Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data
Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human wa...
Saved in:
| Published in | International journal of digital earth Vol. 10; no. 9; pp. 944 - 977 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
02.09.2017
Taylor & Francis Ltd Taylor & Francis Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1753-8947 1753-8955 1753-8955 |
| DOI | 10.1080/17538947.2016.1267269 |
Cover
| Abstract | Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000-2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer's accuracies varying between 72% and 90% and (b) user's accuracies varying between 79% and 90%. ACPs for the individual years 2000-2013 and 2015 (ACP2000-ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000-2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through
http://croplands.org/app/map
and
http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html |
|---|---|
| AbstractList | Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000–2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer’s accuracies varying between 72% and 90% and (b) user’s accuracies varying between 79% and 90%. ACPs for the individual years 2000–2013 and 2015 (ACP2000–ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000–2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000-2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer's accuracies varying between 72% and 90% and (b) user's accuracies varying between 79% and 90%. ACPs for the individual years 2000-2013 and 2015 (ACP2000-ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000-2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html |
| Author | Yadav, Kamini Massey, Richard Rao, Mahesh Teluguntla, Pardhasaradhi Oliphant, Adam Xiong, Jun Gumma, Murali Krishna Thenkabail, Prasad S. Congalton, Russell G. Poehnelt, Justin |
| Author_xml | – sequence: 1 givenname: Pardhasaradhi orcidid: 0000-0001-8060-9841 surname: Teluguntla fullname: Teluguntla, Pardhasaradhi email: teluguntlasaradhi@gmail.com, Pteluguntla@usgs.gov organization: Bay Area Environmental Research Institute (BAERI) – sequence: 2 givenname: Prasad S. orcidid: 0000-0002-2182-8822 surname: Thenkabail fullname: Thenkabail, Prasad S. email: pthenkabail@usgs.gov, thenkabail@gmail.com organization: U. S. Geological Survey (USGS), Western Geographic Science Center – sequence: 3 givenname: Jun orcidid: 0000-0002-2320-0780 surname: Xiong fullname: Xiong, Jun organization: Bay Area Environmental Research Institute (BAERI) – sequence: 4 givenname: Murali Krishna orcidid: 0000-0002-3760-3935 surname: Gumma fullname: Gumma, Murali Krishna organization: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) – sequence: 5 givenname: Russell G. orcidid: 0000-0003-3891-2163 surname: Congalton fullname: Congalton, Russell G. organization: Department of Natural Resources and the Environment, University of New Hampshire – sequence: 6 givenname: Adam orcidid: 0000-0001-8622-7932 surname: Oliphant fullname: Oliphant, Adam organization: U. S. Geological Survey (USGS), Western Geographic Science Center – sequence: 7 givenname: Justin orcidid: 0000-0001-5914-4269 surname: Poehnelt fullname: Poehnelt, Justin organization: U. S. Geological Survey (USGS), Western Geographic Science Center – sequence: 8 givenname: Kamini orcidid: 0000-0002-7560-8884 surname: Yadav fullname: Yadav, Kamini organization: Department of Natural Resources and the Environment, University of New Hampshire – sequence: 9 givenname: Mahesh orcidid: 0000-0002-8689-5209 surname: Rao fullname: Rao, Mahesh organization: Department of Forestry and Wildland Resources, Humboldt State University – sequence: 10 givenname: Richard orcidid: 0000-0002-4831-8718 surname: Massey fullname: Massey, Richard organization: School of Earth Science and Environmental Sustainability, Northern Arizona University |
| BookMark | eNqNks1u3CAUha0qlZqkfYRKSN0kC0_BBv-om46mTTpSoiwmXaNrDDOMsHEBK5qX6jMWMkkWWbRdge495wD34yw7Ge0os-wjwQuCG_yZ1KxsWlovCkyqBSmquqjaN9lpqudNy9jJy57W77Iz7_cYV5jS8jT7vZmkCA4MGiCInR63KEixG_WvWXp0sbm995cIxh7BHGyUyB4JZyeTSsKA91ppAUHbEYHZWqfDboi-5Wq1jEZlXcydphT7bPPIKrScfTpUA5p9at7efVtvUMFwPqCgB5l76XS6QIExzuO72CXqIcD77K0C4-WHp_U8-3n1_X71I7-5u16vlje5YAyHXMq2wKpVLSvqkrBKti3rVSH6UjIGomaiwkz1FNMGK6poI4lQfU2g7jpMVFeeZ-tjbm9hzyenB3AHbkHzx4J1Ww4uaGEkp6oSHZGyaXpFOxyBUCj7si07ihsQLGZVx6x5nODwAMa8BBLME0H-TJAngvyJYDReHI2TswlH4IP2Qpo4RWlnz9Ns4gMqkqSfXkn3dnZjHBGP3bJlVVXjqGJHVWThvZPqvy_y5ZVP6PAIPULU5p_ur0e3HuN_GODBOtPzAAdjnXIwCu15-feIP_zZ4A8 |
| CitedBy_id | crossref_primary_10_3390_rs12081337 crossref_primary_10_3389_frsen_2024_1451594 crossref_primary_10_3390_rs10010053 crossref_primary_10_3390_rs10060893 crossref_primary_10_1016_j_isprsjprs_2018_09_006 crossref_primary_10_3390_rs10010099 crossref_primary_10_1080_17538947_2024_2337221 crossref_primary_10_3390_rs13224704 crossref_primary_10_5194_hess_23_897_2019 crossref_primary_10_1080_2150704X_2020_1837987 crossref_primary_10_3390_agriengineering5030089 crossref_primary_10_1016_j_isprsjprs_2017_01_019 crossref_primary_10_1080_10106049_2024_2375583 crossref_primary_10_3390_rs11141656 crossref_primary_10_3390_rs12010096 crossref_primary_10_1016_j_jag_2019_01_002 crossref_primary_10_1080_01431161_2020_1841321 crossref_primary_10_3389_fsufs_2020_00099 crossref_primary_10_1109_JSTARS_2019_2921437 crossref_primary_10_1016_j_rse_2024_114070 crossref_primary_10_1080_15481603_2017_1290913 crossref_primary_10_3390_rs10030487 crossref_primary_10_3390_rs12213644 crossref_primary_10_34133_2021_5289697 crossref_primary_10_1007_s10661_023_11004_3 crossref_primary_10_1080_15481603_2019_1690780 crossref_primary_10_1002_ps_5183 crossref_primary_10_1080_17538947_2017_1387296 crossref_primary_10_3390_rs12142328 crossref_primary_10_1016_j_jag_2018_03_005 crossref_primary_10_3390_rs14081800 crossref_primary_10_1016_S2095_3119_19_62871_6 crossref_primary_10_3390_rs15215121 crossref_primary_10_1016_j_rse_2018_09_008 crossref_primary_10_3390_rs11050535 crossref_primary_10_1080_10106049_2020_1805029 crossref_primary_10_3390_rs11121475 crossref_primary_10_3390_rs9101065 crossref_primary_10_3390_ijgi12020081 crossref_primary_10_3390_rs11020207 crossref_primary_10_3390_rs13142667 crossref_primary_10_1016_j_jag_2018_11_014 crossref_primary_10_1016_j_rsase_2025_101524 crossref_primary_10_1029_2019MS001797 crossref_primary_10_3390_rs11010091 crossref_primary_10_3390_rs10111800 |
| Cites_doi | 10.1016/j.patrec.2005.08.011 10.1016/j.jhydrol.2009.07.031 10.3390/rs61212070 10.1016/0034-4257(91)90048-B 10.1111/j.1466-8238.2010.00587.x 10.1016/j.isprsjprs.2010.11.001 10.1016/j.rse.2015.04.022 10.1080/01431160600851801 10.1201/9781420090109 10.1016/j.jag.2015.08.009 10.3390/rs2061589 10.1016/j.rse.2007.07.019 10.14358/PERS.80.1.81 10.1080/014311698214235 10.1016/j.rse.2005.10.004 10.1016/j.rse.2011.11.020 10.1016/j.isprsjprs.2014.02.008 10.1016/j.isprsjprs.2014.09.002 10.1016/j.isprsjprs.2015.08.001 10.1080/01431161.2012.695092 10.1016/j.rse.2008.04.010 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 10.1126/science.1111772 10.3390/rs2071625 10.1029/2011WR010562 10.1016/j.jag.2008.11.002 10.1016/j.rse.2008.02.010 10.1016/j.rse.2015.01.004 10.1073/pnas.1116437108 10.1371/journal.pone.0156630 10.3390/rs2071844 10.1117/1.JRS.8.083685 10.1080/17538947.2013.822574 10.1038/nature10452 10.1007/s12571-009-0026-y 10.1201/9781420090109.sec7 10.1016/S0034-4257(02)00089-5 10.1016/j.isprsjprs.2014.03.007 10.3390/s7112519 10.1029/2007GB002947 10.1016/j.jag.2014.03.024 10.3390/rs2010211 10.1016/j.rse.2013.08.002 10.1016/j.compag.2015.11.018 10.1016/j.jag.2015.11.001 10.1080/014311600210191 10.1029/2007GB002952 10.1016/j.isprsjprs.2012.04.001 10.1016/j.jag.2013.12.007 10.1016/j.jag.2011.06.010 10.1016/j.jag.2014.08.011 10.1016/j.isprsjprs.2015.05.011 10.1016/j.rse.2014.10.014 10.1016/S0034-4257(97)00049-7 10.1016/j.rse.2014.02.015 10.1016/j.rse.2004.12.018 10.3390/data1010003 10.1016/j.rse.2006.11.021 10.1080/01431160802698919 10.1016/j.rse.2015.06.001 10.1016/j.isprsjprs.2015.09.013 10.1016/j.rse.2009.08.016 10.1016/j.rse.2006.04.004 10.1016/S0034-4257(00)00142-5 10.1016/j.rse.2014.04.008 10.14358/PERS.75.12.1383 10.1016/j.rse.2013.08.019 10.1109/TGRS.2012.2190079 10.1016/j.isprsjprs.2015.04.008 10.1016/j.jag.2015.01.014 10.1016/j.gsf.2015.07.003 10.1109/TGRS.1984.350619 10.1016/j.isprsjprs.2009.08.004 10.1080/17538947.2016.1168489 10.1016/j.rse.2015.08.004 10.1016/j.isprsjprs.2014.02.007 10.1080/10106049.2015.1132483 10.3390/rs4102890 10.1016/j.compag.2015.05.001 10.1029/2008GB003435 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group |
| DBID | 0YH AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M SOI 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1080/17538947.2016.1267269 |
| DatabaseName | Taylor & Francis Open Access CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences Geography |
| EISSN | 1753-8955 |
| EndPage | 977 |
| ExternalDocumentID | oai_doaj_org_article_4f6cb1ee88df4b00804a3d393b408ac5 10.1080/17538947.2016.1267269 10_1080_17538947_2016_1267269 1267269 |
| Genre | Article |
| GeographicLocations | Australia |
| GeographicLocations_xml | – name: Australia |
| GrantInformation_xml | – fundername: U.S. Geological Survey funderid: 10.13039/100000203 – fundername: NASA MEaSUREs grantid: NNH13AV82I) |
| GroupedDBID | .7F 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABDBF ABFIM ABPEM ABTAI ACGFS ACIWK ACTIO ACUHS ADCVX ADMSI AEISY AENEX AEYOC AFKVX AFRAH AHDSZ AHDZW AIJEM AIYEW AJWEG ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD ESX GTTXZ H13 HZ~ IPNFZ J~4 KYCEM M4Z ML. O9- OK1 RIG SNACF TDBHL TFL TFW TTHFI TWF TWN UU3 VAE AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M SOI 7S9 L.6 ADTOC CAG COF GROUPED_DOAJ HF~ LJTGL UNPAY |
| ID | FETCH-LOGICAL-c550t-ee920f9f95273156e995df2cd3e55ac75c605fd40480f4f48e1cfd71a7bb01fb3 |
| IEDL.DBID | 0YH |
| ISSN | 1753-8947 1753-8955 |
| IngestDate | Fri Oct 03 12:46:31 EDT 2025 Wed Oct 01 15:11:16 EDT 2025 Mon May 05 21:41:01 EDT 2025 Mon Jun 30 08:24:58 EDT 2025 Tue Jul 01 01:05:54 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Mon Oct 20 23:42:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | open-access: http://creativecommons.org/Licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c550t-ee920f9f95273156e995df2cd3e55ac75c605fd40480f4f48e1cfd71a7bb01fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3760-3935 0000-0002-7560-8884 0000-0001-5914-4269 0000-0002-8689-5209 0000-0002-2182-8822 0000-0003-3891-2163 0000-0002-2320-0780 0000-0001-8060-9841 0000-0002-4831-8718 0000-0001-8622-7932 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/17538947.2016.1267269 |
| PQID | 1933956670 |
| PQPubID | 176143 |
| PageCount | 34 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4f6cb1ee88df4b00804a3d393b408ac5 proquest_journals_1933956670 proquest_miscellaneous_2000480619 informaworld_taylorfrancis_310_1080_17538947_2016_1267269 crossref_primary_10_1080_17538947_2016_1267269 crossref_citationtrail_10_1080_17538947_2016_1267269 unpaywall_primary_10_1080_17538947_2016_1267269 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-02 |
| PublicationDateYYYYMMDD | 2017-09-02 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of digital earth |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | CIT0072 CIT0071 CIT0074 CIT0073 CIT0032 CIT0076 CIT0034 CIT0111 CIT0033 CIT0077 CIT0110 CIT0070 CIT0036 CIT0035 CIT0079 CIT0037 CIT0039 Campbell J. B. (CIT0011) 2011 Teluguntla P. (CIT0078) 2015; 7 CIT0082 CIT0040 CIT0084 CIT0087 CIT0042 CIT0086 CIT0045 CIT0089 CIT0088 Gutman G. (CIT0041) 2008; 74 Thenkabail P. S. (CIT0080) 2015 CIT0081 Congalton R. G. (CIT0017) 2015 Jensen J.R. (CIT0044) 2009 CIT0047 CIT0002 CIT0046 CIT0049 CIT0048 CIT0007 CIT0006 CIT0009 Thenkabail P. S. (CIT0085) 2012; 78 CIT0008 CIT0094 CIT0052 CIT0096 CIT0051 CIT0095 CIT0054 CIT0098 CIT0053 CIT0097 CIT0012 CIT0056 CIT0055 CIT0099 ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences) (CIT0001) 2011 CIT0090 CIT0092 CIT0091 CIT0014 CIT0016 Thenkabail P. (CIT0083) 2007; 73 CIT0015 CIT0018 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0100 CIT0066 CIT0019a CIT0109 CIT0025 CIT0102 CIT0024 CIT0068 CIT0101 CIT0027 CIT0104 CIT0026 CIT0103 CIT0028 CIT0107 |
| References_xml | – ident: CIT0037 doi: 10.1016/j.patrec.2005.08.011 – ident: CIT0073 doi: 10.1016/j.jhydrol.2009.07.031 – ident: CIT0018 doi: 10.3390/rs61212070 – ident: CIT0015 doi: 10.1016/0034-4257(91)90048-B – ident: CIT0045 doi: 10.1111/j.1466-8238.2010.00587.x – ident: CIT0055 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: CIT0027 doi: 10.1016/j.rse.2015.04.022 – year: 2011 ident: CIT0001 publication-title: Science and Economic Insights – ident: CIT0008 doi: 10.1080/01431160600851801 – ident: CIT0086 doi: 10.1201/9781420090109 – ident: CIT0091 doi: 10.1016/j.jag.2015.08.009 – ident: CIT0006 doi: 10.3390/rs2061589 – ident: CIT0101 doi: 10.1016/j.rse.2007.07.019 – ident: CIT0104 doi: 10.14358/PERS.80.1.81 – volume: 7 start-page: 8858 year: 2015 ident: CIT0078 publication-title: Mapping Flooded Rice Paddies Using Time-Series of MODIS Imagery in the Krishna River Basin, India – ident: CIT0021 doi: 10.1080/014311698214235 – ident: CIT0107 doi: 10.1016/j.rse.2005.10.004 – ident: CIT0025 doi: 10.1016/j.rse.2011.11.020 – ident: CIT0092 doi: 10.1016/j.isprsjprs.2014.02.008 – ident: CIT0012 doi: 10.1016/j.isprsjprs.2014.09.002 – ident: CIT0052 doi: 10.1016/j.isprsjprs.2015.08.001 – ident: CIT0076 doi: 10.1080/01431161.2012.695092 – ident: CIT0061 doi: 10.1016/j.rse.2008.04.010 – ident: CIT0014 doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 – start-page: 583 volume-title: “Remote Sensing Handbook” Three Volume set: Remotely Sensed Data Characterization, Classification, and Accuracies year: 2015 ident: CIT0017 – ident: CIT0032 doi: 10.1126/science.1111772 – ident: CIT0074 doi: 10.3390/rs2071625 – ident: CIT0097 doi: 10.1029/2011WR010562 – ident: CIT0009 doi: 10.1016/j.jag.2008.11.002 – ident: CIT0053 doi: 10.1016/j.rse.2008.02.010 – ident: CIT0024 doi: 10.1016/j.rse.2015.01.004 – ident: CIT0089 doi: 10.1073/pnas.1116437108 – ident: CIT0042 doi: 10.1371/journal.pone.0156630 – ident: CIT0066 doi: 10.3390/rs2071844 – ident: CIT0103 doi: 10.1117/1.JRS.8.083685 – volume-title: Introduction to Remote Sensing. year: 2011 ident: CIT0011 – ident: CIT0109 doi: 10.1080/17538947.2013.822574 – volume: 73 start-page: 1029 year: 2007 ident: CIT0083 publication-title: Photogrammetric Engineering & Remote Sensing – ident: CIT0033 doi: 10.1038/nature10452 – ident: CIT0036 doi: 10.1007/s12571-009-0026-y – ident: CIT0016 doi: 10.1201/9781420090109.sec7 – ident: CIT0095 doi: 10.1016/S0034-4257(02)00089-5 – ident: CIT0100 doi: 10.1016/j.isprsjprs.2014.03.007 – ident: CIT0081 doi: 10.3390/s7112519 – ident: CIT0054 doi: 10.1029/2007GB002947 – volume: 74 start-page: 6 year: 2008 ident: CIT0041 publication-title: Photogrammetric Engineering and Remote Sensing – ident: CIT0007 doi: 10.1016/j.jag.2014.03.024 – volume-title: Remote Sensing of the Environment: An Earth Resource Perspective 2/e year: 2009 ident: CIT0044 – ident: CIT0084 doi: 10.3390/rs2010211 – ident: CIT0051 doi: 10.1016/j.rse.2013.08.002 – ident: CIT0064 doi: 10.1016/j.compag.2015.11.018 – ident: CIT0111 doi: 10.1016/j.jag.2015.11.001 – ident: CIT0049 doi: 10.1080/014311600210191 – ident: CIT0070 doi: 10.1029/2007GB002952 – ident: CIT0072 doi: 10.1016/j.isprsjprs.2012.04.001 – ident: CIT0028 doi: 10.1016/j.jag.2013.12.007 – ident: CIT0096 doi: 10.1016/j.jag.2011.06.010 – ident: CIT0063 doi: 10.1016/j.jag.2014.08.011 – ident: CIT0079 – ident: CIT0110 doi: 10.1016/j.isprsjprs.2015.05.011 – ident: CIT0056 doi: 10.1016/j.rse.2014.10.014 – ident: CIT0034 doi: 10.1016/S0034-4257(97)00049-7 – ident: CIT0060 doi: 10.1016/j.rse.2014.02.015 – ident: CIT0087 doi: 10.1016/j.rse.2004.12.018 – ident: CIT0099 doi: 10.3390/data1010003 – ident: CIT0102 doi: 10.1016/j.rse.2006.11.021 – ident: CIT0082 doi: 10.1080/01431160802698919 – ident: CIT0026 doi: 10.1016/j.rse.2015.06.001 – ident: CIT0098 doi: 10.1016/j.isprsjprs.2015.09.013 – ident: CIT0035 doi: 10.1016/j.rse.2009.08.016 – ident: CIT0062 doi: 10.1016/j.rse.2006.04.004 – ident: CIT0020 doi: 10.1016/S0034-4257(00)00142-5 – ident: CIT0065 doi: 10.1016/j.rse.2014.04.008 – ident: CIT0094 doi: 10.14358/PERS.75.12.1383 – ident: CIT0002 doi: 10.1016/j.rse.2013.08.019 – ident: CIT0090 doi: 10.1109/TGRS.2012.2190079 – ident: CIT0068 doi: 10.1016/j.isprsjprs.2015.04.008 – ident: CIT0071 doi: 10.1016/j.jag.2015.01.014 – ident: CIT0048 doi: 10.1016/j.gsf.2015.07.003 – volume-title: Remote Sensing of Land Resources: Monitoring, Modeling, and Mapping Advances Over the Last 50 Years and a Vision for the Future,” Chapter 26. “Remote Sensing Handbook” Volume II: Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, year: 2015 ident: CIT0080 – ident: CIT0019a doi: 10.1109/TGRS.1984.350619 – ident: CIT0023 doi: 10.1016/j.isprsjprs.2009.08.004 – ident: CIT0040 doi: 10.1080/17538947.2016.1168489 – ident: CIT0046 doi: 10.1016/j.rse.2015.08.004 – ident: CIT0039 doi: 10.1016/j.isprsjprs.2014.02.007 – ident: CIT0047 doi: 10.1080/10106049.2015.1132483 – ident: CIT0088 doi: 10.3390/rs4102890 – volume: 78 start-page: 773 year: 2012 ident: CIT0085 publication-title: Photogrammetric Engineering and Remote Sensing – ident: CIT0077 doi: 10.1016/j.compag.2015.05.001 – ident: CIT0067 doi: 10.1029/2008GB003435 |
| SSID | ssj0060443 |
| Score | 2.346565 |
| Snippet | Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they... |
| SourceID | doaj unpaywall proquest crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 944 |
| SubjectTerms | Agricultural history Agricultural land Agronomy Algorithms Australia automated cropland classification algorithms Automation Classification Continuous cropping cropland Croplands Data fallow Food Food security Geography History humans Imaging techniques machine learning algorithms Mapping Matching Mathematical models methodology moderate resolution imaging spectroradiometer MODIS normalized difference vegetation index Products quantitative spectral matching techniques Remote sensing Seasonal variations Seasonality Seasons Security Time series time series analysis Vigor Water use |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BB_FWEFmQkDvSQbuI4sX1cllYFaeHQVurNsh17QdomVZMV4sY78CI8E0_CTP5YuCwHbpHjiWzPxPnGmfmGkFcsE4EzJ2NrMSWHKxMbEeBKGidMyIQymOC8_FCcXfL3V_nVVqkvjAnr6YH7hZvxUDibei9lGbhFgMNNVmYqszyB53XspYlUozPV78FFwvvQegDjsVRcjLk7MplhGzZhWFdxnLJCMIx23voqdeT9f1GX_gFA726qG_P1i1mvt75Fpw_I_QFE0nk_-Ifkjq8ekf2T3zlrcHN4aZvH5AfWmMcDDQrotAudpBNza0Nfny8vmiNqqpKaTVtDF19SrOuFIY_UIbjGaKJOgdSsV_Xt5_bTNcjNF4s5CMLg4bnI8rCaxBpaBzqdolCMrV_R5ce3784pYKH4mmJF-xiNHweAaTw_v32HhcqPKEasPiGXpycXi7N4KNQQO3Bw2th7xZKggkI2N3AIvVJ5GZgrM5_noPPcgdMUSo7564EHLn3qQilSI6xN0mCzfbJX1ZV_SqiRJrVeBi4Y9HPCykQ4L33BvGOptRHho6K0G1jMsZjGWqcD2emoX4361YN-I3I8id30NB67BN6gFUydkYW7awDb1INt6l22GRG1bUO67Q5hQl8xRWc7BnA4GpwetpVGA9rOwKEtRBKRl9Nt2BDwL4-pfL1psK4orjM4xhGZTYb6b7N-9j9mfUDuMcQ--NeNHZK99nbjnwNya-2L7iX9BeKaOZg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbK9gAX_isWCjISB3rIduPYcXJAKCytCtIWULtSOUW2Yy8Vu8lqkxWCE-_Ai_BMPAkz2ST9kVBB4hYlHss_M-MZZ-YbQp6xQDrOTORpjSk5PFaekg6eImWkcoGMFSY4jw_Dgwl_eyJONsiHNhcGwyrRh3ZroIhaV6NwLzLXRsTtIrhkFHOJgVnhwGehZGH8Mgdtn9RFBl9Uy5W9RjZDAeZ5j2xODt8nH-vESBF4SHj2LESb1fOnfi-cVzWs_yVQ0wum6fVVvlBfv6jZ7NwptX-LLNv5rYNTPg9WlR6Yb5egH__rAtwmNxubliZrJrxDNmx-l2ztnaXQwcdGh5T3yE8seY_3KxSM5TqSk3ZAsiV9fjQ-LncoDI2qVVVAE5tRLDOGEZjUoK2PwU01P1E1mxbL0-rTHOiS0SgBQlgx6BdBJ6YdWUkLR7tLHYqh_lM6fvf6zREF08yb0-p0bj2URRwAZhX9-v4DJi12KAbQ3ieT_b3j0YHX1I3wDPhblWdtzIYudjGCy4F_auNYZI6ZLLBCAAsKAz6cyzim0zvueGR94zLpK6n10Hc62CK9vMjtA0JVpHxtI8clg3ZG6mgojY1syKxhvtZ9wlvuSE0Dqo61PWap32CvtnuV4l6lzV71yaAjW6xRRa4ieIWs1zVGUPD6RbGcpo2OSbkLjfatjaLMcY2-AFdBFsSB5kMQPdEn8XnGTav6TsitC7ikwRUD2G65PG20XJmC8R-Afx3KYZ887T6DfsKfTiq3xarEMqe4zuCn98luJx1_N-uH_0zxiNxgaHfhHz-2TXooCI_Baqz0k0YP_AaiwF8y priority: 102 providerName: Unpaywall |
| Title | Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17538947.2016.1267269 https://www.proquest.com/docview/1933956670 https://www.proquest.com/docview/2000480619 https://www.tandfonline.com/doi/pdf/10.1080/17538947.2016.1267269?needAccess=true https://doaj.org/article/4f6cb1ee88df4b00804a3d393b408ac5 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1753-8955 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: ABDBF dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: AHDZW dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: 30N dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZge4AXxK-JwKiMxAN7yJY4Thw_lrKpILUgbZXYk2U7dofUJVOTato_xd_IXZqEDQkNiZeqanyR67tz7pzvviPkPUuE58zmoTFYksOlDrXw8C3XVmifCKmxwHk2z6YL_uV72qMJ6w5WiTm03xJFtHs1Orc2dY-IO0JyyVxygcCs7DBmmWCZfEh2mYglGnZ0Pu034yziW4w9iIQo0xfx_O02dx5PLYv_HxymdyLRR5vySt9c69Xq1kPp5Cl50kWTdLxV_zPywJXPyd7x7-I1uNh5b_2C_MRm83iyQSFMbTGUdKBwremH09lZfUBhVajeNBUMcQXFBl-IfaQWo2yEFbWapHq1rNY_motLkBtPJmMQhMnDfZHuYTmI1bTydDhOoQiyX9LZ10-fTykEReElxdb2IXoBTqCtP4dlSg8oAldfksXJ8dlkGnb9GkILeU4TOidZ5KWXSOoGeaGTMi08s0Xi0hRUn1rInXzBsYzdc89zF1tfiFgLY6LYm2SP7JRV6V4RqnMdG5d7LhiMs8LkkbAudxlzlsXGBIT3alK2IzPHnhorFXecp712FWpXddoNyOEgdrVl87hP4CPawDAYybjbH6r1UnW-rbjPrImdy_PCc4MxONdJkcjE8AhMPg2IvG1BqmnPYvy2cYpK7pnAfm9uqttdagVBdwJ5bSaigLwbLsO-gC97dOmqTY3tRXGdIT8OyNFgpv_2r1__x4TfkMcMIx9858b2yU6z3ri3ELc1ZtR6Jnwm0XzUnn2MyO5i_m18_guDTTfb |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMoFlY-KQAEjcaCHtInjxPFxWVptoVsO3UrlZNmOvSBtk2qTFeqf4jcyk03CFgkVidtq44kcz4zzxpl5Q8g7lgjPmc1DY7Akh0sdauHhV66t0D4RUmOB8_Qsm1zwT5fp5UYtDKZVYgzt10QR7V6Nzo2H0X1K3CGyS-aSC8zMyg5ilgmWyfvkQQpwEds3RF8n_W6cRXydZA8iIcr0VTx_u82t91NL4_8HiektKLq9Kq_1zQ-9WGy8lY53yKMOTtLRWv-PyT1XPiG7R7-r1-Bi5771U_ITu83j0QYFnNomUdKBw7Wm78-ns3qfwrJQvWoqGOIKih2-MPmRWoTZmFfUqpLqxbxafm--XYHcaDwegSBMHu6LfA_zQaymlafDeQrFLPs5nX75eHJOARWFVxR724foBjiBtgAdlindp5i5-oxcHB_NxpOwa9gQWgh0mtA5ySIvvURWNwgMnZRp4ZktEpemoPvUQvDkC4517J57nrvY-kLEWhgTxd4ku2SrrEr3nFCd69i43HPBYJwVJo-EdbnLmLMsNiYgvFeTsh2bOTbVWKi4Iz3ttatQu6rTbkAOBrHrNZ3HXQIf0AaGwcjG3f5RLeeqc27FfWZN7FyeF54bBOFcJ0UiE8MjsPk0IHLTglTTHsb4decUldwxgb3e3FS3vdQKUHcCgW0mooC8HS7DxoBfe3TpqlWN_UVxnSFADsjhYKb_9tQv_mPCb8j2ZDY9VacnZ59fkocMYRB-gGN7ZKtZrtwrAHGNed166S_N9jfH |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgSMAL4tdEtwFG4oE9ZEscJ7YfS7eqAzqQtknwZNmOXZC6pmpSIf4p_kbu0iRsSGhIvEWJL3J8Z_vO-e47Ql6zVATOnIysxZQcrkxkRIAraZwwIRXKYILz9DSfXPB3n7MOTVi1sEqMocOGKKJZq3FyL4vQIeIOkVxSKi4QmJUfJCwXLFe3yZ1MwvYGJh1_mXSLcR7zDcYeRCKU6ZJ4_vaaa9tTw-L_B4fpNU_03nqxND--m_n8yqY0fkgetN4kHW7U_4jc8ovHZPv4d_IaPGxnb_WE_MRi83iyQcFNbTCUtKdwreibs-l5tU9hVKhZ1yU08QXFAl-IfaQOvWyEFTWapGY-K1ff6q-XIDccjYYgCJ2H9yLdw6wXq2gZaH-cQhFkP6PTj0cnZxScouiSYmn7CGcBdqDJP4dhyvYpAlefkovx8floErX1GiIHcU4dea9YHFRQSOoGcaFXKisCc0XqswxUnzmInULBMY098MClT1woRGKEtXESbLpNthblwj8j1EiTWC8DFwzaOWFlLJyXPmfescTaAeGdmrRrycyxpsZcJy3naaddjdrVrXYH5KAXW27YPG4SeIs20DdGMu7mRrma6XZuax5yZxPvpSwCt-iDc5MWqUotj8HkswFRVy1I181ZTNgUTtHpDR3Y68xNt6tLpcHpTiGuzUU8IK_6x7Au4M8es_DlusLyojjOEB8PyGFvpv_21Tv_0eGX5O6no7H-cHL6fpfcZ-gE4e83tke26tXaPwcXrrYvmkn6C8GLNvk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbK9gAX_isWCjISB3rIduPYcXJAKCytCtIWULtSOUW2Yy8Vu8lqkxWCE-_Ai_BMPAkz2ST9kVBB4hYlHss_M-MZZ-YbQp6xQDrOTORpjSk5PFaekg6eImWkcoGMFSY4jw_Dgwl_eyJONsiHNhcGwyrRh3ZroIhaV6NwLzLXRsTtIrhkFHOJgVnhwGehZGH8Mgdtn9RFBl9Uy5W9RjZDAeZ5j2xODt8nH-vESBF4SHj2LESb1fOnfi-cVzWs_yVQ0wum6fVVvlBfv6jZ7NwptX-LLNv5rYNTPg9WlR6Yb5egH__rAtwmNxubliZrJrxDNmx-l2ztnaXQwcdGh5T3yE8seY_3KxSM5TqSk3ZAsiV9fjQ-LncoDI2qVVVAE5tRLDOGEZjUoK2PwU01P1E1mxbL0-rTHOiS0SgBQlgx6BdBJ6YdWUkLR7tLHYqh_lM6fvf6zREF08yb0-p0bj2URRwAZhX9-v4DJi12KAbQ3ieT_b3j0YHX1I3wDPhblWdtzIYudjGCy4F_auNYZI6ZLLBCAAsKAz6cyzim0zvueGR94zLpK6n10Hc62CK9vMjtA0JVpHxtI8clg3ZG6mgojY1syKxhvtZ9wlvuSE0Dqo61PWap32CvtnuV4l6lzV71yaAjW6xRRa4ieIWs1zVGUPD6RbGcpo2OSbkLjfatjaLMcY2-AFdBFsSB5kMQPdEn8XnGTav6TsitC7ikwRUD2G65PG20XJmC8R-Afx3KYZ887T6DfsKfTiq3xarEMqe4zuCn98luJx1_N-uH_0zxiNxgaHfhHz-2TXooCI_Baqz0k0YP_AaiwF8y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+matching+techniques+%28SMTs%29+and+automated+cropland+classification+algorithms+%28ACCAs%29+for+mapping+croplands+of+Australia+using+MODIS+250-m+time-series+%282000%E2%80%932015%29+data&rft.jtitle=International+journal+of+digital+earth&rft.au=Teluguntla%2C+Pardhasaradhi&rft.au=Thenkabail%2C+Prasad+S.&rft.au=Xiong%2C+Jun&rft.au=Gumma%2C+Murali+Krishna&rft.date=2017-09-02&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=10&rft.issue=9&rft.spage=944&rft.epage=977&rft_id=info:doi/10.1080%2F17538947.2016.1267269&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2016_1267269 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon |