysis
SSID ssj0001542355
Score 2.4584823
Snippet In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107801
SubjectTerms Abdominal aortic aneurysm
angiography
Aorta
Aortic dissection
computed tomography
CTA
Data
data collection
Deep learning
geometry
Ground truth
humans
Masks
neck
Segmentations
statistical models
trees
Vessel tree
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp14QlAJLC3KlHgApIh92YnPbItCqh552ETfLjh3YAlnULPx-ZmxntQvS9tJTlNhJZM848yaeeUPIj9qAZNPGJNYJmTDEcAIJL2UtM2GZs4XzbJ-_y9GE_brlt0ulvjAmLNADh4k751lhwYsCy-xSpjOmddnwurGiKBsBOoNf31SmS85UyA8GmOBLnsIhTwrwYvotTR_cZacGfMM8h_NKxIIwvVHy3P0rtukj9nwfQrlkk663yVYEk3QYBrFDNlz7mezE5drRk8gpfbpL1PBmfEF9ti0-y_2leoZ30VfkDn-kuDdNL8dDihGjnZtT1A8fpdVS_FVLMfujtdDvBU46d_cUc5Za-qS7h-4LmVxfjS9HSaytkNTgk8yTRiPzmwGwV1TCgJPlci0srF4J5qvJU2tZrh2XuuG8zjFjnhttG-a4w425rNgjm-2sdQeEaom4ogLfyAiWSXDVHTNpZbUphclqMyBpP7mqjsTjWP_iUfURZn8UyEOhPFSQx4CcLW55Dqwb6zr_RIktOiJhtr8AaqSiGql_qdGAsF7eKmKPgCngUdN17_7e64aCdYmbLbp1s5dO5SX-W4PJXNsHwCsTkhcDsh_0aTGKgnsmHWipVjRtZZirLe303vODg4FDR_bwf8zLV_IJhxvi1L-RTVAzdwQwbG6O_Yp7A6ZXLK8
  priority: 102
  providerName: Directory of Open Access Journals
Title AVT: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks
URI https://dx.doi.org/10.1016/j.dib.2022.107801
https://www.ncbi.nlm.nih.gov/pubmed/35059483
https://www.proquest.com/docview/2622280671
https://www.proquest.com/docview/2661048953
https://pubmed.ncbi.nlm.nih.gov/PMC8760499
https://doaj.org/article/513d383256e04a14aa6f5cfd836f8b00
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N2wsviDE-CqwyEg-AFJQPO3EmIVSmTRMTPKAW9mbZsTMGXQpNh-C_585xCoGp4qlK4ziy7y73-9l3Z4AnlUHJxrWJrJNlxAnDSSp4WVZlIi13NnO-2ue7_GTG35yJsy3oj7cKE9heS-3oPKnZcv7ix7efr9DgX_6O1bJI-5HFp3hdSMrm2kHHlBMXexvQfpc0jNjBn4OKP2mUIbXp9zmv62XgqXxB_4HD-heQ_h1X-YejOr4FNwPCZJNOJXZhyzW3YTfYcMuehkLTz_ZATT5MD5hPwaW-3JLpBT3FvlNB8TmjDWt2OJ0wCiNt3YqR0vjQrYbR-i2jlJDGYrsrvGjd-WVIZGrYpW6_tHdgdnw0PTyJwoELUYVEZRXVmsrBGUSAWSENMi-XamnRpEv0aXUaW8tT7USpayGqlNLohdG25k442q1Lsruw3Swadx-YLglsFEiYjORJifzdcRMXVptcmqQyI4j7yVVVqEZOh2LMVR929lmhPBTJQ3XyGMHz9SNfu1Icmxq_JomtG1IVbf_HYnmuglEqkWQWGTqiPhdznXCt81pUtZVZXkv8Ho2A9_JWAZB0QAO7utj07se9big0VtqB0Y1bXLUqzWnBDSdzYxtEtFyWIhvBvU6f1qPIhC-vg3eKgaYNhjm801x88kXD0esRu33wH-99CDdoNF1s-iPYRi1y-wi9VmYMO5PT9x9Px37pYuzN6xd88iyq
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AVT%3A+Multicenter+aortic+vessel+tree+CTA+dataset+collection+with+ground+truth+segmentation+masks&rft.jtitle=Data+in+brief&rft.au=Radl%2C+Lukas&rft.au=Jin%2C+Yuan&rft.au=Pepe%2C+Antonio&rft.au=Li%2C+Jianning&rft.date=2022-02-01&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=40+p.107801-&rft_id=info:doi/10.1016%2Fj.dib.2022.107801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon