Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data

Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human wa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of digital earth Vol. 10; no. 9; pp. 944 - 977
Main Authors Teluguntla, Pardhasaradhi, Thenkabail, Prasad S., Xiong, Jun, Gumma, Murali Krishna, Congalton, Russell G., Oliphant, Adam, Poehnelt, Justin, Yadav, Kamini, Rao, Mahesh, Massey, Richard
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.09.2017
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1753-8947
1753-8955
1753-8955
DOI10.1080/17538947.2016.1267269

Cover

Abstract Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000-2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer's accuracies varying between 72% and 90% and (b) user's accuracies varying between 79% and 90%. ACPs for the individual years 2000-2013 and 2015 (ACP2000-ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000-2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html
AbstractList Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000–2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer’s accuracies varying between 72% and 90% and (b) user’s accuracies varying between 79% and 90%. ACPs for the individual years 2000–2013 and 2015 (ACP2000–ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000–2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html
Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000-2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer's accuracies varying between 72% and 90% and (b) user's accuracies varying between 79% and 90%. ACPs for the individual years 2000-2013 and 2015 (ACP2000-ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000-2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html
Author Yadav, Kamini
Massey, Richard
Rao, Mahesh
Teluguntla, Pardhasaradhi
Oliphant, Adam
Xiong, Jun
Gumma, Murali Krishna
Thenkabail, Prasad S.
Congalton, Russell G.
Poehnelt, Justin
Author_xml – sequence: 1
  givenname: Pardhasaradhi
  orcidid: 0000-0001-8060-9841
  surname: Teluguntla
  fullname: Teluguntla, Pardhasaradhi
  email: teluguntlasaradhi@gmail.com, Pteluguntla@usgs.gov
  organization: Bay Area Environmental Research Institute (BAERI)
– sequence: 2
  givenname: Prasad S.
  orcidid: 0000-0002-2182-8822
  surname: Thenkabail
  fullname: Thenkabail, Prasad S.
  email: pthenkabail@usgs.gov, thenkabail@gmail.com
  organization: U. S. Geological Survey (USGS), Western Geographic Science Center
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-2320-0780
  surname: Xiong
  fullname: Xiong, Jun
  organization: Bay Area Environmental Research Institute (BAERI)
– sequence: 4
  givenname: Murali Krishna
  orcidid: 0000-0002-3760-3935
  surname: Gumma
  fullname: Gumma, Murali Krishna
  organization: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
– sequence: 5
  givenname: Russell G.
  orcidid: 0000-0003-3891-2163
  surname: Congalton
  fullname: Congalton, Russell G.
  organization: Department of Natural Resources and the Environment, University of New Hampshire
– sequence: 6
  givenname: Adam
  orcidid: 0000-0001-8622-7932
  surname: Oliphant
  fullname: Oliphant, Adam
  organization: U. S. Geological Survey (USGS), Western Geographic Science Center
– sequence: 7
  givenname: Justin
  orcidid: 0000-0001-5914-4269
  surname: Poehnelt
  fullname: Poehnelt, Justin
  organization: U. S. Geological Survey (USGS), Western Geographic Science Center
– sequence: 8
  givenname: Kamini
  orcidid: 0000-0002-7560-8884
  surname: Yadav
  fullname: Yadav, Kamini
  organization: Department of Natural Resources and the Environment, University of New Hampshire
– sequence: 9
  givenname: Mahesh
  orcidid: 0000-0002-8689-5209
  surname: Rao
  fullname: Rao, Mahesh
  organization: Department of Forestry and Wildland Resources, Humboldt State University
– sequence: 10
  givenname: Richard
  orcidid: 0000-0002-4831-8718
  surname: Massey
  fullname: Massey, Richard
  organization: School of Earth Science and Environmental Sustainability, Northern Arizona University
BookMark eNqNks1u3CAUha0qlZqkfYRKSN0kC0_BBv-om46mTTpSoiwmXaNrDDOMsHEBK5qX6jMWMkkWWbRdge495wD34yw7Ge0os-wjwQuCG_yZ1KxsWlovCkyqBSmquqjaN9lpqudNy9jJy57W77Iz7_cYV5jS8jT7vZmkCA4MGiCInR63KEixG_WvWXp0sbm995cIxh7BHGyUyB4JZyeTSsKA91ppAUHbEYHZWqfDboi-5Wq1jEZlXcydphT7bPPIKrScfTpUA5p9at7efVtvUMFwPqCgB5l76XS6QIExzuO72CXqIcD77K0C4-WHp_U8-3n1_X71I7-5u16vlje5YAyHXMq2wKpVLSvqkrBKti3rVSH6UjIGomaiwkz1FNMGK6poI4lQfU2g7jpMVFeeZ-tjbm9hzyenB3AHbkHzx4J1Ww4uaGEkp6oSHZGyaXpFOxyBUCj7si07ihsQLGZVx6x5nODwAMa8BBLME0H-TJAngvyJYDReHI2TswlH4IP2Qpo4RWlnz9Ns4gMqkqSfXkn3dnZjHBGP3bJlVVXjqGJHVWThvZPqvy_y5ZVP6PAIPULU5p_ur0e3HuN_GODBOtPzAAdjnXIwCu15-feIP_zZ4A8
CitedBy_id crossref_primary_10_3390_rs12081337
crossref_primary_10_3389_frsen_2024_1451594
crossref_primary_10_3390_rs10010053
crossref_primary_10_3390_rs10060893
crossref_primary_10_1016_j_isprsjprs_2018_09_006
crossref_primary_10_3390_rs10010099
crossref_primary_10_1080_17538947_2024_2337221
crossref_primary_10_3390_rs13224704
crossref_primary_10_5194_hess_23_897_2019
crossref_primary_10_1080_2150704X_2020_1837987
crossref_primary_10_3390_agriengineering5030089
crossref_primary_10_1016_j_isprsjprs_2017_01_019
crossref_primary_10_1080_10106049_2024_2375583
crossref_primary_10_3390_rs11141656
crossref_primary_10_3390_rs12010096
crossref_primary_10_1016_j_jag_2019_01_002
crossref_primary_10_1080_01431161_2020_1841321
crossref_primary_10_3389_fsufs_2020_00099
crossref_primary_10_1109_JSTARS_2019_2921437
crossref_primary_10_1016_j_rse_2024_114070
crossref_primary_10_1080_15481603_2017_1290913
crossref_primary_10_3390_rs10030487
crossref_primary_10_3390_rs12213644
crossref_primary_10_34133_2021_5289697
crossref_primary_10_1007_s10661_023_11004_3
crossref_primary_10_1080_15481603_2019_1690780
crossref_primary_10_1002_ps_5183
crossref_primary_10_1080_17538947_2017_1387296
crossref_primary_10_3390_rs12142328
crossref_primary_10_1016_j_jag_2018_03_005
crossref_primary_10_3390_rs14081800
crossref_primary_10_1016_S2095_3119_19_62871_6
crossref_primary_10_3390_rs15215121
crossref_primary_10_1016_j_rse_2018_09_008
crossref_primary_10_3390_rs11050535
crossref_primary_10_1080_10106049_2020_1805029
crossref_primary_10_3390_rs11121475
crossref_primary_10_3390_rs9101065
crossref_primary_10_3390_ijgi12020081
crossref_primary_10_3390_rs11020207
crossref_primary_10_3390_rs13142667
crossref_primary_10_1016_j_jag_2018_11_014
crossref_primary_10_1016_j_rsase_2025_101524
crossref_primary_10_1029_2019MS001797
crossref_primary_10_3390_rs11010091
crossref_primary_10_3390_rs10111800
Cites_doi 10.1016/j.patrec.2005.08.011
10.1016/j.jhydrol.2009.07.031
10.3390/rs61212070
10.1016/0034-4257(91)90048-B
10.1111/j.1466-8238.2010.00587.x
10.1016/j.isprsjprs.2010.11.001
10.1016/j.rse.2015.04.022
10.1080/01431160600851801
10.1201/9781420090109
10.1016/j.jag.2015.08.009
10.3390/rs2061589
10.1016/j.rse.2007.07.019
10.14358/PERS.80.1.81
10.1080/014311698214235
10.1016/j.rse.2005.10.004
10.1016/j.rse.2011.11.020
10.1016/j.isprsjprs.2014.02.008
10.1016/j.isprsjprs.2014.09.002
10.1016/j.isprsjprs.2015.08.001
10.1080/01431161.2012.695092
10.1016/j.rse.2008.04.010
10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
10.1126/science.1111772
10.3390/rs2071625
10.1029/2011WR010562
10.1016/j.jag.2008.11.002
10.1016/j.rse.2008.02.010
10.1016/j.rse.2015.01.004
10.1073/pnas.1116437108
10.1371/journal.pone.0156630
10.3390/rs2071844
10.1117/1.JRS.8.083685
10.1080/17538947.2013.822574
10.1038/nature10452
10.1007/s12571-009-0026-y
10.1201/9781420090109.sec7
10.1016/S0034-4257(02)00089-5
10.1016/j.isprsjprs.2014.03.007
10.3390/s7112519
10.1029/2007GB002947
10.1016/j.jag.2014.03.024
10.3390/rs2010211
10.1016/j.rse.2013.08.002
10.1016/j.compag.2015.11.018
10.1016/j.jag.2015.11.001
10.1080/014311600210191
10.1029/2007GB002952
10.1016/j.isprsjprs.2012.04.001
10.1016/j.jag.2013.12.007
10.1016/j.jag.2011.06.010
10.1016/j.jag.2014.08.011
10.1016/j.isprsjprs.2015.05.011
10.1016/j.rse.2014.10.014
10.1016/S0034-4257(97)00049-7
10.1016/j.rse.2014.02.015
10.1016/j.rse.2004.12.018
10.3390/data1010003
10.1016/j.rse.2006.11.021
10.1080/01431160802698919
10.1016/j.rse.2015.06.001
10.1016/j.isprsjprs.2015.09.013
10.1016/j.rse.2009.08.016
10.1016/j.rse.2006.04.004
10.1016/S0034-4257(00)00142-5
10.1016/j.rse.2014.04.008
10.14358/PERS.75.12.1383
10.1016/j.rse.2013.08.019
10.1109/TGRS.2012.2190079
10.1016/j.isprsjprs.2015.04.008
10.1016/j.jag.2015.01.014
10.1016/j.gsf.2015.07.003
10.1109/TGRS.1984.350619
10.1016/j.isprsjprs.2009.08.004
10.1080/17538947.2016.1168489
10.1016/j.rse.2015.08.004
10.1016/j.isprsjprs.2014.02.007
10.1080/10106049.2015.1132483
10.3390/rs4102890
10.1016/j.compag.2015.05.001
10.1029/2008GB003435
ContentType Journal Article
Copyright 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016
2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
DBID 0YH
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
SOI
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1080/17538947.2016.1267269
DatabaseName Taylor & Francis Open Access
CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Geography
EISSN 1753-8955
EndPage 977
ExternalDocumentID oai_doaj_org_article_4f6cb1ee88df4b00804a3d393b408ac5
10.1080/17538947.2016.1267269
10_1080_17538947_2016_1267269
1267269
Genre Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: U.S. Geological Survey
  funderid: 10.13039/100000203
– fundername: NASA MEaSUREs
  grantid: NNH13AV82I)
GroupedDBID .7F
0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABDBF
ABFIM
ABPEM
ABTAI
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADMSI
AEISY
AENEX
AEYOC
AFKVX
AFRAH
AHDSZ
AHDZW
AIJEM
AIYEW
AJWEG
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
ESX
GTTXZ
H13
HZ~
IPNFZ
J~4
KYCEM
M4Z
ML.
O9-
OK1
RIG
SNACF
TDBHL
TFL
TFW
TTHFI
TWF
TWN
UU3
VAE
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
SOI
7S9
L.6
ADTOC
CAG
COF
GROUPED_DOAJ
HF~
LJTGL
UNPAY
ID FETCH-LOGICAL-c550t-ee920f9f95273156e995df2cd3e55ac75c605fd40480f4f48e1cfd71a7bb01fb3
IEDL.DBID 0YH
ISSN 1753-8947
1753-8955
IngestDate Fri Oct 03 12:46:31 EDT 2025
Wed Oct 01 15:11:16 EDT 2025
Mon May 05 21:41:01 EDT 2025
Mon Jun 30 08:24:58 EDT 2025
Tue Jul 01 01:05:54 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Mon Oct 20 23:42:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License open-access: http://creativecommons.org/Licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-ee920f9f95273156e995df2cd3e55ac75c605fd40480f4f48e1cfd71a7bb01fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3760-3935
0000-0002-7560-8884
0000-0001-5914-4269
0000-0002-8689-5209
0000-0002-2182-8822
0000-0003-3891-2163
0000-0002-2320-0780
0000-0001-8060-9841
0000-0002-4831-8718
0000-0001-8622-7932
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/17538947.2016.1267269
PQID 1933956670
PQPubID 176143
PageCount 34
ParticipantIDs doaj_primary_oai_doaj_org_article_4f6cb1ee88df4b00804a3d393b408ac5
proquest_journals_1933956670
proquest_miscellaneous_2000480619
informaworld_taylorfrancis_310_1080_17538947_2016_1267269
crossref_primary_10_1080_17538947_2016_1267269
crossref_citationtrail_10_1080_17538947_2016_1267269
unpaywall_primary_10_1080_17538947_2016_1267269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-02
PublicationDateYYYYMMDD 2017-09-02
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of digital earth
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References CIT0072
CIT0071
CIT0074
CIT0073
CIT0032
CIT0076
CIT0034
CIT0111
CIT0033
CIT0077
CIT0110
CIT0070
CIT0036
CIT0035
CIT0079
CIT0037
CIT0039
Campbell J. B. (CIT0011) 2011
Teluguntla P. (CIT0078) 2015; 7
CIT0082
CIT0040
CIT0084
CIT0087
CIT0042
CIT0086
CIT0045
CIT0089
CIT0088
Gutman G. (CIT0041) 2008; 74
Thenkabail P. S. (CIT0080) 2015
CIT0081
Congalton R. G. (CIT0017) 2015
Jensen J.R. (CIT0044) 2009
CIT0047
CIT0002
CIT0046
CIT0049
CIT0048
CIT0007
CIT0006
CIT0009
Thenkabail P. S. (CIT0085) 2012; 78
CIT0008
CIT0094
CIT0052
CIT0096
CIT0051
CIT0095
CIT0054
CIT0098
CIT0053
CIT0097
CIT0012
CIT0056
CIT0055
CIT0099
ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences) (CIT0001) 2011
CIT0090
CIT0092
CIT0091
CIT0014
CIT0016
Thenkabail P. (CIT0083) 2007; 73
CIT0015
CIT0018
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0064
CIT0023
CIT0067
CIT0100
CIT0066
CIT0019a
CIT0109
CIT0025
CIT0102
CIT0024
CIT0068
CIT0101
CIT0027
CIT0104
CIT0026
CIT0103
CIT0028
CIT0107
References_xml – ident: CIT0037
  doi: 10.1016/j.patrec.2005.08.011
– ident: CIT0073
  doi: 10.1016/j.jhydrol.2009.07.031
– ident: CIT0018
  doi: 10.3390/rs61212070
– ident: CIT0015
  doi: 10.1016/0034-4257(91)90048-B
– ident: CIT0045
  doi: 10.1111/j.1466-8238.2010.00587.x
– ident: CIT0055
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: CIT0027
  doi: 10.1016/j.rse.2015.04.022
– year: 2011
  ident: CIT0001
  publication-title: Science and Economic Insights
– ident: CIT0008
  doi: 10.1080/01431160600851801
– ident: CIT0086
  doi: 10.1201/9781420090109
– ident: CIT0091
  doi: 10.1016/j.jag.2015.08.009
– ident: CIT0006
  doi: 10.3390/rs2061589
– ident: CIT0101
  doi: 10.1016/j.rse.2007.07.019
– ident: CIT0104
  doi: 10.14358/PERS.80.1.81
– volume: 7
  start-page: 8858
  year: 2015
  ident: CIT0078
  publication-title: Mapping Flooded Rice Paddies Using Time-Series of MODIS Imagery in the Krishna River Basin, India
– ident: CIT0021
  doi: 10.1080/014311698214235
– ident: CIT0107
  doi: 10.1016/j.rse.2005.10.004
– ident: CIT0025
  doi: 10.1016/j.rse.2011.11.020
– ident: CIT0092
  doi: 10.1016/j.isprsjprs.2014.02.008
– ident: CIT0012
  doi: 10.1016/j.isprsjprs.2014.09.002
– ident: CIT0052
  doi: 10.1016/j.isprsjprs.2015.08.001
– ident: CIT0076
  doi: 10.1080/01431161.2012.695092
– ident: CIT0061
  doi: 10.1016/j.rse.2008.04.010
– ident: CIT0014
  doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
– start-page: 583
  volume-title: “Remote Sensing Handbook” Three Volume set: Remotely Sensed Data Characterization, Classification, and Accuracies
  year: 2015
  ident: CIT0017
– ident: CIT0032
  doi: 10.1126/science.1111772
– ident: CIT0074
  doi: 10.3390/rs2071625
– ident: CIT0097
  doi: 10.1029/2011WR010562
– ident: CIT0009
  doi: 10.1016/j.jag.2008.11.002
– ident: CIT0053
  doi: 10.1016/j.rse.2008.02.010
– ident: CIT0024
  doi: 10.1016/j.rse.2015.01.004
– ident: CIT0089
  doi: 10.1073/pnas.1116437108
– ident: CIT0042
  doi: 10.1371/journal.pone.0156630
– ident: CIT0066
  doi: 10.3390/rs2071844
– ident: CIT0103
  doi: 10.1117/1.JRS.8.083685
– volume-title: Introduction to Remote Sensing.
  year: 2011
  ident: CIT0011
– ident: CIT0109
  doi: 10.1080/17538947.2013.822574
– volume: 73
  start-page: 1029
  year: 2007
  ident: CIT0083
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: CIT0033
  doi: 10.1038/nature10452
– ident: CIT0036
  doi: 10.1007/s12571-009-0026-y
– ident: CIT0016
  doi: 10.1201/9781420090109.sec7
– ident: CIT0095
  doi: 10.1016/S0034-4257(02)00089-5
– ident: CIT0100
  doi: 10.1016/j.isprsjprs.2014.03.007
– ident: CIT0081
  doi: 10.3390/s7112519
– ident: CIT0054
  doi: 10.1029/2007GB002947
– volume: 74
  start-page: 6
  year: 2008
  ident: CIT0041
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: CIT0007
  doi: 10.1016/j.jag.2014.03.024
– volume-title: Remote Sensing of the Environment: An Earth Resource Perspective 2/e
  year: 2009
  ident: CIT0044
– ident: CIT0084
  doi: 10.3390/rs2010211
– ident: CIT0051
  doi: 10.1016/j.rse.2013.08.002
– ident: CIT0064
  doi: 10.1016/j.compag.2015.11.018
– ident: CIT0111
  doi: 10.1016/j.jag.2015.11.001
– ident: CIT0049
  doi: 10.1080/014311600210191
– ident: CIT0070
  doi: 10.1029/2007GB002952
– ident: CIT0072
  doi: 10.1016/j.isprsjprs.2012.04.001
– ident: CIT0028
  doi: 10.1016/j.jag.2013.12.007
– ident: CIT0096
  doi: 10.1016/j.jag.2011.06.010
– ident: CIT0063
  doi: 10.1016/j.jag.2014.08.011
– ident: CIT0079
– ident: CIT0110
  doi: 10.1016/j.isprsjprs.2015.05.011
– ident: CIT0056
  doi: 10.1016/j.rse.2014.10.014
– ident: CIT0034
  doi: 10.1016/S0034-4257(97)00049-7
– ident: CIT0060
  doi: 10.1016/j.rse.2014.02.015
– ident: CIT0087
  doi: 10.1016/j.rse.2004.12.018
– ident: CIT0099
  doi: 10.3390/data1010003
– ident: CIT0102
  doi: 10.1016/j.rse.2006.11.021
– ident: CIT0082
  doi: 10.1080/01431160802698919
– ident: CIT0026
  doi: 10.1016/j.rse.2015.06.001
– ident: CIT0098
  doi: 10.1016/j.isprsjprs.2015.09.013
– ident: CIT0035
  doi: 10.1016/j.rse.2009.08.016
– ident: CIT0062
  doi: 10.1016/j.rse.2006.04.004
– ident: CIT0020
  doi: 10.1016/S0034-4257(00)00142-5
– ident: CIT0065
  doi: 10.1016/j.rse.2014.04.008
– ident: CIT0094
  doi: 10.14358/PERS.75.12.1383
– ident: CIT0002
  doi: 10.1016/j.rse.2013.08.019
– ident: CIT0090
  doi: 10.1109/TGRS.2012.2190079
– ident: CIT0068
  doi: 10.1016/j.isprsjprs.2015.04.008
– ident: CIT0071
  doi: 10.1016/j.jag.2015.01.014
– ident: CIT0048
  doi: 10.1016/j.gsf.2015.07.003
– volume-title: Remote Sensing of Land Resources: Monitoring, Modeling, and Mapping Advances Over the Last 50 Years and a Vision for the Future,” Chapter 26. “Remote Sensing Handbook” Volume II: Land Resources Monitoring, Modeling, and Mapping with Remote Sensing,
  year: 2015
  ident: CIT0080
– ident: CIT0019a
  doi: 10.1109/TGRS.1984.350619
– ident: CIT0023
  doi: 10.1016/j.isprsjprs.2009.08.004
– ident: CIT0040
  doi: 10.1080/17538947.2016.1168489
– ident: CIT0046
  doi: 10.1016/j.rse.2015.08.004
– ident: CIT0039
  doi: 10.1016/j.isprsjprs.2014.02.007
– ident: CIT0047
  doi: 10.1080/10106049.2015.1132483
– ident: CIT0088
  doi: 10.3390/rs4102890
– volume: 78
  start-page: 773
  year: 2012
  ident: CIT0085
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: CIT0077
  doi: 10.1016/j.compag.2015.05.001
– ident: CIT0067
  doi: 10.1029/2008GB003435
SSID ssj0060443
Score 2.346565
Snippet Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 944
SubjectTerms Agricultural history
Agricultural land
Agronomy
Algorithms
Australia
automated cropland classification algorithms
Automation
Classification
Continuous cropping
cropland
Croplands
Data
fallow
Food
Food security
Geography
History
humans
Imaging techniques
machine learning algorithms
Mapping
Matching
Mathematical models
methodology
moderate resolution imaging spectroradiometer
MODIS
normalized difference vegetation index
Products
quantitative spectral matching techniques
Remote sensing
Seasonal variations
Seasonality
Seasons
Security
Time series
time series analysis
Vigor
Water use
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BB_FWEFmQkDvSQbuI4sX1cllYFaeHQVurNsh17QdomVZMV4sY78CI8E0_CTP5YuCwHbpHjiWzPxPnGmfmGkFcsE4EzJ2NrMSWHKxMbEeBKGidMyIQymOC8_FCcXfL3V_nVVqkvjAnr6YH7hZvxUDibei9lGbhFgMNNVmYqszyB53XspYlUozPV78FFwvvQegDjsVRcjLk7MplhGzZhWFdxnLJCMIx23voqdeT9f1GX_gFA726qG_P1i1mvt75Fpw_I_QFE0nk_-Ifkjq8ekf2T3zlrcHN4aZvH5AfWmMcDDQrotAudpBNza0Nfny8vmiNqqpKaTVtDF19SrOuFIY_UIbjGaKJOgdSsV_Xt5_bTNcjNF4s5CMLg4bnI8rCaxBpaBzqdolCMrV_R5ce3784pYKH4mmJF-xiNHweAaTw_v32HhcqPKEasPiGXpycXi7N4KNQQO3Bw2th7xZKggkI2N3AIvVJ5GZgrM5_noPPcgdMUSo7564EHLn3qQilSI6xN0mCzfbJX1ZV_SqiRJrVeBi4Y9HPCykQ4L33BvGOptRHho6K0G1jMsZjGWqcD2emoX4361YN-I3I8id30NB67BN6gFUydkYW7awDb1INt6l22GRG1bUO67Q5hQl8xRWc7BnA4GpwetpVGA9rOwKEtRBKRl9Nt2BDwL4-pfL1psK4orjM4xhGZTYb6b7N-9j9mfUDuMcQ--NeNHZK99nbjnwNya-2L7iX9BeKaOZg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbK9gAX_isWCjISB3rIduPYcXJAKCytCtIWULtSOUW2Yy8Vu8lqkxWCE-_Ai_BMPAkz2ST9kVBB4hYlHss_M-MZZ-YbQp6xQDrOTORpjSk5PFaekg6eImWkcoGMFSY4jw_Dgwl_eyJONsiHNhcGwyrRh3ZroIhaV6NwLzLXRsTtIrhkFHOJgVnhwGehZGH8Mgdtn9RFBl9Uy5W9RjZDAeZ5j2xODt8nH-vESBF4SHj2LESb1fOnfi-cVzWs_yVQ0wum6fVVvlBfv6jZ7NwptX-LLNv5rYNTPg9WlR6Yb5egH__rAtwmNxubliZrJrxDNmx-l2ztnaXQwcdGh5T3yE8seY_3KxSM5TqSk3ZAsiV9fjQ-LncoDI2qVVVAE5tRLDOGEZjUoK2PwU01P1E1mxbL0-rTHOiS0SgBQlgx6BdBJ6YdWUkLR7tLHYqh_lM6fvf6zREF08yb0-p0bj2URRwAZhX9-v4DJi12KAbQ3ieT_b3j0YHX1I3wDPhblWdtzIYudjGCy4F_auNYZI6ZLLBCAAsKAz6cyzim0zvueGR94zLpK6n10Hc62CK9vMjtA0JVpHxtI8clg3ZG6mgojY1syKxhvtZ9wlvuSE0Dqo61PWap32CvtnuV4l6lzV71yaAjW6xRRa4ieIWs1zVGUPD6RbGcpo2OSbkLjfatjaLMcY2-AFdBFsSB5kMQPdEn8XnGTav6TsitC7ikwRUD2G65PG20XJmC8R-Afx3KYZ887T6DfsKfTiq3xarEMqe4zuCn98luJx1_N-uH_0zxiNxgaHfhHz-2TXooCI_Baqz0k0YP_AaiwF8y
  priority: 102
  providerName: Unpaywall
Title Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data
URI https://www.tandfonline.com/doi/abs/10.1080/17538947.2016.1267269
https://www.proquest.com/docview/1933956670
https://www.proquest.com/docview/2000480619
https://www.tandfonline.com/doi/pdf/10.1080/17538947.2016.1267269?needAccess=true
https://doaj.org/article/4f6cb1ee88df4b00804a3d393b408ac5
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: ABDBF
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: AHDZW
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: 30N
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZge4AXxK-JwKiMxAN7yJY4Thw_lrKpILUgbZXYk2U7dofUJVOTato_xd_IXZqEDQkNiZeqanyR67tz7pzvviPkPUuE58zmoTFYksOlDrXw8C3XVmifCKmxwHk2z6YL_uV72qMJ6w5WiTm03xJFtHs1Orc2dY-IO0JyyVxygcCs7DBmmWCZfEh2mYglGnZ0Pu034yziW4w9iIQo0xfx_O02dx5PLYv_HxymdyLRR5vySt9c69Xq1kPp5Cl50kWTdLxV_zPywJXPyd7x7-I1uNh5b_2C_MRm83iyQSFMbTGUdKBwremH09lZfUBhVajeNBUMcQXFBl-IfaQWo2yEFbWapHq1rNY_motLkBtPJmMQhMnDfZHuYTmI1bTydDhOoQiyX9LZ10-fTykEReElxdb2IXoBTqCtP4dlSg8oAldfksXJ8dlkGnb9GkILeU4TOidZ5KWXSOoGeaGTMi08s0Xi0hRUn1rInXzBsYzdc89zF1tfiFgLY6LYm2SP7JRV6V4RqnMdG5d7LhiMs8LkkbAudxlzlsXGBIT3alK2IzPHnhorFXecp712FWpXddoNyOEgdrVl87hP4CPawDAYybjbH6r1UnW-rbjPrImdy_PCc4MxONdJkcjE8AhMPg2IvG1BqmnPYvy2cYpK7pnAfm9uqttdagVBdwJ5bSaigLwbLsO-gC97dOmqTY3tRXGdIT8OyNFgpv_2r1__x4TfkMcMIx9858b2yU6z3ri3ELc1ZtR6Jnwm0XzUnn2MyO5i_m18_guDTTfb
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMoFlY-KQAEjcaCHtInjxPFxWVptoVsO3UrlZNmOvSBtk2qTFeqf4jcyk03CFgkVidtq44kcz4zzxpl5Q8g7lgjPmc1DY7Akh0sdauHhV66t0D4RUmOB8_Qsm1zwT5fp5UYtDKZVYgzt10QR7V6Nzo2H0X1K3CGyS-aSC8zMyg5ilgmWyfvkQQpwEds3RF8n_W6cRXydZA8iIcr0VTx_u82t91NL4_8HiektKLq9Kq_1zQ-9WGy8lY53yKMOTtLRWv-PyT1XPiG7R7-r1-Bi5771U_ITu83j0QYFnNomUdKBw7Wm78-ns3qfwrJQvWoqGOIKih2-MPmRWoTZmFfUqpLqxbxafm--XYHcaDwegSBMHu6LfA_zQaymlafDeQrFLPs5nX75eHJOARWFVxR724foBjiBtgAdlindp5i5-oxcHB_NxpOwa9gQWgh0mtA5ySIvvURWNwgMnZRp4ZktEpemoPvUQvDkC4517J57nrvY-kLEWhgTxd4ku2SrrEr3nFCd69i43HPBYJwVJo-EdbnLmLMsNiYgvFeTsh2bOTbVWKi4Iz3ttatQu6rTbkAOBrHrNZ3HXQIf0AaGwcjG3f5RLeeqc27FfWZN7FyeF54bBOFcJ0UiE8MjsPk0IHLTglTTHsb4decUldwxgb3e3FS3vdQKUHcCgW0mooC8HS7DxoBfe3TpqlWN_UVxnSFADsjhYKb_9tQv_mPCb8j2ZDY9VacnZ59fkocMYRB-gGN7ZKtZrtwrAHGNed166S_N9jfH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgSMAL4tdEtwFG4oE9ZEscJ7YfS7eqAzqQtknwZNmOXZC6pmpSIf4p_kbu0iRsSGhIvEWJL3J8Z_vO-e47Ql6zVATOnIysxZQcrkxkRIAraZwwIRXKYILz9DSfXPB3n7MOTVi1sEqMocOGKKJZq3FyL4vQIeIOkVxSKi4QmJUfJCwXLFe3yZ1MwvYGJh1_mXSLcR7zDcYeRCKU6ZJ4_vaaa9tTw-L_B4fpNU_03nqxND--m_n8yqY0fkgetN4kHW7U_4jc8ovHZPv4d_IaPGxnb_WE_MRi83iyQcFNbTCUtKdwreibs-l5tU9hVKhZ1yU08QXFAl-IfaQOvWyEFTWapGY-K1ff6q-XIDccjYYgCJ2H9yLdw6wXq2gZaH-cQhFkP6PTj0cnZxScouiSYmn7CGcBdqDJP4dhyvYpAlefkovx8floErX1GiIHcU4dea9YHFRQSOoGcaFXKisCc0XqswxUnzmInULBMY098MClT1woRGKEtXESbLpNthblwj8j1EiTWC8DFwzaOWFlLJyXPmfescTaAeGdmrRrycyxpsZcJy3naaddjdrVrXYH5KAXW27YPG4SeIs20DdGMu7mRrma6XZuax5yZxPvpSwCt-iDc5MWqUotj8HkswFRVy1I181ZTNgUTtHpDR3Y68xNt6tLpcHpTiGuzUU8IK_6x7Au4M8es_DlusLyojjOEB8PyGFvpv_21Tv_0eGX5O6no7H-cHL6fpfcZ-gE4e83tke26tXaPwcXrrYvmkn6C8GLNvk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbK9gAX_isWCjISB3rIduPYcXJAKCytCtIWULtSOUW2Yy8Vu8lqkxWCE-_Ai_BMPAkz2ST9kVBB4hYlHss_M-MZZ-YbQp6xQDrOTORpjSk5PFaekg6eImWkcoGMFSY4jw_Dgwl_eyJONsiHNhcGwyrRh3ZroIhaV6NwLzLXRsTtIrhkFHOJgVnhwGehZGH8Mgdtn9RFBl9Uy5W9RjZDAeZ5j2xODt8nH-vESBF4SHj2LESb1fOnfi-cVzWs_yVQ0wum6fVVvlBfv6jZ7NwptX-LLNv5rYNTPg9WlR6Yb5egH__rAtwmNxubliZrJrxDNmx-l2ztnaXQwcdGh5T3yE8seY_3KxSM5TqSk3ZAsiV9fjQ-LncoDI2qVVVAE5tRLDOGEZjUoK2PwU01P1E1mxbL0-rTHOiS0SgBQlgx6BdBJ6YdWUkLR7tLHYqh_lM6fvf6zREF08yb0-p0bj2URRwAZhX9-v4DJi12KAbQ3ieT_b3j0YHX1I3wDPhblWdtzIYudjGCy4F_auNYZI6ZLLBCAAsKAz6cyzim0zvueGR94zLpK6n10Hc62CK9vMjtA0JVpHxtI8clg3ZG6mgojY1syKxhvtZ9wlvuSE0Dqo61PWap32CvtnuV4l6lzV71yaAjW6xRRa4ieIWs1zVGUPD6RbGcpo2OSbkLjfatjaLMcY2-AFdBFsSB5kMQPdEn8XnGTav6TsitC7ikwRUD2G65PG20XJmC8R-Afx3KYZ887T6DfsKfTiq3xarEMqe4zuCn98luJx1_N-uH_0zxiNxgaHfhHz-2TXooCI_Baqz0k0YP_AaiwF8y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+matching+techniques+%28SMTs%29+and+automated+cropland+classification+algorithms+%28ACCAs%29+for+mapping+croplands+of+Australia+using+MODIS+250-m+time-series+%282000%E2%80%932015%29+data&rft.jtitle=International+journal+of+digital+earth&rft.au=Teluguntla%2C+Pardhasaradhi&rft.au=Thenkabail%2C+Prasad+S.&rft.au=Xiong%2C+Jun&rft.au=Gumma%2C+Murali+Krishna&rft.date=2017-09-02&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=10&rft.issue=9&rft.spage=944&rft.epage=977&rft_id=info:doi/10.1080%2F17538947.2016.1267269&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2016_1267269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon