The nucleolus as a multiphase liquid condensate

The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules g...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Molecular cell biology Vol. 22; no. 3; pp. 165 - 182
Main Authors Lafontaine, Denis L. J., Riback, Joshua A., Bascetin, Rümeyza, Brangwynne, Clifford P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1471-0072
1471-0080
1471-0080
DOI10.1038/s41580-020-0272-6

Cover

Abstract The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid–liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid–liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function.
AbstractList The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid-liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function.
The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.
The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.
The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid–liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid–liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function.
Audience Academic
Author Bascetin, Rümeyza
Lafontaine, Denis L. J.
Brangwynne, Clifford P.
Riback, Joshua A.
Author_xml – sequence: 1
  givenname: Denis L. J.
  orcidid: 0000-0001-7295-6288
  surname: Lafontaine
  fullname: Lafontaine, Denis L. J.
  email: denis.lafontaine@ulb.ac.be
  organization: RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles Cancer Research Center (ULB-CRC), Center for Microscopy and Molecular Imaging (CMMI)
– sequence: 2
  givenname: Joshua A.
  orcidid: 0000-0002-1516-4484
  surname: Riback
  fullname: Riback, Joshua A.
  organization: Department of Chemical and Biological Engineering, Princeton University
– sequence: 3
  givenname: Rümeyza
  orcidid: 0000-0002-3494-0610
  surname: Bascetin
  fullname: Bascetin, Rümeyza
  organization: RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles Cancer Research Center (ULB-CRC), Center for Microscopy and Molecular Imaging (CMMI)
– sequence: 4
  givenname: Clifford P.
  orcidid: 0000-0002-1350-9960
  surname: Brangwynne
  fullname: Brangwynne, Clifford P.
  email: cbrangwy@princeton.edu
  organization: Department of Chemical and Biological Engineering, Princeton University, HHMI, Princeton University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32873929$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03836500$$DView record in HAL
BookMark eNp9kk1r3DAQhkVJaT7aH9BLMfSSHJyMJMsfxyW0TWCh0KZnIUvjXQVZ3lhWaf99ZJxs2dAWSUgMz_syM5pTcuQHj4S8p3BJgddXoaCihhzYfCqWl6_ICS0qmgPUcLR_V-yYnIZwD0BLWok35JizuuINa07I1d0WMx-1w8HFkKm0sz66ye62KmDm7EO0JtODN-iDmvAted0pF_Dd031Gfnz-dHd9k6-_frm9Xq1zLQRMeaNKLhhAU7cd1F3X1S1qaqpWGKZbxrWgjJtKFcY0HYeiTZzGWgs0UFBj-Bm5WHy3ysndaHs1_paDsvJmtZZzLNXPSwHwkyb2fGF34_AQMUyyt0Gjc8rjEINkBW9KzgtoEvrxBXo_xNGnShLVcCYET4ntqY1yKK3vhmlUejaVq1KIioqmnr0u_0KlZbC3qWPY2RQ_EFwcCBIz4a9po2II8vb7t0P2w1Oise3R7Fvw_HMJqBZAj0MII3ZS20lNNnmOyjpJQc4zIpcZkWlG5DwjskxK-kL5bP4_DVs0IbF-g-Ofvv1b9AjrtsiG
CitedBy_id crossref_primary_10_1038_s41467_024_55054_8
crossref_primary_10_1038_s41589_022_01204_2
crossref_primary_10_1038_s41467_024_54002_w
crossref_primary_10_1038_s42255_022_00622_9
crossref_primary_10_1083_jcb_202407123
crossref_primary_10_1016_j_semcdb_2024_01_004
crossref_primary_10_1080_15476286_2022_2048563
crossref_primary_10_2478_macvetrev_2025_0011
crossref_primary_10_1128_mbio_01844_23
crossref_primary_10_1021_acs_analchem_3c05629
crossref_primary_10_1016_j_celrep_2024_114044
crossref_primary_10_1039_D4SM01477D
crossref_primary_10_1016_j_celrep_2024_115139
crossref_primary_10_1038_s41583_024_00859_1
crossref_primary_10_1016_j_ceb_2024_102380
crossref_primary_10_3390_ijms252111427
crossref_primary_10_1038_s41419_021_04432_x
crossref_primary_10_1016_j_cplett_2023_140634
crossref_primary_10_1266_ggs_22_00046
crossref_primary_10_3390_cancers14092126
crossref_primary_10_3389_fcvm_2022_1045455
crossref_primary_10_1038_s41589_021_00801_x
crossref_primary_10_1016_j_cis_2022_102777
crossref_primary_10_1016_j_bpj_2024_05_026
crossref_primary_10_1038_s41467_024_50025_5
crossref_primary_10_1038_s41467_024_52391_6
crossref_primary_10_1016_j_molcel_2021_10_009
crossref_primary_10_1101_gad_348234_121
crossref_primary_10_1016_j_tibs_2024_06_014
crossref_primary_10_1002_1873_3468_14758
crossref_primary_10_1080_15476286_2025_2483118
crossref_primary_10_1016_j_isci_2024_110430
crossref_primary_10_1111_cas_15232
crossref_primary_10_1016_j_pnmrs_2022_04_002
crossref_primary_10_7554_eLife_88799_3
crossref_primary_10_1016_j_bpj_2023_03_003
crossref_primary_10_1038_s41580_020_00303_z
crossref_primary_10_1101_gad_351337_123
crossref_primary_10_1038_s41467_024_45451_4
crossref_primary_10_1021_acs_biomac_4c00814
crossref_primary_10_1146_annurev_conmatphys_031720_032917
crossref_primary_10_1093_genetics_iyad126
crossref_primary_10_1038_s41467_022_30303_w
crossref_primary_10_1021_acs_chemrev_2c00586
crossref_primary_10_1038_s41467_024_53805_1
crossref_primary_10_1016_j_dnarep_2021_103179
crossref_primary_10_1093_jb_mvad061
crossref_primary_10_1016_j_celrep_2023_112915
crossref_primary_10_1038_s41580_021_00387_1
crossref_primary_10_1038_s41557_024_01485_1
crossref_primary_10_1016_j_cell_2024_12_004
crossref_primary_10_1103_PhysRevLett_130_158401
crossref_primary_10_1080_19491034_2024_2319957
crossref_primary_10_1016_j_molcel_2025_01_008
crossref_primary_10_1016_j_ceb_2021_12_001
crossref_primary_10_1242_jcs_261413
crossref_primary_10_1021_acs_langmuir_3c02774
crossref_primary_10_1093_nar_gkad1202
crossref_primary_10_1089_ars_2023_0352
crossref_primary_10_3390_ijms242216482
crossref_primary_10_1128_mmbr_00186_21
crossref_primary_10_1002_jcp_31433
crossref_primary_10_1016_j_gde_2021_09_007
crossref_primary_10_1093_nar_gkac866
crossref_primary_10_1111_nph_18478
crossref_primary_10_1016_j_tibs_2024_07_005
crossref_primary_10_1038_s44319_025_00421_9
crossref_primary_10_1073_pnas_2218085120
crossref_primary_10_1261_rna_078990_121
crossref_primary_10_1016_j_bpj_2022_08_043
crossref_primary_10_1016_j_tibs_2022_09_006
crossref_primary_10_1016_j_tibs_2022_09_012
crossref_primary_10_1038_s42254_023_00598_9
crossref_primary_10_1039_D2SM00840H
crossref_primary_10_1038_s41422_021_00597_4
crossref_primary_10_1146_annurev_genom_101122_081642
crossref_primary_10_1038_s41577_025_01130_z
crossref_primary_10_1038_s41467_024_51043_z
crossref_primary_10_1038_s41467_024_51754_3
crossref_primary_10_7554_eLife_76421
crossref_primary_10_3390_life13061306
crossref_primary_10_1038_s42003_024_06457_2
crossref_primary_10_1073_pnas_2216338120
crossref_primary_10_1242_bio_059984
crossref_primary_10_1080_19491034_2023_2293604
crossref_primary_10_3389_fgene_2022_876862
crossref_primary_10_1038_s41467_024_53469_x
crossref_primary_10_1242_jcs_261834
crossref_primary_10_1124_pharmrev_122_000784
crossref_primary_10_3390_genes14091766
crossref_primary_10_1242_jcs_260989
crossref_primary_10_1021_acschembio_2c00203
crossref_primary_10_1007_s00401_024_02817_8
crossref_primary_10_1038_s41467_024_49613_2
crossref_primary_10_1128_mbio_00070_23
crossref_primary_10_1016_j_molcel_2024_10_036
crossref_primary_10_1021_jacs_4c04036
crossref_primary_10_1038_s41596_023_00900_0
crossref_primary_10_1016_j_jmb_2022_167685
crossref_primary_10_1038_s42003_023_05519_1
crossref_primary_10_1038_s41419_024_06852_x
crossref_primary_10_1128_mbio_03315_21
crossref_primary_10_3390_biom12030347
crossref_primary_10_1186_s13059_021_02455_3
crossref_primary_10_1101_gad_348660_121
crossref_primary_10_1083_jcb_202202110
crossref_primary_10_1186_s13619_022_00145_4
crossref_primary_10_3724_abbs_2023132
crossref_primary_10_1016_j_brainresbull_2023_01_009
crossref_primary_10_1016_j_celrep_2023_112955
crossref_primary_10_1016_j_jmb_2021_167151
crossref_primary_10_1038_s42003_021_02501_7
crossref_primary_10_1038_s41589_024_01613_5
crossref_primary_10_1039_D4SD00238E
crossref_primary_10_1126_science_abq4835
crossref_primary_10_1021_acs_jproteome_2c00557
crossref_primary_10_1093_pnasnexus_pgac303
crossref_primary_10_1016_j_cell_2022_02_022
crossref_primary_10_1126_sciadv_adi9036
crossref_primary_10_1016_j_celrep_2024_115048
crossref_primary_10_1088_2515_7647_ac159a
crossref_primary_10_1261_rna_078995_121
crossref_primary_10_3390_cells11193017
crossref_primary_10_1098_rsob_230358
crossref_primary_10_1371_journal_ppat_1011833
crossref_primary_10_1007_s11427_024_2661_3
crossref_primary_10_1016_j_molcel_2024_09_005
crossref_primary_10_1038_s41586_021_03905_5
crossref_primary_10_1021_acs_biomac_3c00545
crossref_primary_10_1039_D4CC01117A
crossref_primary_10_1101_cshperspect_a041268
crossref_primary_10_3390_cancers14071830
crossref_primary_10_1126_sciadv_abm4783
crossref_primary_10_1016_j_molcel_2021_12_010
crossref_primary_10_1016_j_devcel_2024_09_024
crossref_primary_10_1038_s42003_023_05750_w
crossref_primary_10_1039_D3CB00055A
crossref_primary_10_7554_eLife_88799
crossref_primary_10_1261_rna_078971_121
crossref_primary_10_1093_nar_gkac430
crossref_primary_10_1039_D4TB01670J
crossref_primary_10_1038_s41586_024_07424_x
crossref_primary_10_1172_JCI168549
crossref_primary_10_1002_advs_202105545
crossref_primary_10_1016_j_virs_2023_12_001
crossref_primary_10_3389_fgene_2021_730633
crossref_primary_10_1007_s00709_022_01742_5
crossref_primary_10_1140_epje_s10189_023_00323_5
crossref_primary_10_1186_s13045_023_01522_5
crossref_primary_10_1016_j_semcdb_2022_03_027
crossref_primary_10_3390_biom14040500
crossref_primary_10_1021_acs_biomac_3c00550
crossref_primary_10_1038_s41556_024_01420_z
crossref_primary_10_1091_mbc_E22_02_0070
crossref_primary_10_1002_adhm_202302431
crossref_primary_10_1016_j_crstbi_2022_09_004
crossref_primary_10_3390_cells13181591
crossref_primary_10_1002_adma_202205649
crossref_primary_10_3390_biom12111611
crossref_primary_10_1146_annurev_biochem_052521_121259
crossref_primary_10_1073_pnas_2312250121
crossref_primary_10_1002_ange_202418431
crossref_primary_10_1038_s41467_021_25244_9
crossref_primary_10_1016_j_semcdb_2023_05_006
crossref_primary_10_1126_sciadv_adi0889
crossref_primary_10_1038_s41598_024_78899_x
crossref_primary_10_1002_chem_202401961
crossref_primary_10_1016_j_csbj_2023_02_040
crossref_primary_10_3390_cancers14235776
crossref_primary_10_3390_ijms222313095
crossref_primary_10_1038_s41467_025_58060_6
crossref_primary_10_1080_15476286_2021_1991167
crossref_primary_10_1021_acsbiomaterials_3c01052
crossref_primary_10_1007_s12064_024_00427_2
crossref_primary_10_1038_s44318_024_00333_9
crossref_primary_10_1002_syst_202400011
crossref_primary_10_1016_j_celrep_2023_112518
crossref_primary_10_3389_fpls_2022_984163
crossref_primary_10_3390_ijms232213994
crossref_primary_10_1016_j_ceb_2022_01_005
crossref_primary_10_1021_acs_jctc_3c00198
crossref_primary_10_1016_j_jmb_2025_169016
crossref_primary_10_1038_s41557_023_01423_7
crossref_primary_10_3390_cells13040326
crossref_primary_10_3390_life12020301
crossref_primary_10_1016_j_cell_2024_02_029
crossref_primary_10_1016_j_sbi_2022_102331
crossref_primary_10_3390_cells12151958
crossref_primary_10_1038_s41467_024_47602_z
crossref_primary_10_1209_0295_5075_ad60f3
crossref_primary_10_1039_D4SC03645J
crossref_primary_10_1371_journal_pgen_1011462
crossref_primary_10_1038_s41467_024_51742_7
crossref_primary_10_1172_JCI159860
crossref_primary_10_1073_pnas_2201250119
crossref_primary_10_1038_s41557_024_01456_6
crossref_primary_10_1103_PhysRevLett_131_058401
crossref_primary_10_1186_s12964_024_01787_4
crossref_primary_10_1038_s41573_022_00505_4
crossref_primary_10_3389_fcell_2022_1017499
crossref_primary_10_1098_rsob_240330
crossref_primary_10_1038_s41557_024_01663_1
crossref_primary_10_15252_embr_202357550
crossref_primary_10_1021_acs_macromol_4c02017
crossref_primary_10_1091_mbc_E23_02_0062
crossref_primary_10_1038_s44222_023_00052_6
crossref_primary_10_1038_s44318_024_00257_4
crossref_primary_10_3389_fncel_2022_954912
crossref_primary_10_1038_s41467_024_51840_6
crossref_primary_10_1038_s41467_022_34225_5
crossref_primary_10_1016_j_molcel_2023_08_006
crossref_primary_10_1038_s41420_022_01226_8
crossref_primary_10_1038_s41589_022_01046_y
crossref_primary_10_1360_TB_2024_0362
crossref_primary_10_1021_acs_biomac_2c01456
crossref_primary_10_1093_genetics_iyab195
crossref_primary_10_1002_wcms_1618
crossref_primary_10_2147_JIR_S513098
crossref_primary_10_3390_ijms252312695
crossref_primary_10_1038_s41467_024_52945_8
crossref_primary_10_1152_physiol_00013_2024
crossref_primary_10_1126_science_abj5338
crossref_primary_10_1016_j_bbagrm_2024_195029
crossref_primary_10_3390_ijms22189728
crossref_primary_10_1093_nar_gkad212
crossref_primary_10_3390_biom13030527
crossref_primary_10_2139_ssrn_4069888
crossref_primary_10_1016_j_jcis_2022_01_047
crossref_primary_10_1111_tra_12877
crossref_primary_10_1039_D4AN00264D
crossref_primary_10_26508_lsa_202402614
crossref_primary_10_3390_genes16010061
crossref_primary_10_1016_j_cell_2024_10_048
crossref_primary_10_1016_j_devcel_2023_07_009
crossref_primary_10_1093_genetics_iyac070
crossref_primary_10_1016_j_sbi_2024_102866
crossref_primary_10_1128_spectrum_00416_24
crossref_primary_10_3389_fimmu_2023_1162211
crossref_primary_10_1016_j_biochi_2023_08_013
crossref_primary_10_1093_nar_gkad1235
crossref_primary_10_1016_j_celrep_2023_113651
crossref_primary_10_1016_j_celrep_2023_112323
crossref_primary_10_1091_mbc_E24_08_0337
crossref_primary_10_1091_mbc_E20_10_0645
crossref_primary_10_1016_j_celrep_2024_113827
crossref_primary_10_1016_j_ydbio_2021_12_010
crossref_primary_10_1093_nar_gkac457
crossref_primary_10_3103_S0095452722020074
crossref_primary_10_3724_abbs_2023096
crossref_primary_10_1016_j_molp_2022_07_006
crossref_primary_10_1242_jcs_259701
crossref_primary_10_3724_abbs_2023093
crossref_primary_10_1016_j_crmeth_2024_100814
crossref_primary_10_1101_cshperspect_a041395
crossref_primary_10_3389_fpls_2022_1032045
crossref_primary_10_1021_acs_jpcb_1c03040
crossref_primary_10_1371_journal_ppat_1009926
crossref_primary_10_1038_s42003_023_04963_3
crossref_primary_10_3390_spectroscj1020006
crossref_primary_10_1159_000530250
crossref_primary_10_1021_acs_langmuir_3c01886
crossref_primary_10_1007_s12013_022_01067_3
crossref_primary_10_1093_nar_gkae1169
crossref_primary_10_1093_genetics_iyae121
crossref_primary_10_1016_j_biotechadv_2024_108355
crossref_primary_10_3389_fonc_2023_1170157
crossref_primary_10_3390_biom14121565
crossref_primary_10_1093_jb_mvab090
crossref_primary_10_1016_j_arr_2024_102583
crossref_primary_10_1021_jacs_2c01991
crossref_primary_10_7554_eLife_91306
crossref_primary_10_1083_jcb_202201096
crossref_primary_10_1039_D2SC05438H
crossref_primary_10_3390_ijms25052923
crossref_primary_10_1038_s41568_022_00444_7
crossref_primary_10_1053_j_gastro_2023_05_029
crossref_primary_10_1016_j_molcel_2024_12_021
crossref_primary_10_1038_s41586_024_07140_6
crossref_primary_10_1038_s41589_024_01806_y
crossref_primary_10_15252_embj_2022112699
crossref_primary_10_1016_j_cplett_2024_141671
crossref_primary_10_1021_acs_jpcb_4c04420
crossref_primary_10_1038_s41557_022_00980_7
crossref_primary_10_1002_advs_202407194
crossref_primary_10_1016_j_biomaterials_2022_121758
crossref_primary_10_1364_OL_416300
crossref_primary_10_1146_annurev_biophys_030822_032650
crossref_primary_10_1016_j_celrep_2024_114734
crossref_primary_10_1016_j_celrep_2024_114738
crossref_primary_10_1038_s41467_021_27625_6
crossref_primary_10_1021_jacs_1c05386
crossref_primary_10_1080_12298093_2024_2379623
crossref_primary_10_1093_nar_gkac1159
crossref_primary_10_1101_cshperspect_a040683
crossref_primary_10_3390_ijms21249738
crossref_primary_10_1016_j_intimp_2024_113164
crossref_primary_10_1002_cbic_202400791
crossref_primary_10_1016_j_biocel_2023_106455
crossref_primary_10_1101_gad_350298_122
crossref_primary_10_1038_s41467_023_36059_1
crossref_primary_10_1111_pce_15099
crossref_primary_10_3390_ncrna7030042
crossref_primary_10_1126_scisignal_adi8753
crossref_primary_10_1038_s41598_024_65558_4
crossref_primary_10_7554_eLife_91306_3
crossref_primary_10_1016_j_tibs_2021_12_007
crossref_primary_10_3390_ijms25126381
crossref_primary_10_1038_s41588_024_01661_6
crossref_primary_10_1126_sciadv_adg1123
crossref_primary_10_1371_journal_ppat_1012060
crossref_primary_10_3390_ijms23084432
crossref_primary_10_1016_j_hal_2025_102801
crossref_primary_10_1016_j_mcpro_2023_100671
crossref_primary_10_1142_S1793048024300019
crossref_primary_10_1021_acs_macromol_2c01205
crossref_primary_10_1016_j_jgg_2021_06_011
crossref_primary_10_1063_5_0083286
crossref_primary_10_1007_s11010_022_04558_2
crossref_primary_10_1080_15476286_2021_1965754
crossref_primary_10_1016_j_celrep_2023_113453
crossref_primary_10_1038_s41580_022_00573_9
crossref_primary_10_3390_ijms23105491
crossref_primary_10_1021_jacs_3c06675
crossref_primary_10_1038_s41580_024_00789_x
crossref_primary_10_1063_5_0192529
crossref_primary_10_1016_j_cell_2022_06_052
crossref_primary_10_1038_s41422_023_00801_7
crossref_primary_10_1002_wrna_1870
crossref_primary_10_3389_fcell_2023_1075215
crossref_primary_10_3390_biom12050672
crossref_primary_10_3390_ijms25010039
crossref_primary_10_1021_acsnano_3c04259
crossref_primary_10_1002_advs_202309743
crossref_primary_10_1016_j_celrep_2024_113742
crossref_primary_10_1016_j_tibtech_2023_10_003
crossref_primary_10_1016_j_tips_2022_07_001
crossref_primary_10_1007_s11427_022_2332_5
crossref_primary_10_1126_sciadv_adm8167
crossref_primary_10_1063_5_0224853
crossref_primary_10_3389_fmolb_2022_974772
crossref_primary_10_1073_pnas_2219126120
crossref_primary_10_1016_j_chempr_2023_05_009
crossref_primary_10_1016_j_jcis_2022_11_071
crossref_primary_10_1038_s41598_023_39565_w
crossref_primary_10_15252_embj_2021109558
crossref_primary_10_1038_s41580_023_00628_5
crossref_primary_10_1103_PhysRevE_109_L042401
crossref_primary_10_1038_s41467_023_38118_z
crossref_primary_10_1002_smll_202202711
crossref_primary_10_1016_j_bbrc_2022_06_032
crossref_primary_10_1021_acs_bioconjchem_1c00302
crossref_primary_10_1016_j_dnarep_2024_103692
crossref_primary_10_14348_molcells_2021_0204
crossref_primary_10_3390_cells11152415
crossref_primary_10_1093_nar_gkac191
crossref_primary_10_1371_journal_pgen_1010245
crossref_primary_10_3390_ijms252312861
crossref_primary_10_1007_s12274_021_3874_1
crossref_primary_10_1016_j_devcel_2024_12_004
crossref_primary_10_1016_j_bbrc_2021_04_026
crossref_primary_10_1091_mbc_E24_03_0128
crossref_primary_10_1093_nar_gkaa1126
crossref_primary_10_3389_fmolb_2022_826719
crossref_primary_10_1038_s12276_024_01226_x
crossref_primary_10_1038_s41374_021_00642_1
crossref_primary_10_1038_s41467_024_50863_3
crossref_primary_10_1083_jcb_202311127
crossref_primary_10_1038_s41467_022_35602_w
crossref_primary_10_1186_s12964_025_02059_5
crossref_primary_10_3390_ijms25126333
crossref_primary_10_1152_physiol_00027_2024
crossref_primary_10_1111_jnc_15586
crossref_primary_10_1016_j_cell_2021_09_032
crossref_primary_10_1016_j_devcel_2024_12_016
crossref_primary_10_1016_j_molcel_2024_03_001
crossref_primary_10_1016_j_molp_2023_03_013
crossref_primary_10_1021_acs_chemrev_2c00814
crossref_primary_10_1021_acsmacrolett_1c00282
crossref_primary_10_1016_j_chembiol_2024_08_009
crossref_primary_10_1002_jsfa_13633
crossref_primary_10_3390_cancers14194549
crossref_primary_10_1007_s00436_023_07915_2
crossref_primary_10_1002_pro_5085
crossref_primary_10_1007_s00418_024_02297_7
crossref_primary_10_1021_acs_chemrev_4c00138
crossref_primary_10_1242_jcs_262039
crossref_primary_10_1016_j_celrep_2023_113375
crossref_primary_10_3389_frbis_2024_1342506
crossref_primary_10_1038_s41467_021_27123_9
crossref_primary_10_1080_19491034_2022_2143106
crossref_primary_10_1016_j_csbj_2023_01_033
crossref_primary_10_1186_s13045_024_01526_9
crossref_primary_10_1038_s41467_024_53822_0
crossref_primary_10_1051_fopen_2022013
crossref_primary_10_1016_j_jgg_2021_07_012
crossref_primary_10_1080_19491034_2023_2274655
crossref_primary_10_1002_pat_5350
crossref_primary_10_1083_jcb_202309067
crossref_primary_10_1093_narcan_zcae017
crossref_primary_10_1101_gad_350518_123
crossref_primary_10_1038_s41467_023_38089_1
crossref_primary_10_1016_j_cub_2024_07_079
crossref_primary_10_1038_s41467_024_51574_5
crossref_primary_10_3390_biom14101333
crossref_primary_10_1021_acssynbio_3c00564
crossref_primary_10_3390_genes15121580
crossref_primary_10_1038_s44319_024_00134_5
crossref_primary_10_1021_jacs_3c03793
crossref_primary_10_7554_eLife_80038
crossref_primary_10_1042_BSR20230631
crossref_primary_10_1016_j_cell_2024_06_009
crossref_primary_10_1103_PhysRevResearch_6_033082
crossref_primary_10_1093_nar_gkaf148
crossref_primary_10_3390_ijms25021230
crossref_primary_10_1038_s41467_024_52346_x
crossref_primary_10_1126_science_abj8350
crossref_primary_10_1038_s41589_024_01573_w
crossref_primary_10_1038_s41467_021_26576_2
crossref_primary_10_3390_biology11050708
crossref_primary_10_1083_jcb_202311048
crossref_primary_10_1038_s44319_024_00285_5
crossref_primary_10_1038_s41420_025_02396_x
crossref_primary_10_1016_j_dnarep_2023_103482
crossref_primary_10_1016_j_celrep_2022_111629
crossref_primary_10_1016_j_celrep_2023_113060
crossref_primary_10_7554_eLife_93223
crossref_primary_10_1016_j_tibs_2024_12_003
crossref_primary_10_1128_jvi_00722_22
crossref_primary_10_1002_bies_202400091
crossref_primary_10_1098_rsob_210305
crossref_primary_10_1002_appl_202300071
crossref_primary_10_1016_j_tcb_2023_02_003
crossref_primary_10_1126_science_adj7066
crossref_primary_10_1038_s41467_024_51694_y
crossref_primary_10_1360_SSV_2023_0198
crossref_primary_10_3389_frnar_2023_1331185
crossref_primary_10_1021_jacs_4c01483
crossref_primary_10_7554_eLife_84412
crossref_primary_10_1016_j_tig_2022_05_015
crossref_primary_10_3390_polym13142259
crossref_primary_10_1016_j_tcb_2022_03_005
crossref_primary_10_1002_pro_4756
crossref_primary_10_1021_acs_accounts_4c00574
crossref_primary_10_1007_s43538_022_00087_0
crossref_primary_10_1042_BST20210856
crossref_primary_10_1016_j_xplc_2024_101225
crossref_primary_10_1038_s41586_023_05767_5
crossref_primary_10_1002_smtd_202301724
crossref_primary_10_1186_s12964_024_01518_9
crossref_primary_10_1021_acscentsci_3c01372
crossref_primary_10_1038_s41594_025_01501_z
crossref_primary_10_3390_cells13151266
crossref_primary_10_3390_ijms221910736
crossref_primary_10_1021_acsmacrolett_2c00167
crossref_primary_10_1080_19491034_2024_2306777
crossref_primary_10_3390_cancers16132392
crossref_primary_10_1186_s13059_025_03526_5
crossref_primary_10_3390_cells13242130
crossref_primary_10_1038_s41467_022_28797_5
crossref_primary_10_1021_acs_biochem_1c00376
crossref_primary_10_7124_FEEO_v30_1458
crossref_primary_10_1101_cshperspect_a039719
crossref_primary_10_1042_BST20231304
crossref_primary_10_7498_aps_73_20231990
crossref_primary_10_3389_fonc_2022_912282
crossref_primary_10_1016_j_biochi_2024_04_006
crossref_primary_10_1016_j_supmat_2023_100049
crossref_primary_10_3390_ijms232214075
crossref_primary_10_1038_s41589_023_01477_1
crossref_primary_10_1002_jcp_30980
crossref_primary_10_1098_rsob_210120
crossref_primary_10_1007_s11427_023_2370_5
crossref_primary_10_1073_pnas_2207303119
crossref_primary_10_1016_j_bbrc_2021_02_141
crossref_primary_10_1016_j_ceb_2023_102215
crossref_primary_10_1038_s41580_021_00393_3
crossref_primary_10_1063_5_0065302
crossref_primary_10_1016_j_cub_2021_03_041
crossref_primary_10_1038_s41586_024_08421_w
crossref_primary_10_1042_BST20230483
crossref_primary_10_1186_s13045_024_01618_6
crossref_primary_10_3390_cells10071597
crossref_primary_10_1002_cai2_144
crossref_primary_10_1038_s41580_022_00558_8
crossref_primary_10_1242_jcs_263504
crossref_primary_10_3390_ijms24098108
crossref_primary_10_3389_fcell_2023_1072456
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1101_gad_350353_122
crossref_primary_10_1002_agt2_306
crossref_primary_10_1002_wrna_1778
crossref_primary_10_1042_EBC20220052
crossref_primary_10_1021_acs_jctc_4c00323
crossref_primary_10_1016_j_celrep_2024_114492
crossref_primary_10_1038_s43587_024_00754_5
crossref_primary_10_1073_pnas_2302478120
crossref_primary_10_1007_s00018_022_04276_4
crossref_primary_10_1038_s41467_023_39878_4
crossref_primary_10_1038_s41422_021_00471_3
crossref_primary_10_1063_5_0050059
crossref_primary_10_3390_ijms22031132
crossref_primary_10_1021_jacs_4c08919
crossref_primary_10_1039_D2CP05115J
crossref_primary_10_1016_j_dyepig_2025_112689
crossref_primary_10_3390_genes13020352
crossref_primary_10_1038_s41467_023_39513_2
crossref_primary_10_1016_j_tibs_2024_12_013
crossref_primary_10_1242_jcs_260496
crossref_primary_10_1101_gad_349748_122
crossref_primary_10_2142_biophys_64_71
crossref_primary_10_1002_anie_202418431
crossref_primary_10_3389_fcell_2023_1293420
crossref_primary_10_1007_s11033_023_08343_2
crossref_primary_10_1016_j_tcb_2023_10_012
crossref_primary_10_3389_fmolb_2021_673038
crossref_primary_10_1016_j_biochi_2024_05_007
crossref_primary_10_1146_annurev_biochem_030222_113611
crossref_primary_10_7554_eLife_93223_3
crossref_primary_10_1371_journal_pgen_1010854
crossref_primary_10_1016_j_colsurfb_2024_114385
Cites_doi 10.1038/s41467-018-07530-1
10.1083/jcb.150.3.433
10.1016/j.molcel.2015.01.013
10.1038/nature18610
10.1016/j.molcel.2019.03.019
10.4161/nucl.2.3.16246
10.1016/j.celrep.2013.05.045
10.15252/embj.2018101379
10.1038/nrc1885
10.1073/pnas.1615395114
10.1002/j.1460-2075.1992.tb05099.x
10.1038/s41586-020-2256-2
10.1083/jcb.200204159
10.1038/nrc1430
10.1016/S0092-8674(00)80493-6
10.1016/j.cub.2015.11.065
10.1016/S0968-0004(99)01460-7
10.1016/j.cell.2016.10.002
10.1126/scitranslmed.aap8307
10.1042/BJ20081411
10.1074/mcp.M111.009241
10.1007/s00412-015-0507-z
10.1016/j.cell.2016.11.054
10.1016/j.jsb.2011.02.003
10.1016/S0021-9258(18)32356-1
10.7554/eLife.47533
10.1126/science.288.5470.1385
10.7554/eLife.01641
10.1016/j.molcel.2010.09.024
10.1016/j.bbadis.2013.12.010
10.1038/s41596-018-0044-3
10.1111/j.1601-5223.1946.tb02783.x
10.1083/jcb.133.2.235
10.1038/s41467-018-03255-3
10.15252/embj.2018100278
10.7554/eLife.13722
10.1017/S002211209900662X
10.1093/nar/gkq653
10.1016/j.molcel.2019.11.015
10.1083/jcb.200405013
10.1039/C8SM02045K
10.1038/ncomms16083
10.1128/JVI.00077-08
10.1038/sj.emboj.7601035
10.1016/S0960-9822(01)00650-9
10.1016/j.cell.2016.04.047
10.1016/j.cell.2015.12.038
10.1074/mcp.M900338-MCP200
10.1038/nrm2184
10.1126/science.1254917
10.1074/jbc.M109.074211
10.1126/science.aaf4382
10.1146/annurev-biophys-121219-081629
10.1038/srep16607
10.1073/pnas.1017150108
10.1016/j.molcel.2015.09.017
10.1016/j.neuron.2015.10.030
10.1016/j.tig.2019.07.004
10.1038/35007077
10.1073/pnas.1500953112
10.1111/j.1365-2559.2008.03168.x
10.1016/j.cell.2017.04.011
10.1073/pnas.1321007111
10.7554/eLife.13571
10.1016/j.tcb.2019.04.003
10.1038/nphys3532
10.1039/C6SM01087C
10.1016/j.tcb.2005.02.007
10.1038/nature03207
10.1126/science.284.5416.958
10.1016/j.cell.2015.07.047
10.1126/science.aaw9157
10.1021/cr400525m
10.1073/pnas.1821038116
10.1091/mbc.e04-08-0742
10.1021/pr800308v
10.1016/j.jmb.2018.06.014
10.1016/j.celrep.2013.08.049
10.1038/nsmb.2939
10.1002/wrna.39
10.1126/science.277.5330.1313
10.1038/ncb2830
10.1083/jcb.200201024
10.1016/j.neuron.2014.12.010
10.1371/journal.pgen.1000889
10.1016/j.cell.2015.09.015
10.1016/j.cub.2015.01.012
10.1017/S1355838200001564
10.1111/j.1742-4658.2008.06693.x
10.15252/embj.201591458
10.1016/j.neuron.2019.01.048
10.1111/jnc.14576
10.1016/j.cell.2020.03.050
10.1038/d41586-020-01280-1
10.1093/nar/26.17.3871
10.1038/nrm.2017.7
10.1016/j.tibs.2009.12.006
10.1103/PhysRevLett.121.148101
10.1091/mbc.e02-05-0271
10.1038/ncomms11390
10.1016/j.bpj.2019.08.030
10.1128/MCB.24.18.7976-7986.2004
10.1038/s41586-018-0279-8
10.1016/j.jsb.2019.09.015
10.1073/pnas.1903870116
10.1073/pnas.1504822112
10.1038/s41594-019-0193-2
10.1093/oso/9780198520597.003.0006
10.1016/j.molcel.2019.08.014
10.1101/737387
10.1101/2020.01.30.923003
10.1007/3-540-26449-3_1
10.1101/2020.06.03.128561
10.1101/2020.01.24.918706
ContentType Journal Article
Copyright Springer Nature Limited 2020
COPYRIGHT 2021 Nature Publishing Group
Springer Nature Limited 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature Limited 2020
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Springer Nature Limited 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7RV
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
1XC
DOI 10.1038/s41580-020-0272-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
Proquest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest Central Student
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-0080
EndPage 182
ExternalDocumentID oai_HAL_hal_03836500v1
A655715989
32873929
10_1038_s41580_020_0272_6
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NIDA NIH HHS
  grantid: U01 DA040601
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D0L
D1J
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
1XC
ID FETCH-LOGICAL-c550t-9a63520098bf08fff8bec1d7b5d2cb23c5123d7a4dd9f304b8bfce8c5ed041dd3
IEDL.DBID 7X7
ISSN 1471-0072
1471-0080
IngestDate Tue Sep 02 06:29:29 EDT 2025
Thu Sep 04 16:34:00 EDT 2025
Sat Aug 23 13:05:08 EDT 2025
Thu Jul 17 05:58:55 EDT 2025
Thu Jul 17 05:59:28 EDT 2025
Fri Jun 27 05:25:22 EDT 2025
Mon Jul 21 05:13:47 EDT 2025
Wed Oct 01 05:08:57 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:38:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-9a63520098bf08fff8bec1d7b5d2cb23c5123d7a4dd9f304b8bfce8c5ed041dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7295-6288
0000-0002-3494-0610
0000-0002-1350-9960
0000-0002-1516-4484
OpenAccessLink http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/312927
PMID 32873929
PQID 2493255312
PQPubID 27585
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_03836500v1
proquest_miscellaneous_2439633409
proquest_journals_2493255312
gale_infotracmisc_A655715989
gale_infotracacademiconefile_A655715989
gale_incontextgauss_ISR_A655715989
pubmed_primary_32873929
crossref_citationtrail_10_1038_s41580_020_0272_6
crossref_primary_10_1038_s41580_020_0272_6
springer_journals_10_1038_s41580_020_0272_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Molecular cell biology
PublicationTitleAbbrev Nat Rev Mol Cell Biol
PublicationTitleAlternate Nat Rev Mol Cell Biol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Andersen (CR7) 2002; 12
Sanders (CR53) 2020; 181
Falahati, Pelham-Webb, Blythe, Wieschaus (CR72) 2016; 26
Mao, Kuldinow, Haataja, Kosmrlj (CR52) 2019; 15
CR35
Lewis, Tollervey (CR109) 2000; 288
Grisendi, Mecucci, Falini, Pandolfi (CR48) 2006; 6
Weber, Brangwynne (CR20) 2015; 25
Nicolas (CR81) 2016; 7
Boisvert, van Koningsbruggen, Navascues, Lamond (CR2) 2007; 8
Girard (CR39) 1992; 11
Thiry, Lafontaine (CR32) 2005; 15
Mitrea (CR18) 2016; 5
van der Lee (CR114) 2014; 114
Taylor (CR45) 2016; 12
Bartholome (CR34) 2019; 208
Taylor, Wei, Stone, Brangwynne (CR103) 2019; 117
Amon (CR5) 2008; 275
Thiry, Cheutin, O’Donohue, Kaplan, Ploton (CR74) 2000; 6
Burger (CR80) 2010; 285
Brangwynne, Mitchison, Hyman (CR15) 2011; 108
Sobecki (CR70) 2016; 5
Mitrea (CR49) 2014; 111
CR46
Warner (CR110) 1999; 24
Calle (CR11) 2008; 82
Zhang (CR57) 2015; 60
Mitrea (CR17) 2018; 9
Dundr, Misteli, Olson (CR63) 2000; 150
Moore (CR62) 2011; 10
Phair, Misteli (CR28) 2000; 404
Lam, Evans, Heesom, Lamond, Matthews (CR61) 2010; 9
Booth (CR69) 2014; 3
Xing (CR38) 2017; 169
Andersen (CR60) 2005; 433
Iarovaia (CR4) 2019; 29
Frankowski (CR14) 2018; 10
Huang (CR108) 2002; 157
Kwon (CR92) 2014; 345
Tiku (CR97) 2017; 8
Roussel, Andre, Comai, Hernandez-Verdun (CR105) 1996; 133
CR54
Leung (CR64) 2004; 166
Riback (CR75) 2020; 581
Ehrenberg (CR27) 1946; 32
Handwerger, Cordero, Gall (CR29) 2005; 16
Boulon, Westman, Hutten, Boisvert, Lamond (CR6) 2010; 40
Berry, Weber, Vaidya, Haataja, Brangwynne (CR44) 2015; 112
Donati, Peddigari, Mercer, Thomas (CR82) 2013; 4
Derenzini, Montanaro, Trere (CR90) 2009; 54
Boeynaems (CR96) 2019; 116
Feric, Brangwynne (CR50) 2013; 15
Caragine, Haley, Zidovska (CR21) 2019; 8
Wen (CR93) 2014; 84
CR67
Hernandez-Verdun, Roussel, Thiry, Sirri, Lafontaine (CR79) 2010; 1
Frottin (CR22) 2019; 365
Choi, Holehouse, Pappu (CR115) 2020; 49
Nott (CR112) 2015; 57
Sirri, Hernandez-Verdun, Roussel (CR68) 2002; 156
Shin, Brangwynne (CR25) 2017; 357
Dez, Houseley, Tollervey (CR77) 2006; 25
Hetman, Slomnicki (CR10) 2019; 148
Lafontaine (CR37) 2019; 76
Falahati, Wieschaus (CR19) 2017; 114
Sinclair, Guarente (CR98) 1997; 91
Galea (CR89) 2009; 8
White (CR95) 2019; 74
Colau, Thiry, Leduc, Bordonne, Lafontaine (CR41) 2004; 24
Mann (CR86) 2019; 102
Pederson (CR1) 1998; 26
Sloan, Bohnsack, Watkins (CR83) 2013; 5
Sinclair, Mills, Guarente (CR99) 1997; 277
Farley, Surovtseva, Merkel, Baserga (CR106) 2015; 124
Scott, Boisvert, McDowall, Lamond, Barton (CR40) 2010; 38
Chong, Vernon, Forman-Kay (CR43) 2018; 430
Kilic (CR87) 2019; 38
Cuylen (CR71) 2016; 535
Lafontaine (CR78) 2010; 35
Eggers, Lister, Stone (CR59) 1999; 401
Banani, Lee, Hyman, Rosen (CR26) 2017; 18
Molliex (CR55) 2015; 163
Duncan, Hershey (CR111) 1983; 258
Stamatopoulou, Parisot, De Vleeschouwer, Lafontaine (CR13) 2018; 13
Lafontaine (CR3) 2015; 22
CR88
Bohnsack, Bohnsack (CR76) 2019; 38
Jain (CR101) 2016; 164
Scherl (CR8) 2002; 13
Feric (CR16) 2016; 165
Putnam, Cassani, Smith, Seydoux (CR102) 2019; 26
Shin (CR84) 2017; 168
Rai, Chen, Selbach, Pelkmans (CR66) 2018; 559
Farley-Barnes, Ogawa, Baserga (CR91) 2019; 35
Patel (CR56) 2015; 162
Lee (CR31) 2020; 581
Lamaye, Galliot, Alibardi, Lafontaine, Thiry (CR33) 2011; 174
Brangwynne, Tompa, Pappu (CR113) 2015; 11
Murakami (CR58) 2015; 88
Caudron-Herger (CR73) 2015; 34
Amin, Matsunaga, Uchiyama, Fukui (CR47) 2008; 415
Zhu (CR85) 2019; 116
Salvetti, Greco (CR9) 2014; 1842
Nemeth (CR36) 2010; 6
Zink, Fischer, Nickerson (CR12) 2004; 4
Feric, Broedersz, Brangwynne (CR51) 2015; 5
Lee (CR94) 2016; 167
Ferrolino, Mitrea, Michael, Kriwacki (CR24) 2018; 9
CR23
Houtsmuller (CR30) 1999; 284
CR104
Caragine, Haley, Zidovska (CR107) 2018; 121
CR100
Hernandez-Verdun (CR65) 2011; 2
Elbaum-Garfinkle (CR42) 2015; 112
DM Mitrea (272_CR17) 2018; 9
MS Scott (272_CR40) 2010; 38
SC Weber (272_CR20) 2015; 25
G Donati (272_CR82) 2013; 4
DLJ Lafontaine (272_CR78) 2010; 35
S Kilic (272_CR87) 2019; 38
V Tiku (272_CR97) 2017; 8
S Elbaum-Garfinkle (272_CR42) 2015; 112
T Murakami (272_CR58) 2015; 88
F Lamaye (272_CR33) 2011; 174
DLJ Lafontaine (272_CR37) 2019; 76
JM Choi (272_CR115) 2020; 49
N Taylor (272_CR45) 2016; 12
S Grisendi (272_CR48) 2006; 6
NO Taylor (272_CR103) 2019; 117
S Mao (272_CR52) 2019; 15
D Hernandez-Verdun (272_CR65) 2011; 2
DA Sinclair (272_CR98) 1997; 91
DM Mitrea (272_CR18) 2016; 5
YW Lam (272_CR61) 2010; 9
E Nicolas (272_CR81) 2016; 7
CM Caragine (272_CR107) 2018; 121
S Boulon (272_CR6) 2010; 40
JS Andersen (272_CR7) 2002; 12
M Thiry (272_CR32) 2005; 15
YH Xing (272_CR38) 2017; 169
A Calle (272_CR11) 2008; 82
C Brangwynne (272_CR113) 2015; 11
G Colau (272_CR41) 2004; 24
KI Farley-Barnes (272_CR91) 2019; 35
Y Shin (272_CR25) 2017; 357
272_CR88
S Huang (272_CR108) 2002; 157
JP Girard (272_CR39) 1992; 11
A Amon (272_CR5) 2008; 275
JS Andersen (272_CR60) 2005; 433
O Bartholome (272_CR34) 2019; 208
M Hetman (272_CR10) 2019; 148
DG Booth (272_CR69) 2014; 3
S Cuylen (272_CR71) 2016; 535
M Thiry (272_CR74) 2000; 6
CF Lee (272_CR31) 2020; 581
SF Banani (272_CR26) 2017; 18
272_CR100
A Molliex (272_CR55) 2015; 163
272_CR104
AK Leung (272_CR64) 2004; 166
MC Ferrolino (272_CR24) 2018; 9
CP Brangwynne (272_CR15) 2011; 108
X Wen (272_CR93) 2014; 84
AB Houtsmuller (272_CR30) 1999; 284
H Falahati (272_CR19) 2017; 114
MA Amin (272_CR47) 2008; 415
272_CR23
R van der Lee (272_CR114) 2014; 114
S Boeynaems (272_CR96) 2019; 116
T Pederson (272_CR1) 1998; 26
AK Rai (272_CR66) 2018; 559
M Feric (272_CR16) 2016; 165
S Jain (272_CR101) 2016; 164
CM Caragine (272_CR21) 2019; 8
M Sobecki (272_CR70) 2016; 5
272_CR35
D Zink (272_CR12) 2004; 4
L Zhu (272_CR85) 2019; 116
H Zhang (272_CR57) 2015; 60
C Dez (272_CR77) 2006; 25
KE Bohnsack (272_CR76) 2019; 38
PA Chong (272_CR43) 2018; 430
CA Galea (272_CR89) 2009; 8
H Falahati (272_CR72) 2016; 26
M Feric (272_CR51) 2015; 5
JR Mann (272_CR86) 2019; 102
M Dundr (272_CR63) 2000; 150
KE Handwerger (272_CR29) 2005; 16
J Berry (272_CR44) 2015; 112
272_CR46
K Burger (272_CR80) 2010; 285
KJ Frankowski (272_CR14) 2018; 10
D Hernandez-Verdun (272_CR79) 2010; 1
I Kwon (272_CR92) 2014; 345
A Scherl (272_CR8) 2002; 13
A Salvetti (272_CR9) 2014; 1842
A Patel (272_CR56) 2015; 162
FM Boisvert (272_CR2) 2007; 8
RD Phair (272_CR28) 2000; 404
M Derenzini (272_CR90) 2009; 54
DM Mitrea (272_CR49) 2014; 111
Y Shin (272_CR84) 2017; 168
KE Sloan (272_CR83) 2013; 5
M Caudron-Herger (272_CR73) 2015; 34
KI Farley (272_CR106) 2015; 124
JD Lewis (272_CR109) 2000; 288
J Eggers (272_CR59) 1999; 401
V Sirri (272_CR68) 2002; 156
272_CR54
R Duncan (272_CR111) 1983; 258
A Nemeth (272_CR36) 2010; 6
DA Sinclair (272_CR99) 1997; 277
P Roussel (272_CR105) 1996; 133
JR Warner (272_CR110) 1999; 24
DLJ Lafontaine (272_CR3) 2015; 22
MR White (272_CR95) 2019; 74
KH Lee (272_CR94) 2016; 167
F Frottin (272_CR22) 2019; 365
JA Riback (272_CR75) 2020; 581
A Putnam (272_CR102) 2019; 26
TJ Nott (272_CR112) 2015; 57
V Stamatopoulou (272_CR13) 2018; 13
OV Iarovaia (272_CR4) 2019; 29
L Ehrenberg (272_CR27) 1946; 32
272_CR67
DW Sanders (272_CR53) 2020; 181
M Feric (272_CR50) 2013; 15
HM Moore (272_CR62) 2011; 10
References_xml – volume: 9
  year: 2018
  ident: CR24
  article-title: Compositional adaptability in NPM1–SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07530-1
– volume: 150
  start-page: 433
  year: 2000
  end-page: 446
  ident: CR63
  article-title: The dynamics of postmitotic reassembly of the nucleolus
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.150.3.433
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: CR112
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 535
  start-page: 308
  year: 2016
  end-page: 312
  ident: CR71
  article-title: Ki-67 acts as a biological surfactant to disperse mitotic chromosomes
  publication-title: Nature
  doi: 10.1038/nature18610
– volume: 74
  start-page: 713
  year: 2019
  end-page: 728.e6
  ident: CR95
  article-title: C9orf72 poly(PR) dipeptide repeats disturb biomolecular phase separation and disrupt nucleolar function
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.019
– volume: 2
  start-page: 189
  year: 2011
  end-page: 194
  ident: CR65
  article-title: Assembly and disassembly of the nucleolus during the cell cycle
  publication-title: Nucleus
  doi: 10.4161/nucl.2.3.16246
– volume: 4
  start-page: 87
  year: 2013
  end-page: 98
  ident: CR82
  article-title: 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2–p53 checkpoint
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.045
– volume: 38
  year: 2019
  ident: CR87
  article-title: Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101379
– volume: 6
  start-page: 493
  year: 2006
  end-page: 505
  ident: CR48
  article-title: Nucleophosmin and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1885
– volume: 114
  start-page: 1335
  year: 2017
  end-page: 1340
  ident: CR19
  article-title: Independent active and thermodynamic processes govern the nucleolus assembly in vivo
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1615395114
– ident: CR54
– volume: 11
  start-page: 673
  year: 1992
  end-page: 682
  ident: CR39
  article-title: GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05099.x
– volume: 581
  start-page: 209
  year: 2020
  end-page: 214
  ident: CR75
  article-title: Composition-dependent thermodynamics of intracellular phase separation
  publication-title: Nature
  doi: 10.1038/s41586-020-2256-2
– volume: 157
  start-page: 739
  year: 2002
  end-page: 741
  ident: CR108
  article-title: Building an efficient factory: where is pre-rRNA synthesized in the nucleolus?
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200204159
– volume: 4
  start-page: 677
  year: 2004
  end-page: 687
  ident: CR12
  article-title: Nuclear structure in cancer cells
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1430
– volume: 91
  start-page: 1033
  year: 1997
  end-page: 1042
  ident: CR98
  article-title: Extrachromosomal rDNA circles — a cause of aging in yeast
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80493-6
– volume: 26
  start-page: 277
  year: 2016
  end-page: 285
  ident: CR72
  article-title: Nucleation by rRNA dictates the precision of nucleolus assembly
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.11.065
– volume: 24
  start-page: 437
  year: 1999
  end-page: 440
  ident: CR110
  article-title: The economics of ribosome biosynthesis in yeast
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01460-7
– volume: 167
  start-page: 774
  year: 2016
  end-page: 788.e17
  ident: CR94
  article-title: C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.002
– volume: 10
  start-page: eaap8307
  year: 2018
  ident: CR14
  article-title: Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.aap8307
– volume: 415
  start-page: 345
  year: 2008
  end-page: 351
  ident: CR47
  article-title: Depletion of nucleophosmin leads to distortion of nucleolar and nuclear structures in HeLa cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081411
– volume: 10
  start-page: M111 009241
  year: 2011
  ident: CR62
  article-title: Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.009241
– volume: 124
  start-page: 323
  year: 2015
  end-page: 331
  ident: CR106
  article-title: Determinants of mammalian nucleolar architecture
  publication-title: Chromosoma
  doi: 10.1007/s00412-015-0507-z
– ident: CR88
– volume: 168
  start-page: 159
  year: 2017
  end-page: 171.e14
  ident: CR84
  article-title: Spatiotemporal control of intracellular phase transitions using light-activated optodroplets
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.054
– volume: 174
  start-page: 352
  year: 2011
  end-page: 359
  ident: CR33
  article-title: Nucleolar structure across evolution: the transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.02.003
– volume: 258
  start-page: 7228
  year: 1983
  end-page: 7235
  ident: CR111
  article-title: Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)32356-1
– volume: 8
  year: 2019
  ident: CR21
  article-title: Nucleolar dynamics and interactions with nucleoplasm in living cells
  publication-title: eLife
  doi: 10.7554/eLife.47533
– volume: 288
  start-page: 1385
  year: 2000
  end-page: 1389
  ident: CR109
  article-title: Like attracts like: getting RNA processing together in the nucleus
  publication-title: Science
  doi: 10.1126/science.288.5470.1385
– volume: 3
  year: 2014
  ident: CR69
  article-title: Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery
  publication-title: eLife
  doi: 10.7554/eLife.01641
– volume: 40
  start-page: 216
  year: 2010
  end-page: 227
  ident: CR6
  article-title: The nucleolus under stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.09.024
– ident: CR100
– volume: 1842
  start-page: 840
  year: 2014
  end-page: 847
  ident: CR9
  article-title: Viruses and the nucleolus: the fatal attraction
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.12.010
– volume: 13
  start-page: 2387
  year: 2018
  end-page: 2406
  ident: CR13
  article-title: Use of the iNo score to discriminate normal from altered nucleolar morphology, with applications in basic cell biology and potential in human disease diagnostics
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0044-3
– volume: 32
  start-page: 407
  year: 1946
  end-page: 418
  ident: CR27
  article-title: Influence of temperature on the nucleolus and its coacervate nature
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1946.tb02783.x
– volume: 133
  start-page: 235
  year: 1996
  end-page: 246
  ident: CR105
  article-title: The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.133.2.235
– volume: 9
  year: 2018
  ident: CR17
  article-title: Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03255-3
– volume: 38
  year: 2019
  ident: CR76
  article-title: Uncovering the assembly pathway of human ribosomes and its emerging links to disease
  publication-title: EMBO J.
  doi: 10.15252/embj.2018100278
– volume: 5
  year: 2016
  ident: CR70
  article-title: The cell proliferation antigen Ki-67 organises heterochromatin
  publication-title: eLife
  doi: 10.7554/eLife.13722
– volume: 401
  start-page: 293
  year: 1999
  end-page: 310
  ident: CR59
  article-title: Coalescence of liquid drops
  publication-title: J. fluid Mech.
  doi: 10.1017/S002211209900662X
– volume: 38
  start-page: 7388
  year: 2010
  end-page: 7399
  ident: CR40
  article-title: Characterization and prediction of protein nucleolar localization sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq653
– volume: 76
  start-page: 694
  year: 2019
  end-page: 696
  ident: CR37
  article-title: Birth of nucleolar compartments: phase separation-driven ribosomal RNA sorting and processing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.11.015
– volume: 166
  start-page: 787
  year: 2004
  end-page: 800
  ident: CR64
  article-title: Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200405013
– volume: 15
  start-page: 1297
  year: 2019
  end-page: 1311
  ident: CR52
  article-title: Phase behavior and morphology of multicomponent liquid mixtures
  publication-title: Soft Matter
  doi: 10.1039/C8SM02045K
– volume: 8
  year: 2017
  ident: CR97
  article-title: Small nucleoli are a cellular hallmark of longevity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16083
– volume: 82
  start-page: 4762
  year: 2008
  end-page: 4773
  ident: CR11
  article-title: Nucleolin is required for an efficient herpes simplex virus type 1 infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.00077-08
– volume: 25
  start-page: 1534
  year: 2006
  end-page: 1546
  ident: CR77
  article-title: Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601035
– volume: 12
  start-page: 1
  year: 2002
  end-page: 11
  ident: CR7
  article-title: Directed proteomic analysis of the human nucleolus
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00650-9
– volume: 165
  start-page: 1686
  year: 2016
  end-page: 1697
  ident: CR16
  article-title: Coexisting liquid phases underlie nucleolar subcompartments
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.047
– volume: 164
  start-page: 487
  year: 2016
  end-page: 498
  ident: CR101
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 9
  start-page: 117
  year: 2010
  end-page: 130
  ident: CR61
  article-title: Proteomics analysis of the nucleolus in adenovirus-infected cells
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900338-MCP200
– volume: 8
  start-page: 574
  year: 2007
  end-page: 585
  ident: CR2
  article-title: The multifunctional nucleolus
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2184
– volume: 345
  start-page: 1139
  year: 2014
  end-page: 1145
  ident: CR92
  article-title: Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells
  publication-title: Science
  doi: 10.1126/science.1254917
– volume: 285
  start-page: 12416
  year: 2010
  end-page: 12425
  ident: CR80
  article-title: Chemotherapeutic drugs inhibit ribosome biogenesis at various levels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.074211
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: CR25
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
  doi: 10.1126/science.aaf4382
– volume: 49
  start-page: 107
  year: 2020
  end-page: 133
  ident: CR115
  article-title: Physical principles underlying the complex biology of intracellular phase transitions
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-121219-081629
– volume: 5
  year: 2015
  ident: CR51
  article-title: Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep
  publication-title: Sci. Rep.
  doi: 10.1038/srep16607
– volume: 108
  start-page: 4334
  year: 2011
  end-page: 4339
  ident: CR15
  article-title: Active liquid-like behavior of nucleoli determines their size and shape in oocytes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1017150108
– volume: 60
  start-page: 220
  year: 2015
  end-page: 230
  ident: CR57
  article-title: RNA controls PolyQ protein phase transitions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.09.017
– volume: 88
  start-page: 678
  year: 2015
  end-page: 690
  ident: CR58
  article-title: ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.10.030
– volume: 35
  start-page: 754
  year: 2019
  end-page: 767
  ident: CR91
  article-title: Ribosomopathies: old concepts, new controversies
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.07.004
– volume: 404
  start-page: 604
  year: 2000
  end-page: 609
  ident: CR28
  article-title: High mobility of proteins in the mammalian cell nucleus
  publication-title: Nature
  doi: 10.1038/35007077
– volume: 112
  start-page: E5237
  year: 2015
  end-page: E5245
  ident: CR44
  article-title: RNA transcription modulates phase transition-driven nuclear body assembly
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1500953112
– volume: 54
  start-page: 753
  year: 2009
  end-page: 762
  ident: CR90
  article-title: What the nucleolus says to a tumour pathologist
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2008.03168.x
– volume: 169
  start-page: 664
  year: 2017
  end-page: 678.e16
  ident: CR38
  article-title: SLERT regulates DDX21 rings associated with Pol I transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.011
– volume: 111
  start-page: 4466
  year: 2014
  end-page: 4471
  ident: CR49
  article-title: Structural polymorphism in the N-terminal oligomerization domain of NPM1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1321007111
– volume: 5
  year: 2016
  ident: CR18
  article-title: Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA
  publication-title: eLife
  doi: 10.7554/eLife.13571
– volume: 29
  start-page: 647
  year: 2019
  end-page: 659
  ident: CR4
  article-title: Nucleolus: a central hub for nuclear functions
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.04.003
– volume: 11
  start-page: 899
  year: 2015
  end-page: 904
  ident: CR113
  article-title: Polymer physics of intracellular phase transitions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3532
– ident: CR35
– ident: CR46
– volume: 12
  start-page: 9142
  year: 2016
  end-page: 9150
  ident: CR45
  article-title: Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics
  publication-title: Soft Matter
  doi: 10.1039/C6SM01087C
– volume: 15
  start-page: 194
  year: 2005
  end-page: 199
  ident: CR32
  article-title: Birth of a nucleolus: the evolution of nucleolar compartments
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2005.02.007
– volume: 433
  start-page: 77
  year: 2005
  end-page: 83
  ident: CR60
  article-title: Nucleolar proteome dynamics
  publication-title: Nature
  doi: 10.1038/nature03207
– ident: CR67
– volume: 284
  start-page: 958
  year: 1999
  end-page: 961
  ident: CR30
  article-title: Action of DNA repair endonuclease ERCC1/XPF in living cells
  publication-title: Science
  doi: 10.1126/science.284.5416.958
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: CR56
  article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 365
  start-page: 342
  year: 2019
  end-page: 347
  ident: CR22
  article-title: The nucleolus functions as a phase-separated protein quality control compartment
  publication-title: Science
  doi: 10.1126/science.aaw9157
– volume: 114
  start-page: 6589
  year: 2014
  end-page: 6631
  ident: CR114
  article-title: Classification of intrinsically disordered regions and proteins
  publication-title: Chem. Rev.
  doi: 10.1021/cr400525m
– volume: 116
  start-page: 7889
  year: 2019
  end-page: 7898
  ident: CR96
  article-title: Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821038116
– volume: 16
  start-page: 202
  year: 2005
  end-page: 211
  ident: CR29
  article-title: Cajal bodies, nucleoli, and speckles in the nucleus have a low-density, sponge-like structure
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-08-0742
– volume: 8
  start-page: 211
  year: 2009
  end-page: 226
  ident: CR89
  article-title: Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800308v
– volume: 430
  start-page: 4650
  year: 2018
  end-page: 4665
  ident: CR43
  article-title: RGG/RG motif regions in RNA binding and phase separation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.06.014
– volume: 5
  start-page: 237
  year: 2013
  end-page: 247
  ident: CR83
  article-title: The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.08.049
– volume: 22
  start-page: 11
  year: 2015
  end-page: 19
  ident: CR3
  article-title: Noncoding RNAs in eukaryotic ribosome synthesis and function
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2939
– volume: 1
  start-page: 415
  year: 2010
  end-page: 431
  ident: CR79
  article-title: The nucleolus: structure/function relationship in RNA metabolism
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.39
– volume: 277
  start-page: 1313
  year: 1997
  end-page: 1316
  ident: CR99
  article-title: Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants
  publication-title: Science
  doi: 10.1126/science.277.5330.1313
– volume: 15
  start-page: 1253
  year: 2013
  end-page: 1259
  ident: CR50
  article-title: A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2830
– volume: 156
  start-page: 969
  year: 2002
  end-page: 981
  ident: CR68
  article-title: Cyclin-dependent kinases govern formation and maintenance of the nucleolus
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200201024
– volume: 84
  start-page: 1213
  year: 2014
  end-page: 1225
  ident: CR93
  article-title: Antisense proline–arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.010
– volume: 6
  year: 2010
  ident: CR36
  article-title: Initial genomics of the human nucleolus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000889
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  ident: CR55
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 25
  start-page: 641
  year: 2015
  end-page: 646
  ident: CR20
  article-title: Inverse size scaling of the nucleolus by a concentration-dependent phase transition
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.01.012
– volume: 6
  start-page: 1750
  year: 2000
  end-page: 1761
  ident: CR74
  article-title: Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus
  publication-title: RNA
  doi: 10.1017/S1355838200001564
– volume: 275
  start-page: 5774
  year: 2008
  end-page: 5784
  ident: CR5
  article-title: A decade of Cdc14 — a personal perspective. Delivered on 9 July 2007 at the 32nd FEBS Congress in Vienna, Austria
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06693.x
– volume: 34
  start-page: 2758
  year: 2015
  end-page: 2774
  ident: CR73
  article-title: Alu element-containing RNAs maintain nucleolar structure and function
  publication-title: EMBO J.
  doi: 10.15252/embj.201591458
– volume: 102
  start-page: 321
  year: 2019
  end-page: 338.e8
  ident: CR86
  article-title: RNA binding antagonizes neurotoxic phase transitions of TDP-43
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.048
– volume: 148
  start-page: 325
  year: 2019
  end-page: 347
  ident: CR10
  article-title: Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14576
– volume: 181
  start-page: 306
  year: 2020
  end-page: 324
  ident: CR53
  article-title: Competing protein–RNA interaction networks control multiphase intracellular organization
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.050
– volume: 581
  start-page: 144
  year: 2020
  end-page: 145
  ident: CR31
  article-title: Formation of liquid-like cellular organelles depends on their composition
  publication-title: Nature
  doi: 10.1038/d41586-020-01280-1
– volume: 26
  start-page: 3871
  year: 1998
  end-page: 3876
  ident: CR1
  article-title: The plurifunctional nucleolus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.17.3871
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  ident: CR26
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 35
  start-page: 267
  year: 2010
  end-page: 277
  ident: CR78
  article-title: A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2009.12.006
– ident: CR104
– volume: 121
  start-page: 148101
  year: 2018
  ident: CR107
  article-title: Surface fluctuations and coalescence of nucleolar droplets in the human cell nucleus
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.148101
– ident: CR23
– volume: 13
  start-page: 4100
  year: 2002
  end-page: 4109
  ident: CR8
  article-title: Functional proteomic analysis of human nucleolus
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-05-0271
– volume: 7
  year: 2016
  ident: CR81
  article-title: Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11390
– volume: 117
  start-page: 1285
  year: 2019
  end-page: 1300
  ident: CR103
  article-title: Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.08.030
– volume: 24
  start-page: 7976
  year: 2004
  end-page: 7986
  ident: CR41
  article-title: The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.18.7976-7986.2004
– volume: 559
  start-page: 211
  year: 2018
  end-page: 216
  ident: CR66
  article-title: Kinase-controlled phase transition of membraneless organelles in mitosis
  publication-title: Nature
  doi: 10.1038/s41586-018-0279-8
– volume: 208
  start-page: 107398
  year: 2019
  ident: CR34
  article-title: Relationships between the structural and functional organization of the turtle cell nucleolus
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2019.09.015
– volume: 116
  start-page: 17330
  year: 2019
  end-page: 17335
  ident: CR85
  article-title: Controlling the material properties and rRNA processing function of the nucleolus using light
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1903870116
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  ident: CR42
  article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1504822112
– volume: 26
  start-page: 220
  year: 2019
  end-page: 226
  ident: CR102
  article-title: A gel phase promotes condensation of liquid P granules in embryos
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0193-2
– volume: 91
  start-page: 1033
  year: 1997
  ident: 272_CR98
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80493-6
– volume: 1842
  start-page: 840
  year: 2014
  ident: 272_CR9
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.12.010
– volume: 121
  start-page: 148101
  year: 2018
  ident: 272_CR107
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.148101
– volume: 535
  start-page: 308
  year: 2016
  ident: 272_CR71
  publication-title: Nature
  doi: 10.1038/nature18610
– volume: 108
  start-page: 4334
  year: 2011
  ident: 272_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1017150108
– volume: 5
  year: 2016
  ident: 272_CR18
  publication-title: eLife
  doi: 10.7554/eLife.13571
– volume: 54
  start-page: 753
  year: 2009
  ident: 272_CR90
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2008.03168.x
– ident: 272_CR54
  doi: 10.1093/oso/9780198520597.003.0006
– volume: 102
  start-page: 321
  year: 2019
  ident: 272_CR86
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.048
– volume: 6
  year: 2010
  ident: 272_CR36
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000889
– volume: 24
  start-page: 437
  year: 1999
  ident: 272_CR110
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01460-7
– volume: 112
  start-page: E5237
  year: 2015
  ident: 272_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1500953112
– volume: 15
  start-page: 1297
  year: 2019
  ident: 272_CR52
  publication-title: Soft Matter
  doi: 10.1039/C8SM02045K
– volume: 181
  start-page: 306
  year: 2020
  ident: 272_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.050
– volume: 22
  start-page: 11
  year: 2015
  ident: 272_CR3
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2939
– volume: 401
  start-page: 293
  year: 1999
  ident: 272_CR59
  publication-title: J. fluid Mech.
  doi: 10.1017/S002211209900662X
– volume: 345
  start-page: 1139
  year: 2014
  ident: 272_CR92
  publication-title: Science
  doi: 10.1126/science.1254917
– ident: 272_CR23
  doi: 10.1016/j.molcel.2019.08.014
– volume: 112
  start-page: 7189
  year: 2015
  ident: 272_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1504822112
– volume: 415
  start-page: 345
  year: 2008
  ident: 272_CR47
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081411
– volume: 82
  start-page: 4762
  year: 2008
  ident: 272_CR11
  publication-title: J. Virol.
  doi: 10.1128/JVI.00077-08
– volume: 165
  start-page: 1686
  year: 2016
  ident: 272_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.047
– volume: 26
  start-page: 3871
  year: 1998
  ident: 272_CR1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.17.3871
– volume: 365
  start-page: 342
  year: 2019
  ident: 272_CR22
  publication-title: Science
  doi: 10.1126/science.aaw9157
– volume: 88
  start-page: 678
  year: 2015
  ident: 272_CR58
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.10.030
– volume: 25
  start-page: 641
  year: 2015
  ident: 272_CR20
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.01.012
– volume: 288
  start-page: 1385
  year: 2000
  ident: 272_CR109
  publication-title: Science
  doi: 10.1126/science.288.5470.1385
– volume: 18
  start-page: 285
  year: 2017
  ident: 272_CR26
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 168
  start-page: 159
  year: 2017
  ident: 272_CR84
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.054
– volume: 38
  year: 2019
  ident: 272_CR87
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101379
– volume: 581
  start-page: 209
  year: 2020
  ident: 272_CR75
  publication-title: Nature
  doi: 10.1038/s41586-020-2256-2
– volume: 35
  start-page: 267
  year: 2010
  ident: 272_CR78
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2009.12.006
– volume: 148
  start-page: 325
  year: 2019
  ident: 272_CR10
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14576
– ident: 272_CR88
  doi: 10.1101/737387
– volume: 32
  start-page: 407
  year: 1946
  ident: 272_CR27
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1946.tb02783.x
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: 272_CR25
  publication-title: Science
  doi: 10.1126/science.aaf4382
– volume: 74
  start-page: 713
  year: 2019
  ident: 272_CR95
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.019
– volume: 60
  start-page: 220
  year: 2015
  ident: 272_CR57
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.09.017
– volume: 6
  start-page: 493
  year: 2006
  ident: 272_CR48
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1885
– volume: 57
  start-page: 936
  year: 2015
  ident: 272_CR112
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 166
  start-page: 787
  year: 2004
  ident: 272_CR64
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200405013
– volume: 2
  start-page: 189
  year: 2011
  ident: 272_CR65
  publication-title: Nucleus
  doi: 10.4161/nucl.2.3.16246
– volume: 208
  start-page: 107398
  year: 2019
  ident: 272_CR34
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2019.09.015
– volume: 114
  start-page: 6589
  year: 2014
  ident: 272_CR114
  publication-title: Chem. Rev.
  doi: 10.1021/cr400525m
– ident: 272_CR67
– volume: 16
  start-page: 202
  year: 2005
  ident: 272_CR29
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-08-0742
– volume: 29
  start-page: 647
  year: 2019
  ident: 272_CR4
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.04.003
– volume: 133
  start-page: 235
  year: 1996
  ident: 272_CR105
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.133.2.235
– volume: 404
  start-page: 604
  year: 2000
  ident: 272_CR28
  publication-title: Nature
  doi: 10.1038/35007077
– volume: 162
  start-page: 1066
  year: 2015
  ident: 272_CR56
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 3
  year: 2014
  ident: 272_CR69
  publication-title: eLife
  doi: 10.7554/eLife.01641
– volume: 84
  start-page: 1213
  year: 2014
  ident: 272_CR93
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.010
– volume: 11
  start-page: 899
  year: 2015
  ident: 272_CR113
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3532
– volume: 4
  start-page: 677
  year: 2004
  ident: 272_CR12
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1430
– volume: 24
  start-page: 7976
  year: 2004
  ident: 272_CR41
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.18.7976-7986.2004
– volume: 284
  start-page: 958
  year: 1999
  ident: 272_CR30
  publication-title: Science
  doi: 10.1126/science.284.5416.958
– ident: 272_CR35
  doi: 10.1101/2020.01.30.923003
– volume: 8
  start-page: 211
  year: 2009
  ident: 272_CR89
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800308v
– volume: 275
  start-page: 5774
  year: 2008
  ident: 272_CR5
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06693.x
– volume: 25
  start-page: 1534
  year: 2006
  ident: 272_CR77
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601035
– volume: 156
  start-page: 969
  year: 2002
  ident: 272_CR68
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200201024
– volume: 5
  year: 2016
  ident: 272_CR70
  publication-title: eLife
  doi: 10.7554/eLife.13722
– volume: 277
  start-page: 1313
  year: 1997
  ident: 272_CR99
  publication-title: Science
  doi: 10.1126/science.277.5330.1313
– volume: 34
  start-page: 2758
  year: 2015
  ident: 272_CR73
  publication-title: EMBO J.
  doi: 10.15252/embj.201591458
– volume: 114
  start-page: 1335
  year: 2017
  ident: 272_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1615395114
– volume: 285
  start-page: 12416
  year: 2010
  ident: 272_CR80
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.074211
– volume: 559
  start-page: 211
  year: 2018
  ident: 272_CR66
  publication-title: Nature
  doi: 10.1038/s41586-018-0279-8
– volume: 164
  start-page: 487
  year: 2016
  ident: 272_CR101
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 5
  start-page: 237
  year: 2013
  ident: 272_CR83
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.08.049
– volume: 40
  start-page: 216
  year: 2010
  ident: 272_CR6
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.09.024
– volume: 9
  year: 2018
  ident: 272_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07530-1
– volume: 38
  start-page: 7388
  year: 2010
  ident: 272_CR40
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq653
– ident: 272_CR104
  doi: 10.1007/3-540-26449-3_1
– volume: 9
  start-page: 117
  year: 2010
  ident: 272_CR61
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900338-MCP200
– volume: 157
  start-page: 739
  year: 2002
  ident: 272_CR108
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200204159
– volume: 35
  start-page: 754
  year: 2019
  ident: 272_CR91
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.07.004
– volume: 174
  start-page: 352
  year: 2011
  ident: 272_CR33
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.02.003
– volume: 13
  start-page: 4100
  year: 2002
  ident: 272_CR8
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-05-0271
– volume: 12
  start-page: 1
  year: 2002
  ident: 272_CR7
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00650-9
– volume: 7
  year: 2016
  ident: 272_CR81
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11390
– volume: 26
  start-page: 277
  year: 2016
  ident: 272_CR72
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.11.065
– volume: 117
  start-page: 1285
  year: 2019
  ident: 272_CR103
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.08.030
– volume: 258
  start-page: 7228
  year: 1983
  ident: 272_CR111
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)32356-1
– volume: 15
  start-page: 1253
  year: 2013
  ident: 272_CR50
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2830
– volume: 10
  start-page: eaap8307
  year: 2018
  ident: 272_CR14
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.aap8307
– volume: 26
  start-page: 220
  year: 2019
  ident: 272_CR102
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0193-2
– volume: 4
  start-page: 87
  year: 2013
  ident: 272_CR82
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.045
– volume: 5
  year: 2015
  ident: 272_CR51
  publication-title: Sci. Rep.
  doi: 10.1038/srep16607
– volume: 1
  start-page: 415
  year: 2010
  ident: 272_CR79
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.39
– volume: 8
  year: 2017
  ident: 272_CR97
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16083
– volume: 581
  start-page: 144
  year: 2020
  ident: 272_CR31
  publication-title: Nature
  doi: 10.1038/d41586-020-01280-1
– volume: 49
  start-page: 107
  year: 2020
  ident: 272_CR115
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-121219-081629
– ident: 272_CR46
  doi: 10.1101/2020.06.03.128561
– volume: 9
  year: 2018
  ident: 272_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03255-3
– volume: 430
  start-page: 4650
  year: 2018
  ident: 272_CR43
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.06.014
– volume: 124
  start-page: 323
  year: 2015
  ident: 272_CR106
  publication-title: Chromosoma
  doi: 10.1007/s00412-015-0507-z
– volume: 116
  start-page: 17330
  year: 2019
  ident: 272_CR85
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1903870116
– volume: 167
  start-page: 774
  year: 2016
  ident: 272_CR94
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.002
– volume: 13
  start-page: 2387
  year: 2018
  ident: 272_CR13
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0044-3
– volume: 111
  start-page: 4466
  year: 2014
  ident: 272_CR49
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1321007111
– volume: 116
  start-page: 7889
  year: 2019
  ident: 272_CR96
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821038116
– volume: 150
  start-page: 433
  year: 2000
  ident: 272_CR63
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.150.3.433
– volume: 12
  start-page: 9142
  year: 2016
  ident: 272_CR45
  publication-title: Soft Matter
  doi: 10.1039/C6SM01087C
– volume: 11
  start-page: 673
  year: 1992
  ident: 272_CR39
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05099.x
– volume: 76
  start-page: 694
  year: 2019
  ident: 272_CR37
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.11.015
– volume: 163
  start-page: 123
  year: 2015
  ident: 272_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 8
  year: 2019
  ident: 272_CR21
  publication-title: eLife
  doi: 10.7554/eLife.47533
– volume: 15
  start-page: 194
  year: 2005
  ident: 272_CR32
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2005.02.007
– volume: 169
  start-page: 664
  year: 2017
  ident: 272_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.011
– volume: 10
  start-page: M111 009241
  year: 2011
  ident: 272_CR62
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.009241
– volume: 6
  start-page: 1750
  year: 2000
  ident: 272_CR74
  publication-title: RNA
  doi: 10.1017/S1355838200001564
– ident: 272_CR100
  doi: 10.1101/2020.01.24.918706
– volume: 8
  start-page: 574
  year: 2007
  ident: 272_CR2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2184
– volume: 433
  start-page: 77
  year: 2005
  ident: 272_CR60
  publication-title: Nature
  doi: 10.1038/nature03207
– volume: 38
  year: 2019
  ident: 272_CR76
  publication-title: EMBO J.
  doi: 10.15252/embj.2018100278
SSID ssj0016175
Score 2.7316937
SecondaryResourceType review_article
Snippet The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly,...
SourceID hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms 631/57
631/80/386/1362
Aging
Aging - genetics
Aging - metabolism
Aging - pathology
Animals
Assembly
Biochemistry
Biomedical and Life Sciences
Biosynthesis
Cancer Research
Cell Biology
Cell Cycle - physiology
Cell Nucleolus - chemistry
Cell Nucleolus - genetics
Cell Nucleolus - metabolism
Cell organelles
Cell research
Cellular Biology
Chemical Fractionation
Condensates
Developmental Biology
Gene Expression
Gene regulation
Humans
Life Sciences
Liquid phases
Liquid-Liquid Extraction
Multiphase
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Neurodegeneration
Nucleoli
Phase separation
Properties
Review Article
Ribonucleoproteins - metabolism
Ribosomes
Ribosomes - physiology
Stem Cells
Structure-function relationships
Subcellular Processes
Yeast
Title The nucleolus as a multiphase liquid condensate
URI https://link.springer.com/article/10.1038/s41580-020-0272-6
https://www.ncbi.nlm.nih.gov/pubmed/32873929
https://www.proquest.com/docview/2493255312
https://www.proquest.com/docview/2439633409
https://hal.science/hal-03836500
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1471-0080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9tADBdry2AvY99z1xWvDAYbR3y-s315GklpyMYWRrdC3g7fh9dCcdo5Key_n2SfXUJZITgQy-eLdCf9ZMkSwHvnUNBSVKwoU8uk4p4Z1JXMe-mNdLJSbTGd74t8fia_LrNleODWhLTKXie2itqtLD0jH6GbIBD-Cp5-vrpm1DWKoquhhcYO7HGEKrSqi-XgcBF0z9q3iwp0mZMi7aOaQo0aNFwqYeQ8oWOWsnzLLgXtvHNOyZF3keedqGlrjGZP4HFAkfGkE_tTeODrZ_Cw6yv59zmMUPhxTZWKcWE1cYmfuMscPEejFV9eXG8uXIyeMCqdBsHmCzibnfw6nrPQGYFZ9CjWbFwiTqC4hjJVoqqqUigK7gqTudSaVFg048IVpXRuXIlEGqSzXtnMu0Ry58RL2K1XtX8NsbEoDm4KbriROFKZowNmi8wq4QmeRZD0fNE2lA2n7hWXug1fC6U7VmpkpSZW6jyCj8MlV13NjPuIj4jZmmpR1JTs8rvcNI3-8vNUT_IsKxBuqXEEHwJRtcKb2zK8O4B_gcpXbVEebFHiZrFbp49QpsOsqLb2fPJN0284O4FwNbnhOEYvch12dKNv118E74bTNDxlqdV-tSEagfpMoMscwatuqQy3EuiaEhaN4FO_dm4H_y939u-fyht4lFKOTZsTdwC76z8b_xZB0toctjsBj-qYH8LeZDadLvB7erL4cfoPneAMFw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61RQguFW9cCpgKhASyYnvteHNAKAKqhKY9QCvltngfppUqp8UJqH-K38g3fqSKKnqrlFN2Ml7PzM7Ml52dJXptLRSdiCLI8tgEiYxcoOErA-cSpxObFLJuprN_0B8dJV-n6XSN_nZnYbissvOJtaO2M8P_kfcAEwTSXxHFH8_OA741indXuys0GrPYcxd_ANmqD-PP0O-bON79cvhpFLS3CgQG2fg8GOSIsbwnIHURyqIoJF4jsplObWx0LAxCoLBZnlg7KAD2NeiMkyZ1NkwiawX4rtOtBEPcqz-bLgEeQ4W0Ps2UAaKHWdztogrZqxAoZRgwWAMQjIP-Shxso8H6MRdjXs10r-zS1sFv9x5ttlmrP2zM7D6tufIB3W7usbx4SD0Ym19yZ2QYcuXn-PhNpeIxgqR_enK-OLE-kDecXIXk9hEd3YjMHtNGOSvdU_K1gfojnUU60gk45X0APpOlRgrH6aBHYScXZdo25Xxbxqmqt8uFVI0oFUSpWJSq79G75U_Omh4d1xHvsLAV974oubjmZ76oKjX-_k0N-2maIb2TA4_etkTFDA83eXtWAa_A7bJWKLdXKLE4zcrwDnS6nBX38h4NJ4q_w-wE0uPwdwQencpV60EqdWnvHr1aDjN7roor3WzBNAL-UwCie_SkMZXlowSgMOe-Hr3vbOeS-X-ls3X9VF7SndHh_kRNxgd7z-huzPU9dT3eNm3Mfy3ccyRoc_2iXhU-_bjpZfgPFqFHBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_aiuJL8dvUqrEogrJckt1k9x5EDutxZ2sRtXBva_YjtlByrblT-q_51zmTr3IU-1bIUzK32czOzszvZnYG4KVzuNCCF0zmiWVCxZ4Z1JXMe-GNcKJQdTGdzwfZ5FB8mqWzNfjbnYWhtMpOJ9aK2s0t_Uc-QJjA0f3lcTIo2rSIL7vj96dnjDpIUaS1a6fRiMieP_-D8K16N93FtX6VJOOP3z9MWNthgFn0zBdsmKO9pfiAMkWkiqJQ-EmxkyZ1iTUJt2gOuZO5cG5YIPA3SGe9sql3kYid4zjuOtyQXHBKJ5OzHuwRbEjrk00S4Xokky6iytWgQqOpIkbADUFhwrIVm9hahvUjSsy87PVeitjWhnB8BzZbDzYcNSJ3F9Z8eQ9uNj0tz-_DAAUvLKlKMgp1FeZ4hU3W4hEazPDk-Gx57EJE4ajwKnR0H8DhtfDsIWyU89I_htBYFIXYyNjERuBIeYbgz8rUKu7JNQwg6viibVuynDpnnOg6dM6VblipkZWaWKmzAN70Pzlt6nVcRbxDzNZUB6MkifqZL6tKT7991aMsTSW6emoYwOuWqJjjy23enlvAT6DSWSuU2yuUuFHtyuMdXNN-VlTXezLa13QPZ8fRVY5-xzhGt-S61SaVvpD9AF70j2l4ypAr_XxJNBx1KUe4HsCjRlT6V3GExeQHB_C2k52Lwf_Lna2rp_IcbuEG1PvTg70ncDuhVJ86NW8bNha_lv4p-moL86zeFCH8uO5d-A-yRks_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nucleolus+as+a+multiphase+liquid+condensate&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Lafontaine%2C+Denis+L.+J.&rft.au=Riback%2C+Joshua+A.&rft.au=Bascetin%2C+R%C3%BCmeyza&rft.au=Brangwynne%2C+Clifford+P.&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=22&rft.issue=3&rft.spage=165&rft.epage=182&rft_id=info:doi/10.1038%2Fs41580-020-0272-6&rft.externalDocID=10_1038_s41580_020_0272_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon