An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves
In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the...
        Saved in:
      
    
          | Published in | Computer methods in applied mechanics and engineering Vol. 284; pp. 1005 - 1053 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.02.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0045-7825 1879-2138 1879-2138  | 
| DOI | 10.1016/j.cma.2014.10.040 | 
Cover
| Abstract | In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm.
The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance.
To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. | 
    
|---|---|
| AbstractList | In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture
on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.  | 
    
| Author | Evans, John A. Bazilevs, Yuri Aggarwal, Ankush Hughes, Thomas J.R. Schillinger, Dominik Kamensky, David Sacks, Michael S. Hsu, Ming-Chen  | 
    
| AuthorAffiliation | b Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA e Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093, USA c Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA a Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA d Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 429 UCB, Boulder, CO 80309, USA  | 
    
| AuthorAffiliation_xml | – name: a Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA – name: e Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093, USA – name: c Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA – name: d Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 429 UCB, Boulder, CO 80309, USA – name: b Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA  | 
    
| Author_xml | – sequence: 1 givenname: David surname: Kamensky fullname: Kamensky, David organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA – sequence: 2 givenname: Ming-Chen surname: Hsu fullname: Hsu, Ming-Chen email: jmchsu@iastate.edu organization: Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA – sequence: 3 givenname: Dominik surname: Schillinger fullname: Schillinger, Dominik organization: Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA – sequence: 4 givenname: John A. surname: Evans fullname: Evans, John A. organization: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 429 UCB, Boulder, CO 80309, USA – sequence: 5 givenname: Ankush orcidid: 0000-0002-1755-8807 surname: Aggarwal fullname: Aggarwal, Ankush organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA – sequence: 6 givenname: Yuri surname: Bazilevs fullname: Bazilevs, Yuri organization: Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093, USA – sequence: 7 givenname: Michael S. surname: Sacks fullname: Sacks, Michael S. organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA – sequence: 8 givenname: Thomas J.R. surname: Hughes fullname: Hughes, Thomas J.R. organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25541566$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1u1DAUhS1URKeFB2CDsmSTwXZixwEJaVRBi1SJDawtj3PT8eDYwXZSdcc78IY8CU6n_C4K3ljXPt_RveeeoCPnHSD0lOA1wYS_2K_1oNYUkzrXa1zjB2hFRNOWlFTiCK0wrlnZCMqO0UmMe5yPIPQROqaM1YRxvkLzxhVmGCBEfwV-gBSMLmYVjErGO2WLPqgBrn34VPQ-FL2dTPfty9eYwqTTFKAwLkFQelG_LDbjaI2-RYvki63xY_Ax7SBl1x2okLK3nSE-Rg97ZSM8ubtP0ce3bz6cXZSX78_fnW0uS80YTqWmgPumUX2nRdfzmqqqqzDONQEMVGuq2pZtWavqquWcVSD0tq9oVzXLpLg6RfTgO7lR3Vwra-UYzKDCjSRYLiHKvcwhyiXE5SmHmKHXB2ictgN0GlwK6hfolZF__jizk1d-ljVtaiwWg-d3BsF_niAmOZiowVrlwE9REkE5x21Dm39LuWCCkpa3Wfrs97Z-9vNjmVlADgKdQ48B-v-atfmL0SbdLjBPZuy95KsDCXl_s4EgozbgNHQmgE6y8-Ye-jvwid4G | 
    
| CitedBy_id | crossref_primary_10_1016_j_camwa_2018_03_032 crossref_primary_10_1016_j_cma_2023_116495 crossref_primary_10_1016_j_cma_2018_02_021 crossref_primary_10_1016_j_cma_2023_116137 crossref_primary_10_1142_S0218202515400114 crossref_primary_10_1007_s00366_022_01754_y crossref_primary_10_3390_s25010011 crossref_primary_10_1007_s00466_022_02230_6 crossref_primary_10_1007_s00466_017_1514_0 crossref_primary_10_1007_s00466_022_02155_0 crossref_primary_10_1016_j_cma_2020_112842 crossref_primary_10_1016_j_cma_2020_113498 crossref_primary_10_1016_j_cma_2015_12_023 crossref_primary_10_1115_1_4055835 crossref_primary_10_1007_s00466_015_1166_x crossref_primary_10_1007_s00466_018_1642_1 crossref_primary_10_1016_j_cma_2024_117618 crossref_primary_10_32604_cmes_2024_046641 crossref_primary_10_1016_j_cma_2018_02_029 crossref_primary_10_1016_j_compfluid_2016_03_020 crossref_primary_10_3389_fphys_2021_787082 crossref_primary_10_1007_s00466_019_01669_4 crossref_primary_10_1016_j_jcp_2023_112174 crossref_primary_10_1016_j_cma_2015_12_015 crossref_primary_10_1007_s00366_025_02116_0 crossref_primary_10_1016_j_cma_2015_12_014 crossref_primary_10_1016_j_camwa_2015_04_002 crossref_primary_10_1007_s00466_017_1394_3 crossref_primary_10_1016_j_jmbbm_2018_09_016 crossref_primary_10_1016_j_cma_2019_01_044 crossref_primary_10_1177_0954406220902163 crossref_primary_10_1007_s00466_018_1557_x crossref_primary_10_1016_j_compfluid_2016_11_012 crossref_primary_10_1016_j_cma_2022_115667 crossref_primary_10_1063_1_5002120 crossref_primary_10_1016_j_jcp_2021_110786 crossref_primary_10_1016_j_cma_2023_116397 crossref_primary_10_1002_cnm_3754 crossref_primary_10_1016_j_compfluid_2020_104764 crossref_primary_10_1007_s00366_024_01989_x crossref_primary_10_1002_fld_5018 crossref_primary_10_1016_j_cma_2018_10_002 crossref_primary_10_1142_S0218202519500581 crossref_primary_10_1007_s00466_018_1595_4 crossref_primary_10_1016_j_jcp_2020_109801 crossref_primary_10_1063_5_0198734 crossref_primary_10_1007_s11831_023_09913_0 crossref_primary_10_1016_j_cma_2021_113878 crossref_primary_10_1016_j_cma_2021_113877 crossref_primary_10_1007_s10237_017_0959_6 crossref_primary_10_1016_j_compfluid_2019_05_018 crossref_primary_10_1007_s00466_019_01796_y crossref_primary_10_1016_j_jcp_2022_111125 crossref_primary_10_1016_j_camwa_2020_01_023 crossref_primary_10_1016_j_compstruc_2022_106934 crossref_primary_10_1016_j_cma_2019_01_030 crossref_primary_10_1016_j_atmosenv_2021_118857 crossref_primary_10_1016_j_jcp_2019_07_052 crossref_primary_10_1016_j_jbiomech_2021_110239 crossref_primary_10_1007_s10973_020_09387_3 crossref_primary_10_1002_nme_5628 crossref_primary_10_1142_S0218202519410057 crossref_primary_10_1016_j_cagd_2016_02_007 crossref_primary_10_1177_0021998318770723 crossref_primary_10_1002_cnm_3767 crossref_primary_10_1016_j_cma_2017_04_002 crossref_primary_10_1016_j_finel_2022_103834 crossref_primary_10_1063_5_0234435 crossref_primary_10_1007_s40819_022_01322_4 crossref_primary_10_1007_s00466_023_02376_x crossref_primary_10_1007_s00466_022_02189_4 crossref_primary_10_1016_j_camwa_2017_07_006 crossref_primary_10_1016_j_cma_2015_03_010 crossref_primary_10_1007_s00466_019_01722_2 crossref_primary_10_1016_j_cma_2021_113769 crossref_primary_10_1080_17434440_2018_1536427 crossref_primary_10_1007_s11831_018_9287_y crossref_primary_10_1016_j_mechrescom_2020_103604 crossref_primary_10_1016_j_cma_2016_08_008 crossref_primary_10_1016_j_jmps_2024_105572 crossref_primary_10_1016_j_cma_2020_113182 crossref_primary_10_1007_s00466_022_02217_3 crossref_primary_10_1016_j_cma_2022_114948 crossref_primary_10_1016_j_camwa_2020_03_011 crossref_primary_10_1016_j_cma_2020_113179 crossref_primary_10_1016_j_jcp_2020_109872 crossref_primary_10_1016_j_cma_2020_113298 crossref_primary_10_1016_j_camwa_2021_05_028 crossref_primary_10_1016_j_jcp_2021_110450 crossref_primary_10_1016_j_cma_2018_03_022 crossref_primary_10_1016_j_cma_2019_112748 crossref_primary_10_1016_j_cma_2016_05_031 crossref_primary_10_1016_j_jcp_2015_08_008 crossref_primary_10_1002_fld_5042 crossref_primary_10_1080_17434440_2017_1389274 crossref_primary_10_1016_j_cma_2023_115890 crossref_primary_10_1002_nme_7548 crossref_primary_10_1007_s00211_016_0814_1 crossref_primary_10_1007_s00466_020_01965_4 crossref_primary_10_1016_j_compfluid_2018_04_037 crossref_primary_10_1137_17M1147044 crossref_primary_10_1017_jfm_2019_904 crossref_primary_10_1016_j_cma_2020_113050 crossref_primary_10_1002_cnm_2858 crossref_primary_10_1142_S0218202523500380 crossref_primary_10_1016_j_camwa_2022_03_008 crossref_primary_10_1051_m2an_2019072 crossref_primary_10_1007_s00466_019_01746_8 crossref_primary_10_1016_j_compfluid_2019_05_008 crossref_primary_10_1016_j_cagd_2022_102133 crossref_primary_10_1016_j_cagd_2017_03_002 crossref_primary_10_4208_cicp_OA_2016_0035 crossref_primary_10_1007_s00466_016_1276_0 crossref_primary_10_1016_j_cma_2016_08_029 crossref_primary_10_1016_j_cma_2016_08_027 crossref_primary_10_1016_j_oceaneng_2019_106912 crossref_primary_10_1145_3355089_3356496 crossref_primary_10_1016_j_jfluidstructs_2023_104014 crossref_primary_10_1142_S0218202517500166 crossref_primary_10_3934_mbe_2021193 crossref_primary_10_1007_s00466_021_02004_6 crossref_primary_10_1016_j_cma_2023_116074 crossref_primary_10_1080_15502287_2016_1189463 crossref_primary_10_1016_j_eml_2022_101684 crossref_primary_10_1007_s11831_023_09953_6 crossref_primary_10_1142_S0219455418500700 crossref_primary_10_1007_s00466_021_02039_9 crossref_primary_10_1016_j_finmec_2021_100045 crossref_primary_10_1016_j_cma_2019_04_017 crossref_primary_10_1007_s00466_023_02419_3 crossref_primary_10_1016_j_compfluid_2017_02_006 crossref_primary_10_32604_cmes_2023_022774 crossref_primary_10_1016_j_cma_2018_03_045 crossref_primary_10_1016_j_cma_2016_09_031 crossref_primary_10_1016_j_cma_2018_02_006 crossref_primary_10_1016_j_compstruc_2024_107586 crossref_primary_10_1142_S0218202520500402 crossref_primary_10_1016_j_cma_2017_11_007 crossref_primary_10_1016_j_cma_2016_09_032 crossref_primary_10_1016_j_cma_2018_02_009 crossref_primary_10_1115_1_4054485 crossref_primary_10_1007_s00466_024_02574_1 crossref_primary_10_1186_s40323_018_0113_8 crossref_primary_10_1016_j_cma_2016_08_017 crossref_primary_10_1007_s10439_020_02466_4 crossref_primary_10_1016_j_compbiomed_2017_07_020 crossref_primary_10_1016_j_cma_2024_116942 crossref_primary_10_1016_j_cma_2025_117898 crossref_primary_10_1016_j_jfluidstructs_2018_04_009 crossref_primary_10_1016_j_jcp_2024_113143 crossref_primary_10_1007_s00466_022_02228_0 crossref_primary_10_1016_j_finel_2022_103761 crossref_primary_10_1007_s00466_020_01835_z crossref_primary_10_1016_j_compfluid_2016_05_006 crossref_primary_10_1016_j_jmbbm_2020_104039 crossref_primary_10_1007_s00466_020_01822_4 crossref_primary_10_1016_j_cma_2017_01_024 crossref_primary_10_1038_s41598_023_46316_4 crossref_primary_10_1051_m2an_2023103 crossref_primary_10_1016_j_compgeo_2022_105007 crossref_primary_10_1016_j_cma_2024_116939 crossref_primary_10_3389_fphys_2020_577188 crossref_primary_10_1016_j_cma_2020_112977 crossref_primary_10_1016_j_camwa_2022_02_007 crossref_primary_10_1016_j_cma_2024_117228 crossref_primary_10_1093_imanum_drac004 crossref_primary_10_1073_pnas_2002821117 crossref_primary_10_1002_fld_4662 crossref_primary_10_1016_j_cma_2021_114232 crossref_primary_10_1016_j_cma_2022_114993 crossref_primary_10_1016_j_compfluid_2020_104465 crossref_primary_10_1007_s00366_024_01947_7 crossref_primary_10_1093_jom_ufad002 crossref_primary_10_1142_S0218202519020020 crossref_primary_10_3934_acse_2025002 crossref_primary_10_1016_j_cma_2024_117582 crossref_primary_10_3390_fluids6020051 crossref_primary_10_1016_j_compbiomed_2020_103922 crossref_primary_10_3390_app10228228 crossref_primary_10_1016_j_advwatres_2024_104730 crossref_primary_10_1007_s00466_019_01809_w crossref_primary_10_1088_1873_7005_acba44 crossref_primary_10_1016_j_cma_2016_07_006 crossref_primary_10_1038_s41598_018_24469_x crossref_primary_10_1111_apha_13865 crossref_primary_10_1016_j_compfluid_2021_105162 crossref_primary_10_1016_j_jcp_2019_01_041 crossref_primary_10_1002_nme_5340 crossref_primary_10_1016_j_ijmecsci_2023_108253 crossref_primary_10_1007_s11012_020_01227_w crossref_primary_10_1002_nme_5207 crossref_primary_10_1007_s00466_024_02534_9 crossref_primary_10_1098_rsfs_2015_0083 crossref_primary_10_1016_j_compfluid_2021_104856 crossref_primary_10_1016_j_compbiomed_2024_108832 crossref_primary_10_1016_j_finel_2019_01_009 crossref_primary_10_1063_5_0152690 crossref_primary_10_1002_gamm_202000004 crossref_primary_10_1007_s00466_023_02432_6 crossref_primary_10_1016_j_cma_2015_06_020 crossref_primary_10_1038_s41598_019_54707_9 crossref_primary_10_1002_cnm_2813 crossref_primary_10_1007_s00366_024_01973_5 crossref_primary_10_1093_europace_euaa398 crossref_primary_10_1002_cnm_2938 crossref_primary_10_1007_s11831_018_9292_1 crossref_primary_10_1007_s00466_020_01910_5 crossref_primary_10_1016_j_finmec_2021_100053 crossref_primary_10_1007_s11831_018_9277_0 crossref_primary_10_1016_j_cma_2022_114852 crossref_primary_10_1016_j_cma_2023_116659 crossref_primary_10_1142_S0218202522500592 crossref_primary_10_1016_j_compfluid_2018_05_024 crossref_primary_10_1016_j_compfluid_2018_05_025 crossref_primary_10_1016_j_cad_2020_102944 crossref_primary_10_1007_s00466_020_01919_w crossref_primary_10_1016_j_compfluid_2016_12_004 crossref_primary_10_1007_s11831_023_09907_y crossref_primary_10_1002_nme_6449 crossref_primary_10_1016_j_compfluid_2016_04_006 crossref_primary_10_1016_j_cma_2023_116311 crossref_primary_10_1016_j_cma_2024_117322 crossref_primary_10_1142_S0218202518500537 crossref_primary_10_1016_j_cad_2024_103807 crossref_primary_10_1007_s11012_017_0667_4 crossref_primary_10_1093_jom_ufac015 crossref_primary_10_1002_cnm_2945 crossref_primary_10_3390_fluids7030094 crossref_primary_10_1016_j_cma_2016_07_028 crossref_primary_10_1016_j_compfluid_2018_05_019 crossref_primary_10_1002_nme_5004 crossref_primary_10_1016_j_camwa_2019_07_034 crossref_primary_10_1016_j_cma_2022_115856 crossref_primary_10_1016_j_cma_2022_114648 crossref_primary_10_1007_s00466_019_01813_0 crossref_primary_10_1016_j_cma_2019_05_007 crossref_primary_10_1016_j_compgeo_2022_104637 crossref_primary_10_1002_nme_6556 crossref_primary_10_1007_s00466_021_02074_6 crossref_primary_10_1007_s40304_023_00352_8 crossref_primary_10_1016_j_jbiomech_2018_04_012 crossref_primary_10_1063_5_0156595 crossref_primary_10_1007_s00158_016_1467_5 crossref_primary_10_1007_s00466_020_01852_y crossref_primary_10_1016_j_jcp_2016_06_041 crossref_primary_10_1007_s00466_022_02200_y crossref_primary_10_1007_s13239_016_0285_7 crossref_primary_10_1007_s00466_018_1651_0 crossref_primary_10_1137_18M1192779 crossref_primary_10_1016_j_camwa_2020_03_026 crossref_primary_10_1093_jom_ufab033 crossref_primary_10_1109_ACCESS_2020_2997605 crossref_primary_10_1016_j_cma_2020_113507 crossref_primary_10_1115_1_4038885 crossref_primary_10_1016_j_compfluid_2019_104340 crossref_primary_10_1016_j_cma_2022_114637 crossref_primary_10_1016_j_compfluid_2015_07_013 crossref_primary_10_1142_S0218202524400013 crossref_primary_10_1007_s00466_021_02083_5 crossref_primary_10_1016_j_cma_2017_03_029 crossref_primary_10_1142_S0218202522500567 crossref_primary_10_1016_j_compfluid_2022_105358 crossref_primary_10_1016_j_cma_2024_117426 crossref_primary_10_1007_s00466_023_02379_8 crossref_primary_10_1016_j_cma_2021_114396 crossref_primary_10_1016_j_cma_2022_114792 crossref_primary_10_1007_s00466_021_02022_4 crossref_primary_10_1016_j_cad_2024_103709 crossref_primary_10_1152_physrev_00038_2022 crossref_primary_10_1007_s11465_021_0648_0 crossref_primary_10_1007_s11012_020_01157_7 crossref_primary_10_1007_s00466_024_02506_z crossref_primary_10_1016_j_cma_2021_113977 crossref_primary_10_1063_5_0238868 crossref_primary_10_1016_j_cma_2014_10_055 crossref_primary_10_1016_j_media_2018_04_003 crossref_primary_10_1016_j_cad_2016_08_009 crossref_primary_10_1016_j_jmbbm_2021_104745 crossref_primary_10_1007_s13239_016_0276_8 crossref_primary_10_1016_j_jbiomech_2018_07_018 crossref_primary_10_1016_j_cma_2023_116449 crossref_primary_10_1007_s40997_019_00304_0 crossref_primary_10_1016_j_jcp_2024_113329 crossref_primary_10_1016_j_cma_2016_07_041 crossref_primary_10_1016_j_cma_2021_113738 crossref_primary_10_1007_s00366_022_01669_8 crossref_primary_10_1177_00375497211023573 crossref_primary_10_3389_fbioe_2022_869095 crossref_primary_10_1142_S0218202519410033 crossref_primary_10_1007_s00466_021_02132_z crossref_primary_10_1016_j_compfluid_2017_04_017 crossref_primary_10_1016_j_compfluid_2020_104432 crossref_primary_10_1007_s10915_016_0201_1 crossref_primary_10_1142_S0218202522500555 crossref_primary_10_1016_j_cad_2021_103093 crossref_primary_10_1016_j_cma_2016_06_003 crossref_primary_10_1007_s00466_020_01840_2 crossref_primary_10_1017_jfm_2020_1090 crossref_primary_10_1007_s00466_016_1368_x crossref_primary_10_1016_j_cma_2022_115742 crossref_primary_10_1142_S0218202524500404 crossref_primary_10_1016_j_jcp_2018_07_020 crossref_primary_10_1007_s00466_024_02520_1 crossref_primary_10_1146_annurev_fluid_010719_060228 crossref_primary_10_1016_j_cma_2019_07_025 crossref_primary_10_1016_j_compfluid_2015_12_004 crossref_primary_10_1016_j_cma_2023_116477 crossref_primary_10_1142_S021820251941001X crossref_primary_10_1016_j_finel_2017_12_008 crossref_primary_10_1007_s00466_016_1344_5 crossref_primary_10_1002_cnm_3438 crossref_primary_10_1142_S0218202519410021 crossref_primary_10_1002_nme_6094 crossref_primary_10_1017_flo_2024_5 crossref_primary_10_1007_s00466_020_01941_y crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_094 crossref_primary_10_1007_s10237_017_0919_1 crossref_primary_10_1016_j_compfluid_2017_05_010 crossref_primary_10_1007_s00366_024_02069_w crossref_primary_10_1016_j_cma_2021_114005 crossref_primary_10_1016_j_jmbbm_2016_04_031 crossref_primary_10_1142_S0218202522500580 crossref_primary_10_1142_S0218202522500579 crossref_primary_10_1016_j_cma_2023_116363 crossref_primary_10_1016_j_cma_2023_116483 crossref_primary_10_1016_j_cma_2024_117634 crossref_primary_10_1016_j_cam_2017_09_034 crossref_primary_10_3390_sym15051064 crossref_primary_10_1002_fld_4375 crossref_primary_10_1007_s11831_022_09838_0 crossref_primary_10_1016_j_cma_2016_06_026 crossref_primary_10_1016_j_matcom_2018_11_014 crossref_primary_10_1016_j_cma_2020_113544 crossref_primary_10_4208_cicp_150115_170415s crossref_primary_10_1016_j_cma_2019_03_057 crossref_primary_10_1016_j_cma_2021_113960 crossref_primary_10_1007_s10237_015_0732_7 crossref_primary_10_1016_j_cad_2024_103730 crossref_primary_10_3390_fluids4030119  | 
    
| Cites_doi | 10.1007/s00466-014-1059-4 10.1016/j.cma.2008.11.020 10.1007/s11831-014-9115-y 10.1137/050630714 10.1016/j.cma.2012.11.009 10.1016/j.cma.2011.10.007 10.1016/S0045-7825(96)01223-6 10.1007/978-3-642-59223-2 10.1152/jappl.1973.34.4.513 10.1016/j.cma.2007.07.016 10.1016/S0065-2156(08)70153-4 10.1016/j.jcp.2010.02.013 10.1016/S0045-7825(00)00211-5 10.1016/0045-7825(85)90030-1 10.1016/0045-7825(81)90049-9 10.1115/1.2900803 10.1016/S0021-9991(03)00310-3 10.1016/S0021-9991(03)00214-6 10.1016/j.cma.2013.01.010 10.1016/j.jcp.2013.01.006 10.1007/s10439-014-0973-0 10.1016/j.cma.2012.09.002 10.1007/BF00535887 10.1016/0002-9149(80)90604-9 10.1007/s00466-007-0193-7 10.1007/s00466-008-0315-x 10.1007/s11831-012-9070-4 10.1002/fld.2454 10.1016/S0045-7825(00)00203-6 10.1016/j.cma.2009.08.013 10.1017/S0022112098008921 10.1016/j.compfluid.2005.07.004 10.1007/BF02736195 10.1006/jcph.1993.1081 10.1007/s00466-012-0686-x 10.1007/s10439-007-9409-4 10.1002/fld.2221 10.1080/10255842.2012.681645 10.1016/0045-7825(82)90128-1 10.1142/S0218202512300025 10.1114/B:ABME.0000049032.51742.10 10.1002/fld.3839 10.1002/fld.1447 10.1006/jcph.2000.6484 10.1016/j.cma.2014.10.010 10.1146/annurev.fluid.37.061903.175743 10.1007/s10439-005-2498-z 10.1016/0021-9991(72)90065-4 10.1161/01.RES.39.1.58 10.1002/fld.1430 10.1016/j.cma.2005.11.011 10.1007/s002110050401 10.1007/s10439-006-9117-5 10.1002/fld.2348 10.1137/0907058 10.1016/j.cma.2004.10.008 10.6028/jres.049.044 10.1115/1.3059565 10.1007/s00466-013-0890-3 10.1016/j.cma.2007.07.002 10.1006/jcph.1997.5716 10.1017/S0022112004000436 10.1007/s00466-011-0599-0 10.1006/jcph.1999.6356 10.1016/0045-7825(92)90060-W 10.1007/s00466-014-1046-9 10.1016/j.cma.2008.02.036 10.1016/j.jcp.2013.05.011 10.1090/S0025-5718-08-02183-2 10.1007/s004660050393 10.1145/882262.882295 10.1152/ajpheart.1978.234.6.H696 10.1016/j.cma.2012.07.021 10.1016/0045-7825(91)90125-P 10.1115/1.2049337 10.1016/S0045-7825(98)80008-X 10.1016/j.compfluid.2011.05.002 10.1115/1.4024415 10.1016/0045-7825(82)90071-8 10.1002/fld.3864 10.1016/j.cma.2013.10.009 10.1016/S0021-9290(02)00056-8 10.1016/j.cma.2008.08.020 10.1016/j.cma.2003.12.044 10.1007/s11517-008-0359-2 10.1161/CIRCULATIONAHA.108.778886 10.1016/j.cam.2006.04.017 10.1016/j.cma.2005.04.014 10.1016/j.cma.2004.09.018 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A 10.1016/j.compfluid.2005.07.012 10.1115/1.1530635 10.1016/j.cma.2003.12.046 10.1016/0045-7825(92)90162-D 10.1016/j.cma.2013.11.002 10.1007/s007910050051 10.1007/s10237-010-0189-7 10.1007/s00466-007-0173-y 10.1007/s00466-008-0299-6 10.1016/j.paerosci.2013.09.003 10.1007/s00466-012-0684-z 10.1016/0045-7825(94)00736-7 10.1016/j.jcp.2008.04.028 10.1007/s00466-013-0935-7 10.1007/s13239-013-0117-y 10.1007/BF01907921 10.1016/j.cma.2009.04.015 10.1016/0045-7825(92)90059-S 10.1109/2.237441 10.1007/BF02995904 10.1016/j.cma.2004.09.014 10.1016/j.jcp.2007.02.017 10.1111/j.1365-2559.2008.03190.x 10.1016/0045-7825(94)00077-8 10.1016/j.cma.2009.06.019 10.1016/j.jcp.2010.01.008 10.1016/j.cma.2012.03.028 10.1016/j.jcp.2004.12.026 10.1007/s00466-012-0772-0 10.1115/1.4005187 10.1017/S0962492902000077 10.1115/1.3057496 10.1007/BF02165003 10.1016/S0362-546X(98)00299-5 10.1016/j.cma.2005.05.050 10.1016/j.athoracsur.2004.06.033 10.1007/BF00927673 10.1016/j.cma.2010.03.029 10.1007/s00466-011-0590-9 10.1038/217086b0 10.1016/j.cma.2007.06.026 10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M 10.1007/s11831-012-9071-3 10.1016/j.cma.2012.03.017 10.1007/s00466-008-0261-7 10.1063/1.1332391 10.1002/cnm.1485 10.1016/S0045-7825(98)00079-6 10.1002/fld.2359 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier B.V. 2014 Elsevier B.V. All rights reserved. 2014  | 
    
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2014 Elsevier B.V. All rights reserved. 2014  | 
    
| DBID | AAYXX CITATION NPM 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.cma.2014.10.040 | 
    
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Civil Engineering Abstracts MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1879-2138 | 
    
| EndPage | 1053 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4274080 PMC4274080 25541566 10_1016_j_cma_2014_10_040 S0045782514004101  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL108330 – fundername: NHLBI NIH HHS grantid: R01 HL119297  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD NPM SSH 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0045-7825 1879-2138  | 
    
| IngestDate | Wed Oct 29 11:58:36 EDT 2025 Tue Sep 30 16:23:16 EDT 2025 Mon Sep 29 06:24:36 EDT 2025 Mon Sep 29 06:27:44 EDT 2025 Thu Apr 03 07:08:00 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Wed Oct 01 04:45:36 EDT 2025 Fri Feb 23 02:24:25 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Isogeometric analysis Fluid–structure interaction Bioprosthetic heart valve Weakly enforced boundary conditions Nitsche’s method Immersogeometric analysis Penalty-based contact B-splines and NURBS  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-1755-8807 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4274080 | 
    
| PMID | 25541566 | 
    
| PQID | 1685821969 | 
    
| PQPubID | 23500 | 
    
| PageCount | 49 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_cma_2014_10_040 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4274080 proquest_miscellaneous_1826609727 proquest_miscellaneous_1685821969 pubmed_primary_25541566 crossref_primary_10_1016_j_cma_2014_10_040 crossref_citationtrail_10_1016_j_cma_2014_10_040 elsevier_sciencedirect_doi_10_1016_j_cma_2014_10_040  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-02-01 | 
    
| PublicationDateYYYYMMDD | 2015-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Computer methods in applied mechanics and engineering | 
    
| PublicationTitleAlternate | Comput Methods Appl Mech Eng | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Hughes, Mazzei, Jansen (br000355) 2000; 3 Kiendl (br000700) 2011 Wriggers (br000245) 2006 Wu, Wen, Yen, Weng, Wang (br000595) 2004; 515 Hughes (br000545) 1987 Sotiropoulos, Yang (br000220) 2014; 65 Sun, Abad, Sacks (br000020) 2005; 127 Hallquist, Goudreau, Benson (br000235) 1985; 51 Trefethen (br000615) 2012 Laursen (br000250) 2003 Stein, Tezduyar, Benney (br000745) 2004; 193 Hughes, Mazzei, Oberai, Wray (br000415) 2001; 13 Zhang, Gerstenberger, Wang, Liu (br000190) 2004; 193 Bazilevs, Hughes (br000325) 2007; 36 Hesch, Gil, Arranz Carreño, Bonet (br000205) 2012; 247–248 Sabbah, Stein (br000790) 1978; 234 Rüberg, Cirak (br000215) 2014; 74 Bazilevs, Hsu, Takizawa, Tezduyar (br000395) 2012; 22 Russell, Wang (br000590) 2003; 191 Stadler (br000660) 2007; 203 Court, Fournié, Lozinski (br000635) 2014; 74 Borazjani, Ge, Sotiropoulos (br000300) 2008; 227 Powell (br000645) 1969 Tezduyar, Sathe (br000120) 2007; 54 Yu (br000195) 2005; 207 Sederberg, Zheng, Bakenov, Nasri (br000265) 2003; 22 Cheng, Lai, Chandran (br000180) 2004; 32 Hsu, Kamensky, Bazilevs, Sacks, Hughes (br000830) 2014; 54 Wick (br000210) 2013; 255 Bazilevs, Hsu, Zhang, Wang, Kvamsdal, Hentschel, Isaksen (br000070) 2010; 9 Bazilevs, Akkerman (br000340) 2010; 229 Aggarwal, Ferrari, Joyce, Daniels, Sainger, Gorman, Gorman, Sacks (br000750) 2014; 42 Dimitri, De Lorenzis, Scott, Wriggers, Taylor, Zavarise (br000755) 2014; 269 Goldstein, Handler, Sirovich (br000675) 1993; 105 Goldstein, Tuan (br000680) 1998; 363 Leo, Dasi, Carberry, Simon, Yoganathan (br000805) 2006; 34 Felner (br000785) 1990 Evans, Hughes (br000825) 2013; 241 Tezduyar, Sathe, Pausewang, Schwaab, Christopher, Crabtree (br000115) 2008; 43 Wick (br000455) 2014; 53 Evans, Hughes (br000445) 2013; 123 Hughes, Cottrell, Bazilevs (br000255) 2005; 194 Fadlun, Verzicco, Orlandi, Mohd-Yusof (br000685) 2000; 161 Hsu, Akkerman, Bazilevs (br000565) 2011; 49 Torii, Oshima, Kobayashi, Takagi, Tezduyar (br000065) 2009; 198 Johnson, Tezduyar (br000145) 1997; 24 Auricchio, Conti, Ferrara, Morganti, Reali (br000025) 2014; 17 Figueroa, Vignon-Clementel, Jansen, Hughes, Taylor (br000060) 2006; 195 Bazilevs, Michler, Calo, Hughes (br000335) 2010; 199 Hartmann (br000515) 1986; 56 Bacuta (br000655) 2006; 44 Bazilevs, Gohean, Hughes, Moser, Zhang (br000495) 2009; 198 Leo, Simon, Carberry, Lee, Yoganathan (br000800) 2005; 33 Tezduyar, Osawa (br000410) 2000; 190 Tezduyar, Takizawa, Moorman, Wright, Christopher (br000450) 2010; 64 Takizawa, Bazilevs, Tezduyar (br000075) 2012; 19 van Brummelen, van~der Zee, Garg, Prudhomme (br000610) 2011; 79 Sugimoto, Sacks (br000795) 2013; 4 Johnson, Tezduyar (br000160) 1999; 23 Gil, Arranz Carreño, Bonet, Hassan (br000725) 2013; 250 Rosencranz, Bogen (br000770) 2006; 125 Harari, Hughes (br000480) 1992; 97 Bazilevs, Takizawa, Tezduyar (br000140) 2013 Tezduyar (br000405) 1992; 28 Hsu, Bazilevs, Calo, Tezduyar, Hughes (br000425) 2010; 199 van Brummelen (br000720) 2009; 76 Westerhof, Lankhaar, Westerhof (br000815) 2009; 47 Schoen, Levy (br000005) 2005; 79 Stein, Tezduyar, Benney (br000740) 2003; 70 J. Benk, M. Ulbrich, M. Mehl, The Nitsche method of the Navier–Stokes equations for immersed and moving boundaries, in: Proceedings of the Seventh International Conference on Computational Fluid Dynamics, ICCFD7, International Conference on Computational Fluid Dynamics, 2012. Rüberg, Cirak (br000605) 2012; 209–212 Morganti, Auricchio, Benson, Gambarin, Hartmann, Hughes, Reali (br000380) 2015; 284 Uther, Peterson, Shabetai, Braunwald (br000690) 1973; 34 Peskin (br000285) 1972; 10 Esmaily-Moghadam, Bazilevs, Hsia, Vignon-Clementel, Marsden (br000500) 2011; 48 Johnson, Tezduyar (br000155) 1997; 145 Kenner (br000765) 1989; 84 Chung, Hulbert (br000555) 1993; 60 Kiendl, Bazilevs, Hsu, Wüchner, Bletzinger (br000695) 2010; 199 Juntunen, Stenberg (br000320) 2009; 78 Rispoli, Corsini, Tezduyar (br000465) 2007; 36 Johnson (br000430) 1987 Sathe, Tezduyar (br000165) 2008; 43 Mittal, Raghuvanshi (br000580) 2001; 35 Wriggers (br000240) 1995; 2 Hsu, Akkerman, Bazilevs (br000345) 2012; 50 Bazilevs, Michler, Calo, Hughes (br000330) 2007; 196 Nitsche (br000385) 1971; 36 Johnson, Tezduyar (br000735) 1994; 119 Tezduyar, Aliabadi, Behr, Johnson, Mittal (br000730) 1993; 26 Pibarot, Dumesnil (br000010) 2009; 119 Babuška (br000505) 1971; 16 P.R. Stay, The definition and ray-tracing of B-spline objects in a combinatorial solid geometric modeling system, in: Fourth USENIX Computer Graphics Workshop, USENIX Association, 1987. Takizawa, Tezduyar, Buscher, Asada (br000175) 2014; 54 de~Hart (br000310) 2002 Lima~E Silva, Silveira-Neto, Damasceno (br000585) 2003; 189 Embar, Dolbow, Harari (br000485) 2010; 83 Donea, Huerta, Ponthot, Rodriguez-Ferran (br000045) 2004; vol. 3 Tezduyar, Behr, Liou (br000050) 1992; 94 Hughes, Feijóo, Mazzei, Quincy (br000350) 1998; 166 Ge, Sotiropoulos (br000295) 2007; 225 Hughes, Scovazzi, Franca (br000420) 2004; vol. 3 Hestenes (br000640) 1969; 4 Bellhouse, Bellhouse (br000775) 1968; 217 Torii, Oshima, Kobayashi, Takagi, Tezduyar (br000085) 2006; 195 Peskin (br000225) 2002; 11 Tezduyar, Behr, Mittal, Liou (br000055) 1992; 94 Hughes, Liu, Zimmermann (br000035) 1981; 29 Kim, Lu, Sacks, Chandran (br000030) 2008; 36 Borazjani (br000290) 2013; 257 Kiendl, Bletzinger, Linhard, Wüchner (br000370) 2009; 198 Donea, Giuliani, Halleux (br000040) 1982; 33 Ye, Mittal, Udaykumar, Shyy (br000575) 1999; 156 Behr, Hastreiter, Mittal, Tezduyar (br000570) 1995; 123 Höllig (br000390) 2003 Bazilevs, Hsu, Scott (br000315) 2012; 249–252 Takizawa, Moorman, Wright, Spielman, Tezduyar (br000090) 2011; 65 Hsu, Bazilevs (br000130) 2012; 50 Siddiqui, Abraham, Butany (br000015) 2009; 55 Ern, Guermond (br000440) 2004 Uzawa, Arrow (br000650) 1989 Long, Hsu, Bazilevs, Feinstein, Marsden (br000080) 2012; 28 Bazilevs, Calo, Cottrel, Hughes, Reali, Scovazzi (br000365) 2007; 197 De~Lorenzis, Temizer, Wriggers, Zavarise (br000375) 2011; 87 Düster, Parvizian, Yang, Rank (br000525) 2008; 197 Holzapfel (br000705) 2000 Tezduyar, Sathe, Keedy, Stein (br000110) 2006; 195 Chiu, Lin, Sheu (br000600) 2010; 229 Chorin (br000670) 1967; 135 Korobenko, Hsu, Akkerman, Bazilevs (br000135) 2014; 81 Saad, Schultz (br000710) 1986; 7 Stein, Sabbah (br000820) 1976; 39 Schillinger, Dedè, Scott, Evans, Borden, Rank, Hughes (br000275) 2012; 249–252 Rispoli, Saavedra, Menichini, Tezduyar (br000475) 2009; 76 Lai, Chandran, Lemmon (br000185) 2002; 35 Sauer, De Lorenzis (br000760) 2013; 253 Schillinger, Ruess (br000535) 2014 Takizawa, Wright, Moorman, Tezduyar (br000095) 2011; 65 Takizawa, Tezduyar (br000105) 2012; 19 Takizawa, Tezduyar, Buscher, Asada (br000170) 2013; 54 Barbosa, Hughes (br000630) 1991; 85 Brooks, Hughes (br000400) 1982; 32 Brezzi (br000510) 1974; 8 Ruess, Schillinger, Özcan, Rank (br000490) 2014; 269 Mittal, Iaccarino (br000230) 2005; 37 Akkerman, Bazilevs, Calo, Hughes, Hulshoff (br000360) 2008; 41 Brenner, Scott (br000435) 2002 Baaijens (br000305) 2001; 35 Tezduyar (br000625) 2006; 195 Jansen, Whiting, Hulbert (br000560) 2000; 190 Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (br000125) 2011; 65 Bazilevs, Calo, Hughes, Zhang (br000270) 2008; 43 Taylor, Hughes, Zarins (br000460) 1998; 158 Parvizian, Düster, Rank (br000540) 2007; 41 Vignon-Clementel, Figueroa, Jansen, Taylor (br000780) 2006; 195 Tezduyar, Aliabadi, Behr, Johnson, Mittal (br000150) 1995 Schillinger, Ruess, Zander, Bazilevs, Düster, Rank (br000530) 2012; 50 Hestenes, Stiefel (br000715) 1952; 49 Takizawa, Spielman, Tezduyar (br000100) 2011; 48 Gerstenberger, Wall (br000200) 2008; 197 Piegl, Tiller (br000260) 1997 Ruess, Schillinger, Bazilevs, Varduhn, Rank (br000280) 2013; 95 Angot, Bruneau, Fabrie (br000620) 1999; 81 Rispoli, Saavedra, Corsini, Tezduyar (br000470) 2007; 54 Ito, Kunisch (br000665) 2000; 41 Stein, Sabbah, Lakier, Goldstein (br000810) 1980; 46 Tezduyar (10.1016/j.cma.2014.10.040_br000410) 2000; 190 Felner (10.1016/j.cma.2014.10.040_br000785) 1990 Juntunen (10.1016/j.cma.2014.10.040_br000320) 2009; 78 Brenner (10.1016/j.cma.2014.10.040_br000435) 2002 Peskin (10.1016/j.cma.2014.10.040_br000285) 1972; 10 Kim (10.1016/j.cma.2014.10.040_br000030) 2008; 36 Dimitri (10.1016/j.cma.2014.10.040_br000755) 2014; 269 Wick (10.1016/j.cma.2014.10.040_br000210) 2013; 255 Chiu (10.1016/j.cma.2014.10.040_br000600) 2010; 229 Kiendl (10.1016/j.cma.2014.10.040_br000695) 2010; 199 Sabbah (10.1016/j.cma.2014.10.040_br000790) 1978; 234 Bazilevs (10.1016/j.cma.2014.10.040_br000270) 2008; 43 Korobenko (10.1016/j.cma.2014.10.040_br000135) 2014; 81 Angot (10.1016/j.cma.2014.10.040_br000620) 1999; 81 Hsu (10.1016/j.cma.2014.10.040_br000830) 2014; 54 Düster (10.1016/j.cma.2014.10.040_br000525) 2008; 197 Vignon-Clementel (10.1016/j.cma.2014.10.040_br000780) 2006; 195 Goldstein (10.1016/j.cma.2014.10.040_br000675) 1993; 105 Mittal (10.1016/j.cma.2014.10.040_br000230) 2005; 37 Embar (10.1016/j.cma.2014.10.040_br000485) 2010; 83 Ye (10.1016/j.cma.2014.10.040_br000575) 1999; 156 Chorin (10.1016/j.cma.2014.10.040_br000670) 1967; 135 Kenner (10.1016/j.cma.2014.10.040_br000765) 1989; 84 Rosencranz (10.1016/j.cma.2014.10.040_br000770) 2006; 125 Barbosa (10.1016/j.cma.2014.10.040_br000630) 1991; 85 Bazilevs (10.1016/j.cma.2014.10.040_br000315) 2012; 249–252 Kiendl (10.1016/j.cma.2014.10.040_br000370) 2009; 198 Saad (10.1016/j.cma.2014.10.040_br000710) 1986; 7 Johnson (10.1016/j.cma.2014.10.040_br000155) 1997; 145 Kiendl (10.1016/j.cma.2014.10.040_br000700) 2011 Uzawa (10.1016/j.cma.2014.10.040_br000650) 1989 Ruess (10.1016/j.cma.2014.10.040_br000490) 2014; 269 van Brummelen (10.1016/j.cma.2014.10.040_br000610) 2011; 79 Hsu (10.1016/j.cma.2014.10.040_br000345) 2012; 50 Hsu (10.1016/j.cma.2014.10.040_br000425) 2010; 199 Rispoli (10.1016/j.cma.2014.10.040_br000465) 2007; 36 Leo (10.1016/j.cma.2014.10.040_br000805) 2006; 34 Gil (10.1016/j.cma.2014.10.040_br000725) 2013; 250 Schoen (10.1016/j.cma.2014.10.040_br000005) 2005; 79 Tezduyar (10.1016/j.cma.2014.10.040_br000150) 1995 Rüberg (10.1016/j.cma.2014.10.040_br000215) 2014; 74 Hsu (10.1016/j.cma.2014.10.040_br000565) 2011; 49 Bazilevs (10.1016/j.cma.2014.10.040_br000325) 2007; 36 Stein (10.1016/j.cma.2014.10.040_br000810) 1980; 46 Hesch (10.1016/j.cma.2014.10.040_br000205) 2012; 247–248 Jansen (10.1016/j.cma.2014.10.040_br000560) 2000; 190 Harari (10.1016/j.cma.2014.10.040_br000480) 1992; 97 Bazilevs (10.1016/j.cma.2014.10.040_br000340) 2010; 229 Johnson (10.1016/j.cma.2014.10.040_br000145) 1997; 24 Sathe (10.1016/j.cma.2014.10.040_br000165) 2008; 43 Bazilevs (10.1016/j.cma.2014.10.040_br000070) 2010; 9 Torii (10.1016/j.cma.2014.10.040_br000065) 2009; 198 10.1016/j.cma.2014.10.040_br000520 Evans (10.1016/j.cma.2014.10.040_br000825) 2013; 241 Babuška (10.1016/j.cma.2014.10.040_br000505) 1971; 16 Hughes (10.1016/j.cma.2014.10.040_br000035) 1981; 29 de~Hart (10.1016/j.cma.2014.10.040_br000310) 2002 Höllig (10.1016/j.cma.2014.10.040_br000390) 2003 Ern (10.1016/j.cma.2014.10.040_br000440) 2004 Hestenes (10.1016/j.cma.2014.10.040_br000640) 1969; 4 Borazjani (10.1016/j.cma.2014.10.040_br000300) 2008; 227 Donea (10.1016/j.cma.2014.10.040_br000045) 2004; vol. 3 Hsu (10.1016/j.cma.2014.10.040_br000130) 2012; 50 Takizawa (10.1016/j.cma.2014.10.040_br000095) 2011; 65 Takizawa (10.1016/j.cma.2014.10.040_br000075) 2012; 19 Esmaily-Moghadam (10.1016/j.cma.2014.10.040_br000500) 2011; 48 Schillinger (10.1016/j.cma.2014.10.040_br000530) 2012; 50 Russell (10.1016/j.cma.2014.10.040_br000590) 2003; 191 Bellhouse (10.1016/j.cma.2014.10.040_br000775) 1968; 217 Rispoli (10.1016/j.cma.2014.10.040_br000475) 2009; 76 Tezduyar (10.1016/j.cma.2014.10.040_br000730) 1993; 26 Johnson (10.1016/j.cma.2014.10.040_br000160) 1999; 23 Hestenes (10.1016/j.cma.2014.10.040_br000715) 1952; 49 Hughes (10.1016/j.cma.2014.10.040_br000420) 2004; vol. 3 Stein (10.1016/j.cma.2014.10.040_br000745) 2004; 193 Long (10.1016/j.cma.2014.10.040_br000080) 2012; 28 Torii (10.1016/j.cma.2014.10.040_br000085) 2006; 195 Evans (10.1016/j.cma.2014.10.040_br000445) 2013; 123 Peskin (10.1016/j.cma.2014.10.040_br000225) 2002; 11 Sederberg (10.1016/j.cma.2014.10.040_br000265) 2003; 22 Bazilevs (10.1016/j.cma.2014.10.040_br000395) 2012; 22 Brooks (10.1016/j.cma.2014.10.040_br000400) 1982; 32 Takizawa (10.1016/j.cma.2014.10.040_br000100) 2011; 48 Bacuta (10.1016/j.cma.2014.10.040_br000655) 2006; 44 Tezduyar (10.1016/j.cma.2014.10.040_br000055) 1992; 94 Zhang (10.1016/j.cma.2014.10.040_br000190) 2004; 193 Auricchio (10.1016/j.cma.2014.10.040_br000025) 2014; 17 Tezduyar (10.1016/j.cma.2014.10.040_br000120) 2007; 54 Stein (10.1016/j.cma.2014.10.040_br000740) 2003; 70 Hughes (10.1016/j.cma.2014.10.040_br000350) 1998; 166 Powell (10.1016/j.cma.2014.10.040_br000645) 1969 Laursen (10.1016/j.cma.2014.10.040_br000250) 2003 Parvizian (10.1016/j.cma.2014.10.040_br000540) 2007; 41 Lima~E Silva (10.1016/j.cma.2014.10.040_br000585) 2003; 189 Rüberg (10.1016/j.cma.2014.10.040_br000605) 2012; 209–212 Gerstenberger (10.1016/j.cma.2014.10.040_br000200) 2008; 197 Baaijens (10.1016/j.cma.2014.10.040_br000305) 2001; 35 Stein (10.1016/j.cma.2014.10.040_br000820) 1976; 39 Bazilevs (10.1016/j.cma.2014.10.040_br000330) 2007; 196 Ito (10.1016/j.cma.2014.10.040_br000665) 2000; 41 Wriggers (10.1016/j.cma.2014.10.040_br000240) 1995; 2 Uther (10.1016/j.cma.2014.10.040_br000690) 1973; 34 Bazilevs (10.1016/j.cma.2014.10.040_br000495) 2009; 198 Holzapfel (10.1016/j.cma.2014.10.040_br000705) 2000 Rispoli (10.1016/j.cma.2014.10.040_br000470) 2007; 54 Tezduyar (10.1016/j.cma.2014.10.040_br000450) 2010; 64 Takizawa (10.1016/j.cma.2014.10.040_br000090) 2011; 65 Hughes (10.1016/j.cma.2014.10.040_br000255) 2005; 194 Hughes (10.1016/j.cma.2014.10.040_br000545) 1987 10.1016/j.cma.2014.10.040_br000550 Tezduyar (10.1016/j.cma.2014.10.040_br000625) 2006; 195 Goldstein (10.1016/j.cma.2014.10.040_br000680) 1998; 363 Bazilevs (10.1016/j.cma.2014.10.040_br000140) 2013 Sauer (10.1016/j.cma.2014.10.040_br000760) 2013; 253 Trefethen (10.1016/j.cma.2014.10.040_br000615) 2012 Pibarot (10.1016/j.cma.2014.10.040_br000010) 2009; 119 Johnson (10.1016/j.cma.2014.10.040_br000735) 1994; 119 Morganti (10.1016/j.cma.2014.10.040_br000380) 2015; 284 Nitsche (10.1016/j.cma.2014.10.040_br000385) 1971; 36 Schillinger (10.1016/j.cma.2014.10.040_br000275) 2012; 249–252 Tezduyar (10.1016/j.cma.2014.10.040_br000110) 2006; 195 Piegl (10.1016/j.cma.2014.10.040_br000260) 1997 Bazilevs (10.1016/j.cma.2014.10.040_br000335) 2010; 199 Schillinger (10.1016/j.cma.2014.10.040_br000535) 2014 Wu (10.1016/j.cma.2014.10.040_br000595) 2004; 515 Takizawa (10.1016/j.cma.2014.10.040_br000170) 2013; 54 Johnson (10.1016/j.cma.2014.10.040_br000430) 1987 Stadler (10.1016/j.cma.2014.10.040_br000660) 2007; 203 Mittal (10.1016/j.cma.2014.10.040_br000580) 2001; 35 Brezzi (10.1016/j.cma.2014.10.040_br000510) 1974; 8 Tezduyar (10.1016/j.cma.2014.10.040_br000050) 1992; 94 Sotiropoulos (10.1016/j.cma.2014.10.040_br000220) 2014; 65 Sun (10.1016/j.cma.2014.10.040_br000020) 2005; 127 Borazjani (10.1016/j.cma.2014.10.040_br000290) 2013; 257 Cheng (10.1016/j.cma.2014.10.040_br000180) 2004; 32 Sugimoto (10.1016/j.cma.2014.10.040_br000795) 2013; 4 Behr (10.1016/j.cma.2014.10.040_br000570) 1995; 123 Lai (10.1016/j.cma.2014.10.040_br000185) 2002; 35 Ruess (10.1016/j.cma.2014.10.040_br000280) 2013; 95 Takizawa (10.1016/j.cma.2014.10.040_br000105) 2012; 19 Ge (10.1016/j.cma.2014.10.040_br000295) 2007; 225 Figueroa (10.1016/j.cma.2014.10.040_br000060) 2006; 195 Hartmann (10.1016/j.cma.2014.10.040_br000515) 1986; 56 Wick (10.1016/j.cma.2014.10.040_br000455) 2014; 53 Bazilevs (10.1016/j.cma.2014.10.040_br000125) 2011; 65 Akkerman (10.1016/j.cma.2014.10.040_br000360) 2008; 41 Hughes (10.1016/j.cma.2014.10.040_br000415) 2001; 13 Leo (10.1016/j.cma.2014.10.040_br000800) 2005; 33 Siddiqui (10.1016/j.cma.2014.10.040_br000015) 2009; 55 De~Lorenzis (10.1016/j.cma.2014.10.040_br000375) 2011; 87 Hughes (10.1016/j.cma.2014.10.040_br000355) 2000; 3 Fadlun (10.1016/j.cma.2014.10.040_br000685) 2000; 161 Donea (10.1016/j.cma.2014.10.040_br000040) 1982; 33 Westerhof (10.1016/j.cma.2014.10.040_br000815) 2009; 47 Court (10.1016/j.cma.2014.10.040_br000635) 2014; 74 van Brummelen (10.1016/j.cma.2014.10.040_br000720) 2009; 76 Takizawa (10.1016/j.cma.2014.10.040_br000175) 2014; 54 Taylor (10.1016/j.cma.2014.10.040_br000460) 1998; 158 Yu (10.1016/j.cma.2014.10.040_br000195) 2005; 207 Wriggers (10.1016/j.cma.2014.10.040_br000245) 2006 Tezduyar (10.1016/j.cma.2014.10.040_br000115) 2008; 43 Tezduyar (10.1016/j.cma.2014.10.040_br000405) 1992; 28 Chung (10.1016/j.cma.2014.10.040_br000555) 1993; 60 Hallquist (10.1016/j.cma.2014.10.040_br000235) 1985; 51 Bazilevs (10.1016/j.cma.2014.10.040_br000365) 2007; 197 Aggarwal (10.1016/j.cma.2014.10.040_br000750) 2014; 42 15734452 - Ann Thorac Surg. 2005 Mar;79(3):1072-80 19237674 - Circulation. 2009 Feb 24;119(7):1034-48 7386393 - Am J Cardiol. 1980 Jul;46(1):48-52 776437 - Circ Res. 1976 Jul;39(1):58-65 5635642 - Nature. 1968 Jan 6;217(5123):86-7 20981246 - J Comput Phys. 2008 Aug 10;227(16):7587-7620 4698610 - J Appl Physiol. 1973 Apr;34(4):513-8 15636108 - Ann Biomed Eng. 2004 Nov;32(11):1471-83 16830959 - Am J Clin Pathol. 2006 Jun;125 Suppl:S78-86 2658951 - Basic Res Cardiol. 1989 Mar-Apr;84(2):111-24 25099455 - Int J Numer Method Biomed Eng. 2012 May;28(5):513-27 18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41 15909649 - Ann Biomed Eng. 2005 Apr;33(4):429-43 665783 - Am J Physiol. 1978 Jun;234(6):H696-700 23646095 - Cardiovasc Eng Technol. 2013 Mar;4(1):2-15 16783650 - Ann Biomed Eng. 2006 Jun;34(6):936-52 22553900 - Comput Methods Biomech Biomed Engin. 2014;17 (3):277-85 16438226 - J Biomech Eng. 2005 Nov;127(6):905-14 12052390 - J Biomech. 2002 Jul;35(7):881-92 19694820 - Histopathology. 2009 Aug;55(2):135-44 19194533 - J Comput Phys. 2007 Aug;225(2):1782-1809 24488233 - Ann Biomed Eng. 2014 May;42(5):986-98 20111978 - Biomech Model Mechanobiol. 2010 Aug;9(4):481-98 25580046 - Comput Mech. 2014 Oct;54(4):1055-1071 18046648 - Ann Biomed Eng. 2008 Feb;36(2):262-75  | 
    
| References_xml | – volume: 32 start-page: 1471 year: 2004 end-page: 1483 ident: br000180 article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics publication-title: Ann. Biomed. Eng. – volume: 36 start-page: 9 year: 1971 end-page: 15 ident: br000385 article-title: Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind publication-title: Abh. Math. Univ. Hamburg – volume: 209–212 start-page: 266 year: 2012 end-page: 283 ident: br000605 article-title: Subdivision-stabilised immersed B-spline finite elements for moving boundary flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 35 start-page: 421 year: 2001 end-page: 447 ident: br000580 article-title: Control of vortex shedding behind circular cylinder for flows at low reynolds numbers publication-title: Internat. J. Numer. Methods Fluids – volume: 249–252 start-page: 116 year: 2012 end-page: 150 ident: br000275 article-title: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 269 start-page: 46 year: 2014 end-page: 731 ident: br000490 article-title: Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 50 start-page: 445 year: 2012 end-page: 478 ident: br000530 article-title: Small and large deformation analysis with the publication-title: Comput. Mech. – year: 2014 ident: br000535 article-title: The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models publication-title: Arch. Comput. Methods Eng. – volume: 84 start-page: 111 year: 1989 end-page: 124 ident: br000765 article-title: The measurement of blood density and its meaning publication-title: Basic Res. Cardiology – year: 2011 ident: br000700 article-title: Isogeometric analysis and shape optimal design of shell structures – volume: 225 start-page: 1782 year: 2007 end-page: 1809 ident: br000295 article-title: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries publication-title: J. Comput. Phys. – volume: 36 start-page: 12 year: 2007 end-page: 26 ident: br000325 article-title: Weak imposition of Dirichlet boundary conditions in fluid mechanics publication-title: Comput. & Fluids – volume: 74 start-page: 73 year: 2014 end-page: 99 ident: br000635 article-title: A fictitious domain approach for the Stokes problem based on the extended finite element method publication-title: Internat. J. Numer. Methods Fluids – volume: 41 start-page: 591 year: 2000 end-page: 616 ident: br000665 article-title: Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces publication-title: Nonlinear Anal. TMA – volume: 269 start-page: 394 year: 2014 end-page: 414 ident: br000755 article-title: Isogeometric large deformation frictionless contact using T-splines publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 234 start-page: H696 year: 1978 end-page: H700 ident: br000790 article-title: Relation of the second sound to diastolic vibration of the closed aortic valve publication-title: Am. J. Physiol. Heart Circulat. Physiol. – volume: 4 start-page: 303 year: 1969 end-page: 320 ident: br000640 article-title: Multiplier and gradient methods publication-title: J. Optim. Theory Appl. – volume: 197 start-page: 1699 year: 2008 end-page: 1714 ident: br000200 article-title: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 16 start-page: 322 year: 1971 end-page: 333 ident: br000505 article-title: Error-bounds for finite element method publication-title: Numer. Math. – year: 1990 ident: br000785 article-title: The second heart sound publication-title: Clinical Methods: The History, Physical, and Laboratory – volume: 195 start-page: 2002 year: 2006 end-page: 2027 ident: br000110 article-title: Space–time finite element techniques for computation of fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 249–252 start-page: 28 year: 2012 end-page: 41 ident: br000315 article-title: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 49 start-page: 409 year: 1952 end-page: 436 ident: br000715 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Natl. Bur. Stand. – volume: 79 start-page: 010904 year: 2011 ident: br000610 article-title: Flux evaluation in primal and dual boundary-coupled problems publication-title: J. Appl. Mech. – volume: 17 start-page: 277 year: 2014 end-page: 285 ident: br000025 article-title: Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 36 start-page: 121 year: 2007 end-page: 126 ident: br000465 article-title: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) publication-title: Comput. & Fluids – volume: 119 start-page: 73 year: 1994 end-page: 94 ident: br000735 article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 158 start-page: 155 year: 1998 end-page: 196 ident: br000460 article-title: Finite element modeling of blood flow in arteries publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2002 ident: br000435 article-title: The Mathematical Theory of Finite Element Methods – volume: 217 start-page: 86 year: 1968 end-page: 87 ident: br000775 article-title: Mechanism of closure of the aortic valve publication-title: Nature – year: 2004 ident: br000440 article-title: Theory and Practice of Finite Elements – volume: 515 start-page: 233 year: 2004 end-page: 260 ident: br000595 article-title: Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number publication-title: J. Fluid Mech. – volume: 29 start-page: 329 year: 1981 end-page: 349 ident: br000035 article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 start-page: 51 year: 2008 end-page: 60 ident: br000165 article-title: Modeling of fluid–structure interactions with the space–time finite elements: Contact problems publication-title: Comput. Mech. – volume: 83 start-page: 877 year: 2010 end-page: 898 ident: br000485 article-title: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements publication-title: Int. J. Numer. Anal. Model – volume: 65 start-page: 286 year: 2011 end-page: 307 ident: br000095 article-title: Fluid–structure interaction modeling of parachute clusters publication-title: Internat. J. Numer. Methods Fluids – volume: 3 start-page: 47 year: 2000 end-page: 59 ident: br000355 article-title: Large-eddy simulation and the variational multiscale method publication-title: Comput. Vis. Sci. – year: 2000 ident: br000705 article-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering – volume: 161 start-page: 35 year: 2000 end-page: 60 ident: br000685 article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations publication-title: J. Comput. Phys. – volume: 199 start-page: 2403 year: 2010 end-page: 2416 ident: br000695 article-title: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 50 start-page: 499 year: 2012 end-page: 511 ident: br000345 article-title: Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions publication-title: Comput. Mech. – volume: 76 start-page: 021206 year: 2009 ident: br000720 article-title: Added mass effects of compressible and incompressible flows in fluid–structure interaction publication-title: J. Appl. Mech. – volume: 65 start-page: 271 year: 2011 end-page: 285 ident: br000090 article-title: Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes publication-title: Internat. J. Numer. Methods Fluids – volume: 49 start-page: 93 year: 2011 end-page: 100 ident: br000565 article-title: High-performance computing of wind turbine aerodynamics using isogeometric analysis publication-title: Comput. & Fluids – volume: 95 start-page: 811 year: 2013 end-page: 846 ident: br000280 article-title: Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method publication-title: Int. J. Numer. Anal. Model – volume: 247–248 start-page: 51 year: 2012 end-page: 64 ident: br000205 article-title: On continuum immersed strategies for fluid–structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 94 start-page: 339 year: 1992 end-page: 351 ident: br000050 article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: I.~The concept and the preliminary numerical tests publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 50 start-page: 821 year: 2012 end-page: 833 ident: br000130 article-title: Fluid–structure interaction modeling of wind turbines: simulating the full machine publication-title: Comput. Mech. – volume: 255 start-page: 14 year: 2013 end-page: 26 ident: br000210 article-title: Fully Eulerian fluid–structure interaction for time-dependent problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 196 start-page: 4853 year: 2007 end-page: 4862 ident: br000330 article-title: Weak Dirichlet boundary conditions for wall-bounded turbulent flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 207 start-page: 1 year: 2005 end-page: 27 ident: br000195 article-title: A DLM/FD method for fluid/flexible-body interactions publication-title: J. Comput. Phys. – volume: 191 start-page: 177 year: 2003 end-page: 205 ident: br000590 article-title: A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow publication-title: J. Comput. Phys. – volume: 7 start-page: 856 year: 1986 end-page: 869 ident: br000710 article-title: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. – volume: 4 start-page: 2 year: 2013 end-page: 15 ident: br000795 article-title: Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape publication-title: Cardiovasc. Eng. Technol. – volume: 193 start-page: 2019 year: 2004 end-page: 2032 ident: br000745 article-title: Automatic mesh update with the solid-extension mesh moving technique publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 35 start-page: 881 year: 2002 end-page: 892 ident: br000185 article-title: A numerical simulation of mechanical heart valve closure fluid dynamics publication-title: J. Biomech. – volume: 74 start-page: 623 year: 2014 end-page: 660 ident: br000215 article-title: A fixed-grid B-spline finite element technique for fluid–structure interaction publication-title: Internat. J. Numer. Methods Fluids – volume: 97 start-page: 157 year: 1992 end-page: 192 ident: br000480 article-title: What are C and publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 135 year: 1989 end-page: 148 ident: br000650 article-title: Iterative methods for concave programming publication-title: Preference, Production, and Capital – year: 2003 ident: br000250 article-title: Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis – volume: 197 start-page: 3768 year: 2008 end-page: 3782 ident: br000525 article-title: The finite cell method for three-dimensional problems of solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 37 start-page: 239 year: 2005 end-page: 261 ident: br000230 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. – volume: 195 start-page: 2983 year: 2006 end-page: 3000 ident: br000625 article-title: Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 36 start-page: 262 year: 2008 end-page: 275 ident: br000030 article-title: Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model publication-title: Ann. Biomed. Eng. – volume: 199 start-page: 828 year: 2010 end-page: 840 ident: br000425 article-title: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 42 year: 2014 ident: br000750 article-title: Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease publication-title: Ann. Biomed. Eng. – volume: 32 start-page: 199 year: 1982 end-page: 259 ident: br000400 article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2003 ident: br000390 article-title: Finite Element Methods with B-Splines – reference: P.R. Stay, The definition and ray-tracing of B-spline objects in a combinatorial solid geometric modeling system, in: Fourth USENIX Computer Graphics Workshop, USENIX Association, 1987. – year: 1987 ident: br000545 article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis – volume: 46 start-page: 48 year: 1980 end-page: 52 ident: br000810 article-title: Frequency spectrum of the aortic component of the second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenografts: Potential for detection of porcine xenograft degeneration publication-title: Am. J. Cardiol. – volume: 105 start-page: 354 year: 1993 end-page: 366 ident: br000675 article-title: Modeling a no-slip flow boundary with an external force field publication-title: J. Comput. Phys. – volume: 33 start-page: 429 year: 2005 end-page: 443 ident: br000800 article-title: A comparison of flow field structures of two tri-leaflet polymeric heart valves publication-title: Ann. Biomed. Eng. – volume: 34 start-page: 936 year: 2006 end-page: 952 ident: br000805 article-title: Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry publication-title: Ann. Biomed. Eng. – year: 2006 ident: br000245 article-title: Computational Contact Mechanics – volume: vol. 3 year: 2004 ident: br000420 article-title: Multiscale and stabilized methods publication-title: Encyclopedia of Computational Mechanics – start-page: 283 year: 1969 end-page: 298 ident: br000645 article-title: A method for nonlinear constraints in minimization problems publication-title: Optimization – volume: 54 start-page: 1055 year: 2014 end-page: 1071 ident: br000830 article-title: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation publication-title: Comput. Mech. – volume: 22 start-page: 477 year: 2003 end-page: 484 ident: br000265 article-title: T-splines and T-NURCCS publication-title: ACM Trans. Graphics – volume: 24 start-page: 1321 year: 1997 end-page: 1340 ident: br000145 article-title: Parallel computation of incompressible flows with complex geometries publication-title: Internat. J. Numer. Methods Fluids – volume: 54 start-page: 955 year: 2013 end-page: 971 ident: br000170 article-title: Space–time interface-tracking with topology change (ST-TC) publication-title: Comput. Mech. – volume: 35 start-page: 743 year: 2001 end-page: 761 ident: br000305 article-title: A fictitious domain/mortar element method for fluid–structure interaction publication-title: Internat. J. Numer. Methods Fluids – volume: 87 start-page: 1278 year: 2011 end-page: 1300 ident: br000375 article-title: A large deformation frictional contact formulation using NURBS-based isogeometric analysis publication-title: Int. J. Numer. Anal. Model – volume: 47 start-page: 131 year: 2009 end-page: 141 ident: br000815 article-title: The arterial Windkessel publication-title: Med. Biol. Eng. Comput. – volume: 198 start-page: 3534 year: 2009 end-page: 3550 ident: br000495 article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 195 start-page: 5685 year: 2006 end-page: 5706 ident: br000060 article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 70 start-page: 58 year: 2003 end-page: 63 ident: br000740 article-title: Mesh moving techniques for fluid–structure interactions with large displacements publication-title: J. Appl. Mech. – volume: 41 start-page: 121 year: 2007 end-page: 133 ident: br000540 article-title: Finite cell method publication-title: Comput. Mech. – volume: 48 start-page: 277 year: 2011 end-page: 291 ident: br000500 article-title: and Modeling of~Congenital Hearts Alliance~(MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations publication-title: Comput. Mech. – volume: 127 start-page: 905 year: 2005 end-page: 914 ident: br000020 article-title: Simulated bioprosthetic heart valve deformation under quasi-static loading publication-title: J. Biomech. Eng. – volume: 28 start-page: 512 year: 2012 end-page: 527 ident: br000080 article-title: Fluid–structure interaction simulations of the Fontan procedure using variable wall properties publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 85 start-page: 109 year: 1991 end-page: 128 ident: br000630 article-title: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 198 start-page: 3613 year: 2009 end-page: 3621 ident: br000065 article-title: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 23 start-page: 130 year: 1999 end-page: 143 ident: br000160 article-title: Advanced mesh generation and update methods for 3D flow simulations publication-title: Comput. Mech. – volume: 26 start-page: 27 year: 1993 end-page: 36 ident: br000730 article-title: Parallel finite-element computation of 3D flows publication-title: Computer – volume: 34 start-page: 513 year: 1973 end-page: 518 ident: br000690 article-title: Measurement of ascending aortic flow patterns in man publication-title: J. Appl. Physiol. – volume: 284 start-page: 508 year: 2015 end-page: 520 ident: br000380 article-title: Patient-specific isogeometric structural analysis of aortic valve closure publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2013 ident: br000140 article-title: Computational Fluid–Structure Interaction: Methods and Applications – volume: 166 start-page: 3 year: 1998 end-page: 24 ident: br000350 article-title: The variational multiscale method–A paradigm for computational mechanics publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 21 year: 1995 end-page: 30 ident: br000150 article-title: Massively parallel finite element computation of 3D flows–mesh update strategies in computation of moving boundaries and interfaces publication-title: Parallel Computational Fluid Dynamics–New Trends and Advances – volume: 55 start-page: 135 year: 2009 end-page: 144 ident: br000015 article-title: Bioprosthetic heart valves: modes of failure publication-title: Histopathology – volume: 11 start-page: 479 year: 2002 end-page: 517 ident: br000225 article-title: The immersed boundary method publication-title: Acta Numer. – volume: 190 start-page: 305 year: 2000 end-page: 319 ident: br000560 article-title: A generalized- publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 28 start-page: 1 year: 1992 end-page: 44 ident: br000405 article-title: Stabilized finite element formulations for incompressible flow computations publication-title: Adv. Appl. Mech. – volume: 363 start-page: 115 year: 1998 end-page: 151 ident: br000680 article-title: Secondary flow induced by riblets publication-title: J. Fluid Mech. – volume: 195 start-page: 3776 year: 2006 end-page: 3796 ident: br000780 article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 54 start-page: 695 year: 2007 end-page: 706 ident: br000470 article-title: Computation of inviscid compressible flows with the V-SGS stabilization and YZ publication-title: Internat. J. Numer. Methods Fluids – volume: 197 start-page: 173 year: 2007 end-page: 201 ident: br000365 article-title: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 13 start-page: 505 year: 2001 end-page: 512 ident: br000415 article-title: The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence publication-title: Phys. Fluids – year: 2002 ident: br000310 article-title: Fluid–structure interaction in the aortic heart valve: a three-dimensional computational analysis – volume: 60 start-page: 371 year: 1993 end-page: 375 ident: br000555 article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized- publication-title: J. Appl. Mech. – volume: 22 start-page: 1230002 year: 2012 ident: br000395 article-title: ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction publication-title: Math. Models Methods Appl. Sci – volume: 229 start-page: 4476 year: 2010 end-page: 4500 ident: br000600 article-title: A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier–Stokes equations in time-varying complex geometries publication-title: J. Comput. Phys. – volume: 10 start-page: 252 year: 1972 end-page: 271 ident: br000285 article-title: Flow patterns around heart valves: A numerical method publication-title: J. Comput. Phys. – volume: 241 start-page: 141 year: 2013 end-page: 167 ident: br000825 article-title: Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 81 start-page: 021011 year: 2014 ident: br000135 article-title: Aerodynamic simulation of vertical-axis wind turbines publication-title: J. Appl. Mech. – volume: 8 start-page: 129 year: 1974 end-page: 151 ident: br000510 article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers publication-title: ESAIM Math. Model. Numer. Anal. – volume: 78 start-page: 1353 year: 2009 end-page: 1374 ident: br000320 article-title: Nitsche’s method for general boundary conditions publication-title: Math. Comp. – reference: J. Benk, M. Ulbrich, M. Mehl, The Nitsche method of the Navier–Stokes equations for immersed and moving boundaries, in: Proceedings of the Seventh International Conference on Computational Fluid Dynamics, ICCFD7, International Conference on Computational Fluid Dynamics, 2012. – volume: 81 start-page: 497 year: 1999 end-page: 520 ident: br000620 article-title: A penalization method to take into account obstacles in incompressible viscous flows publication-title: Numer. Math. – volume: 64 start-page: 1201 year: 2010 end-page: 1218 ident: br000450 article-title: Space–time finite element computation of complex fluid–structure interactions publication-title: Internat. J. Numer. Methods Fluids – volume: 203 start-page: 533 year: 2007 end-page: 547 ident: br000660 article-title: Path-following and augmented Lagrangian methods for contact problems in linear elasticity publication-title: J. Comput. Appl. Math. – volume: 51 start-page: 107 year: 1985 end-page: 137 ident: br000235 article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 44 start-page: 2633 year: 2006 end-page: 2649 ident: br000655 article-title: A unified approach for Uzawa algorithms publication-title: SIAM J. Numer. Anal. – volume: 195 start-page: 1885 year: 2006 end-page: 1895 ident: br000085 article-title: Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 48 start-page: 345 year: 2011 end-page: 364 ident: br000100 article-title: Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters publication-title: Comput. Mech. – volume: 193 start-page: 2051 year: 2004 end-page: 2067 ident: br000190 article-title: Immersed finite element method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 135 start-page: 118 year: 1967 end-page: 125 ident: br000670 article-title: A numerical method for solving incompressible viscous flow problems publication-title: J. Comput. Phys. – volume: 257 start-page: 103 year: 2013 end-page: 116 ident: br000290 article-title: Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves publication-title: Comput. Methods Appl. Mech. Engrg. – volume: vol. 3 year: 2004 ident: br000045 article-title: Arbitrary Lagrangian–Eulerian methods publication-title: Encyclopedia of Computational Mechanics – volume: 56 start-page: 221 year: 1986 end-page: 228 ident: br000515 article-title: The discrete Babuška–Brezzi condition publication-title: Ingenieur-Archiv – volume: 43 start-page: 3 year: 2008 end-page: 37 ident: br000270 article-title: Isogeometric fluid–structure interaction: theory, algorithms, and computations publication-title: Comput. Mech. – volume: 41 start-page: 371 year: 2008 end-page: 378 ident: br000360 article-title: The role of continuity in residual-based variational multiscale modeling of turbulence publication-title: Comput. Mech. – volume: 145 start-page: 301 year: 1997 end-page: 321 ident: br000155 article-title: 3D simulation of fluid-particle interactions with the number of particles reaching 100 publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 9 start-page: 481 year: 2010 end-page: 498 ident: br000070 article-title: Computational fluid–structure interaction: Methods and application to cerebral aneurysms publication-title: Biomech. Model. Mechanobiol. – volume: 53 start-page: 29 year: 2014 end-page: 43 ident: br000455 article-title: Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity publication-title: Comput. Mech. – volume: 19 start-page: 171 year: 2012 end-page: 225 ident: br000075 article-title: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling publication-title: Arch. Comput. Methods Eng. – year: 1997 ident: br000260 article-title: The NURBS Book (Monographs in Visual Communication) – volume: 125 start-page: 78 year: 2006 end-page: 86 ident: br000770 article-title: Clinical laboratory measurement of serum, plasma, and blood viscosity publication-title: Am. J. Clin. Pathol. – volume: 33 start-page: 689 year: 1982 end-page: 723 ident: br000040 article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 119 start-page: 1034 year: 2009 end-page: 1048 ident: br000010 article-title: Prosthetic heart valves: selection of the optimal prosthesis and long-term management publication-title: Circulation – volume: 198 start-page: 3902 year: 2009 end-page: 3914 ident: br000370 article-title: Isogeometric shell analysis with Kirchhoff–Love elements publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 156 start-page: 209 year: 1999 end-page: 240 ident: br000575 article-title: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries publication-title: J. Comput. Phys. – volume: 250 start-page: 178 year: 2013 end-page: 205 ident: br000725 article-title: An enhanced immersed structural potential method for fluid–structure interaction publication-title: J. Comput. Phys. – volume: 189 start-page: 351 year: 2003 end-page: 370 ident: br000585 article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method publication-title: J. Comput. Phys. – volume: 199 start-page: 780 year: 2010 end-page: 790 ident: br000335 article-title: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 190 start-page: 411 year: 2000 end-page: 430 ident: br000410 article-title: Finite element stabilization parameters computed from element matrices and vectors publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 start-page: 39 year: 2008 end-page: 49 ident: br000115 article-title: Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods publication-title: Comput. Mech. – volume: 253 start-page: 369 year: 2013 end-page: 395 ident: br000760 article-title: A computational contact formulation based on surface potentials publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1987 ident: br000430 article-title: Numerical Solution of Partial Differential Equations by the Finite Element Method – volume: 2 start-page: 1 year: 1995 end-page: 49 ident: br000240 article-title: Finite element algorithms for contact problems publication-title: Arch. Comput. Methods Eng. – volume: 65 start-page: 1 year: 2014 end-page: 21 ident: br000220 article-title: Immersed boundary methods for simulating fluid–structure interaction publication-title: Progr. Aerospace Sci. – volume: 229 start-page: 3402 year: 2010 end-page: 3414 ident: br000340 article-title: Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method publication-title: J. Comput. Phys. – volume: 19 start-page: 125 year: 2012 end-page: 169 ident: br000105 article-title: Computational methods for parachute fluid–structure interactions publication-title: Arch. Comput. Methods Eng. – volume: 54 start-page: 855 year: 2007 end-page: 900 ident: br000120 article-title: Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques publication-title: Internat. J. Numer. Methods Fluids – volume: 54 start-page: 973 year: 2014 end-page: 986 ident: br000175 article-title: Space–time fluid mechanics computation of heart valve models publication-title: Comput. Mech. – volume: 94 start-page: 353 year: 1992 end-page: 371 ident: br000055 article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: II.~Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2012 ident: br000615 article-title: Gibbs phenomenon publication-title: Approximation Theory and Approximation Practice – volume: 227 start-page: 7587 year: 2008 end-page: 7620 ident: br000300 article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies publication-title: J. Comput. Phys. – volume: 39 start-page: 58 year: 1976 end-page: 65 ident: br000820 article-title: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves publication-title: Circ. Res. – volume: 123 start-page: 309 year: 1995 end-page: 316 ident: br000570 article-title: Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 79 start-page: 1072 year: 2005 end-page: 1080 ident: br000005 article-title: Calcification of tissue heart valve substitutes: progress toward understanding and prevention publication-title: Ann. Thorac. Surg. – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: br000255 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 123 start-page: 259 year: 2013 end-page: 290 ident: br000445 article-title: Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 65 start-page: 236 year: 2011 end-page: 253 ident: br000125 article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades publication-title: Internat. J. Numer. Methods Fluids – volume: 76 start-page: 021209 year: 2009 ident: br000475 article-title: Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ publication-title: J. Appl. Mech. – volume: 54 start-page: 1055 issue: 4 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000830 article-title: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation publication-title: Comput. Mech. doi: 10.1007/s00466-014-1059-4 – volume: 199 start-page: 780 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000335 article-title: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2008.11.020 – year: 2014 ident: 10.1016/j.cma.2014.10.040_br000535 article-title: The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-014-9115-y – volume: 44 start-page: 2633 issue: 6 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000655 article-title: A unified approach for Uzawa algorithms publication-title: SIAM J. Numer. Anal. doi: 10.1137/050630714 – volume: 255 start-page: 14 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000210 article-title: Fully Eulerian fluid–structure interaction for time-dependent problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.11.009 – volume: 209–212 start-page: 266 issue: 0 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000605 article-title: Subdivision-stabilised immersed B-spline finite elements for moving boundary flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2011.10.007 – volume: 145 start-page: 301 year: 1997 ident: 10.1016/j.cma.2014.10.040_br000155 article-title: 3D simulation of fluid-particle interactions with the number of particles reaching 100 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(96)01223-6 – year: 1997 ident: 10.1016/j.cma.2014.10.040_br000260 doi: 10.1007/978-3-642-59223-2 – volume: 34 start-page: 513 issue: 4 year: 1973 ident: 10.1016/j.cma.2014.10.040_br000690 article-title: Measurement of ascending aortic flow patterns in man publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1973.34.4.513 – volume: 197 start-page: 173 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000365 article-title: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2007.07.016 – volume: 28 start-page: 1 year: 1992 ident: 10.1016/j.cma.2014.10.040_br000405 article-title: Stabilized finite element formulations for incompressible flow computations publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70153-4 – volume: 229 start-page: 4476 issue: 12 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000600 article-title: A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier–Stokes equations in time-varying complex geometries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.02.013 – volume: 190 start-page: 411 year: 2000 ident: 10.1016/j.cma.2014.10.040_br000410 article-title: Finite element stabilization parameters computed from element matrices and vectors publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)00211-5 – volume: 8 start-page: 129 year: 1974 ident: 10.1016/j.cma.2014.10.040_br000510 article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers publication-title: ESAIM Math. Model. Numer. Anal. – volume: 51 start-page: 107 year: 1985 ident: 10.1016/j.cma.2014.10.040_br000235 article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(85)90030-1 – volume: 29 start-page: 329 year: 1981 ident: 10.1016/j.cma.2014.10.040_br000035 article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(81)90049-9 – start-page: 21 year: 1995 ident: 10.1016/j.cma.2014.10.040_br000150 article-title: Massively parallel finite element computation of 3D flows–mesh update strategies in computation of moving boundaries and interfaces – volume: 60 start-page: 371 year: 1993 ident: 10.1016/j.cma.2014.10.040_br000555 article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method publication-title: J. Appl. Mech. doi: 10.1115/1.2900803 – volume: 191 start-page: 177 year: 2003 ident: 10.1016/j.cma.2014.10.040_br000590 article-title: A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00310-3 – volume: 189 start-page: 351 issue: 2 year: 2003 ident: 10.1016/j.cma.2014.10.040_br000585 article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00214-6 – volume: 257 start-page: 103 issue: 0 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000290 article-title: Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2013.01.010 – volume: 241 start-page: 141 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000825 article-title: Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.01.006 – volume: 42 issue: 5 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000750 article-title: Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-0973-0 – volume: 253 start-page: 369 issue: 0 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000760 article-title: A computational contact formulation based on surface potentials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.09.002 – volume: 56 start-page: 221 issue: 3 year: 1986 ident: 10.1016/j.cma.2014.10.040_br000515 article-title: The discrete Babuška–Brezzi condition publication-title: Ingenieur-Archiv doi: 10.1007/BF00535887 – volume: 46 start-page: 48 issue: 1 year: 1980 ident: 10.1016/j.cma.2014.10.040_br000810 article-title: Frequency spectrum of the aortic component of the second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenografts: Potential for detection of porcine xenograft degeneration publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(80)90604-9 – volume: 41 start-page: 371 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000360 article-title: The role of continuity in residual-based variational multiscale modeling of turbulence publication-title: Comput. Mech. doi: 10.1007/s00466-007-0193-7 – volume: 43 start-page: 3 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000270 article-title: Isogeometric fluid–structure interaction: theory, algorithms, and computations publication-title: Comput. Mech. doi: 10.1007/s00466-008-0315-x – volume: 19 start-page: 125 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000105 article-title: Computational methods for parachute fluid–structure interactions publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-012-9070-4 – volume: 65 start-page: 236 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000125 article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2454 – year: 2004 ident: 10.1016/j.cma.2014.10.040_br000440 – volume: 190 start-page: 305 year: 2000 ident: 10.1016/j.cma.2014.10.040_br000560 article-title: A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)00203-6 – volume: 198 start-page: 3902 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000370 article-title: Isogeometric shell analysis with Kirchhoff–Love elements publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.08.013 – volume: 363 start-page: 115 year: 1998 ident: 10.1016/j.cma.2014.10.040_br000680 article-title: Secondary flow induced by riblets publication-title: J. Fluid Mech. doi: 10.1017/S0022112098008921 – volume: 36 start-page: 121 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000465 article-title: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2005.07.004 – volume: 2 start-page: 1 year: 1995 ident: 10.1016/j.cma.2014.10.040_br000240 article-title: Finite element algorithms for contact problems publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF02736195 – volume: 105 start-page: 354 issue: 2 year: 1993 ident: 10.1016/j.cma.2014.10.040_br000675 article-title: Modeling a no-slip flow boundary with an external force field publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1081 – volume: 50 start-page: 499 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000345 article-title: Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions publication-title: Comput. Mech. doi: 10.1007/s00466-012-0686-x – volume: 36 start-page: 262 issue: 2 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000030 article-title: Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9409-4 – volume: 64 start-page: 1201 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000450 article-title: Space–time finite element computation of complex fluid–structure interactions publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2221 – volume: 17 start-page: 277 issue: 3 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000025 article-title: Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2012.681645 – volume: 33 start-page: 689 issue: 1–3 year: 1982 ident: 10.1016/j.cma.2014.10.040_br000040 article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(82)90128-1 – volume: 22 start-page: 1230002 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000395 article-title: ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction publication-title: Math. Models Methods Appl. Sci doi: 10.1142/S0218202512300025 – volume: 32 start-page: 1471 issue: 11 year: 2004 ident: 10.1016/j.cma.2014.10.040_br000180 article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics publication-title: Ann. Biomed. Eng. doi: 10.1114/B:ABME.0000049032.51742.10 – volume: 74 start-page: 73 issue: 2 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000635 article-title: A fictitious domain approach for the Stokes problem based on the extended finite element method publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.3839 – volume: 54 start-page: 695 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000470 article-title: Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1447 – volume: 161 start-page: 35 issue: 1 year: 2000 ident: 10.1016/j.cma.2014.10.040_br000685 article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6484 – year: 2006 ident: 10.1016/j.cma.2014.10.040_br000245 – volume: 284 start-page: 508 year: 2015 ident: 10.1016/j.cma.2014.10.040_br000380 article-title: Patient-specific isogeometric structural analysis of aortic valve closure publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.10.010 – volume: 37 start-page: 239 year: 2005 ident: 10.1016/j.cma.2014.10.040_br000230 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175743 – volume: 33 start-page: 429 issue: 4 year: 2005 ident: 10.1016/j.cma.2014.10.040_br000800 article-title: A comparison of flow field structures of two tri-leaflet polymeric heart valves publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-2498-z – volume: 10 start-page: 252 issue: 2 year: 1972 ident: 10.1016/j.cma.2014.10.040_br000285 article-title: Flow patterns around heart valves: A numerical method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(72)90065-4 – volume: 39 start-page: 58 issue: 1 year: 1976 ident: 10.1016/j.cma.2014.10.040_br000820 article-title: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves publication-title: Circ. Res. doi: 10.1161/01.RES.39.1.58 – volume: 54 start-page: 855 issue: 6–8 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000120 article-title: Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1430 – volume: 195 start-page: 5685 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000060 article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2005.11.011 – volume: 81 start-page: 497 issue: 4 year: 1999 ident: 10.1016/j.cma.2014.10.040_br000620 article-title: A penalization method to take into account obstacles in incompressible viscous flows publication-title: Numer. Math. doi: 10.1007/s002110050401 – volume: 95 start-page: 811 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000280 article-title: Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method publication-title: Int. J. Numer. Anal. Model – volume: 34 start-page: 936 issue: 6 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000805 article-title: Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9117-5 – volume: 65 start-page: 271 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000090 article-title: Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2348 – volume: 7 start-page: 856 year: 1986 ident: 10.1016/j.cma.2014.10.040_br000710 article-title: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – year: 2011 ident: 10.1016/j.cma.2014.10.040_br000700 – year: 2002 ident: 10.1016/j.cma.2014.10.040_br000435 – volume: 194 start-page: 4135 year: 2005 ident: 10.1016/j.cma.2014.10.040_br000255 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.10.008 – volume: 125 start-page: 78 issue: Suppl year: 2006 ident: 10.1016/j.cma.2014.10.040_br000770 article-title: Clinical laboratory measurement of serum, plasma, and blood viscosity publication-title: Am. J. Clin. Pathol. – volume: 49 start-page: 409 issue: 6 year: 1952 ident: 10.1016/j.cma.2014.10.040_br000715 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 76 start-page: 021206 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000720 article-title: Added mass effects of compressible and incompressible flows in fluid–structure interaction publication-title: J. Appl. Mech. doi: 10.1115/1.3059565 – year: 1990 ident: 10.1016/j.cma.2014.10.040_br000785 article-title: The second heart sound – volume: 53 start-page: 29 issue: 1 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000455 article-title: Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity publication-title: Comput. Mech. doi: 10.1007/s00466-013-0890-3 – volume: 197 start-page: 1699 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000200 article-title: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2007.07.002 – volume: 135 start-page: 118 issue: 2 year: 1967 ident: 10.1016/j.cma.2014.10.040_br000670 article-title: A numerical method for solving incompressible viscous flow problems publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5716 – year: 2000 ident: 10.1016/j.cma.2014.10.040_br000705 – volume: 515 start-page: 233 year: 2004 ident: 10.1016/j.cma.2014.10.040_br000595 article-title: Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/S0022112004000436 – volume: 48 start-page: 277 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000500 article-title: and Modeling of~Congenital Hearts Alliance~(MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations publication-title: Comput. Mech. doi: 10.1007/s00466-011-0599-0 – volume: 156 start-page: 209 issue: 2 year: 1999 ident: 10.1016/j.cma.2014.10.040_br000575 article-title: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6356 – volume: vol. 3 year: 2004 ident: 10.1016/j.cma.2014.10.040_br000045 article-title: Arbitrary Lagrangian–Eulerian methods – volume: 94 start-page: 353 issue: 3 year: 1992 ident: 10.1016/j.cma.2014.10.040_br000055 article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: II.~Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(92)90060-W – volume: 54 start-page: 973 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000175 article-title: Space–time fluid mechanics computation of heart valve models publication-title: Comput. Mech. doi: 10.1007/s00466-014-1046-9 – volume: 197 start-page: 3768 issue: 45–48 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000525 article-title: The finite cell method for three-dimensional problems of solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2008.02.036 – volume: 250 start-page: 178 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000725 article-title: An enhanced immersed structural potential method for fluid–structure interaction publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.05.011 – volume: 78 start-page: 1353 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000320 article-title: Nitsche’s method for general boundary conditions publication-title: Math. Comp. doi: 10.1090/S0025-5718-08-02183-2 – volume: 23 start-page: 130 year: 1999 ident: 10.1016/j.cma.2014.10.040_br000160 article-title: Advanced mesh generation and update methods for 3D flow simulations publication-title: Comput. Mech. doi: 10.1007/s004660050393 – volume: 22 start-page: 477 issue: 3 year: 2003 ident: 10.1016/j.cma.2014.10.040_br000265 article-title: T-splines and T-NURCCS publication-title: ACM Trans. Graphics doi: 10.1145/882262.882295 – volume: 234 start-page: H696 issue: 6 year: 1978 ident: 10.1016/j.cma.2014.10.040_br000790 article-title: Relation of the second sound to diastolic vibration of the closed aortic valve publication-title: Am. J. Physiol. Heart Circulat. Physiol. doi: 10.1152/ajpheart.1978.234.6.H696 – volume: 123 start-page: 259 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000445 article-title: Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 247–248 start-page: 51 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000205 article-title: On continuum immersed strategies for fluid–structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.07.021 – volume: 85 start-page: 109 issue: 1 year: 1991 ident: 10.1016/j.cma.2014.10.040_br000630 article-title: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(91)90125-P – volume: 127 start-page: 905 issue: 6 year: 2005 ident: 10.1016/j.cma.2014.10.040_br000020 article-title: Simulated bioprosthetic heart valve deformation under quasi-static loading publication-title: J. Biomech. Eng. doi: 10.1115/1.2049337 – volume: 158 start-page: 155 year: 1998 ident: 10.1016/j.cma.2014.10.040_br000460 article-title: Finite element modeling of blood flow in arteries publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(98)80008-X – volume: 49 start-page: 93 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000565 article-title: High-performance computing of wind turbine aerodynamics using isogeometric analysis publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2011.05.002 – volume: 81 start-page: 021011 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000135 article-title: Aerodynamic simulation of vertical-axis wind turbines publication-title: J. Appl. Mech. doi: 10.1115/1.4024415 – volume: 32 start-page: 199 year: 1982 ident: 10.1016/j.cma.2014.10.040_br000400 article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(82)90071-8 – volume: 74 start-page: 623 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000215 article-title: A fixed-grid B-spline finite element technique for fluid–structure interaction publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.3864 – volume: 269 start-page: 46 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000490 article-title: Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2013.10.009 – volume: 35 start-page: 881 issue: 7 year: 2002 ident: 10.1016/j.cma.2014.10.040_br000185 article-title: A numerical simulation of mechanical heart valve closure fluid dynamics publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00056-8 – year: 2012 ident: 10.1016/j.cma.2014.10.040_br000615 article-title: Gibbs phenomenon – volume: 198 start-page: 3613 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000065 article-title: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2008.08.020 – volume: 193 start-page: 2051 year: 2004 ident: 10.1016/j.cma.2014.10.040_br000190 article-title: Immersed finite element method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.044 – volume: vol. 3 year: 2004 ident: 10.1016/j.cma.2014.10.040_br000420 article-title: Multiscale and stabilized methods – volume: 47 start-page: 131 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000815 article-title: The arterial Windkessel publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0359-2 – volume: 119 start-page: 1034 issue: 7 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000010 article-title: Prosthetic heart valves: selection of the optimal prosthesis and long-term management publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.778886 – volume: 203 start-page: 533 issue: 2 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000660 article-title: Path-following and augmented Lagrangian methods for contact problems in linear elasticity publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.04.017 – volume: 195 start-page: 3776 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000780 article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2005.04.014 – volume: 195 start-page: 2983 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000625 article-title: Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.09.018 – volume: 35 start-page: 743 issue: 7 year: 2001 ident: 10.1016/j.cma.2014.10.040_br000305 article-title: A fictitious domain/mortar element method for fluid–structure interaction publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A – volume: 36 start-page: 12 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000325 article-title: Weak imposition of Dirichlet boundary conditions in fluid mechanics publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2005.07.012 – volume: 70 start-page: 58 year: 2003 ident: 10.1016/j.cma.2014.10.040_br000740 article-title: Mesh moving techniques for fluid–structure interactions with large displacements publication-title: J. Appl. Mech. doi: 10.1115/1.1530635 – volume: 193 start-page: 2019 year: 2004 ident: 10.1016/j.cma.2014.10.040_br000745 article-title: Automatic mesh update with the solid-extension mesh moving technique publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.046 – volume: 97 start-page: 157 year: 1992 ident: 10.1016/j.cma.2014.10.040_br000480 article-title: What are C and h?: Inequalities for the analysis and design of finite element methods publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(92)90162-D – volume: 269 start-page: 394 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000755 article-title: Isogeometric large deformation frictionless contact using T-splines publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2013.11.002 – volume: 3 start-page: 47 year: 2000 ident: 10.1016/j.cma.2014.10.040_br000355 article-title: Large-eddy simulation and the variational multiscale method publication-title: Comput. Vis. Sci. doi: 10.1007/s007910050051 – volume: 9 start-page: 481 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000070 article-title: Computational fluid–structure interaction: Methods and application to cerebral aneurysms publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0189-7 – volume: 41 start-page: 121 issue: 1 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000540 article-title: Finite cell method publication-title: Comput. Mech. doi: 10.1007/s00466-007-0173-y – volume: 43 start-page: 51 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000165 article-title: Modeling of fluid–structure interactions with the space–time finite elements: Contact problems publication-title: Comput. Mech. doi: 10.1007/s00466-008-0299-6 – year: 2003 ident: 10.1016/j.cma.2014.10.040_br000390 – volume: 65 start-page: 1 year: 2014 ident: 10.1016/j.cma.2014.10.040_br000220 article-title: Immersed boundary methods for simulating fluid–structure interaction publication-title: Progr. Aerospace Sci. doi: 10.1016/j.paerosci.2013.09.003 – ident: 10.1016/j.cma.2014.10.040_br000520 – volume: 50 start-page: 445 issue: 4 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000530 article-title: Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method publication-title: Comput. Mech. doi: 10.1007/s00466-012-0684-z – volume: 123 start-page: 309 year: 1995 ident: 10.1016/j.cma.2014.10.040_br000570 article-title: Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(94)00736-7 – volume: 227 start-page: 7587 issue: 16 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000300 article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.04.028 – volume: 54 start-page: 955 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000170 article-title: Space–time interface-tracking with topology change (ST-TC) publication-title: Comput. Mech. doi: 10.1007/s00466-013-0935-7 – volume: 4 start-page: 2 issue: 1 year: 2013 ident: 10.1016/j.cma.2014.10.040_br000795 article-title: Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-013-0117-y – volume: 84 start-page: 111 issue: 2 year: 1989 ident: 10.1016/j.cma.2014.10.040_br000765 article-title: The measurement of blood density and its meaning publication-title: Basic Res. Cardiology doi: 10.1007/BF01907921 – volume: 198 start-page: 3534 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000495 article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.04.015 – volume: 94 start-page: 339 issue: 3 year: 1992 ident: 10.1016/j.cma.2014.10.040_br000050 article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: I.~The concept and the preliminary numerical tests publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(92)90059-S – volume: 26 start-page: 27 issue: 10 year: 1993 ident: 10.1016/j.cma.2014.10.040_br000730 article-title: Parallel finite-element computation of 3D flows publication-title: Computer doi: 10.1109/2.237441 – volume: 36 start-page: 9 year: 1971 ident: 10.1016/j.cma.2014.10.040_br000385 article-title: Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind publication-title: Abh. Math. Univ. Hamburg doi: 10.1007/BF02995904 – year: 2013 ident: 10.1016/j.cma.2014.10.040_br000140 – volume: 195 start-page: 2002 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000110 article-title: Space–time finite element techniques for computation of fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.09.014 – volume: 225 start-page: 1782 issue: 2 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000295 article-title: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.017 – volume: 55 start-page: 135 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000015 article-title: Bioprosthetic heart valves: modes of failure publication-title: Histopathology doi: 10.1111/j.1365-2559.2008.03190.x – volume: 119 start-page: 73 year: 1994 ident: 10.1016/j.cma.2014.10.040_br000735 article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(94)00077-8 – volume: 199 start-page: 828 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000425 article-title: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.06.019 – volume: 229 start-page: 3402 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000340 article-title: Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.01.008 – year: 1987 ident: 10.1016/j.cma.2014.10.040_br000430 – volume: 249–252 start-page: 28 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000315 article-title: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.03.028 – volume: 87 start-page: 1278 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000375 article-title: A large deformation frictional contact formulation using NURBS-based isogeometric analysis publication-title: Int. J. Numer. Anal. Model – volume: 207 start-page: 1 year: 2005 ident: 10.1016/j.cma.2014.10.040_br000195 article-title: A DLM/FD method for fluid/flexible-body interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.12.026 – volume: 50 start-page: 821 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000130 article-title: Fluid–structure interaction modeling of wind turbines: simulating the full machine publication-title: Comput. Mech. doi: 10.1007/s00466-012-0772-0 – volume: 79 start-page: 010904 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000610 article-title: Flux evaluation in primal and dual boundary-coupled problems publication-title: J. Appl. Mech. doi: 10.1115/1.4005187 – volume: 11 start-page: 479 year: 2002 ident: 10.1016/j.cma.2014.10.040_br000225 article-title: The immersed boundary method publication-title: Acta Numer. doi: 10.1017/S0962492902000077 – volume: 76 start-page: 021209 year: 2009 ident: 10.1016/j.cma.2014.10.040_br000475 article-title: Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing publication-title: J. Appl. Mech. doi: 10.1115/1.3057496 – volume: 16 start-page: 322 issue: 4 year: 1971 ident: 10.1016/j.cma.2014.10.040_br000505 article-title: Error-bounds for finite element method publication-title: Numer. Math. doi: 10.1007/BF02165003 – year: 2002 ident: 10.1016/j.cma.2014.10.040_br000310 – volume: 41 start-page: 591 issue: 5–6 year: 2000 ident: 10.1016/j.cma.2014.10.040_br000665 article-title: Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces publication-title: Nonlinear Anal. TMA doi: 10.1016/S0362-546X(98)00299-5 – volume: 195 start-page: 1885 year: 2006 ident: 10.1016/j.cma.2014.10.040_br000085 article-title: Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2005.05.050 – volume: 79 start-page: 1072 issue: 3 year: 2005 ident: 10.1016/j.cma.2014.10.040_br000005 article-title: Calcification of tissue heart valve substitutes: progress toward understanding and prevention publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2004.06.033 – start-page: 283 year: 1969 ident: 10.1016/j.cma.2014.10.040_br000645 article-title: A method for nonlinear constraints in minimization problems – volume: 4 start-page: 303 issue: 5 year: 1969 ident: 10.1016/j.cma.2014.10.040_br000640 article-title: Multiplier and gradient methods publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00927673 – start-page: 135 year: 1989 ident: 10.1016/j.cma.2014.10.040_br000650 article-title: Iterative methods for concave programming – year: 1987 ident: 10.1016/j.cma.2014.10.040_br000545 – volume: 199 start-page: 2403 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000695 article-title: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.03.029 – volume: 48 start-page: 345 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000100 article-title: Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters publication-title: Comput. Mech. doi: 10.1007/s00466-011-0590-9 – volume: 217 start-page: 86 issue: 5123 year: 1968 ident: 10.1016/j.cma.2014.10.040_br000775 article-title: Mechanism of closure of the aortic valve publication-title: Nature doi: 10.1038/217086b0 – volume: 196 start-page: 4853 year: 2007 ident: 10.1016/j.cma.2014.10.040_br000330 article-title: Weak Dirichlet boundary conditions for wall-bounded turbulent flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2007.06.026 – volume: 35 start-page: 421 issue: 4 year: 2001 ident: 10.1016/j.cma.2014.10.040_br000580 article-title: Control of vortex shedding behind circular cylinder for flows at low reynolds numbers publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M – volume: 19 start-page: 171 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000075 article-title: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-012-9071-3 – volume: 249–252 start-page: 116 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000275 article-title: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.03.017 – volume: 43 start-page: 39 year: 2008 ident: 10.1016/j.cma.2014.10.040_br000115 article-title: Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods publication-title: Comput. Mech. doi: 10.1007/s00466-008-0261-7 – ident: 10.1016/j.cma.2014.10.040_br000550 – volume: 13 start-page: 505 year: 2001 ident: 10.1016/j.cma.2014.10.040_br000415 article-title: The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence publication-title: Phys. Fluids doi: 10.1063/1.1332391 – volume: 28 start-page: 512 year: 2012 ident: 10.1016/j.cma.2014.10.040_br000080 article-title: Fluid–structure interaction simulations of the Fontan procedure using variable wall properties publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1485 – year: 2003 ident: 10.1016/j.cma.2014.10.040_br000250 – volume: 83 start-page: 877 issue: 7 year: 2010 ident: 10.1016/j.cma.2014.10.040_br000485 article-title: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements publication-title: Int. J. Numer. Anal. Model – volume: 166 start-page: 3 year: 1998 ident: 10.1016/j.cma.2014.10.040_br000350 article-title: The variational multiscale method–A paradigm for computational mechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(98)00079-6 – volume: 65 start-page: 286 year: 2011 ident: 10.1016/j.cma.2014.10.040_br000095 article-title: Fluid–structure interaction modeling of parachute clusters publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2359 – volume: 24 start-page: 1321 year: 1997 ident: 10.1016/j.cma.2014.10.040_br000145 article-title: Parallel computation of incompressible flows with complex geometries publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L – reference: 25580046 - Comput Mech. 2014 Oct;54(4):1055-1071 – reference: 16783650 - Ann Biomed Eng. 2006 Jun;34(6):936-52 – reference: 24488233 - Ann Biomed Eng. 2014 May;42(5):986-98 – reference: 23646095 - Cardiovasc Eng Technol. 2013 Mar;4(1):2-15 – reference: 22553900 - Comput Methods Biomech Biomed Engin. 2014;17 (3):277-85 – reference: 665783 - Am J Physiol. 1978 Jun;234(6):H696-700 – reference: 20111978 - Biomech Model Mechanobiol. 2010 Aug;9(4):481-98 – reference: 18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41 – reference: 776437 - Circ Res. 1976 Jul;39(1):58-65 – reference: 7386393 - Am J Cardiol. 1980 Jul;46(1):48-52 – reference: 25099455 - Int J Numer Method Biomed Eng. 2012 May;28(5):513-27 – reference: 19694820 - Histopathology. 2009 Aug;55(2):135-44 – reference: 20981246 - J Comput Phys. 2008 Aug 10;227(16):7587-7620 – reference: 16830959 - Am J Clin Pathol. 2006 Jun;125 Suppl:S78-86 – reference: 15734452 - Ann Thorac Surg. 2005 Mar;79(3):1072-80 – reference: 2658951 - Basic Res Cardiol. 1989 Mar-Apr;84(2):111-24 – reference: 15909649 - Ann Biomed Eng. 2005 Apr;33(4):429-43 – reference: 19194533 - J Comput Phys. 2007 Aug;225(2):1782-1809 – reference: 18046648 - Ann Biomed Eng. 2008 Feb;36(2):262-75 – reference: 16438226 - J Biomech Eng. 2005 Nov;127(6):905-14 – reference: 12052390 - J Biomech. 2002 Jul;35(7):881-92 – reference: 15636108 - Ann Biomed Eng. 2004 Nov;32(11):1471-83 – reference: 4698610 - J Appl Physiol. 1973 Apr;34(4):513-8 – reference: 19237674 - Circulation. 2009 Feb 24;119(7):1034-48 – reference: 5635642 - Nature. 1968 Jan 6;217(5123):86-7  | 
    
| SSID | ssj0000812 | 
    
| Score | 2.618356 | 
    
| Snippet | In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation... In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1005 | 
    
| SubjectTerms | Bioprosthetic heart valve Computational fluid dynamics Computer simulation Discretization Fluid flow Fluid-structure interaction Fluids Heart valves Immersogeometric analysis Isogeometric analysis Mathematical analysis Mathematical models Nitsche’s method Weakly enforced boundary conditions  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0q0wV0QaE8Gl4yEiuQ0yR2XuxGiKpiUSHESGUV2Y7dBjLJqJMMghX_wB_yJVznMbQUDeoyiR3FyXF8rn18LsCLIJER00rQyBhJORIMmupY0jhnMtG5Tb7XqXyPo6MZf3cSnmyBP-6F6UT7ShZuVc7dqjjrtJWLuToYdWIHHOMopDk3YDsKkX5PYHt2_H76qV9JDimOeFa2aJNo08BnybiS2Wm6VGc15HPXCrrsfMe_x6KrXPOqZPJmWy3Et6-iLC-MR4e78GFsSS9D-eK2jXTV979MHq_V1Dtwe2CnZNpfugtbutqD3YGpkuE_sNyDnQs2hvdgNa1I0U2A16e6ntscXYqsMAgfJhqJGRVgBCkyMWVb5L9-_Oyta9tzTaxnxXm_w-I1mf5ZUidNTWRRL-zOlDO725LY_NsN3rtc6eV9mB2-_fjmiA75HKjCOKihKtCeiWNhcpXkBgMfwXLmeXjsa08HSgUiTUMZpgJZUhSFTCdKGhbkLEbiEnjsAUyqutL7QALGPe57ufSlz43gApmMUDoyIolinXIHvPHLZmowO7c5N8psVLV9zhAMmQWDPYVgcODlusqid_rYVJiPcMkGqtJTkAxHok3Vno_QyrAb27UZUem6XWa-zQMQWK-iDWUwFIys3VLswMMejusnxciwC8UdiC8BdV3A2ohfvoKQ6-zEB5Q58GoN6f-_gEfXKv0YbuFR2Kvdn8AE8aWfIplr5LOh-_4GXNZM3g priority: 102 providerName: Unpaywall  | 
    
| Title | An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves | 
    
| URI | https://dx.doi.org/10.1016/j.cma.2014.10.040 https://www.ncbi.nlm.nih.gov/pubmed/25541566 https://www.proquest.com/docview/1685821969 https://www.proquest.com/docview/1826609727 https://pubmed.ncbi.nlm.nih.gov/PMC4274080 https://www.ncbi.nlm.nih.gov/pmc/articles/4274080  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 284 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: AKRWK dateStart: 19720601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcChRow6MyEidQ2jycOOktqqgWkFYcWKmcItuxaVCarLoPxAXxH_iH_JLO5LHtqmiROEVJnMjyjD3f2DPfALwOEhWHRks3tla5HAGGmxqhXFGEKjEFFd9ro3zH8WjCP5xFZ1twMuTCUFhlv_Z3a3q7WvdPjvrRPJqWJeX4cuJiR4tPpFFtDhfngqoYHP68DvNAk9cxhvPIpdbDyWYb46Vb6iGfH1KAF-1__N023caet0Mo7y7qqfzxXVbVDft0-hB2emDJsq7vj2DL1LvwoAeZrJ_Cs124f4OB8DEss5qV7d5189U0F1ReS7Ml-s_9HiGzQ_AWQ3TLbLUoiz-_fness4tLw4hu4rJLjjhm2fVpOJs3TJXNlJJKzilRklHp7Dn-u1qa2ROYnL77fDJy-1IMrkYXZu7qwHhWCGkLnRQWfRYZFqHn4b1vPBNoHcg0jVSUSgQ4cRyFJtHKhkERChKAFz6F7bqpzT6wIOQkrkL5yudWcokgRGoTW5nEwqTcAW8QQq57nnIql1HlQ0DatxzllpPc6BHKzYE3q0-mHUnHpsZ8kGy-pmk5GpFNn70atCDHGUjHKrI2zWKW-0ThHxDN0IY26MXFxJQkHNjrNGfVU3TqWi_aAbGmU6sGxAC-_qYuz1smcB4IjpDfgbcr7fv3ADz7vwF4DvfwLuoi1l_ANiqaeYmAbK4O2hl3AHey9x9HY7xOxp-yL1fDKDrO | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VA4FCiv8DQSJ1DaJHbihNuqolqg9NRKvUW2Y7dBIVl1HxUXxH_gH_JLmMlj21XRInFM7ESWZ-yZsb_5BuBNlOqEW6P8xDntC3Qw_MxK7cuC69QWVHyvRfkeJeMT8ek0Pt2A_SEXhmCV_d7f7entbt2_2etnc29SlpTjK4iLHS0-kUZRDtctEUeSIrDdH1c4D7R5HWW4iH3qPlxttiAv03IPhWKXEF50APJ343TT-byJodya1xP1_VJV1TUDdXAPtnvPko26wd-HDVvvwN3ey2T9Gp7uwJ1rFIQPYDGqWdkeXjdntvlG9bUMW2AA3R8SMjegtxi6t8xV87L4_fNXRzs7v7CM-CYuuuyI92x0dR3OZg3TZTOhrJJzypRkVDt7hv-uFnb6EE4OPhzvj_2-FoNvMIaZ-SaygZNSucKkhcOgRfGCBwE-hzawkTGRyrJYx5lCDydJYm5Tox2PCi5JAAF_BJt1U9snwCIuSF6FDnUonBIKvRBlbOJUmkibCQ-CQQi56YnKqV5GlQ-ItK85yi0nudErlJsHb5efTDqWjnWdxSDZfEXVcrQi6z57PWhBjkuQ7lVUbZv5NA-Jwz8inqE1fTCMS4gqSXrwuNOc5UgxqmvDaA_kik4tOxAF-GpLXZ63VOAikgJ9fg_eLbXv3xPw9P8m4BVsjY-_HOaHH48-P4Pb2BJ38PXnsIlKZ1-gdzbTL9vV9wfbXDqz | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0q0wV0QaE8Gl4yEiuQ0yR2XuxGiKpiUSHESGUV2Y7dBjLJqJMMghX_wB_yJVznMbQUDeoyiR3FyXF8rn18LsCLIJER00rQyBhJORIMmupY0jhnMtG5Tb7XqXyPo6MZf3cSnmyBP-6F6UT7ShZuVc7dqjjrtJWLuToYdWIHHOMopDk3YDsKkX5PYHt2_H76qV9JDimOeFa2aJNo08BnybiS2Wm6VGc15HPXCrrsfMe_x6KrXPOqZPJmWy3Et6-iLC-MR4e78GFsSS9D-eK2jXTV979MHq_V1Dtwe2CnZNpfugtbutqD3YGpkuE_sNyDnQs2hvdgNa1I0U2A16e6ntscXYqsMAgfJhqJGRVgBCkyMWVb5L9-_Oyta9tzTaxnxXm_w-I1mf5ZUidNTWRRL-zOlDO725LY_NsN3rtc6eV9mB2-_fjmiA75HKjCOKihKtCeiWNhcpXkBgMfwXLmeXjsa08HSgUiTUMZpgJZUhSFTCdKGhbkLEbiEnjsAUyqutL7QALGPe57ufSlz43gApmMUDoyIolinXIHvPHLZmowO7c5N8psVLV9zhAMmQWDPYVgcODlusqid_rYVJiPcMkGqtJTkAxHok3Vno_QyrAb27UZUem6XWa-zQMQWK-iDWUwFIys3VLswMMejusnxciwC8UdiC8BdV3A2ohfvoKQ6-zEB5Q58GoN6f-_gEfXKv0YbuFR2Kvdn8AE8aWfIplr5LOh-_4GXNZM3g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+immersogeometric+variational+framework+for+fluid%E2%80%93structure+interaction%3A+Application+to+bioprosthetic+heart+valves&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Kamensky%2C+David&rft.au=Hsu%2C+Ming-Chen&rft.au=Schillinger%2C+Dominik&rft.au=Evans%2C+John+A.&rft.date=2015-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=284&rft.spage=1005&rft.epage=1053&rft_id=info:doi/10.1016%2Fj.cma.2014.10.040&rft.externalDocID=S0045782514004101 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |