An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves

In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 284; pp. 1005 - 1053
Main Authors Kamensky, David, Hsu, Ming-Chen, Schillinger, Dominik, Evans, John A., Aggarwal, Ankush, Bazilevs, Yuri, Sacks, Michael S., Hughes, Thomas J.R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2015
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
1879-2138
DOI10.1016/j.cma.2014.10.040

Cover

Abstract In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
AbstractList In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques.
In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
Author Evans, John A.
Bazilevs, Yuri
Aggarwal, Ankush
Hughes, Thomas J.R.
Schillinger, Dominik
Kamensky, David
Sacks, Michael S.
Hsu, Ming-Chen
AuthorAffiliation b Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
e Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093, USA
c Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
a Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
d Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 429 UCB, Boulder, CO 80309, USA
AuthorAffiliation_xml – name: a Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
– name: e Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093, USA
– name: c Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
– name: d Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 429 UCB, Boulder, CO 80309, USA
– name: b Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
Author_xml – sequence: 1
  givenname: David
  surname: Kamensky
  fullname: Kamensky, David
  organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
– sequence: 2
  givenname: Ming-Chen
  surname: Hsu
  fullname: Hsu, Ming-Chen
  email: jmchsu@iastate.edu
  organization: Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
– sequence: 3
  givenname: Dominik
  surname: Schillinger
  fullname: Schillinger, Dominik
  organization: Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
– sequence: 4
  givenname: John A.
  surname: Evans
  fullname: Evans, John A.
  organization: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 429 UCB, Boulder, CO 80309, USA
– sequence: 5
  givenname: Ankush
  orcidid: 0000-0002-1755-8807
  surname: Aggarwal
  fullname: Aggarwal, Ankush
  organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
– sequence: 6
  givenname: Yuri
  surname: Bazilevs
  fullname: Bazilevs, Yuri
  organization: Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093, USA
– sequence: 7
  givenname: Michael S.
  surname: Sacks
  fullname: Sacks, Michael S.
  organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
– sequence: 8
  givenname: Thomas J.R.
  surname: Hughes
  fullname: Hughes, Thomas J.R.
  organization: Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25541566$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFB2CDsmSTwXZixwEJaVRBi1SJDawtj3PT8eDYwXZSdcc78IY8CU6n_C4K3ljXPt_RveeeoCPnHSD0lOA1wYS_2K_1oNYUkzrXa1zjB2hFRNOWlFTiCK0wrlnZCMqO0UmMe5yPIPQROqaM1YRxvkLzxhVmGCBEfwV-gBSMLmYVjErGO2WLPqgBrn34VPQ-FL2dTPfty9eYwqTTFKAwLkFQelG_LDbjaI2-RYvki63xY_Ax7SBl1x2okLK3nSE-Rg97ZSM8ubtP0ce3bz6cXZSX78_fnW0uS80YTqWmgPumUX2nRdfzmqqqqzDONQEMVGuq2pZtWavqquWcVSD0tq9oVzXLpLg6RfTgO7lR3Vwra-UYzKDCjSRYLiHKvcwhyiXE5SmHmKHXB2ictgN0GlwK6hfolZF__jizk1d-ljVtaiwWg-d3BsF_niAmOZiowVrlwE9REkE5x21Dm39LuWCCkpa3Wfrs97Z-9vNjmVlADgKdQ48B-v-atfmL0SbdLjBPZuy95KsDCXl_s4EgozbgNHQmgE6y8-Ye-jvwid4G
CitedBy_id crossref_primary_10_1016_j_camwa_2018_03_032
crossref_primary_10_1016_j_cma_2023_116495
crossref_primary_10_1016_j_cma_2018_02_021
crossref_primary_10_1016_j_cma_2023_116137
crossref_primary_10_1142_S0218202515400114
crossref_primary_10_1007_s00366_022_01754_y
crossref_primary_10_3390_s25010011
crossref_primary_10_1007_s00466_022_02230_6
crossref_primary_10_1007_s00466_017_1514_0
crossref_primary_10_1007_s00466_022_02155_0
crossref_primary_10_1016_j_cma_2020_112842
crossref_primary_10_1016_j_cma_2020_113498
crossref_primary_10_1016_j_cma_2015_12_023
crossref_primary_10_1115_1_4055835
crossref_primary_10_1007_s00466_015_1166_x
crossref_primary_10_1007_s00466_018_1642_1
crossref_primary_10_1016_j_cma_2024_117618
crossref_primary_10_32604_cmes_2024_046641
crossref_primary_10_1016_j_cma_2018_02_029
crossref_primary_10_1016_j_compfluid_2016_03_020
crossref_primary_10_3389_fphys_2021_787082
crossref_primary_10_1007_s00466_019_01669_4
crossref_primary_10_1016_j_jcp_2023_112174
crossref_primary_10_1016_j_cma_2015_12_015
crossref_primary_10_1007_s00366_025_02116_0
crossref_primary_10_1016_j_cma_2015_12_014
crossref_primary_10_1016_j_camwa_2015_04_002
crossref_primary_10_1007_s00466_017_1394_3
crossref_primary_10_1016_j_jmbbm_2018_09_016
crossref_primary_10_1016_j_cma_2019_01_044
crossref_primary_10_1177_0954406220902163
crossref_primary_10_1007_s00466_018_1557_x
crossref_primary_10_1016_j_compfluid_2016_11_012
crossref_primary_10_1016_j_cma_2022_115667
crossref_primary_10_1063_1_5002120
crossref_primary_10_1016_j_jcp_2021_110786
crossref_primary_10_1016_j_cma_2023_116397
crossref_primary_10_1002_cnm_3754
crossref_primary_10_1016_j_compfluid_2020_104764
crossref_primary_10_1007_s00366_024_01989_x
crossref_primary_10_1002_fld_5018
crossref_primary_10_1016_j_cma_2018_10_002
crossref_primary_10_1142_S0218202519500581
crossref_primary_10_1007_s00466_018_1595_4
crossref_primary_10_1016_j_jcp_2020_109801
crossref_primary_10_1063_5_0198734
crossref_primary_10_1007_s11831_023_09913_0
crossref_primary_10_1016_j_cma_2021_113878
crossref_primary_10_1016_j_cma_2021_113877
crossref_primary_10_1007_s10237_017_0959_6
crossref_primary_10_1016_j_compfluid_2019_05_018
crossref_primary_10_1007_s00466_019_01796_y
crossref_primary_10_1016_j_jcp_2022_111125
crossref_primary_10_1016_j_camwa_2020_01_023
crossref_primary_10_1016_j_compstruc_2022_106934
crossref_primary_10_1016_j_cma_2019_01_030
crossref_primary_10_1016_j_atmosenv_2021_118857
crossref_primary_10_1016_j_jcp_2019_07_052
crossref_primary_10_1016_j_jbiomech_2021_110239
crossref_primary_10_1007_s10973_020_09387_3
crossref_primary_10_1002_nme_5628
crossref_primary_10_1142_S0218202519410057
crossref_primary_10_1016_j_cagd_2016_02_007
crossref_primary_10_1177_0021998318770723
crossref_primary_10_1002_cnm_3767
crossref_primary_10_1016_j_cma_2017_04_002
crossref_primary_10_1016_j_finel_2022_103834
crossref_primary_10_1063_5_0234435
crossref_primary_10_1007_s40819_022_01322_4
crossref_primary_10_1007_s00466_023_02376_x
crossref_primary_10_1007_s00466_022_02189_4
crossref_primary_10_1016_j_camwa_2017_07_006
crossref_primary_10_1016_j_cma_2015_03_010
crossref_primary_10_1007_s00466_019_01722_2
crossref_primary_10_1016_j_cma_2021_113769
crossref_primary_10_1080_17434440_2018_1536427
crossref_primary_10_1007_s11831_018_9287_y
crossref_primary_10_1016_j_mechrescom_2020_103604
crossref_primary_10_1016_j_cma_2016_08_008
crossref_primary_10_1016_j_jmps_2024_105572
crossref_primary_10_1016_j_cma_2020_113182
crossref_primary_10_1007_s00466_022_02217_3
crossref_primary_10_1016_j_cma_2022_114948
crossref_primary_10_1016_j_camwa_2020_03_011
crossref_primary_10_1016_j_cma_2020_113179
crossref_primary_10_1016_j_jcp_2020_109872
crossref_primary_10_1016_j_cma_2020_113298
crossref_primary_10_1016_j_camwa_2021_05_028
crossref_primary_10_1016_j_jcp_2021_110450
crossref_primary_10_1016_j_cma_2018_03_022
crossref_primary_10_1016_j_cma_2019_112748
crossref_primary_10_1016_j_cma_2016_05_031
crossref_primary_10_1016_j_jcp_2015_08_008
crossref_primary_10_1002_fld_5042
crossref_primary_10_1080_17434440_2017_1389274
crossref_primary_10_1016_j_cma_2023_115890
crossref_primary_10_1002_nme_7548
crossref_primary_10_1007_s00211_016_0814_1
crossref_primary_10_1007_s00466_020_01965_4
crossref_primary_10_1016_j_compfluid_2018_04_037
crossref_primary_10_1137_17M1147044
crossref_primary_10_1017_jfm_2019_904
crossref_primary_10_1016_j_cma_2020_113050
crossref_primary_10_1002_cnm_2858
crossref_primary_10_1142_S0218202523500380
crossref_primary_10_1016_j_camwa_2022_03_008
crossref_primary_10_1051_m2an_2019072
crossref_primary_10_1007_s00466_019_01746_8
crossref_primary_10_1016_j_compfluid_2019_05_008
crossref_primary_10_1016_j_cagd_2022_102133
crossref_primary_10_1016_j_cagd_2017_03_002
crossref_primary_10_4208_cicp_OA_2016_0035
crossref_primary_10_1007_s00466_016_1276_0
crossref_primary_10_1016_j_cma_2016_08_029
crossref_primary_10_1016_j_cma_2016_08_027
crossref_primary_10_1016_j_oceaneng_2019_106912
crossref_primary_10_1145_3355089_3356496
crossref_primary_10_1016_j_jfluidstructs_2023_104014
crossref_primary_10_1142_S0218202517500166
crossref_primary_10_3934_mbe_2021193
crossref_primary_10_1007_s00466_021_02004_6
crossref_primary_10_1016_j_cma_2023_116074
crossref_primary_10_1080_15502287_2016_1189463
crossref_primary_10_1016_j_eml_2022_101684
crossref_primary_10_1007_s11831_023_09953_6
crossref_primary_10_1142_S0219455418500700
crossref_primary_10_1007_s00466_021_02039_9
crossref_primary_10_1016_j_finmec_2021_100045
crossref_primary_10_1016_j_cma_2019_04_017
crossref_primary_10_1007_s00466_023_02419_3
crossref_primary_10_1016_j_compfluid_2017_02_006
crossref_primary_10_32604_cmes_2023_022774
crossref_primary_10_1016_j_cma_2018_03_045
crossref_primary_10_1016_j_cma_2016_09_031
crossref_primary_10_1016_j_cma_2018_02_006
crossref_primary_10_1016_j_compstruc_2024_107586
crossref_primary_10_1142_S0218202520500402
crossref_primary_10_1016_j_cma_2017_11_007
crossref_primary_10_1016_j_cma_2016_09_032
crossref_primary_10_1016_j_cma_2018_02_009
crossref_primary_10_1115_1_4054485
crossref_primary_10_1007_s00466_024_02574_1
crossref_primary_10_1186_s40323_018_0113_8
crossref_primary_10_1016_j_cma_2016_08_017
crossref_primary_10_1007_s10439_020_02466_4
crossref_primary_10_1016_j_compbiomed_2017_07_020
crossref_primary_10_1016_j_cma_2024_116942
crossref_primary_10_1016_j_cma_2025_117898
crossref_primary_10_1016_j_jfluidstructs_2018_04_009
crossref_primary_10_1016_j_jcp_2024_113143
crossref_primary_10_1007_s00466_022_02228_0
crossref_primary_10_1016_j_finel_2022_103761
crossref_primary_10_1007_s00466_020_01835_z
crossref_primary_10_1016_j_compfluid_2016_05_006
crossref_primary_10_1016_j_jmbbm_2020_104039
crossref_primary_10_1007_s00466_020_01822_4
crossref_primary_10_1016_j_cma_2017_01_024
crossref_primary_10_1038_s41598_023_46316_4
crossref_primary_10_1051_m2an_2023103
crossref_primary_10_1016_j_compgeo_2022_105007
crossref_primary_10_1016_j_cma_2024_116939
crossref_primary_10_3389_fphys_2020_577188
crossref_primary_10_1016_j_cma_2020_112977
crossref_primary_10_1016_j_camwa_2022_02_007
crossref_primary_10_1016_j_cma_2024_117228
crossref_primary_10_1093_imanum_drac004
crossref_primary_10_1073_pnas_2002821117
crossref_primary_10_1002_fld_4662
crossref_primary_10_1016_j_cma_2021_114232
crossref_primary_10_1016_j_cma_2022_114993
crossref_primary_10_1016_j_compfluid_2020_104465
crossref_primary_10_1007_s00366_024_01947_7
crossref_primary_10_1093_jom_ufad002
crossref_primary_10_1142_S0218202519020020
crossref_primary_10_3934_acse_2025002
crossref_primary_10_1016_j_cma_2024_117582
crossref_primary_10_3390_fluids6020051
crossref_primary_10_1016_j_compbiomed_2020_103922
crossref_primary_10_3390_app10228228
crossref_primary_10_1016_j_advwatres_2024_104730
crossref_primary_10_1007_s00466_019_01809_w
crossref_primary_10_1088_1873_7005_acba44
crossref_primary_10_1016_j_cma_2016_07_006
crossref_primary_10_1038_s41598_018_24469_x
crossref_primary_10_1111_apha_13865
crossref_primary_10_1016_j_compfluid_2021_105162
crossref_primary_10_1016_j_jcp_2019_01_041
crossref_primary_10_1002_nme_5340
crossref_primary_10_1016_j_ijmecsci_2023_108253
crossref_primary_10_1007_s11012_020_01227_w
crossref_primary_10_1002_nme_5207
crossref_primary_10_1007_s00466_024_02534_9
crossref_primary_10_1098_rsfs_2015_0083
crossref_primary_10_1016_j_compfluid_2021_104856
crossref_primary_10_1016_j_compbiomed_2024_108832
crossref_primary_10_1016_j_finel_2019_01_009
crossref_primary_10_1063_5_0152690
crossref_primary_10_1002_gamm_202000004
crossref_primary_10_1007_s00466_023_02432_6
crossref_primary_10_1016_j_cma_2015_06_020
crossref_primary_10_1038_s41598_019_54707_9
crossref_primary_10_1002_cnm_2813
crossref_primary_10_1007_s00366_024_01973_5
crossref_primary_10_1093_europace_euaa398
crossref_primary_10_1002_cnm_2938
crossref_primary_10_1007_s11831_018_9292_1
crossref_primary_10_1007_s00466_020_01910_5
crossref_primary_10_1016_j_finmec_2021_100053
crossref_primary_10_1007_s11831_018_9277_0
crossref_primary_10_1016_j_cma_2022_114852
crossref_primary_10_1016_j_cma_2023_116659
crossref_primary_10_1142_S0218202522500592
crossref_primary_10_1016_j_compfluid_2018_05_024
crossref_primary_10_1016_j_compfluid_2018_05_025
crossref_primary_10_1016_j_cad_2020_102944
crossref_primary_10_1007_s00466_020_01919_w
crossref_primary_10_1016_j_compfluid_2016_12_004
crossref_primary_10_1007_s11831_023_09907_y
crossref_primary_10_1002_nme_6449
crossref_primary_10_1016_j_compfluid_2016_04_006
crossref_primary_10_1016_j_cma_2023_116311
crossref_primary_10_1016_j_cma_2024_117322
crossref_primary_10_1142_S0218202518500537
crossref_primary_10_1016_j_cad_2024_103807
crossref_primary_10_1007_s11012_017_0667_4
crossref_primary_10_1093_jom_ufac015
crossref_primary_10_1002_cnm_2945
crossref_primary_10_3390_fluids7030094
crossref_primary_10_1016_j_cma_2016_07_028
crossref_primary_10_1016_j_compfluid_2018_05_019
crossref_primary_10_1002_nme_5004
crossref_primary_10_1016_j_camwa_2019_07_034
crossref_primary_10_1016_j_cma_2022_115856
crossref_primary_10_1016_j_cma_2022_114648
crossref_primary_10_1007_s00466_019_01813_0
crossref_primary_10_1016_j_cma_2019_05_007
crossref_primary_10_1016_j_compgeo_2022_104637
crossref_primary_10_1002_nme_6556
crossref_primary_10_1007_s00466_021_02074_6
crossref_primary_10_1007_s40304_023_00352_8
crossref_primary_10_1016_j_jbiomech_2018_04_012
crossref_primary_10_1063_5_0156595
crossref_primary_10_1007_s00158_016_1467_5
crossref_primary_10_1007_s00466_020_01852_y
crossref_primary_10_1016_j_jcp_2016_06_041
crossref_primary_10_1007_s00466_022_02200_y
crossref_primary_10_1007_s13239_016_0285_7
crossref_primary_10_1007_s00466_018_1651_0
crossref_primary_10_1137_18M1192779
crossref_primary_10_1016_j_camwa_2020_03_026
crossref_primary_10_1093_jom_ufab033
crossref_primary_10_1109_ACCESS_2020_2997605
crossref_primary_10_1016_j_cma_2020_113507
crossref_primary_10_1115_1_4038885
crossref_primary_10_1016_j_compfluid_2019_104340
crossref_primary_10_1016_j_cma_2022_114637
crossref_primary_10_1016_j_compfluid_2015_07_013
crossref_primary_10_1142_S0218202524400013
crossref_primary_10_1007_s00466_021_02083_5
crossref_primary_10_1016_j_cma_2017_03_029
crossref_primary_10_1142_S0218202522500567
crossref_primary_10_1016_j_compfluid_2022_105358
crossref_primary_10_1016_j_cma_2024_117426
crossref_primary_10_1007_s00466_023_02379_8
crossref_primary_10_1016_j_cma_2021_114396
crossref_primary_10_1016_j_cma_2022_114792
crossref_primary_10_1007_s00466_021_02022_4
crossref_primary_10_1016_j_cad_2024_103709
crossref_primary_10_1152_physrev_00038_2022
crossref_primary_10_1007_s11465_021_0648_0
crossref_primary_10_1007_s11012_020_01157_7
crossref_primary_10_1007_s00466_024_02506_z
crossref_primary_10_1016_j_cma_2021_113977
crossref_primary_10_1063_5_0238868
crossref_primary_10_1016_j_cma_2014_10_055
crossref_primary_10_1016_j_media_2018_04_003
crossref_primary_10_1016_j_cad_2016_08_009
crossref_primary_10_1016_j_jmbbm_2021_104745
crossref_primary_10_1007_s13239_016_0276_8
crossref_primary_10_1016_j_jbiomech_2018_07_018
crossref_primary_10_1016_j_cma_2023_116449
crossref_primary_10_1007_s40997_019_00304_0
crossref_primary_10_1016_j_jcp_2024_113329
crossref_primary_10_1016_j_cma_2016_07_041
crossref_primary_10_1016_j_cma_2021_113738
crossref_primary_10_1007_s00366_022_01669_8
crossref_primary_10_1177_00375497211023573
crossref_primary_10_3389_fbioe_2022_869095
crossref_primary_10_1142_S0218202519410033
crossref_primary_10_1007_s00466_021_02132_z
crossref_primary_10_1016_j_compfluid_2017_04_017
crossref_primary_10_1016_j_compfluid_2020_104432
crossref_primary_10_1007_s10915_016_0201_1
crossref_primary_10_1142_S0218202522500555
crossref_primary_10_1016_j_cad_2021_103093
crossref_primary_10_1016_j_cma_2016_06_003
crossref_primary_10_1007_s00466_020_01840_2
crossref_primary_10_1017_jfm_2020_1090
crossref_primary_10_1007_s00466_016_1368_x
crossref_primary_10_1016_j_cma_2022_115742
crossref_primary_10_1142_S0218202524500404
crossref_primary_10_1016_j_jcp_2018_07_020
crossref_primary_10_1007_s00466_024_02520_1
crossref_primary_10_1146_annurev_fluid_010719_060228
crossref_primary_10_1016_j_cma_2019_07_025
crossref_primary_10_1016_j_compfluid_2015_12_004
crossref_primary_10_1016_j_cma_2023_116477
crossref_primary_10_1142_S021820251941001X
crossref_primary_10_1016_j_finel_2017_12_008
crossref_primary_10_1007_s00466_016_1344_5
crossref_primary_10_1002_cnm_3438
crossref_primary_10_1142_S0218202519410021
crossref_primary_10_1002_nme_6094
crossref_primary_10_1017_flo_2024_5
crossref_primary_10_1007_s00466_020_01941_y
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_094
crossref_primary_10_1007_s10237_017_0919_1
crossref_primary_10_1016_j_compfluid_2017_05_010
crossref_primary_10_1007_s00366_024_02069_w
crossref_primary_10_1016_j_cma_2021_114005
crossref_primary_10_1016_j_jmbbm_2016_04_031
crossref_primary_10_1142_S0218202522500580
crossref_primary_10_1142_S0218202522500579
crossref_primary_10_1016_j_cma_2023_116363
crossref_primary_10_1016_j_cma_2023_116483
crossref_primary_10_1016_j_cma_2024_117634
crossref_primary_10_1016_j_cam_2017_09_034
crossref_primary_10_3390_sym15051064
crossref_primary_10_1002_fld_4375
crossref_primary_10_1007_s11831_022_09838_0
crossref_primary_10_1016_j_cma_2016_06_026
crossref_primary_10_1016_j_matcom_2018_11_014
crossref_primary_10_1016_j_cma_2020_113544
crossref_primary_10_4208_cicp_150115_170415s
crossref_primary_10_1016_j_cma_2019_03_057
crossref_primary_10_1016_j_cma_2021_113960
crossref_primary_10_1007_s10237_015_0732_7
crossref_primary_10_1016_j_cad_2024_103730
crossref_primary_10_3390_fluids4030119
Cites_doi 10.1007/s00466-014-1059-4
10.1016/j.cma.2008.11.020
10.1007/s11831-014-9115-y
10.1137/050630714
10.1016/j.cma.2012.11.009
10.1016/j.cma.2011.10.007
10.1016/S0045-7825(96)01223-6
10.1007/978-3-642-59223-2
10.1152/jappl.1973.34.4.513
10.1016/j.cma.2007.07.016
10.1016/S0065-2156(08)70153-4
10.1016/j.jcp.2010.02.013
10.1016/S0045-7825(00)00211-5
10.1016/0045-7825(85)90030-1
10.1016/0045-7825(81)90049-9
10.1115/1.2900803
10.1016/S0021-9991(03)00310-3
10.1016/S0021-9991(03)00214-6
10.1016/j.cma.2013.01.010
10.1016/j.jcp.2013.01.006
10.1007/s10439-014-0973-0
10.1016/j.cma.2012.09.002
10.1007/BF00535887
10.1016/0002-9149(80)90604-9
10.1007/s00466-007-0193-7
10.1007/s00466-008-0315-x
10.1007/s11831-012-9070-4
10.1002/fld.2454
10.1016/S0045-7825(00)00203-6
10.1016/j.cma.2009.08.013
10.1017/S0022112098008921
10.1016/j.compfluid.2005.07.004
10.1007/BF02736195
10.1006/jcph.1993.1081
10.1007/s00466-012-0686-x
10.1007/s10439-007-9409-4
10.1002/fld.2221
10.1080/10255842.2012.681645
10.1016/0045-7825(82)90128-1
10.1142/S0218202512300025
10.1114/B:ABME.0000049032.51742.10
10.1002/fld.3839
10.1002/fld.1447
10.1006/jcph.2000.6484
10.1016/j.cma.2014.10.010
10.1146/annurev.fluid.37.061903.175743
10.1007/s10439-005-2498-z
10.1016/0021-9991(72)90065-4
10.1161/01.RES.39.1.58
10.1002/fld.1430
10.1016/j.cma.2005.11.011
10.1007/s002110050401
10.1007/s10439-006-9117-5
10.1002/fld.2348
10.1137/0907058
10.1016/j.cma.2004.10.008
10.6028/jres.049.044
10.1115/1.3059565
10.1007/s00466-013-0890-3
10.1016/j.cma.2007.07.002
10.1006/jcph.1997.5716
10.1017/S0022112004000436
10.1007/s00466-011-0599-0
10.1006/jcph.1999.6356
10.1016/0045-7825(92)90060-W
10.1007/s00466-014-1046-9
10.1016/j.cma.2008.02.036
10.1016/j.jcp.2013.05.011
10.1090/S0025-5718-08-02183-2
10.1007/s004660050393
10.1145/882262.882295
10.1152/ajpheart.1978.234.6.H696
10.1016/j.cma.2012.07.021
10.1016/0045-7825(91)90125-P
10.1115/1.2049337
10.1016/S0045-7825(98)80008-X
10.1016/j.compfluid.2011.05.002
10.1115/1.4024415
10.1016/0045-7825(82)90071-8
10.1002/fld.3864
10.1016/j.cma.2013.10.009
10.1016/S0021-9290(02)00056-8
10.1016/j.cma.2008.08.020
10.1016/j.cma.2003.12.044
10.1007/s11517-008-0359-2
10.1161/CIRCULATIONAHA.108.778886
10.1016/j.cam.2006.04.017
10.1016/j.cma.2005.04.014
10.1016/j.cma.2004.09.018
10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
10.1016/j.compfluid.2005.07.012
10.1115/1.1530635
10.1016/j.cma.2003.12.046
10.1016/0045-7825(92)90162-D
10.1016/j.cma.2013.11.002
10.1007/s007910050051
10.1007/s10237-010-0189-7
10.1007/s00466-007-0173-y
10.1007/s00466-008-0299-6
10.1016/j.paerosci.2013.09.003
10.1007/s00466-012-0684-z
10.1016/0045-7825(94)00736-7
10.1016/j.jcp.2008.04.028
10.1007/s00466-013-0935-7
10.1007/s13239-013-0117-y
10.1007/BF01907921
10.1016/j.cma.2009.04.015
10.1016/0045-7825(92)90059-S
10.1109/2.237441
10.1007/BF02995904
10.1016/j.cma.2004.09.014
10.1016/j.jcp.2007.02.017
10.1111/j.1365-2559.2008.03190.x
10.1016/0045-7825(94)00077-8
10.1016/j.cma.2009.06.019
10.1016/j.jcp.2010.01.008
10.1016/j.cma.2012.03.028
10.1016/j.jcp.2004.12.026
10.1007/s00466-012-0772-0
10.1115/1.4005187
10.1017/S0962492902000077
10.1115/1.3057496
10.1007/BF02165003
10.1016/S0362-546X(98)00299-5
10.1016/j.cma.2005.05.050
10.1016/j.athoracsur.2004.06.033
10.1007/BF00927673
10.1016/j.cma.2010.03.029
10.1007/s00466-011-0590-9
10.1038/217086b0
10.1016/j.cma.2007.06.026
10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M
10.1007/s11831-012-9071-3
10.1016/j.cma.2012.03.017
10.1007/s00466-008-0261-7
10.1063/1.1332391
10.1002/cnm.1485
10.1016/S0045-7825(98)00079-6
10.1002/fld.2359
10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2014 Elsevier B.V. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2014 Elsevier B.V. All rights reserved. 2014
DBID AAYXX
CITATION
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.cma.2014.10.040
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Civil Engineering Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 1053
ExternalDocumentID oai:pubmedcentral.nih.gov:4274080
PMC4274080
25541566
10_1016_j_cma_2014_10_040
S0045782514004101
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL108330
– fundername: NHLBI NIH HHS
  grantid: R01 HL119297
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
NPM
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203
IEDL.DBID .~1
ISSN 0045-7825
1879-2138
IngestDate Wed Oct 29 11:58:36 EDT 2025
Tue Sep 30 16:23:16 EDT 2025
Mon Sep 29 06:24:36 EDT 2025
Mon Sep 29 06:27:44 EDT 2025
Thu Apr 03 07:08:00 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Wed Oct 01 04:45:36 EDT 2025
Fri Feb 23 02:24:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Isogeometric analysis
Fluid–structure interaction
Bioprosthetic heart valve
Weakly enforced boundary conditions
Nitsche’s method
Immersogeometric analysis
Penalty-based contact
B-splines and NURBS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1755-8807
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4274080
PMID 25541566
PQID 1685821969
PQPubID 23500
PageCount 49
ParticipantIDs unpaywall_primary_10_1016_j_cma_2014_10_040
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4274080
proquest_miscellaneous_1826609727
proquest_miscellaneous_1685821969
pubmed_primary_25541566
crossref_primary_10_1016_j_cma_2014_10_040
crossref_citationtrail_10_1016_j_cma_2014_10_040
elsevier_sciencedirect_doi_10_1016_j_cma_2014_10_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationTitleAlternate Comput Methods Appl Mech Eng
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hughes, Mazzei, Jansen (br000355) 2000; 3
Kiendl (br000700) 2011
Wriggers (br000245) 2006
Wu, Wen, Yen, Weng, Wang (br000595) 2004; 515
Hughes (br000545) 1987
Sotiropoulos, Yang (br000220) 2014; 65
Sun, Abad, Sacks (br000020) 2005; 127
Hallquist, Goudreau, Benson (br000235) 1985; 51
Trefethen (br000615) 2012
Laursen (br000250) 2003
Stein, Tezduyar, Benney (br000745) 2004; 193
Hughes, Mazzei, Oberai, Wray (br000415) 2001; 13
Zhang, Gerstenberger, Wang, Liu (br000190) 2004; 193
Bazilevs, Hughes (br000325) 2007; 36
Hesch, Gil, Arranz Carreño, Bonet (br000205) 2012; 247–248
Sabbah, Stein (br000790) 1978; 234
Rüberg, Cirak (br000215) 2014; 74
Bazilevs, Hsu, Takizawa, Tezduyar (br000395) 2012; 22
Russell, Wang (br000590) 2003; 191
Stadler (br000660) 2007; 203
Court, Fournié, Lozinski (br000635) 2014; 74
Borazjani, Ge, Sotiropoulos (br000300) 2008; 227
Powell (br000645) 1969
Tezduyar, Sathe (br000120) 2007; 54
Yu (br000195) 2005; 207
Sederberg, Zheng, Bakenov, Nasri (br000265) 2003; 22
Cheng, Lai, Chandran (br000180) 2004; 32
Hsu, Kamensky, Bazilevs, Sacks, Hughes (br000830) 2014; 54
Wick (br000210) 2013; 255
Bazilevs, Hsu, Zhang, Wang, Kvamsdal, Hentschel, Isaksen (br000070) 2010; 9
Bazilevs, Akkerman (br000340) 2010; 229
Aggarwal, Ferrari, Joyce, Daniels, Sainger, Gorman, Gorman, Sacks (br000750) 2014; 42
Dimitri, De Lorenzis, Scott, Wriggers, Taylor, Zavarise (br000755) 2014; 269
Goldstein, Handler, Sirovich (br000675) 1993; 105
Goldstein, Tuan (br000680) 1998; 363
Leo, Dasi, Carberry, Simon, Yoganathan (br000805) 2006; 34
Felner (br000785) 1990
Evans, Hughes (br000825) 2013; 241
Tezduyar, Sathe, Pausewang, Schwaab, Christopher, Crabtree (br000115) 2008; 43
Wick (br000455) 2014; 53
Evans, Hughes (br000445) 2013; 123
Hughes, Cottrell, Bazilevs (br000255) 2005; 194
Fadlun, Verzicco, Orlandi, Mohd-Yusof (br000685) 2000; 161
Hsu, Akkerman, Bazilevs (br000565) 2011; 49
Torii, Oshima, Kobayashi, Takagi, Tezduyar (br000065) 2009; 198
Johnson, Tezduyar (br000145) 1997; 24
Auricchio, Conti, Ferrara, Morganti, Reali (br000025) 2014; 17
Figueroa, Vignon-Clementel, Jansen, Hughes, Taylor (br000060) 2006; 195
Bazilevs, Michler, Calo, Hughes (br000335) 2010; 199
Hartmann (br000515) 1986; 56
Bacuta (br000655) 2006; 44
Bazilevs, Gohean, Hughes, Moser, Zhang (br000495) 2009; 198
Leo, Simon, Carberry, Lee, Yoganathan (br000800) 2005; 33
Tezduyar, Osawa (br000410) 2000; 190
Tezduyar, Takizawa, Moorman, Wright, Christopher (br000450) 2010; 64
Takizawa, Bazilevs, Tezduyar (br000075) 2012; 19
van Brummelen, van~der Zee, Garg, Prudhomme (br000610) 2011; 79
Sugimoto, Sacks (br000795) 2013; 4
Johnson, Tezduyar (br000160) 1999; 23
Gil, Arranz Carreño, Bonet, Hassan (br000725) 2013; 250
Rosencranz, Bogen (br000770) 2006; 125
Harari, Hughes (br000480) 1992; 97
Bazilevs, Takizawa, Tezduyar (br000140) 2013
Tezduyar (br000405) 1992; 28
Hsu, Bazilevs, Calo, Tezduyar, Hughes (br000425) 2010; 199
van Brummelen (br000720) 2009; 76
Westerhof, Lankhaar, Westerhof (br000815) 2009; 47
Schoen, Levy (br000005) 2005; 79
Stein, Tezduyar, Benney (br000740) 2003; 70
J. Benk, M. Ulbrich, M. Mehl, The Nitsche method of the Navier–Stokes equations for immersed and moving boundaries, in: Proceedings of the Seventh International Conference on Computational Fluid Dynamics, ICCFD7, International Conference on Computational Fluid Dynamics, 2012.
Rüberg, Cirak (br000605) 2012; 209–212
Morganti, Auricchio, Benson, Gambarin, Hartmann, Hughes, Reali (br000380) 2015; 284
Uther, Peterson, Shabetai, Braunwald (br000690) 1973; 34
Peskin (br000285) 1972; 10
Esmaily-Moghadam, Bazilevs, Hsia, Vignon-Clementel, Marsden (br000500) 2011; 48
Johnson, Tezduyar (br000155) 1997; 145
Kenner (br000765) 1989; 84
Chung, Hulbert (br000555) 1993; 60
Kiendl, Bazilevs, Hsu, Wüchner, Bletzinger (br000695) 2010; 199
Juntunen, Stenberg (br000320) 2009; 78
Rispoli, Corsini, Tezduyar (br000465) 2007; 36
Johnson (br000430) 1987
Sathe, Tezduyar (br000165) 2008; 43
Mittal, Raghuvanshi (br000580) 2001; 35
Wriggers (br000240) 1995; 2
Hsu, Akkerman, Bazilevs (br000345) 2012; 50
Bazilevs, Michler, Calo, Hughes (br000330) 2007; 196
Nitsche (br000385) 1971; 36
Johnson, Tezduyar (br000735) 1994; 119
Tezduyar, Aliabadi, Behr, Johnson, Mittal (br000730) 1993; 26
Pibarot, Dumesnil (br000010) 2009; 119
Babuška (br000505) 1971; 16
P.R. Stay, The definition and ray-tracing of B-spline objects in a combinatorial solid geometric modeling system, in: Fourth USENIX Computer Graphics Workshop, USENIX Association, 1987.
Takizawa, Tezduyar, Buscher, Asada (br000175) 2014; 54
de~Hart (br000310) 2002
Lima~E Silva, Silveira-Neto, Damasceno (br000585) 2003; 189
Embar, Dolbow, Harari (br000485) 2010; 83
Donea, Huerta, Ponthot, Rodriguez-Ferran (br000045) 2004; vol. 3
Tezduyar, Behr, Liou (br000050) 1992; 94
Hughes, Feijóo, Mazzei, Quincy (br000350) 1998; 166
Ge, Sotiropoulos (br000295) 2007; 225
Hughes, Scovazzi, Franca (br000420) 2004; vol. 3
Hestenes (br000640) 1969; 4
Bellhouse, Bellhouse (br000775) 1968; 217
Torii, Oshima, Kobayashi, Takagi, Tezduyar (br000085) 2006; 195
Peskin (br000225) 2002; 11
Tezduyar, Behr, Mittal, Liou (br000055) 1992; 94
Hughes, Liu, Zimmermann (br000035) 1981; 29
Kim, Lu, Sacks, Chandran (br000030) 2008; 36
Borazjani (br000290) 2013; 257
Kiendl, Bletzinger, Linhard, Wüchner (br000370) 2009; 198
Donea, Giuliani, Halleux (br000040) 1982; 33
Ye, Mittal, Udaykumar, Shyy (br000575) 1999; 156
Behr, Hastreiter, Mittal, Tezduyar (br000570) 1995; 123
Höllig (br000390) 2003
Bazilevs, Hsu, Scott (br000315) 2012; 249–252
Takizawa, Moorman, Wright, Spielman, Tezduyar (br000090) 2011; 65
Hsu, Bazilevs (br000130) 2012; 50
Siddiqui, Abraham, Butany (br000015) 2009; 55
Ern, Guermond (br000440) 2004
Uzawa, Arrow (br000650) 1989
Long, Hsu, Bazilevs, Feinstein, Marsden (br000080) 2012; 28
Bazilevs, Calo, Cottrel, Hughes, Reali, Scovazzi (br000365) 2007; 197
De~Lorenzis, Temizer, Wriggers, Zavarise (br000375) 2011; 87
Düster, Parvizian, Yang, Rank (br000525) 2008; 197
Holzapfel (br000705) 2000
Tezduyar, Sathe, Keedy, Stein (br000110) 2006; 195
Chiu, Lin, Sheu (br000600) 2010; 229
Chorin (br000670) 1967; 135
Korobenko, Hsu, Akkerman, Bazilevs (br000135) 2014; 81
Saad, Schultz (br000710) 1986; 7
Stein, Sabbah (br000820) 1976; 39
Schillinger, Dedè, Scott, Evans, Borden, Rank, Hughes (br000275) 2012; 249–252
Rispoli, Saavedra, Menichini, Tezduyar (br000475) 2009; 76
Lai, Chandran, Lemmon (br000185) 2002; 35
Sauer, De Lorenzis (br000760) 2013; 253
Schillinger, Ruess (br000535) 2014
Takizawa, Wright, Moorman, Tezduyar (br000095) 2011; 65
Takizawa, Tezduyar (br000105) 2012; 19
Takizawa, Tezduyar, Buscher, Asada (br000170) 2013; 54
Barbosa, Hughes (br000630) 1991; 85
Brooks, Hughes (br000400) 1982; 32
Brezzi (br000510) 1974; 8
Ruess, Schillinger, Özcan, Rank (br000490) 2014; 269
Mittal, Iaccarino (br000230) 2005; 37
Akkerman, Bazilevs, Calo, Hughes, Hulshoff (br000360) 2008; 41
Brenner, Scott (br000435) 2002
Baaijens (br000305) 2001; 35
Tezduyar (br000625) 2006; 195
Jansen, Whiting, Hulbert (br000560) 2000; 190
Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (br000125) 2011; 65
Bazilevs, Calo, Hughes, Zhang (br000270) 2008; 43
Taylor, Hughes, Zarins (br000460) 1998; 158
Parvizian, Düster, Rank (br000540) 2007; 41
Vignon-Clementel, Figueroa, Jansen, Taylor (br000780) 2006; 195
Tezduyar, Aliabadi, Behr, Johnson, Mittal (br000150) 1995
Schillinger, Ruess, Zander, Bazilevs, Düster, Rank (br000530) 2012; 50
Hestenes, Stiefel (br000715) 1952; 49
Takizawa, Spielman, Tezduyar (br000100) 2011; 48
Gerstenberger, Wall (br000200) 2008; 197
Piegl, Tiller (br000260) 1997
Ruess, Schillinger, Bazilevs, Varduhn, Rank (br000280) 2013; 95
Angot, Bruneau, Fabrie (br000620) 1999; 81
Rispoli, Saavedra, Corsini, Tezduyar (br000470) 2007; 54
Ito, Kunisch (br000665) 2000; 41
Stein, Sabbah, Lakier, Goldstein (br000810) 1980; 46
Tezduyar (10.1016/j.cma.2014.10.040_br000410) 2000; 190
Felner (10.1016/j.cma.2014.10.040_br000785) 1990
Juntunen (10.1016/j.cma.2014.10.040_br000320) 2009; 78
Brenner (10.1016/j.cma.2014.10.040_br000435) 2002
Peskin (10.1016/j.cma.2014.10.040_br000285) 1972; 10
Kim (10.1016/j.cma.2014.10.040_br000030) 2008; 36
Dimitri (10.1016/j.cma.2014.10.040_br000755) 2014; 269
Wick (10.1016/j.cma.2014.10.040_br000210) 2013; 255
Chiu (10.1016/j.cma.2014.10.040_br000600) 2010; 229
Kiendl (10.1016/j.cma.2014.10.040_br000695) 2010; 199
Sabbah (10.1016/j.cma.2014.10.040_br000790) 1978; 234
Bazilevs (10.1016/j.cma.2014.10.040_br000270) 2008; 43
Korobenko (10.1016/j.cma.2014.10.040_br000135) 2014; 81
Angot (10.1016/j.cma.2014.10.040_br000620) 1999; 81
Hsu (10.1016/j.cma.2014.10.040_br000830) 2014; 54
Düster (10.1016/j.cma.2014.10.040_br000525) 2008; 197
Vignon-Clementel (10.1016/j.cma.2014.10.040_br000780) 2006; 195
Goldstein (10.1016/j.cma.2014.10.040_br000675) 1993; 105
Mittal (10.1016/j.cma.2014.10.040_br000230) 2005; 37
Embar (10.1016/j.cma.2014.10.040_br000485) 2010; 83
Ye (10.1016/j.cma.2014.10.040_br000575) 1999; 156
Chorin (10.1016/j.cma.2014.10.040_br000670) 1967; 135
Kenner (10.1016/j.cma.2014.10.040_br000765) 1989; 84
Rosencranz (10.1016/j.cma.2014.10.040_br000770) 2006; 125
Barbosa (10.1016/j.cma.2014.10.040_br000630) 1991; 85
Bazilevs (10.1016/j.cma.2014.10.040_br000315) 2012; 249–252
Kiendl (10.1016/j.cma.2014.10.040_br000370) 2009; 198
Saad (10.1016/j.cma.2014.10.040_br000710) 1986; 7
Johnson (10.1016/j.cma.2014.10.040_br000155) 1997; 145
Kiendl (10.1016/j.cma.2014.10.040_br000700) 2011
Uzawa (10.1016/j.cma.2014.10.040_br000650) 1989
Ruess (10.1016/j.cma.2014.10.040_br000490) 2014; 269
van Brummelen (10.1016/j.cma.2014.10.040_br000610) 2011; 79
Hsu (10.1016/j.cma.2014.10.040_br000345) 2012; 50
Hsu (10.1016/j.cma.2014.10.040_br000425) 2010; 199
Rispoli (10.1016/j.cma.2014.10.040_br000465) 2007; 36
Leo (10.1016/j.cma.2014.10.040_br000805) 2006; 34
Gil (10.1016/j.cma.2014.10.040_br000725) 2013; 250
Schoen (10.1016/j.cma.2014.10.040_br000005) 2005; 79
Tezduyar (10.1016/j.cma.2014.10.040_br000150) 1995
Rüberg (10.1016/j.cma.2014.10.040_br000215) 2014; 74
Hsu (10.1016/j.cma.2014.10.040_br000565) 2011; 49
Bazilevs (10.1016/j.cma.2014.10.040_br000325) 2007; 36
Stein (10.1016/j.cma.2014.10.040_br000810) 1980; 46
Hesch (10.1016/j.cma.2014.10.040_br000205) 2012; 247–248
Jansen (10.1016/j.cma.2014.10.040_br000560) 2000; 190
Harari (10.1016/j.cma.2014.10.040_br000480) 1992; 97
Bazilevs (10.1016/j.cma.2014.10.040_br000340) 2010; 229
Johnson (10.1016/j.cma.2014.10.040_br000145) 1997; 24
Sathe (10.1016/j.cma.2014.10.040_br000165) 2008; 43
Bazilevs (10.1016/j.cma.2014.10.040_br000070) 2010; 9
Torii (10.1016/j.cma.2014.10.040_br000065) 2009; 198
10.1016/j.cma.2014.10.040_br000520
Evans (10.1016/j.cma.2014.10.040_br000825) 2013; 241
Babuška (10.1016/j.cma.2014.10.040_br000505) 1971; 16
Hughes (10.1016/j.cma.2014.10.040_br000035) 1981; 29
de~Hart (10.1016/j.cma.2014.10.040_br000310) 2002
Höllig (10.1016/j.cma.2014.10.040_br000390) 2003
Ern (10.1016/j.cma.2014.10.040_br000440) 2004
Hestenes (10.1016/j.cma.2014.10.040_br000640) 1969; 4
Borazjani (10.1016/j.cma.2014.10.040_br000300) 2008; 227
Donea (10.1016/j.cma.2014.10.040_br000045) 2004; vol. 3
Hsu (10.1016/j.cma.2014.10.040_br000130) 2012; 50
Takizawa (10.1016/j.cma.2014.10.040_br000095) 2011; 65
Takizawa (10.1016/j.cma.2014.10.040_br000075) 2012; 19
Esmaily-Moghadam (10.1016/j.cma.2014.10.040_br000500) 2011; 48
Schillinger (10.1016/j.cma.2014.10.040_br000530) 2012; 50
Russell (10.1016/j.cma.2014.10.040_br000590) 2003; 191
Bellhouse (10.1016/j.cma.2014.10.040_br000775) 1968; 217
Rispoli (10.1016/j.cma.2014.10.040_br000475) 2009; 76
Tezduyar (10.1016/j.cma.2014.10.040_br000730) 1993; 26
Johnson (10.1016/j.cma.2014.10.040_br000160) 1999; 23
Hestenes (10.1016/j.cma.2014.10.040_br000715) 1952; 49
Hughes (10.1016/j.cma.2014.10.040_br000420) 2004; vol. 3
Stein (10.1016/j.cma.2014.10.040_br000745) 2004; 193
Long (10.1016/j.cma.2014.10.040_br000080) 2012; 28
Torii (10.1016/j.cma.2014.10.040_br000085) 2006; 195
Evans (10.1016/j.cma.2014.10.040_br000445) 2013; 123
Peskin (10.1016/j.cma.2014.10.040_br000225) 2002; 11
Sederberg (10.1016/j.cma.2014.10.040_br000265) 2003; 22
Bazilevs (10.1016/j.cma.2014.10.040_br000395) 2012; 22
Brooks (10.1016/j.cma.2014.10.040_br000400) 1982; 32
Takizawa (10.1016/j.cma.2014.10.040_br000100) 2011; 48
Bacuta (10.1016/j.cma.2014.10.040_br000655) 2006; 44
Tezduyar (10.1016/j.cma.2014.10.040_br000055) 1992; 94
Zhang (10.1016/j.cma.2014.10.040_br000190) 2004; 193
Auricchio (10.1016/j.cma.2014.10.040_br000025) 2014; 17
Tezduyar (10.1016/j.cma.2014.10.040_br000120) 2007; 54
Stein (10.1016/j.cma.2014.10.040_br000740) 2003; 70
Hughes (10.1016/j.cma.2014.10.040_br000350) 1998; 166
Powell (10.1016/j.cma.2014.10.040_br000645) 1969
Laursen (10.1016/j.cma.2014.10.040_br000250) 2003
Parvizian (10.1016/j.cma.2014.10.040_br000540) 2007; 41
Lima~E Silva (10.1016/j.cma.2014.10.040_br000585) 2003; 189
Rüberg (10.1016/j.cma.2014.10.040_br000605) 2012; 209–212
Gerstenberger (10.1016/j.cma.2014.10.040_br000200) 2008; 197
Baaijens (10.1016/j.cma.2014.10.040_br000305) 2001; 35
Stein (10.1016/j.cma.2014.10.040_br000820) 1976; 39
Bazilevs (10.1016/j.cma.2014.10.040_br000330) 2007; 196
Ito (10.1016/j.cma.2014.10.040_br000665) 2000; 41
Wriggers (10.1016/j.cma.2014.10.040_br000240) 1995; 2
Uther (10.1016/j.cma.2014.10.040_br000690) 1973; 34
Bazilevs (10.1016/j.cma.2014.10.040_br000495) 2009; 198
Holzapfel (10.1016/j.cma.2014.10.040_br000705) 2000
Rispoli (10.1016/j.cma.2014.10.040_br000470) 2007; 54
Tezduyar (10.1016/j.cma.2014.10.040_br000450) 2010; 64
Takizawa (10.1016/j.cma.2014.10.040_br000090) 2011; 65
Hughes (10.1016/j.cma.2014.10.040_br000255) 2005; 194
Hughes (10.1016/j.cma.2014.10.040_br000545) 1987
10.1016/j.cma.2014.10.040_br000550
Tezduyar (10.1016/j.cma.2014.10.040_br000625) 2006; 195
Goldstein (10.1016/j.cma.2014.10.040_br000680) 1998; 363
Bazilevs (10.1016/j.cma.2014.10.040_br000140) 2013
Sauer (10.1016/j.cma.2014.10.040_br000760) 2013; 253
Trefethen (10.1016/j.cma.2014.10.040_br000615) 2012
Pibarot (10.1016/j.cma.2014.10.040_br000010) 2009; 119
Johnson (10.1016/j.cma.2014.10.040_br000735) 1994; 119
Morganti (10.1016/j.cma.2014.10.040_br000380) 2015; 284
Nitsche (10.1016/j.cma.2014.10.040_br000385) 1971; 36
Schillinger (10.1016/j.cma.2014.10.040_br000275) 2012; 249–252
Tezduyar (10.1016/j.cma.2014.10.040_br000110) 2006; 195
Piegl (10.1016/j.cma.2014.10.040_br000260) 1997
Bazilevs (10.1016/j.cma.2014.10.040_br000335) 2010; 199
Schillinger (10.1016/j.cma.2014.10.040_br000535) 2014
Wu (10.1016/j.cma.2014.10.040_br000595) 2004; 515
Takizawa (10.1016/j.cma.2014.10.040_br000170) 2013; 54
Johnson (10.1016/j.cma.2014.10.040_br000430) 1987
Stadler (10.1016/j.cma.2014.10.040_br000660) 2007; 203
Mittal (10.1016/j.cma.2014.10.040_br000580) 2001; 35
Brezzi (10.1016/j.cma.2014.10.040_br000510) 1974; 8
Tezduyar (10.1016/j.cma.2014.10.040_br000050) 1992; 94
Sotiropoulos (10.1016/j.cma.2014.10.040_br000220) 2014; 65
Sun (10.1016/j.cma.2014.10.040_br000020) 2005; 127
Borazjani (10.1016/j.cma.2014.10.040_br000290) 2013; 257
Cheng (10.1016/j.cma.2014.10.040_br000180) 2004; 32
Sugimoto (10.1016/j.cma.2014.10.040_br000795) 2013; 4
Behr (10.1016/j.cma.2014.10.040_br000570) 1995; 123
Lai (10.1016/j.cma.2014.10.040_br000185) 2002; 35
Ruess (10.1016/j.cma.2014.10.040_br000280) 2013; 95
Takizawa (10.1016/j.cma.2014.10.040_br000105) 2012; 19
Ge (10.1016/j.cma.2014.10.040_br000295) 2007; 225
Figueroa (10.1016/j.cma.2014.10.040_br000060) 2006; 195
Hartmann (10.1016/j.cma.2014.10.040_br000515) 1986; 56
Wick (10.1016/j.cma.2014.10.040_br000455) 2014; 53
Bazilevs (10.1016/j.cma.2014.10.040_br000125) 2011; 65
Akkerman (10.1016/j.cma.2014.10.040_br000360) 2008; 41
Hughes (10.1016/j.cma.2014.10.040_br000415) 2001; 13
Leo (10.1016/j.cma.2014.10.040_br000800) 2005; 33
Siddiqui (10.1016/j.cma.2014.10.040_br000015) 2009; 55
De~Lorenzis (10.1016/j.cma.2014.10.040_br000375) 2011; 87
Hughes (10.1016/j.cma.2014.10.040_br000355) 2000; 3
Fadlun (10.1016/j.cma.2014.10.040_br000685) 2000; 161
Donea (10.1016/j.cma.2014.10.040_br000040) 1982; 33
Westerhof (10.1016/j.cma.2014.10.040_br000815) 2009; 47
Court (10.1016/j.cma.2014.10.040_br000635) 2014; 74
van Brummelen (10.1016/j.cma.2014.10.040_br000720) 2009; 76
Takizawa (10.1016/j.cma.2014.10.040_br000175) 2014; 54
Taylor (10.1016/j.cma.2014.10.040_br000460) 1998; 158
Yu (10.1016/j.cma.2014.10.040_br000195) 2005; 207
Wriggers (10.1016/j.cma.2014.10.040_br000245) 2006
Tezduyar (10.1016/j.cma.2014.10.040_br000115) 2008; 43
Tezduyar (10.1016/j.cma.2014.10.040_br000405) 1992; 28
Chung (10.1016/j.cma.2014.10.040_br000555) 1993; 60
Hallquist (10.1016/j.cma.2014.10.040_br000235) 1985; 51
Bazilevs (10.1016/j.cma.2014.10.040_br000365) 2007; 197
Aggarwal (10.1016/j.cma.2014.10.040_br000750) 2014; 42
15734452 - Ann Thorac Surg. 2005 Mar;79(3):1072-80
19237674 - Circulation. 2009 Feb 24;119(7):1034-48
7386393 - Am J Cardiol. 1980 Jul;46(1):48-52
776437 - Circ Res. 1976 Jul;39(1):58-65
5635642 - Nature. 1968 Jan 6;217(5123):86-7
20981246 - J Comput Phys. 2008 Aug 10;227(16):7587-7620
4698610 - J Appl Physiol. 1973 Apr;34(4):513-8
15636108 - Ann Biomed Eng. 2004 Nov;32(11):1471-83
16830959 - Am J Clin Pathol. 2006 Jun;125 Suppl:S78-86
2658951 - Basic Res Cardiol. 1989 Mar-Apr;84(2):111-24
25099455 - Int J Numer Method Biomed Eng. 2012 May;28(5):513-27
18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41
15909649 - Ann Biomed Eng. 2005 Apr;33(4):429-43
665783 - Am J Physiol. 1978 Jun;234(6):H696-700
23646095 - Cardiovasc Eng Technol. 2013 Mar;4(1):2-15
16783650 - Ann Biomed Eng. 2006 Jun;34(6):936-52
22553900 - Comput Methods Biomech Biomed Engin. 2014;17 (3):277-85
16438226 - J Biomech Eng. 2005 Nov;127(6):905-14
12052390 - J Biomech. 2002 Jul;35(7):881-92
19694820 - Histopathology. 2009 Aug;55(2):135-44
19194533 - J Comput Phys. 2007 Aug;225(2):1782-1809
24488233 - Ann Biomed Eng. 2014 May;42(5):986-98
20111978 - Biomech Model Mechanobiol. 2010 Aug;9(4):481-98
25580046 - Comput Mech. 2014 Oct;54(4):1055-1071
18046648 - Ann Biomed Eng. 2008 Feb;36(2):262-75
References_xml – volume: 32
  start-page: 1471
  year: 2004
  end-page: 1483
  ident: br000180
  article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 9
  year: 1971
  end-page: 15
  ident: br000385
  article-title: Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind
  publication-title: Abh. Math. Univ. Hamburg
– volume: 209–212
  start-page: 266
  year: 2012
  end-page: 283
  ident: br000605
  article-title: Subdivision-stabilised immersed B-spline finite elements for moving boundary flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 35
  start-page: 421
  year: 2001
  end-page: 447
  ident: br000580
  article-title: Control of vortex shedding behind circular cylinder for flows at low reynolds numbers
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 249–252
  start-page: 116
  year: 2012
  end-page: 150
  ident: br000275
  article-title: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 269
  start-page: 46
  year: 2014
  end-page: 731
  ident: br000490
  article-title: Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 50
  start-page: 445
  year: 2012
  end-page: 478
  ident: br000530
  article-title: Small and large deformation analysis with the
  publication-title: Comput. Mech.
– year: 2014
  ident: br000535
  article-title: The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models
  publication-title: Arch. Comput. Methods Eng.
– volume: 84
  start-page: 111
  year: 1989
  end-page: 124
  ident: br000765
  article-title: The measurement of blood density and its meaning
  publication-title: Basic Res. Cardiology
– year: 2011
  ident: br000700
  article-title: Isogeometric analysis and shape optimal design of shell structures
– volume: 225
  start-page: 1782
  year: 2007
  end-page: 1809
  ident: br000295
  article-title: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 12
  year: 2007
  end-page: 26
  ident: br000325
  article-title: Weak imposition of Dirichlet boundary conditions in fluid mechanics
  publication-title: Comput. & Fluids
– volume: 74
  start-page: 73
  year: 2014
  end-page: 99
  ident: br000635
  article-title: A fictitious domain approach for the Stokes problem based on the extended finite element method
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 41
  start-page: 591
  year: 2000
  end-page: 616
  ident: br000665
  article-title: Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces
  publication-title: Nonlinear Anal. TMA
– volume: 269
  start-page: 394
  year: 2014
  end-page: 414
  ident: br000755
  article-title: Isogeometric large deformation frictionless contact using T-splines
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 234
  start-page: H696
  year: 1978
  end-page: H700
  ident: br000790
  article-title: Relation of the second sound to diastolic vibration of the closed aortic valve
  publication-title: Am. J. Physiol. Heart Circulat. Physiol.
– volume: 4
  start-page: 303
  year: 1969
  end-page: 320
  ident: br000640
  article-title: Multiplier and gradient methods
  publication-title: J. Optim. Theory Appl.
– volume: 197
  start-page: 1699
  year: 2008
  end-page: 1714
  ident: br000200
  article-title: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 16
  start-page: 322
  year: 1971
  end-page: 333
  ident: br000505
  article-title: Error-bounds for finite element method
  publication-title: Numer. Math.
– year: 1990
  ident: br000785
  article-title: The second heart sound
  publication-title: Clinical Methods: The History, Physical, and Laboratory
– volume: 195
  start-page: 2002
  year: 2006
  end-page: 2027
  ident: br000110
  article-title: Space–time finite element techniques for computation of fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 249–252
  start-page: 28
  year: 2012
  end-page: 41
  ident: br000315
  article-title: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  ident: br000715
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 79
  start-page: 010904
  year: 2011
  ident: br000610
  article-title: Flux evaluation in primal and dual boundary-coupled problems
  publication-title: J. Appl. Mech.
– volume: 17
  start-page: 277
  year: 2014
  end-page: 285
  ident: br000025
  article-title: Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 36
  start-page: 121
  year: 2007
  end-page: 126
  ident: br000465
  article-title: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)
  publication-title: Comput. & Fluids
– volume: 119
  start-page: 73
  year: 1994
  end-page: 94
  ident: br000735
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 158
  start-page: 155
  year: 1998
  end-page: 196
  ident: br000460
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2002
  ident: br000435
  article-title: The Mathematical Theory of Finite Element Methods
– volume: 217
  start-page: 86
  year: 1968
  end-page: 87
  ident: br000775
  article-title: Mechanism of closure of the aortic valve
  publication-title: Nature
– year: 2004
  ident: br000440
  article-title: Theory and Practice of Finite Elements
– volume: 515
  start-page: 233
  year: 2004
  end-page: 260
  ident: br000595
  article-title: Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number
  publication-title: J. Fluid Mech.
– volume: 29
  start-page: 329
  year: 1981
  end-page: 349
  ident: br000035
  article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 51
  year: 2008
  end-page: 60
  ident: br000165
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: Contact problems
  publication-title: Comput. Mech.
– volume: 83
  start-page: 877
  year: 2010
  end-page: 898
  ident: br000485
  article-title: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements
  publication-title: Int. J. Numer. Anal. Model
– volume: 65
  start-page: 286
  year: 2011
  end-page: 307
  ident: br000095
  article-title: Fluid–structure interaction modeling of parachute clusters
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 3
  start-page: 47
  year: 2000
  end-page: 59
  ident: br000355
  article-title: Large-eddy simulation and the variational multiscale method
  publication-title: Comput. Vis. Sci.
– year: 2000
  ident: br000705
  article-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering
– volume: 161
  start-page: 35
  year: 2000
  end-page: 60
  ident: br000685
  article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
  publication-title: J. Comput. Phys.
– volume: 199
  start-page: 2403
  year: 2010
  end-page: 2416
  ident: br000695
  article-title: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 50
  start-page: 499
  year: 2012
  end-page: 511
  ident: br000345
  article-title: Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions
  publication-title: Comput. Mech.
– volume: 76
  start-page: 021206
  year: 2009
  ident: br000720
  article-title: Added mass effects of compressible and incompressible flows in fluid–structure interaction
  publication-title: J. Appl. Mech.
– volume: 65
  start-page: 271
  year: 2011
  end-page: 285
  ident: br000090
  article-title: Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 49
  start-page: 93
  year: 2011
  end-page: 100
  ident: br000565
  article-title: High-performance computing of wind turbine aerodynamics using isogeometric analysis
  publication-title: Comput. & Fluids
– volume: 95
  start-page: 811
  year: 2013
  end-page: 846
  ident: br000280
  article-title: Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method
  publication-title: Int. J. Numer. Anal. Model
– volume: 247–248
  start-page: 51
  year: 2012
  end-page: 64
  ident: br000205
  article-title: On continuum immersed strategies for fluid–structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 94
  start-page: 339
  year: 1992
  end-page: 351
  ident: br000050
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: I.~The concept and the preliminary numerical tests
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 50
  start-page: 821
  year: 2012
  end-page: 833
  ident: br000130
  article-title: Fluid–structure interaction modeling of wind turbines: simulating the full machine
  publication-title: Comput. Mech.
– volume: 255
  start-page: 14
  year: 2013
  end-page: 26
  ident: br000210
  article-title: Fully Eulerian fluid–structure interaction for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 196
  start-page: 4853
  year: 2007
  end-page: 4862
  ident: br000330
  article-title: Weak Dirichlet boundary conditions for wall-bounded turbulent flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 207
  start-page: 1
  year: 2005
  end-page: 27
  ident: br000195
  article-title: A DLM/FD method for fluid/flexible-body interactions
  publication-title: J. Comput. Phys.
– volume: 191
  start-page: 177
  year: 2003
  end-page: 205
  ident: br000590
  article-title: A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow
  publication-title: J. Comput. Phys.
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  ident: br000710
  article-title: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 4
  start-page: 2
  year: 2013
  end-page: 15
  ident: br000795
  article-title: Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape
  publication-title: Cardiovasc. Eng. Technol.
– volume: 193
  start-page: 2019
  year: 2004
  end-page: 2032
  ident: br000745
  article-title: Automatic mesh update with the solid-extension mesh moving technique
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 35
  start-page: 881
  year: 2002
  end-page: 892
  ident: br000185
  article-title: A numerical simulation of mechanical heart valve closure fluid dynamics
  publication-title: J. Biomech.
– volume: 74
  start-page: 623
  year: 2014
  end-page: 660
  ident: br000215
  article-title: A fixed-grid B-spline finite element technique for fluid–structure interaction
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 97
  start-page: 157
  year: 1992
  end-page: 192
  ident: br000480
  article-title: What are C and
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 135
  year: 1989
  end-page: 148
  ident: br000650
  article-title: Iterative methods for concave programming
  publication-title: Preference, Production, and Capital
– year: 2003
  ident: br000250
  article-title: Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
– volume: 197
  start-page: 3768
  year: 2008
  end-page: 3782
  ident: br000525
  article-title: The finite cell method for three-dimensional problems of solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: br000230
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 195
  start-page: 2983
  year: 2006
  end-page: 3000
  ident: br000625
  article-title: Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 36
  start-page: 262
  year: 2008
  end-page: 275
  ident: br000030
  article-title: Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model
  publication-title: Ann. Biomed. Eng.
– volume: 199
  start-page: 828
  year: 2010
  end-page: 840
  ident: br000425
  article-title: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 42
  year: 2014
  ident: br000750
  article-title: Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease
  publication-title: Ann. Biomed. Eng.
– volume: 32
  start-page: 199
  year: 1982
  end-page: 259
  ident: br000400
  article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2003
  ident: br000390
  article-title: Finite Element Methods with B-Splines
– reference: P.R. Stay, The definition and ray-tracing of B-spline objects in a combinatorial solid geometric modeling system, in: Fourth USENIX Computer Graphics Workshop, USENIX Association, 1987.
– year: 1987
  ident: br000545
  article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
– volume: 46
  start-page: 48
  year: 1980
  end-page: 52
  ident: br000810
  article-title: Frequency spectrum of the aortic component of the second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenografts: Potential for detection of porcine xenograft degeneration
  publication-title: Am. J. Cardiol.
– volume: 105
  start-page: 354
  year: 1993
  end-page: 366
  ident: br000675
  article-title: Modeling a no-slip flow boundary with an external force field
  publication-title: J. Comput. Phys.
– volume: 33
  start-page: 429
  year: 2005
  end-page: 443
  ident: br000800
  article-title: A comparison of flow field structures of two tri-leaflet polymeric heart valves
  publication-title: Ann. Biomed. Eng.
– volume: 34
  start-page: 936
  year: 2006
  end-page: 952
  ident: br000805
  article-title: Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry
  publication-title: Ann. Biomed. Eng.
– year: 2006
  ident: br000245
  article-title: Computational Contact Mechanics
– volume: vol. 3
  year: 2004
  ident: br000420
  article-title: Multiscale and stabilized methods
  publication-title: Encyclopedia of Computational Mechanics
– start-page: 283
  year: 1969
  end-page: 298
  ident: br000645
  article-title: A method for nonlinear constraints in minimization problems
  publication-title: Optimization
– volume: 54
  start-page: 1055
  year: 2014
  end-page: 1071
  ident: br000830
  article-title: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation
  publication-title: Comput. Mech.
– volume: 22
  start-page: 477
  year: 2003
  end-page: 484
  ident: br000265
  article-title: T-splines and T-NURCCS
  publication-title: ACM Trans. Graphics
– volume: 24
  start-page: 1321
  year: 1997
  end-page: 1340
  ident: br000145
  article-title: Parallel computation of incompressible flows with complex geometries
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 54
  start-page: 955
  year: 2013
  end-page: 971
  ident: br000170
  article-title: Space–time interface-tracking with topology change (ST-TC)
  publication-title: Comput. Mech.
– volume: 35
  start-page: 743
  year: 2001
  end-page: 761
  ident: br000305
  article-title: A fictitious domain/mortar element method for fluid–structure interaction
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 87
  start-page: 1278
  year: 2011
  end-page: 1300
  ident: br000375
  article-title: A large deformation frictional contact formulation using NURBS-based isogeometric analysis
  publication-title: Int. J. Numer. Anal. Model
– volume: 47
  start-page: 131
  year: 2009
  end-page: 141
  ident: br000815
  article-title: The arterial Windkessel
  publication-title: Med. Biol. Eng. Comput.
– volume: 198
  start-page: 3534
  year: 2009
  end-page: 3550
  ident: br000495
  article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 195
  start-page: 5685
  year: 2006
  end-page: 5706
  ident: br000060
  article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 70
  start-page: 58
  year: 2003
  end-page: 63
  ident: br000740
  article-title: Mesh moving techniques for fluid–structure interactions with large displacements
  publication-title: J. Appl. Mech.
– volume: 41
  start-page: 121
  year: 2007
  end-page: 133
  ident: br000540
  article-title: Finite cell method
  publication-title: Comput. Mech.
– volume: 48
  start-page: 277
  year: 2011
  end-page: 291
  ident: br000500
  article-title: and Modeling of~Congenital Hearts Alliance~(MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations
  publication-title: Comput. Mech.
– volume: 127
  start-page: 905
  year: 2005
  end-page: 914
  ident: br000020
  article-title: Simulated bioprosthetic heart valve deformation under quasi-static loading
  publication-title: J. Biomech. Eng.
– volume: 28
  start-page: 512
  year: 2012
  end-page: 527
  ident: br000080
  article-title: Fluid–structure interaction simulations of the Fontan procedure using variable wall properties
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 85
  start-page: 109
  year: 1991
  end-page: 128
  ident: br000630
  article-title: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 198
  start-page: 3613
  year: 2009
  end-page: 3621
  ident: br000065
  article-title: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 23
  start-page: 130
  year: 1999
  end-page: 143
  ident: br000160
  article-title: Advanced mesh generation and update methods for 3D flow simulations
  publication-title: Comput. Mech.
– volume: 26
  start-page: 27
  year: 1993
  end-page: 36
  ident: br000730
  article-title: Parallel finite-element computation of 3D flows
  publication-title: Computer
– volume: 34
  start-page: 513
  year: 1973
  end-page: 518
  ident: br000690
  article-title: Measurement of ascending aortic flow patterns in man
  publication-title: J. Appl. Physiol.
– volume: 284
  start-page: 508
  year: 2015
  end-page: 520
  ident: br000380
  article-title: Patient-specific isogeometric structural analysis of aortic valve closure
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2013
  ident: br000140
  article-title: Computational Fluid–Structure Interaction: Methods and Applications
– volume: 166
  start-page: 3
  year: 1998
  end-page: 24
  ident: br000350
  article-title: The variational multiscale method–A paradigm for computational mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 21
  year: 1995
  end-page: 30
  ident: br000150
  article-title: Massively parallel finite element computation of 3D flows–mesh update strategies in computation of moving boundaries and interfaces
  publication-title: Parallel Computational Fluid Dynamics–New Trends and Advances
– volume: 55
  start-page: 135
  year: 2009
  end-page: 144
  ident: br000015
  article-title: Bioprosthetic heart valves: modes of failure
  publication-title: Histopathology
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: br000225
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– volume: 190
  start-page: 305
  year: 2000
  end-page: 319
  ident: br000560
  article-title: A generalized-
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 28
  start-page: 1
  year: 1992
  end-page: 44
  ident: br000405
  article-title: Stabilized finite element formulations for incompressible flow computations
  publication-title: Adv. Appl. Mech.
– volume: 363
  start-page: 115
  year: 1998
  end-page: 151
  ident: br000680
  article-title: Secondary flow induced by riblets
  publication-title: J. Fluid Mech.
– volume: 195
  start-page: 3776
  year: 2006
  end-page: 3796
  ident: br000780
  article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 54
  start-page: 695
  year: 2007
  end-page: 706
  ident: br000470
  article-title: Computation of inviscid compressible flows with the V-SGS stabilization and YZ
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 197
  start-page: 173
  year: 2007
  end-page: 201
  ident: br000365
  article-title: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 13
  start-page: 505
  year: 2001
  end-page: 512
  ident: br000415
  article-title: The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence
  publication-title: Phys. Fluids
– year: 2002
  ident: br000310
  article-title: Fluid–structure interaction in the aortic heart valve: a three-dimensional computational analysis
– volume: 60
  start-page: 371
  year: 1993
  end-page: 375
  ident: br000555
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-
  publication-title: J. Appl. Mech.
– volume: 22
  start-page: 1230002
  year: 2012
  ident: br000395
  article-title: ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction
  publication-title: Math. Models Methods Appl. Sci
– volume: 229
  start-page: 4476
  year: 2010
  end-page: 4500
  ident: br000600
  article-title: A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier–Stokes equations in time-varying complex geometries
  publication-title: J. Comput. Phys.
– volume: 10
  start-page: 252
  year: 1972
  end-page: 271
  ident: br000285
  article-title: Flow patterns around heart valves: A numerical method
  publication-title: J. Comput. Phys.
– volume: 241
  start-page: 141
  year: 2013
  end-page: 167
  ident: br000825
  article-title: Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 81
  start-page: 021011
  year: 2014
  ident: br000135
  article-title: Aerodynamic simulation of vertical-axis wind turbines
  publication-title: J. Appl. Mech.
– volume: 8
  start-page: 129
  year: 1974
  end-page: 151
  ident: br000510
  article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 78
  start-page: 1353
  year: 2009
  end-page: 1374
  ident: br000320
  article-title: Nitsche’s method for general boundary conditions
  publication-title: Math. Comp.
– reference: J. Benk, M. Ulbrich, M. Mehl, The Nitsche method of the Navier–Stokes equations for immersed and moving boundaries, in: Proceedings of the Seventh International Conference on Computational Fluid Dynamics, ICCFD7, International Conference on Computational Fluid Dynamics, 2012.
– volume: 81
  start-page: 497
  year: 1999
  end-page: 520
  ident: br000620
  article-title: A penalization method to take into account obstacles in incompressible viscous flows
  publication-title: Numer. Math.
– volume: 64
  start-page: 1201
  year: 2010
  end-page: 1218
  ident: br000450
  article-title: Space–time finite element computation of complex fluid–structure interactions
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 203
  start-page: 533
  year: 2007
  end-page: 547
  ident: br000660
  article-title: Path-following and augmented Lagrangian methods for contact problems in linear elasticity
  publication-title: J. Comput. Appl. Math.
– volume: 51
  start-page: 107
  year: 1985
  end-page: 137
  ident: br000235
  article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 44
  start-page: 2633
  year: 2006
  end-page: 2649
  ident: br000655
  article-title: A unified approach for Uzawa algorithms
  publication-title: SIAM J. Numer. Anal.
– volume: 195
  start-page: 1885
  year: 2006
  end-page: 1895
  ident: br000085
  article-title: Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 48
  start-page: 345
  year: 2011
  end-page: 364
  ident: br000100
  article-title: Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters
  publication-title: Comput. Mech.
– volume: 193
  start-page: 2051
  year: 2004
  end-page: 2067
  ident: br000190
  article-title: Immersed finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 135
  start-page: 118
  year: 1967
  end-page: 125
  ident: br000670
  article-title: A numerical method for solving incompressible viscous flow problems
  publication-title: J. Comput. Phys.
– volume: 257
  start-page: 103
  year: 2013
  end-page: 116
  ident: br000290
  article-title: Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: vol. 3
  year: 2004
  ident: br000045
  article-title: Arbitrary Lagrangian–Eulerian methods
  publication-title: Encyclopedia of Computational Mechanics
– volume: 56
  start-page: 221
  year: 1986
  end-page: 228
  ident: br000515
  article-title: The discrete Babuška–Brezzi condition
  publication-title: Ingenieur-Archiv
– volume: 43
  start-page: 3
  year: 2008
  end-page: 37
  ident: br000270
  article-title: Isogeometric fluid–structure interaction: theory, algorithms, and computations
  publication-title: Comput. Mech.
– volume: 41
  start-page: 371
  year: 2008
  end-page: 378
  ident: br000360
  article-title: The role of continuity in residual-based variational multiscale modeling of turbulence
  publication-title: Comput. Mech.
– volume: 145
  start-page: 301
  year: 1997
  end-page: 321
  ident: br000155
  article-title: 3D simulation of fluid-particle interactions with the number of particles reaching 100
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 9
  start-page: 481
  year: 2010
  end-page: 498
  ident: br000070
  article-title: Computational fluid–structure interaction: Methods and application to cerebral aneurysms
  publication-title: Biomech. Model. Mechanobiol.
– volume: 53
  start-page: 29
  year: 2014
  end-page: 43
  ident: br000455
  article-title: Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity
  publication-title: Comput. Mech.
– volume: 19
  start-page: 171
  year: 2012
  end-page: 225
  ident: br000075
  article-title: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling
  publication-title: Arch. Comput. Methods Eng.
– year: 1997
  ident: br000260
  article-title: The NURBS Book (Monographs in Visual Communication)
– volume: 125
  start-page: 78
  year: 2006
  end-page: 86
  ident: br000770
  article-title: Clinical laboratory measurement of serum, plasma, and blood viscosity
  publication-title: Am. J. Clin. Pathol.
– volume: 33
  start-page: 689
  year: 1982
  end-page: 723
  ident: br000040
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 119
  start-page: 1034
  year: 2009
  end-page: 1048
  ident: br000010
  article-title: Prosthetic heart valves: selection of the optimal prosthesis and long-term management
  publication-title: Circulation
– volume: 198
  start-page: 3902
  year: 2009
  end-page: 3914
  ident: br000370
  article-title: Isogeometric shell analysis with Kirchhoff–Love elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 156
  start-page: 209
  year: 1999
  end-page: 240
  ident: br000575
  article-title: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries
  publication-title: J. Comput. Phys.
– volume: 250
  start-page: 178
  year: 2013
  end-page: 205
  ident: br000725
  article-title: An enhanced immersed structural potential method for fluid–structure interaction
  publication-title: J. Comput. Phys.
– volume: 189
  start-page: 351
  year: 2003
  end-page: 370
  ident: br000585
  article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
  publication-title: J. Comput. Phys.
– volume: 199
  start-page: 780
  year: 2010
  end-page: 790
  ident: br000335
  article-title: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 190
  start-page: 411
  year: 2000
  end-page: 430
  ident: br000410
  article-title: Finite element stabilization parameters computed from element matrices and vectors
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 39
  year: 2008
  end-page: 49
  ident: br000115
  article-title: Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods
  publication-title: Comput. Mech.
– volume: 253
  start-page: 369
  year: 2013
  end-page: 395
  ident: br000760
  article-title: A computational contact formulation based on surface potentials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1987
  ident: br000430
  article-title: Numerical Solution of Partial Differential Equations by the Finite Element Method
– volume: 2
  start-page: 1
  year: 1995
  end-page: 49
  ident: br000240
  article-title: Finite element algorithms for contact problems
  publication-title: Arch. Comput. Methods Eng.
– volume: 65
  start-page: 1
  year: 2014
  end-page: 21
  ident: br000220
  article-title: Immersed boundary methods for simulating fluid–structure interaction
  publication-title: Progr. Aerospace Sci.
– volume: 229
  start-page: 3402
  year: 2010
  end-page: 3414
  ident: br000340
  article-title: Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method
  publication-title: J. Comput. Phys.
– volume: 19
  start-page: 125
  year: 2012
  end-page: 169
  ident: br000105
  article-title: Computational methods for parachute fluid–structure interactions
  publication-title: Arch. Comput. Methods Eng.
– volume: 54
  start-page: 855
  year: 2007
  end-page: 900
  ident: br000120
  article-title: Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 54
  start-page: 973
  year: 2014
  end-page: 986
  ident: br000175
  article-title: Space–time fluid mechanics computation of heart valve models
  publication-title: Comput. Mech.
– volume: 94
  start-page: 353
  year: 1992
  end-page: 371
  ident: br000055
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: II.~Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2012
  ident: br000615
  article-title: Gibbs phenomenon
  publication-title: Approximation Theory and Approximation Practice
– volume: 227
  start-page: 7587
  year: 2008
  end-page: 7620
  ident: br000300
  article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 58
  year: 1976
  end-page: 65
  ident: br000820
  article-title: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves
  publication-title: Circ. Res.
– volume: 123
  start-page: 309
  year: 1995
  end-page: 316
  ident: br000570
  article-title: Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 79
  start-page: 1072
  year: 2005
  end-page: 1080
  ident: br000005
  article-title: Calcification of tissue heart valve substitutes: progress toward understanding and prevention
  publication-title: Ann. Thorac. Surg.
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: br000255
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 123
  start-page: 259
  year: 2013
  end-page: 290
  ident: br000445
  article-title: Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 65
  start-page: 236
  year: 2011
  end-page: 253
  ident: br000125
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 76
  start-page: 021209
  year: 2009
  ident: br000475
  article-title: Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ
  publication-title: J. Appl. Mech.
– volume: 54
  start-page: 1055
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000830
  article-title: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1059-4
– volume: 199
  start-page: 780
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000335
  article-title: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.11.020
– year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000535
  article-title: The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-014-9115-y
– volume: 44
  start-page: 2633
  issue: 6
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000655
  article-title: A unified approach for Uzawa algorithms
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050630714
– volume: 255
  start-page: 14
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000210
  article-title: Fully Eulerian fluid–structure interaction for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.11.009
– volume: 209–212
  start-page: 266
  issue: 0
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000605
  article-title: Subdivision-stabilised immersed B-spline finite elements for moving boundary flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2011.10.007
– volume: 145
  start-page: 301
  year: 1997
  ident: 10.1016/j.cma.2014.10.040_br000155
  article-title: 3D simulation of fluid-particle interactions with the number of particles reaching 100
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01223-6
– year: 1997
  ident: 10.1016/j.cma.2014.10.040_br000260
  doi: 10.1007/978-3-642-59223-2
– volume: 34
  start-page: 513
  issue: 4
  year: 1973
  ident: 10.1016/j.cma.2014.10.040_br000690
  article-title: Measurement of ascending aortic flow patterns in man
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1973.34.4.513
– volume: 197
  start-page: 173
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000365
  article-title: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2007.07.016
– volume: 28
  start-page: 1
  year: 1992
  ident: 10.1016/j.cma.2014.10.040_br000405
  article-title: Stabilized finite element formulations for incompressible flow computations
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70153-4
– volume: 229
  start-page: 4476
  issue: 12
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000600
  article-title: A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier–Stokes equations in time-varying complex geometries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.02.013
– volume: 190
  start-page: 411
  year: 2000
  ident: 10.1016/j.cma.2014.10.040_br000410
  article-title: Finite element stabilization parameters computed from element matrices and vectors
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00211-5
– volume: 8
  start-page: 129
  year: 1974
  ident: 10.1016/j.cma.2014.10.040_br000510
  article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 51
  start-page: 107
  year: 1985
  ident: 10.1016/j.cma.2014.10.040_br000235
  article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(85)90030-1
– volume: 29
  start-page: 329
  year: 1981
  ident: 10.1016/j.cma.2014.10.040_br000035
  article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(81)90049-9
– start-page: 21
  year: 1995
  ident: 10.1016/j.cma.2014.10.040_br000150
  article-title: Massively parallel finite element computation of 3D flows–mesh update strategies in computation of moving boundaries and interfaces
– volume: 60
  start-page: 371
  year: 1993
  ident: 10.1016/j.cma.2014.10.040_br000555
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 191
  start-page: 177
  year: 2003
  ident: 10.1016/j.cma.2014.10.040_br000590
  article-title: A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00310-3
– volume: 189
  start-page: 351
  issue: 2
  year: 2003
  ident: 10.1016/j.cma.2014.10.040_br000585
  article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00214-6
– volume: 257
  start-page: 103
  issue: 0
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000290
  article-title: Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.01.010
– volume: 241
  start-page: 141
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000825
  article-title: Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.01.006
– volume: 42
  issue: 5
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000750
  article-title: Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-0973-0
– volume: 253
  start-page: 369
  issue: 0
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000760
  article-title: A computational contact formulation based on surface potentials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.09.002
– volume: 56
  start-page: 221
  issue: 3
  year: 1986
  ident: 10.1016/j.cma.2014.10.040_br000515
  article-title: The discrete Babuška–Brezzi condition
  publication-title: Ingenieur-Archiv
  doi: 10.1007/BF00535887
– volume: 46
  start-page: 48
  issue: 1
  year: 1980
  ident: 10.1016/j.cma.2014.10.040_br000810
  article-title: Frequency spectrum of the aortic component of the second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenografts: Potential for detection of porcine xenograft degeneration
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(80)90604-9
– volume: 41
  start-page: 371
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000360
  article-title: The role of continuity in residual-based variational multiscale modeling of turbulence
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-007-0193-7
– volume: 43
  start-page: 3
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000270
  article-title: Isogeometric fluid–structure interaction: theory, algorithms, and computations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0315-x
– volume: 19
  start-page: 125
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000105
  article-title: Computational methods for parachute fluid–structure interactions
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-012-9070-4
– volume: 65
  start-page: 236
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000125
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2454
– year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000440
– volume: 190
  start-page: 305
  year: 2000
  ident: 10.1016/j.cma.2014.10.040_br000560
  article-title: A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00203-6
– volume: 198
  start-page: 3902
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000370
  article-title: Isogeometric shell analysis with Kirchhoff–Love elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.08.013
– volume: 363
  start-page: 115
  year: 1998
  ident: 10.1016/j.cma.2014.10.040_br000680
  article-title: Secondary flow induced by riblets
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098008921
– volume: 36
  start-page: 121
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000465
  article-title: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2005.07.004
– volume: 2
  start-page: 1
  year: 1995
  ident: 10.1016/j.cma.2014.10.040_br000240
  article-title: Finite element algorithms for contact problems
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02736195
– volume: 105
  start-page: 354
  issue: 2
  year: 1993
  ident: 10.1016/j.cma.2014.10.040_br000675
  article-title: Modeling a no-slip flow boundary with an external force field
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1081
– volume: 50
  start-page: 499
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000345
  article-title: Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0686-x
– volume: 36
  start-page: 262
  issue: 2
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000030
  article-title: Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9409-4
– volume: 64
  start-page: 1201
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000450
  article-title: Space–time finite element computation of complex fluid–structure interactions
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2221
– volume: 17
  start-page: 277
  issue: 3
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000025
  article-title: Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.681645
– volume: 33
  start-page: 689
  issue: 1–3
  year: 1982
  ident: 10.1016/j.cma.2014.10.040_br000040
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(82)90128-1
– volume: 22
  start-page: 1230002
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000395
  article-title: ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction
  publication-title: Math. Models Methods Appl. Sci
  doi: 10.1142/S0218202512300025
– volume: 32
  start-page: 1471
  issue: 11
  year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000180
  article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/B:ABME.0000049032.51742.10
– volume: 74
  start-page: 73
  issue: 2
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000635
  article-title: A fictitious domain approach for the Stokes problem based on the extended finite element method
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.3839
– volume: 54
  start-page: 695
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000470
  article-title: Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1447
– volume: 161
  start-page: 35
  issue: 1
  year: 2000
  ident: 10.1016/j.cma.2014.10.040_br000685
  article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6484
– year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000245
– volume: 284
  start-page: 508
  year: 2015
  ident: 10.1016/j.cma.2014.10.040_br000380
  article-title: Patient-specific isogeometric structural analysis of aortic valve closure
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.10.010
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.cma.2014.10.040_br000230
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175743
– volume: 33
  start-page: 429
  issue: 4
  year: 2005
  ident: 10.1016/j.cma.2014.10.040_br000800
  article-title: A comparison of flow field structures of two tri-leaflet polymeric heart valves
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-2498-z
– volume: 10
  start-page: 252
  issue: 2
  year: 1972
  ident: 10.1016/j.cma.2014.10.040_br000285
  article-title: Flow patterns around heart valves: A numerical method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(72)90065-4
– volume: 39
  start-page: 58
  issue: 1
  year: 1976
  ident: 10.1016/j.cma.2014.10.040_br000820
  article-title: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.39.1.58
– volume: 54
  start-page: 855
  issue: 6–8
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000120
  article-title: Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1430
– volume: 195
  start-page: 5685
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000060
  article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.11.011
– volume: 81
  start-page: 497
  issue: 4
  year: 1999
  ident: 10.1016/j.cma.2014.10.040_br000620
  article-title: A penalization method to take into account obstacles in incompressible viscous flows
  publication-title: Numer. Math.
  doi: 10.1007/s002110050401
– volume: 95
  start-page: 811
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000280
  article-title: Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method
  publication-title: Int. J. Numer. Anal. Model
– volume: 34
  start-page: 936
  issue: 6
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000805
  article-title: Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9117-5
– volume: 65
  start-page: 271
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000090
  article-title: Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2348
– volume: 7
  start-page: 856
  year: 1986
  ident: 10.1016/j.cma.2014.10.040_br000710
  article-title: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000700
– year: 2002
  ident: 10.1016/j.cma.2014.10.040_br000435
– volume: 194
  start-page: 4135
  year: 2005
  ident: 10.1016/j.cma.2014.10.040_br000255
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.10.008
– volume: 125
  start-page: 78
  issue: Suppl
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000770
  article-title: Clinical laboratory measurement of serum, plasma, and blood viscosity
  publication-title: Am. J. Clin. Pathol.
– volume: 49
  start-page: 409
  issue: 6
  year: 1952
  ident: 10.1016/j.cma.2014.10.040_br000715
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.049.044
– volume: 76
  start-page: 021206
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000720
  article-title: Added mass effects of compressible and incompressible flows in fluid–structure interaction
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3059565
– year: 1990
  ident: 10.1016/j.cma.2014.10.040_br000785
  article-title: The second heart sound
– volume: 53
  start-page: 29
  issue: 1
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000455
  article-title: Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0890-3
– volume: 197
  start-page: 1699
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000200
  article-title: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2007.07.002
– volume: 135
  start-page: 118
  issue: 2
  year: 1967
  ident: 10.1016/j.cma.2014.10.040_br000670
  article-title: A numerical method for solving incompressible viscous flow problems
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5716
– year: 2000
  ident: 10.1016/j.cma.2014.10.040_br000705
– volume: 515
  start-page: 233
  year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000595
  article-title: Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004000436
– volume: 48
  start-page: 277
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000500
  article-title: and Modeling of~Congenital Hearts Alliance~(MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-011-0599-0
– volume: 156
  start-page: 209
  issue: 2
  year: 1999
  ident: 10.1016/j.cma.2014.10.040_br000575
  article-title: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6356
– volume: vol. 3
  year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000045
  article-title: Arbitrary Lagrangian–Eulerian methods
– volume: 94
  start-page: 353
  issue: 3
  year: 1992
  ident: 10.1016/j.cma.2014.10.040_br000055
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: II.~Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90060-W
– volume: 54
  start-page: 973
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000175
  article-title: Space–time fluid mechanics computation of heart valve models
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1046-9
– volume: 197
  start-page: 3768
  issue: 45–48
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000525
  article-title: The finite cell method for three-dimensional problems of solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.02.036
– volume: 250
  start-page: 178
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000725
  article-title: An enhanced immersed structural potential method for fluid–structure interaction
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.05.011
– volume: 78
  start-page: 1353
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000320
  article-title: Nitsche’s method for general boundary conditions
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-08-02183-2
– volume: 23
  start-page: 130
  year: 1999
  ident: 10.1016/j.cma.2014.10.040_br000160
  article-title: Advanced mesh generation and update methods for 3D flow simulations
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050393
– volume: 22
  start-page: 477
  issue: 3
  year: 2003
  ident: 10.1016/j.cma.2014.10.040_br000265
  article-title: T-splines and T-NURCCS
  publication-title: ACM Trans. Graphics
  doi: 10.1145/882262.882295
– volume: 234
  start-page: H696
  issue: 6
  year: 1978
  ident: 10.1016/j.cma.2014.10.040_br000790
  article-title: Relation of the second sound to diastolic vibration of the closed aortic valve
  publication-title: Am. J. Physiol. Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.1978.234.6.H696
– volume: 123
  start-page: 259
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000445
  article-title: Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 247–248
  start-page: 51
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000205
  article-title: On continuum immersed strategies for fluid–structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.07.021
– volume: 85
  start-page: 109
  issue: 1
  year: 1991
  ident: 10.1016/j.cma.2014.10.040_br000630
  article-title: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(91)90125-P
– volume: 127
  start-page: 905
  issue: 6
  year: 2005
  ident: 10.1016/j.cma.2014.10.040_br000020
  article-title: Simulated bioprosthetic heart valve deformation under quasi-static loading
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2049337
– volume: 158
  start-page: 155
  year: 1998
  ident: 10.1016/j.cma.2014.10.040_br000460
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(98)80008-X
– volume: 49
  start-page: 93
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000565
  article-title: High-performance computing of wind turbine aerodynamics using isogeometric analysis
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2011.05.002
– volume: 81
  start-page: 021011
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000135
  article-title: Aerodynamic simulation of vertical-axis wind turbines
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4024415
– volume: 32
  start-page: 199
  year: 1982
  ident: 10.1016/j.cma.2014.10.040_br000400
  article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(82)90071-8
– volume: 74
  start-page: 623
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000215
  article-title: A fixed-grid B-spline finite element technique for fluid–structure interaction
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.3864
– volume: 269
  start-page: 46
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000490
  article-title: Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.10.009
– volume: 35
  start-page: 881
  issue: 7
  year: 2002
  ident: 10.1016/j.cma.2014.10.040_br000185
  article-title: A numerical simulation of mechanical heart valve closure fluid dynamics
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00056-8
– year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000615
  article-title: Gibbs phenomenon
– volume: 198
  start-page: 3613
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000065
  article-title: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.08.020
– volume: 193
  start-page: 2051
  year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000190
  article-title: Immersed finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.044
– volume: vol. 3
  year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000420
  article-title: Multiscale and stabilized methods
– volume: 47
  start-page: 131
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000815
  article-title: The arterial Windkessel
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0359-2
– volume: 119
  start-page: 1034
  issue: 7
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000010
  article-title: Prosthetic heart valves: selection of the optimal prosthesis and long-term management
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.778886
– volume: 203
  start-page: 533
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000660
  article-title: Path-following and augmented Lagrangian methods for contact problems in linear elasticity
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.04.017
– volume: 195
  start-page: 3776
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000780
  article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.04.014
– volume: 195
  start-page: 2983
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000625
  article-title: Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.09.018
– volume: 35
  start-page: 743
  issue: 7
  year: 2001
  ident: 10.1016/j.cma.2014.10.040_br000305
  article-title: A fictitious domain/mortar element method for fluid–structure interaction
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
– volume: 36
  start-page: 12
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000325
  article-title: Weak imposition of Dirichlet boundary conditions in fluid mechanics
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2005.07.012
– volume: 70
  start-page: 58
  year: 2003
  ident: 10.1016/j.cma.2014.10.040_br000740
  article-title: Mesh moving techniques for fluid–structure interactions with large displacements
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.1530635
– volume: 193
  start-page: 2019
  year: 2004
  ident: 10.1016/j.cma.2014.10.040_br000745
  article-title: Automatic mesh update with the solid-extension mesh moving technique
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.046
– volume: 97
  start-page: 157
  year: 1992
  ident: 10.1016/j.cma.2014.10.040_br000480
  article-title: What are C and h?: Inequalities for the analysis and design of finite element methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90162-D
– volume: 269
  start-page: 394
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000755
  article-title: Isogeometric large deformation frictionless contact using T-splines
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.11.002
– volume: 3
  start-page: 47
  year: 2000
  ident: 10.1016/j.cma.2014.10.040_br000355
  article-title: Large-eddy simulation and the variational multiscale method
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s007910050051
– volume: 9
  start-page: 481
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000070
  article-title: Computational fluid–structure interaction: Methods and application to cerebral aneurysms
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0189-7
– volume: 41
  start-page: 121
  issue: 1
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000540
  article-title: Finite cell method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-007-0173-y
– volume: 43
  start-page: 51
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000165
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: Contact problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0299-6
– year: 2003
  ident: 10.1016/j.cma.2014.10.040_br000390
– volume: 65
  start-page: 1
  year: 2014
  ident: 10.1016/j.cma.2014.10.040_br000220
  article-title: Immersed boundary methods for simulating fluid–structure interaction
  publication-title: Progr. Aerospace Sci.
  doi: 10.1016/j.paerosci.2013.09.003
– ident: 10.1016/j.cma.2014.10.040_br000520
– volume: 50
  start-page: 445
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000530
  article-title: Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0684-z
– volume: 123
  start-page: 309
  year: 1995
  ident: 10.1016/j.cma.2014.10.040_br000570
  article-title: Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(94)00736-7
– volume: 227
  start-page: 7587
  issue: 16
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000300
  article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.04.028
– volume: 54
  start-page: 955
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000170
  article-title: Space–time interface-tracking with topology change (ST-TC)
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0935-7
– volume: 4
  start-page: 2
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000795
  article-title: Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-013-0117-y
– volume: 84
  start-page: 111
  issue: 2
  year: 1989
  ident: 10.1016/j.cma.2014.10.040_br000765
  article-title: The measurement of blood density and its meaning
  publication-title: Basic Res. Cardiology
  doi: 10.1007/BF01907921
– volume: 198
  start-page: 3534
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000495
  article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.04.015
– volume: 94
  start-page: 339
  issue: 3
  year: 1992
  ident: 10.1016/j.cma.2014.10.040_br000050
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: I.~The concept and the preliminary numerical tests
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90059-S
– volume: 26
  start-page: 27
  issue: 10
  year: 1993
  ident: 10.1016/j.cma.2014.10.040_br000730
  article-title: Parallel finite-element computation of 3D flows
  publication-title: Computer
  doi: 10.1109/2.237441
– volume: 36
  start-page: 9
  year: 1971
  ident: 10.1016/j.cma.2014.10.040_br000385
  article-title: Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind
  publication-title: Abh. Math. Univ. Hamburg
  doi: 10.1007/BF02995904
– year: 2013
  ident: 10.1016/j.cma.2014.10.040_br000140
– volume: 195
  start-page: 2002
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000110
  article-title: Space–time finite element techniques for computation of fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.09.014
– volume: 225
  start-page: 1782
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000295
  article-title: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.017
– volume: 55
  start-page: 135
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000015
  article-title: Bioprosthetic heart valves: modes of failure
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2008.03190.x
– volume: 119
  start-page: 73
  year: 1994
  ident: 10.1016/j.cma.2014.10.040_br000735
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(94)00077-8
– volume: 199
  start-page: 828
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000425
  article-title: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.06.019
– volume: 229
  start-page: 3402
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000340
  article-title: Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.01.008
– year: 1987
  ident: 10.1016/j.cma.2014.10.040_br000430
– volume: 249–252
  start-page: 28
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000315
  article-title: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.03.028
– volume: 87
  start-page: 1278
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000375
  article-title: A large deformation frictional contact formulation using NURBS-based isogeometric analysis
  publication-title: Int. J. Numer. Anal. Model
– volume: 207
  start-page: 1
  year: 2005
  ident: 10.1016/j.cma.2014.10.040_br000195
  article-title: A DLM/FD method for fluid/flexible-body interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.12.026
– volume: 50
  start-page: 821
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000130
  article-title: Fluid–structure interaction modeling of wind turbines: simulating the full machine
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0772-0
– volume: 79
  start-page: 010904
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000610
  article-title: Flux evaluation in primal and dual boundary-coupled problems
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4005187
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.cma.2014.10.040_br000225
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 76
  start-page: 021209
  year: 2009
  ident: 10.1016/j.cma.2014.10.040_br000475
  article-title: Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3057496
– volume: 16
  start-page: 322
  issue: 4
  year: 1971
  ident: 10.1016/j.cma.2014.10.040_br000505
  article-title: Error-bounds for finite element method
  publication-title: Numer. Math.
  doi: 10.1007/BF02165003
– year: 2002
  ident: 10.1016/j.cma.2014.10.040_br000310
– volume: 41
  start-page: 591
  issue: 5–6
  year: 2000
  ident: 10.1016/j.cma.2014.10.040_br000665
  article-title: Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/S0362-546X(98)00299-5
– volume: 195
  start-page: 1885
  year: 2006
  ident: 10.1016/j.cma.2014.10.040_br000085
  article-title: Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.05.050
– volume: 79
  start-page: 1072
  issue: 3
  year: 2005
  ident: 10.1016/j.cma.2014.10.040_br000005
  article-title: Calcification of tissue heart valve substitutes: progress toward understanding and prevention
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2004.06.033
– start-page: 283
  year: 1969
  ident: 10.1016/j.cma.2014.10.040_br000645
  article-title: A method for nonlinear constraints in minimization problems
– volume: 4
  start-page: 303
  issue: 5
  year: 1969
  ident: 10.1016/j.cma.2014.10.040_br000640
  article-title: Multiplier and gradient methods
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
– start-page: 135
  year: 1989
  ident: 10.1016/j.cma.2014.10.040_br000650
  article-title: Iterative methods for concave programming
– year: 1987
  ident: 10.1016/j.cma.2014.10.040_br000545
– volume: 199
  start-page: 2403
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000695
  article-title: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.03.029
– volume: 48
  start-page: 345
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000100
  article-title: Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-011-0590-9
– volume: 217
  start-page: 86
  issue: 5123
  year: 1968
  ident: 10.1016/j.cma.2014.10.040_br000775
  article-title: Mechanism of closure of the aortic valve
  publication-title: Nature
  doi: 10.1038/217086b0
– volume: 196
  start-page: 4853
  year: 2007
  ident: 10.1016/j.cma.2014.10.040_br000330
  article-title: Weak Dirichlet boundary conditions for wall-bounded turbulent flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2007.06.026
– volume: 35
  start-page: 421
  issue: 4
  year: 2001
  ident: 10.1016/j.cma.2014.10.040_br000580
  article-title: Control of vortex shedding behind circular cylinder for flows at low reynolds numbers
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M
– volume: 19
  start-page: 171
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000075
  article-title: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-012-9071-3
– volume: 249–252
  start-page: 116
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000275
  article-title: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.03.017
– volume: 43
  start-page: 39
  year: 2008
  ident: 10.1016/j.cma.2014.10.040_br000115
  article-title: Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0261-7
– ident: 10.1016/j.cma.2014.10.040_br000550
– volume: 13
  start-page: 505
  year: 2001
  ident: 10.1016/j.cma.2014.10.040_br000415
  article-title: The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.1332391
– volume: 28
  start-page: 512
  year: 2012
  ident: 10.1016/j.cma.2014.10.040_br000080
  article-title: Fluid–structure interaction simulations of the Fontan procedure using variable wall properties
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1485
– year: 2003
  ident: 10.1016/j.cma.2014.10.040_br000250
– volume: 83
  start-page: 877
  issue: 7
  year: 2010
  ident: 10.1016/j.cma.2014.10.040_br000485
  article-title: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements
  publication-title: Int. J. Numer. Anal. Model
– volume: 166
  start-page: 3
  year: 1998
  ident: 10.1016/j.cma.2014.10.040_br000350
  article-title: The variational multiscale method–A paradigm for computational mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(98)00079-6
– volume: 65
  start-page: 286
  year: 2011
  ident: 10.1016/j.cma.2014.10.040_br000095
  article-title: Fluid–structure interaction modeling of parachute clusters
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2359
– volume: 24
  start-page: 1321
  year: 1997
  ident: 10.1016/j.cma.2014.10.040_br000145
  article-title: Parallel computation of incompressible flows with complex geometries
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L
– reference: 25580046 - Comput Mech. 2014 Oct;54(4):1055-1071
– reference: 16783650 - Ann Biomed Eng. 2006 Jun;34(6):936-52
– reference: 24488233 - Ann Biomed Eng. 2014 May;42(5):986-98
– reference: 23646095 - Cardiovasc Eng Technol. 2013 Mar;4(1):2-15
– reference: 22553900 - Comput Methods Biomech Biomed Engin. 2014;17 (3):277-85
– reference: 665783 - Am J Physiol. 1978 Jun;234(6):H696-700
– reference: 20111978 - Biomech Model Mechanobiol. 2010 Aug;9(4):481-98
– reference: 18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41
– reference: 776437 - Circ Res. 1976 Jul;39(1):58-65
– reference: 7386393 - Am J Cardiol. 1980 Jul;46(1):48-52
– reference: 25099455 - Int J Numer Method Biomed Eng. 2012 May;28(5):513-27
– reference: 19694820 - Histopathology. 2009 Aug;55(2):135-44
– reference: 20981246 - J Comput Phys. 2008 Aug 10;227(16):7587-7620
– reference: 16830959 - Am J Clin Pathol. 2006 Jun;125 Suppl:S78-86
– reference: 15734452 - Ann Thorac Surg. 2005 Mar;79(3):1072-80
– reference: 2658951 - Basic Res Cardiol. 1989 Mar-Apr;84(2):111-24
– reference: 15909649 - Ann Biomed Eng. 2005 Apr;33(4):429-43
– reference: 19194533 - J Comput Phys. 2007 Aug;225(2):1782-1809
– reference: 18046648 - Ann Biomed Eng. 2008 Feb;36(2):262-75
– reference: 16438226 - J Biomech Eng. 2005 Nov;127(6):905-14
– reference: 12052390 - J Biomech. 2002 Jul;35(7):881-92
– reference: 15636108 - Ann Biomed Eng. 2004 Nov;32(11):1471-83
– reference: 4698610 - J Appl Physiol. 1973 Apr;34(4):513-8
– reference: 19237674 - Circulation. 2009 Feb 24;119(7):1034-48
– reference: 5635642 - Nature. 1968 Jan 6;217(5123):86-7
SSID ssj0000812
Score 2.618356
Snippet In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation...
In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1005
SubjectTerms Bioprosthetic heart valve
Computational fluid dynamics
Computer simulation
Discretization
Fluid flow
Fluid-structure interaction
Fluids
Heart valves
Immersogeometric analysis
Isogeometric analysis
Mathematical analysis
Mathematical models
Nitsche’s method
Weakly enforced boundary conditions
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0q0wV0QaE8Gl4yEiuQ0yR2XuxGiKpiUSHESGUV2Y7dBjLJqJMMghX_wB_yJVznMbQUDeoyiR3FyXF8rn18LsCLIJER00rQyBhJORIMmupY0jhnMtG5Tb7XqXyPo6MZf3cSnmyBP-6F6UT7ShZuVc7dqjjrtJWLuToYdWIHHOMopDk3YDsKkX5PYHt2_H76qV9JDimOeFa2aJNo08BnybiS2Wm6VGc15HPXCrrsfMe_x6KrXPOqZPJmWy3Et6-iLC-MR4e78GFsSS9D-eK2jXTV979MHq_V1Dtwe2CnZNpfugtbutqD3YGpkuE_sNyDnQs2hvdgNa1I0U2A16e6ntscXYqsMAgfJhqJGRVgBCkyMWVb5L9-_Oyta9tzTaxnxXm_w-I1mf5ZUidNTWRRL-zOlDO725LY_NsN3rtc6eV9mB2-_fjmiA75HKjCOKihKtCeiWNhcpXkBgMfwXLmeXjsa08HSgUiTUMZpgJZUhSFTCdKGhbkLEbiEnjsAUyqutL7QALGPe57ufSlz43gApmMUDoyIolinXIHvPHLZmowO7c5N8psVLV9zhAMmQWDPYVgcODlusqid_rYVJiPcMkGqtJTkAxHok3Vno_QyrAb27UZUem6XWa-zQMQWK-iDWUwFIys3VLswMMejusnxciwC8UdiC8BdV3A2ohfvoKQ6-zEB5Q58GoN6f-_gEfXKv0YbuFR2Kvdn8AE8aWfIplr5LOh-_4GXNZM3g
  priority: 102
  providerName: Unpaywall
Title An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves
URI https://dx.doi.org/10.1016/j.cma.2014.10.040
https://www.ncbi.nlm.nih.gov/pubmed/25541566
https://www.proquest.com/docview/1685821969
https://www.proquest.com/docview/1826609727
https://pubmed.ncbi.nlm.nih.gov/PMC4274080
https://www.ncbi.nlm.nih.gov/pmc/articles/4274080
UnpaywallVersion submittedVersion
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: AKRWK
  dateStart: 19720601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcChRow6MyEidQ2jycOOktqqgWkFYcWKmcItuxaVCarLoPxAXxH_iH_JLO5LHtqmiROEVJnMjyjD3f2DPfALwOEhWHRks3tla5HAGGmxqhXFGEKjEFFd9ro3zH8WjCP5xFZ1twMuTCUFhlv_Z3a3q7WvdPjvrRPJqWJeX4cuJiR4tPpFFtDhfngqoYHP68DvNAk9cxhvPIpdbDyWYb46Vb6iGfH1KAF-1__N023caet0Mo7y7qqfzxXVbVDft0-hB2emDJsq7vj2DL1LvwoAeZrJ_Cs124f4OB8DEss5qV7d5189U0F1ReS7Ml-s_9HiGzQ_AWQ3TLbLUoiz-_fness4tLw4hu4rJLjjhm2fVpOJs3TJXNlJJKzilRklHp7Dn-u1qa2ROYnL77fDJy-1IMrkYXZu7qwHhWCGkLnRQWfRYZFqHn4b1vPBNoHcg0jVSUSgQ4cRyFJtHKhkERChKAFz6F7bqpzT6wIOQkrkL5yudWcokgRGoTW5nEwqTcAW8QQq57nnIql1HlQ0DatxzllpPc6BHKzYE3q0-mHUnHpsZ8kGy-pmk5GpFNn70atCDHGUjHKrI2zWKW-0ThHxDN0IY26MXFxJQkHNjrNGfVU3TqWi_aAbGmU6sGxAC-_qYuz1smcB4IjpDfgbcr7fv3ADz7vwF4DvfwLuoi1l_ANiqaeYmAbK4O2hl3AHey9x9HY7xOxp-yL1fDKDrO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VA4FCiv8DQSJ1DaJHbihNuqolqg9NRKvUW2Y7dBIVl1HxUXxH_gH_JLmMlj21XRInFM7ESWZ-yZsb_5BuBNlOqEW6P8xDntC3Qw_MxK7cuC69QWVHyvRfkeJeMT8ek0Pt2A_SEXhmCV_d7f7entbt2_2etnc29SlpTjK4iLHS0-kUZRDtctEUeSIrDdH1c4D7R5HWW4iH3qPlxttiAv03IPhWKXEF50APJ343TT-byJodya1xP1_VJV1TUDdXAPtnvPko26wd-HDVvvwN3ey2T9Gp7uwJ1rFIQPYDGqWdkeXjdntvlG9bUMW2AA3R8SMjegtxi6t8xV87L4_fNXRzs7v7CM-CYuuuyI92x0dR3OZg3TZTOhrJJzypRkVDt7hv-uFnb6EE4OPhzvj_2-FoNvMIaZ-SaygZNSucKkhcOgRfGCBwE-hzawkTGRyrJYx5lCDydJYm5Tox2PCi5JAAF_BJt1U9snwCIuSF6FDnUonBIKvRBlbOJUmkibCQ-CQQi56YnKqV5GlQ-ItK85yi0nudErlJsHb5efTDqWjnWdxSDZfEXVcrQi6z57PWhBjkuQ7lVUbZv5NA-Jwz8inqE1fTCMS4gqSXrwuNOc5UgxqmvDaA_kik4tOxAF-GpLXZ63VOAikgJ9fg_eLbXv3xPw9P8m4BVsjY-_HOaHH48-P4Pb2BJ38PXnsIlKZ1-gdzbTL9vV9wfbXDqz
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0q0wV0QaE8Gl4yEiuQ0yR2XuxGiKpiUSHESGUV2Y7dBjLJqJMMghX_wB_yJVznMbQUDeoyiR3FyXF8rn18LsCLIJER00rQyBhJORIMmupY0jhnMtG5Tb7XqXyPo6MZf3cSnmyBP-6F6UT7ShZuVc7dqjjrtJWLuToYdWIHHOMopDk3YDsKkX5PYHt2_H76qV9JDimOeFa2aJNo08BnybiS2Wm6VGc15HPXCrrsfMe_x6KrXPOqZPJmWy3Et6-iLC-MR4e78GFsSS9D-eK2jXTV979MHq_V1Dtwe2CnZNpfugtbutqD3YGpkuE_sNyDnQs2hvdgNa1I0U2A16e6ntscXYqsMAgfJhqJGRVgBCkyMWVb5L9-_Oyta9tzTaxnxXm_w-I1mf5ZUidNTWRRL-zOlDO725LY_NsN3rtc6eV9mB2-_fjmiA75HKjCOKihKtCeiWNhcpXkBgMfwXLmeXjsa08HSgUiTUMZpgJZUhSFTCdKGhbkLEbiEnjsAUyqutL7QALGPe57ufSlz43gApmMUDoyIolinXIHvPHLZmowO7c5N8psVLV9zhAMmQWDPYVgcODlusqid_rYVJiPcMkGqtJTkAxHok3Vno_QyrAb27UZUem6XWa-zQMQWK-iDWUwFIys3VLswMMejusnxciwC8UdiC8BdV3A2ohfvoKQ6-zEB5Q58GoN6f-_gEfXKv0YbuFR2Kvdn8AE8aWfIplr5LOh-_4GXNZM3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+immersogeometric+variational+framework+for+fluid%E2%80%93structure+interaction%3A+Application+to+bioprosthetic+heart+valves&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Kamensky%2C+David&rft.au=Hsu%2C+Ming-Chen&rft.au=Schillinger%2C+Dominik&rft.au=Evans%2C+John+A.&rft.date=2015-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=284&rft.spage=1005&rft.epage=1053&rft_id=info:doi/10.1016%2Fj.cma.2014.10.040&rft.externalDocID=S0045782514004101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon