The nucleolus as a multiphase liquid condensate
The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules g...
Saved in:
Published in | Nature reviews. Molecular cell biology Vol. 22; no. 3; pp. 165 - 182 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1471-0072 1471-0080 1471-0080 |
DOI | 10.1038/s41580-020-0272-6 |
Cover
Abstract | The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid–liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.
The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid–liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function. |
---|---|
AbstractList | The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid-liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function. The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid–liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid–liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function. |
Audience | Academic |
Author | Bascetin, Rümeyza Lafontaine, Denis L. J. Brangwynne, Clifford P. Riback, Joshua A. |
Author_xml | – sequence: 1 givenname: Denis L. J. orcidid: 0000-0001-7295-6288 surname: Lafontaine fullname: Lafontaine, Denis L. J. email: denis.lafontaine@ulb.ac.be organization: RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles Cancer Research Center (ULB-CRC), Center for Microscopy and Molecular Imaging (CMMI) – sequence: 2 givenname: Joshua A. orcidid: 0000-0002-1516-4484 surname: Riback fullname: Riback, Joshua A. organization: Department of Chemical and Biological Engineering, Princeton University – sequence: 3 givenname: Rümeyza orcidid: 0000-0002-3494-0610 surname: Bascetin fullname: Bascetin, Rümeyza organization: RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles Cancer Research Center (ULB-CRC), Center for Microscopy and Molecular Imaging (CMMI) – sequence: 4 givenname: Clifford P. orcidid: 0000-0002-1350-9960 surname: Brangwynne fullname: Brangwynne, Clifford P. email: cbrangwy@princeton.edu organization: Department of Chemical and Biological Engineering, Princeton University, HHMI, Princeton University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32873929$$D View this record in MEDLINE/PubMed https://hal.science/hal-03836500$$DView record in HAL |
BookMark | eNp9kk1r3DAQhkVJaT7aH9BLMfSSHJyMJMsfxyW0TWCh0KZnIUvjXQVZ3lhWaf99ZJxs2dAWSUgMz_syM5pTcuQHj4S8p3BJgddXoaCihhzYfCqWl6_ICS0qmgPUcLR_V-yYnIZwD0BLWok35JizuuINa07I1d0WMx-1w8HFkKm0sz66ye62KmDm7EO0JtODN-iDmvAted0pF_Dd031Gfnz-dHd9k6-_frm9Xq1zLQRMeaNKLhhAU7cd1F3X1S1qaqpWGKZbxrWgjJtKFcY0HYeiTZzGWgs0UFBj-Bm5WHy3ysndaHs1_paDsvJmtZZzLNXPSwHwkyb2fGF34_AQMUyyt0Gjc8rjEINkBW9KzgtoEvrxBXo_xNGnShLVcCYET4ntqY1yKK3vhmlUejaVq1KIioqmnr0u_0KlZbC3qWPY2RQ_EFwcCBIz4a9po2II8vb7t0P2w1Oise3R7Fvw_HMJqBZAj0MII3ZS20lNNnmOyjpJQc4zIpcZkWlG5DwjskxK-kL5bP4_DVs0IbF-g-Ofvv1b9AjrtsiG |
CitedBy_id | crossref_primary_10_1038_s41467_024_55054_8 crossref_primary_10_1038_s41589_022_01204_2 crossref_primary_10_1038_s41467_024_54002_w crossref_primary_10_1038_s42255_022_00622_9 crossref_primary_10_1083_jcb_202407123 crossref_primary_10_1016_j_semcdb_2024_01_004 crossref_primary_10_1080_15476286_2022_2048563 crossref_primary_10_2478_macvetrev_2025_0011 crossref_primary_10_1128_mbio_01844_23 crossref_primary_10_1021_acs_analchem_3c05629 crossref_primary_10_1016_j_celrep_2024_114044 crossref_primary_10_1039_D4SM01477D crossref_primary_10_1016_j_celrep_2024_115139 crossref_primary_10_1038_s41583_024_00859_1 crossref_primary_10_1016_j_ceb_2024_102380 crossref_primary_10_3390_ijms252111427 crossref_primary_10_1038_s41419_021_04432_x crossref_primary_10_1016_j_cplett_2023_140634 crossref_primary_10_1266_ggs_22_00046 crossref_primary_10_3390_cancers14092126 crossref_primary_10_3389_fcvm_2022_1045455 crossref_primary_10_1038_s41589_021_00801_x crossref_primary_10_1016_j_cis_2022_102777 crossref_primary_10_1016_j_bpj_2024_05_026 crossref_primary_10_1038_s41467_024_50025_5 crossref_primary_10_1038_s41467_024_52391_6 crossref_primary_10_1016_j_molcel_2021_10_009 crossref_primary_10_1101_gad_348234_121 crossref_primary_10_1016_j_tibs_2024_06_014 crossref_primary_10_1002_1873_3468_14758 crossref_primary_10_1080_15476286_2025_2483118 crossref_primary_10_1016_j_isci_2024_110430 crossref_primary_10_1111_cas_15232 crossref_primary_10_1016_j_pnmrs_2022_04_002 crossref_primary_10_7554_eLife_88799_3 crossref_primary_10_1016_j_bpj_2023_03_003 crossref_primary_10_1038_s41580_020_00303_z crossref_primary_10_1101_gad_351337_123 crossref_primary_10_1038_s41467_024_45451_4 crossref_primary_10_1021_acs_biomac_4c00814 crossref_primary_10_1146_annurev_conmatphys_031720_032917 crossref_primary_10_1093_genetics_iyad126 crossref_primary_10_1038_s41467_022_30303_w crossref_primary_10_1021_acs_chemrev_2c00586 crossref_primary_10_1038_s41467_024_53805_1 crossref_primary_10_1016_j_dnarep_2021_103179 crossref_primary_10_1093_jb_mvad061 crossref_primary_10_1016_j_celrep_2023_112915 crossref_primary_10_1038_s41580_021_00387_1 crossref_primary_10_1038_s41557_024_01485_1 crossref_primary_10_1016_j_cell_2024_12_004 crossref_primary_10_1103_PhysRevLett_130_158401 crossref_primary_10_1080_19491034_2024_2319957 crossref_primary_10_1016_j_molcel_2025_01_008 crossref_primary_10_1016_j_ceb_2021_12_001 crossref_primary_10_1242_jcs_261413 crossref_primary_10_1021_acs_langmuir_3c02774 crossref_primary_10_1093_nar_gkad1202 crossref_primary_10_1089_ars_2023_0352 crossref_primary_10_3390_ijms242216482 crossref_primary_10_1128_mmbr_00186_21 crossref_primary_10_1002_jcp_31433 crossref_primary_10_1016_j_gde_2021_09_007 crossref_primary_10_1093_nar_gkac866 crossref_primary_10_1111_nph_18478 crossref_primary_10_1016_j_tibs_2024_07_005 crossref_primary_10_1038_s44319_025_00421_9 crossref_primary_10_1073_pnas_2218085120 crossref_primary_10_1261_rna_078990_121 crossref_primary_10_1016_j_bpj_2022_08_043 crossref_primary_10_1016_j_tibs_2022_09_006 crossref_primary_10_1016_j_tibs_2022_09_012 crossref_primary_10_1038_s42254_023_00598_9 crossref_primary_10_1039_D2SM00840H crossref_primary_10_1038_s41422_021_00597_4 crossref_primary_10_1146_annurev_genom_101122_081642 crossref_primary_10_1038_s41577_025_01130_z crossref_primary_10_1038_s41467_024_51043_z crossref_primary_10_1038_s41467_024_51754_3 crossref_primary_10_7554_eLife_76421 crossref_primary_10_3390_life13061306 crossref_primary_10_1038_s42003_024_06457_2 crossref_primary_10_1073_pnas_2216338120 crossref_primary_10_1242_bio_059984 crossref_primary_10_1080_19491034_2023_2293604 crossref_primary_10_3389_fgene_2022_876862 crossref_primary_10_1038_s41467_024_53469_x crossref_primary_10_1242_jcs_261834 crossref_primary_10_1124_pharmrev_122_000784 crossref_primary_10_3390_genes14091766 crossref_primary_10_1242_jcs_260989 crossref_primary_10_1021_acschembio_2c00203 crossref_primary_10_1007_s00401_024_02817_8 crossref_primary_10_1038_s41467_024_49613_2 crossref_primary_10_1128_mbio_00070_23 crossref_primary_10_1016_j_molcel_2024_10_036 crossref_primary_10_1021_jacs_4c04036 crossref_primary_10_1038_s41596_023_00900_0 crossref_primary_10_1016_j_jmb_2022_167685 crossref_primary_10_1038_s42003_023_05519_1 crossref_primary_10_1038_s41419_024_06852_x crossref_primary_10_1128_mbio_03315_21 crossref_primary_10_3390_biom12030347 crossref_primary_10_1186_s13059_021_02455_3 crossref_primary_10_1101_gad_348660_121 crossref_primary_10_1083_jcb_202202110 crossref_primary_10_1186_s13619_022_00145_4 crossref_primary_10_3724_abbs_2023132 crossref_primary_10_1016_j_brainresbull_2023_01_009 crossref_primary_10_1016_j_celrep_2023_112955 crossref_primary_10_1016_j_jmb_2021_167151 crossref_primary_10_1038_s42003_021_02501_7 crossref_primary_10_1038_s41589_024_01613_5 crossref_primary_10_1039_D4SD00238E crossref_primary_10_1126_science_abq4835 crossref_primary_10_1021_acs_jproteome_2c00557 crossref_primary_10_1093_pnasnexus_pgac303 crossref_primary_10_1016_j_cell_2022_02_022 crossref_primary_10_1126_sciadv_adi9036 crossref_primary_10_1016_j_celrep_2024_115048 crossref_primary_10_1088_2515_7647_ac159a crossref_primary_10_1261_rna_078995_121 crossref_primary_10_3390_cells11193017 crossref_primary_10_1098_rsob_230358 crossref_primary_10_1371_journal_ppat_1011833 crossref_primary_10_1007_s11427_024_2661_3 crossref_primary_10_1016_j_molcel_2024_09_005 crossref_primary_10_1038_s41586_021_03905_5 crossref_primary_10_1021_acs_biomac_3c00545 crossref_primary_10_1039_D4CC01117A crossref_primary_10_1101_cshperspect_a041268 crossref_primary_10_3390_cancers14071830 crossref_primary_10_1126_sciadv_abm4783 crossref_primary_10_1016_j_molcel_2021_12_010 crossref_primary_10_1016_j_devcel_2024_09_024 crossref_primary_10_1038_s42003_023_05750_w crossref_primary_10_1039_D3CB00055A crossref_primary_10_7554_eLife_88799 crossref_primary_10_1261_rna_078971_121 crossref_primary_10_1093_nar_gkac430 crossref_primary_10_1039_D4TB01670J crossref_primary_10_1038_s41586_024_07424_x crossref_primary_10_1172_JCI168549 crossref_primary_10_1002_advs_202105545 crossref_primary_10_1016_j_virs_2023_12_001 crossref_primary_10_3389_fgene_2021_730633 crossref_primary_10_1007_s00709_022_01742_5 crossref_primary_10_1140_epje_s10189_023_00323_5 crossref_primary_10_1186_s13045_023_01522_5 crossref_primary_10_1016_j_semcdb_2022_03_027 crossref_primary_10_3390_biom14040500 crossref_primary_10_1021_acs_biomac_3c00550 crossref_primary_10_1038_s41556_024_01420_z crossref_primary_10_1091_mbc_E22_02_0070 crossref_primary_10_1002_adhm_202302431 crossref_primary_10_1016_j_crstbi_2022_09_004 crossref_primary_10_3390_cells13181591 crossref_primary_10_1002_adma_202205649 crossref_primary_10_3390_biom12111611 crossref_primary_10_1146_annurev_biochem_052521_121259 crossref_primary_10_1073_pnas_2312250121 crossref_primary_10_1002_ange_202418431 crossref_primary_10_1038_s41467_021_25244_9 crossref_primary_10_1016_j_semcdb_2023_05_006 crossref_primary_10_1126_sciadv_adi0889 crossref_primary_10_1038_s41598_024_78899_x crossref_primary_10_1002_chem_202401961 crossref_primary_10_1016_j_csbj_2023_02_040 crossref_primary_10_3390_cancers14235776 crossref_primary_10_3390_ijms222313095 crossref_primary_10_1038_s41467_025_58060_6 crossref_primary_10_1080_15476286_2021_1991167 crossref_primary_10_1021_acsbiomaterials_3c01052 crossref_primary_10_1007_s12064_024_00427_2 crossref_primary_10_1038_s44318_024_00333_9 crossref_primary_10_1002_syst_202400011 crossref_primary_10_1016_j_celrep_2023_112518 crossref_primary_10_3389_fpls_2022_984163 crossref_primary_10_3390_ijms232213994 crossref_primary_10_1016_j_ceb_2022_01_005 crossref_primary_10_1021_acs_jctc_3c00198 crossref_primary_10_1016_j_jmb_2025_169016 crossref_primary_10_1038_s41557_023_01423_7 crossref_primary_10_3390_cells13040326 crossref_primary_10_3390_life12020301 crossref_primary_10_1016_j_cell_2024_02_029 crossref_primary_10_1016_j_sbi_2022_102331 crossref_primary_10_3390_cells12151958 crossref_primary_10_1038_s41467_024_47602_z crossref_primary_10_1209_0295_5075_ad60f3 crossref_primary_10_1039_D4SC03645J crossref_primary_10_1371_journal_pgen_1011462 crossref_primary_10_1038_s41467_024_51742_7 crossref_primary_10_1172_JCI159860 crossref_primary_10_1073_pnas_2201250119 crossref_primary_10_1038_s41557_024_01456_6 crossref_primary_10_1103_PhysRevLett_131_058401 crossref_primary_10_1186_s12964_024_01787_4 crossref_primary_10_1038_s41573_022_00505_4 crossref_primary_10_3389_fcell_2022_1017499 crossref_primary_10_1098_rsob_240330 crossref_primary_10_1038_s41557_024_01663_1 crossref_primary_10_15252_embr_202357550 crossref_primary_10_1021_acs_macromol_4c02017 crossref_primary_10_1091_mbc_E23_02_0062 crossref_primary_10_1038_s44222_023_00052_6 crossref_primary_10_1038_s44318_024_00257_4 crossref_primary_10_3389_fncel_2022_954912 crossref_primary_10_1038_s41467_024_51840_6 crossref_primary_10_1038_s41467_022_34225_5 crossref_primary_10_1016_j_molcel_2023_08_006 crossref_primary_10_1038_s41420_022_01226_8 crossref_primary_10_1038_s41589_022_01046_y crossref_primary_10_1360_TB_2024_0362 crossref_primary_10_1021_acs_biomac_2c01456 crossref_primary_10_1093_genetics_iyab195 crossref_primary_10_1002_wcms_1618 crossref_primary_10_2147_JIR_S513098 crossref_primary_10_3390_ijms252312695 crossref_primary_10_1038_s41467_024_52945_8 crossref_primary_10_1152_physiol_00013_2024 crossref_primary_10_1126_science_abj5338 crossref_primary_10_1016_j_bbagrm_2024_195029 crossref_primary_10_3390_ijms22189728 crossref_primary_10_1093_nar_gkad212 crossref_primary_10_3390_biom13030527 crossref_primary_10_2139_ssrn_4069888 crossref_primary_10_1016_j_jcis_2022_01_047 crossref_primary_10_1111_tra_12877 crossref_primary_10_1039_D4AN00264D crossref_primary_10_26508_lsa_202402614 crossref_primary_10_3390_genes16010061 crossref_primary_10_1016_j_cell_2024_10_048 crossref_primary_10_1016_j_devcel_2023_07_009 crossref_primary_10_1093_genetics_iyac070 crossref_primary_10_1016_j_sbi_2024_102866 crossref_primary_10_1128_spectrum_00416_24 crossref_primary_10_3389_fimmu_2023_1162211 crossref_primary_10_1016_j_biochi_2023_08_013 crossref_primary_10_1093_nar_gkad1235 crossref_primary_10_1016_j_celrep_2023_113651 crossref_primary_10_1016_j_celrep_2023_112323 crossref_primary_10_1091_mbc_E24_08_0337 crossref_primary_10_1091_mbc_E20_10_0645 crossref_primary_10_1016_j_celrep_2024_113827 crossref_primary_10_1016_j_ydbio_2021_12_010 crossref_primary_10_1093_nar_gkac457 crossref_primary_10_3103_S0095452722020074 crossref_primary_10_3724_abbs_2023096 crossref_primary_10_1016_j_molp_2022_07_006 crossref_primary_10_1242_jcs_259701 crossref_primary_10_3724_abbs_2023093 crossref_primary_10_1016_j_crmeth_2024_100814 crossref_primary_10_1101_cshperspect_a041395 crossref_primary_10_3389_fpls_2022_1032045 crossref_primary_10_1021_acs_jpcb_1c03040 crossref_primary_10_1371_journal_ppat_1009926 crossref_primary_10_1038_s42003_023_04963_3 crossref_primary_10_3390_spectroscj1020006 crossref_primary_10_1159_000530250 crossref_primary_10_1021_acs_langmuir_3c01886 crossref_primary_10_1007_s12013_022_01067_3 crossref_primary_10_1093_nar_gkae1169 crossref_primary_10_1093_genetics_iyae121 crossref_primary_10_1016_j_biotechadv_2024_108355 crossref_primary_10_3389_fonc_2023_1170157 crossref_primary_10_3390_biom14121565 crossref_primary_10_1093_jb_mvab090 crossref_primary_10_1016_j_arr_2024_102583 crossref_primary_10_1021_jacs_2c01991 crossref_primary_10_7554_eLife_91306 crossref_primary_10_1083_jcb_202201096 crossref_primary_10_1039_D2SC05438H crossref_primary_10_3390_ijms25052923 crossref_primary_10_1038_s41568_022_00444_7 crossref_primary_10_1053_j_gastro_2023_05_029 crossref_primary_10_1016_j_molcel_2024_12_021 crossref_primary_10_1038_s41586_024_07140_6 crossref_primary_10_1038_s41589_024_01806_y crossref_primary_10_15252_embj_2022112699 crossref_primary_10_1016_j_cplett_2024_141671 crossref_primary_10_1021_acs_jpcb_4c04420 crossref_primary_10_1038_s41557_022_00980_7 crossref_primary_10_1002_advs_202407194 crossref_primary_10_1016_j_biomaterials_2022_121758 crossref_primary_10_1364_OL_416300 crossref_primary_10_1146_annurev_biophys_030822_032650 crossref_primary_10_1016_j_celrep_2024_114734 crossref_primary_10_1016_j_celrep_2024_114738 crossref_primary_10_1038_s41467_021_27625_6 crossref_primary_10_1021_jacs_1c05386 crossref_primary_10_1080_12298093_2024_2379623 crossref_primary_10_1093_nar_gkac1159 crossref_primary_10_1101_cshperspect_a040683 crossref_primary_10_3390_ijms21249738 crossref_primary_10_1016_j_intimp_2024_113164 crossref_primary_10_1002_cbic_202400791 crossref_primary_10_1016_j_biocel_2023_106455 crossref_primary_10_1101_gad_350298_122 crossref_primary_10_1038_s41467_023_36059_1 crossref_primary_10_1111_pce_15099 crossref_primary_10_3390_ncrna7030042 crossref_primary_10_1126_scisignal_adi8753 crossref_primary_10_1038_s41598_024_65558_4 crossref_primary_10_7554_eLife_91306_3 crossref_primary_10_1016_j_tibs_2021_12_007 crossref_primary_10_3390_ijms25126381 crossref_primary_10_1038_s41588_024_01661_6 crossref_primary_10_1126_sciadv_adg1123 crossref_primary_10_1371_journal_ppat_1012060 crossref_primary_10_3390_ijms23084432 crossref_primary_10_1016_j_hal_2025_102801 crossref_primary_10_1016_j_mcpro_2023_100671 crossref_primary_10_1142_S1793048024300019 crossref_primary_10_1021_acs_macromol_2c01205 crossref_primary_10_1016_j_jgg_2021_06_011 crossref_primary_10_1063_5_0083286 crossref_primary_10_1007_s11010_022_04558_2 crossref_primary_10_1080_15476286_2021_1965754 crossref_primary_10_1016_j_celrep_2023_113453 crossref_primary_10_1038_s41580_022_00573_9 crossref_primary_10_3390_ijms23105491 crossref_primary_10_1021_jacs_3c06675 crossref_primary_10_1038_s41580_024_00789_x crossref_primary_10_1063_5_0192529 crossref_primary_10_1016_j_cell_2022_06_052 crossref_primary_10_1038_s41422_023_00801_7 crossref_primary_10_1002_wrna_1870 crossref_primary_10_3389_fcell_2023_1075215 crossref_primary_10_3390_biom12050672 crossref_primary_10_3390_ijms25010039 crossref_primary_10_1021_acsnano_3c04259 crossref_primary_10_1002_advs_202309743 crossref_primary_10_1016_j_celrep_2024_113742 crossref_primary_10_1016_j_tibtech_2023_10_003 crossref_primary_10_1016_j_tips_2022_07_001 crossref_primary_10_1007_s11427_022_2332_5 crossref_primary_10_1126_sciadv_adm8167 crossref_primary_10_1063_5_0224853 crossref_primary_10_3389_fmolb_2022_974772 crossref_primary_10_1073_pnas_2219126120 crossref_primary_10_1016_j_chempr_2023_05_009 crossref_primary_10_1016_j_jcis_2022_11_071 crossref_primary_10_1038_s41598_023_39565_w crossref_primary_10_15252_embj_2021109558 crossref_primary_10_1038_s41580_023_00628_5 crossref_primary_10_1103_PhysRevE_109_L042401 crossref_primary_10_1038_s41467_023_38118_z crossref_primary_10_1002_smll_202202711 crossref_primary_10_1016_j_bbrc_2022_06_032 crossref_primary_10_1021_acs_bioconjchem_1c00302 crossref_primary_10_1016_j_dnarep_2024_103692 crossref_primary_10_14348_molcells_2021_0204 crossref_primary_10_3390_cells11152415 crossref_primary_10_1093_nar_gkac191 crossref_primary_10_1371_journal_pgen_1010245 crossref_primary_10_3390_ijms252312861 crossref_primary_10_1007_s12274_021_3874_1 crossref_primary_10_1016_j_devcel_2024_12_004 crossref_primary_10_1016_j_bbrc_2021_04_026 crossref_primary_10_1091_mbc_E24_03_0128 crossref_primary_10_1093_nar_gkaa1126 crossref_primary_10_3389_fmolb_2022_826719 crossref_primary_10_1038_s12276_024_01226_x crossref_primary_10_1038_s41374_021_00642_1 crossref_primary_10_1038_s41467_024_50863_3 crossref_primary_10_1083_jcb_202311127 crossref_primary_10_1038_s41467_022_35602_w crossref_primary_10_1186_s12964_025_02059_5 crossref_primary_10_3390_ijms25126333 crossref_primary_10_1152_physiol_00027_2024 crossref_primary_10_1111_jnc_15586 crossref_primary_10_1016_j_cell_2021_09_032 crossref_primary_10_1016_j_devcel_2024_12_016 crossref_primary_10_1016_j_molcel_2024_03_001 crossref_primary_10_1016_j_molp_2023_03_013 crossref_primary_10_1021_acs_chemrev_2c00814 crossref_primary_10_1021_acsmacrolett_1c00282 crossref_primary_10_1016_j_chembiol_2024_08_009 crossref_primary_10_1002_jsfa_13633 crossref_primary_10_3390_cancers14194549 crossref_primary_10_1007_s00436_023_07915_2 crossref_primary_10_1002_pro_5085 crossref_primary_10_1007_s00418_024_02297_7 crossref_primary_10_1021_acs_chemrev_4c00138 crossref_primary_10_1242_jcs_262039 crossref_primary_10_1016_j_celrep_2023_113375 crossref_primary_10_3389_frbis_2024_1342506 crossref_primary_10_1038_s41467_021_27123_9 crossref_primary_10_1080_19491034_2022_2143106 crossref_primary_10_1016_j_csbj_2023_01_033 crossref_primary_10_1186_s13045_024_01526_9 crossref_primary_10_1038_s41467_024_53822_0 crossref_primary_10_1051_fopen_2022013 crossref_primary_10_1016_j_jgg_2021_07_012 crossref_primary_10_1080_19491034_2023_2274655 crossref_primary_10_1002_pat_5350 crossref_primary_10_1083_jcb_202309067 crossref_primary_10_1093_narcan_zcae017 crossref_primary_10_1101_gad_350518_123 crossref_primary_10_1038_s41467_023_38089_1 crossref_primary_10_1016_j_cub_2024_07_079 crossref_primary_10_1038_s41467_024_51574_5 crossref_primary_10_3390_biom14101333 crossref_primary_10_1021_acssynbio_3c00564 crossref_primary_10_3390_genes15121580 crossref_primary_10_1038_s44319_024_00134_5 crossref_primary_10_1021_jacs_3c03793 crossref_primary_10_7554_eLife_80038 crossref_primary_10_1042_BSR20230631 crossref_primary_10_1016_j_cell_2024_06_009 crossref_primary_10_1103_PhysRevResearch_6_033082 crossref_primary_10_1093_nar_gkaf148 crossref_primary_10_3390_ijms25021230 crossref_primary_10_1038_s41467_024_52346_x crossref_primary_10_1126_science_abj8350 crossref_primary_10_1038_s41589_024_01573_w crossref_primary_10_1038_s41467_021_26576_2 crossref_primary_10_3390_biology11050708 crossref_primary_10_1083_jcb_202311048 crossref_primary_10_1038_s44319_024_00285_5 crossref_primary_10_1038_s41420_025_02396_x crossref_primary_10_1016_j_dnarep_2023_103482 crossref_primary_10_1016_j_celrep_2022_111629 crossref_primary_10_1016_j_celrep_2023_113060 crossref_primary_10_7554_eLife_93223 crossref_primary_10_1016_j_tibs_2024_12_003 crossref_primary_10_1128_jvi_00722_22 crossref_primary_10_1002_bies_202400091 crossref_primary_10_1098_rsob_210305 crossref_primary_10_1002_appl_202300071 crossref_primary_10_1016_j_tcb_2023_02_003 crossref_primary_10_1126_science_adj7066 crossref_primary_10_1038_s41467_024_51694_y crossref_primary_10_1360_SSV_2023_0198 crossref_primary_10_3389_frnar_2023_1331185 crossref_primary_10_1021_jacs_4c01483 crossref_primary_10_7554_eLife_84412 crossref_primary_10_1016_j_tig_2022_05_015 crossref_primary_10_3390_polym13142259 crossref_primary_10_1016_j_tcb_2022_03_005 crossref_primary_10_1002_pro_4756 crossref_primary_10_1021_acs_accounts_4c00574 crossref_primary_10_1007_s43538_022_00087_0 crossref_primary_10_1042_BST20210856 crossref_primary_10_1016_j_xplc_2024_101225 crossref_primary_10_1038_s41586_023_05767_5 crossref_primary_10_1002_smtd_202301724 crossref_primary_10_1186_s12964_024_01518_9 crossref_primary_10_1021_acscentsci_3c01372 crossref_primary_10_1038_s41594_025_01501_z crossref_primary_10_3390_cells13151266 crossref_primary_10_3390_ijms221910736 crossref_primary_10_1021_acsmacrolett_2c00167 crossref_primary_10_1080_19491034_2024_2306777 crossref_primary_10_3390_cancers16132392 crossref_primary_10_1186_s13059_025_03526_5 crossref_primary_10_3390_cells13242130 crossref_primary_10_1038_s41467_022_28797_5 crossref_primary_10_1021_acs_biochem_1c00376 crossref_primary_10_7124_FEEO_v30_1458 crossref_primary_10_1101_cshperspect_a039719 crossref_primary_10_1042_BST20231304 crossref_primary_10_7498_aps_73_20231990 crossref_primary_10_3389_fonc_2022_912282 crossref_primary_10_1016_j_biochi_2024_04_006 crossref_primary_10_1016_j_supmat_2023_100049 crossref_primary_10_3390_ijms232214075 crossref_primary_10_1038_s41589_023_01477_1 crossref_primary_10_1002_jcp_30980 crossref_primary_10_1098_rsob_210120 crossref_primary_10_1007_s11427_023_2370_5 crossref_primary_10_1073_pnas_2207303119 crossref_primary_10_1016_j_bbrc_2021_02_141 crossref_primary_10_1016_j_ceb_2023_102215 crossref_primary_10_1038_s41580_021_00393_3 crossref_primary_10_1063_5_0065302 crossref_primary_10_1016_j_cub_2021_03_041 crossref_primary_10_1038_s41586_024_08421_w crossref_primary_10_1042_BST20230483 crossref_primary_10_1186_s13045_024_01618_6 crossref_primary_10_3390_cells10071597 crossref_primary_10_1002_cai2_144 crossref_primary_10_1038_s41580_022_00558_8 crossref_primary_10_1242_jcs_263504 crossref_primary_10_3390_ijms24098108 crossref_primary_10_3389_fcell_2023_1072456 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1101_gad_350353_122 crossref_primary_10_1002_agt2_306 crossref_primary_10_1002_wrna_1778 crossref_primary_10_1042_EBC20220052 crossref_primary_10_1021_acs_jctc_4c00323 crossref_primary_10_1016_j_celrep_2024_114492 crossref_primary_10_1038_s43587_024_00754_5 crossref_primary_10_1073_pnas_2302478120 crossref_primary_10_1007_s00018_022_04276_4 crossref_primary_10_1038_s41467_023_39878_4 crossref_primary_10_1038_s41422_021_00471_3 crossref_primary_10_1063_5_0050059 crossref_primary_10_3390_ijms22031132 crossref_primary_10_1021_jacs_4c08919 crossref_primary_10_1039_D2CP05115J crossref_primary_10_1016_j_dyepig_2025_112689 crossref_primary_10_3390_genes13020352 crossref_primary_10_1038_s41467_023_39513_2 crossref_primary_10_1016_j_tibs_2024_12_013 crossref_primary_10_1242_jcs_260496 crossref_primary_10_1101_gad_349748_122 crossref_primary_10_2142_biophys_64_71 crossref_primary_10_1002_anie_202418431 crossref_primary_10_3389_fcell_2023_1293420 crossref_primary_10_1007_s11033_023_08343_2 crossref_primary_10_1016_j_tcb_2023_10_012 crossref_primary_10_3389_fmolb_2021_673038 crossref_primary_10_1016_j_biochi_2024_05_007 crossref_primary_10_1146_annurev_biochem_030222_113611 crossref_primary_10_7554_eLife_93223_3 crossref_primary_10_1371_journal_pgen_1010854 crossref_primary_10_1016_j_colsurfb_2024_114385 |
Cites_doi | 10.1038/s41467-018-07530-1 10.1083/jcb.150.3.433 10.1016/j.molcel.2015.01.013 10.1038/nature18610 10.1016/j.molcel.2019.03.019 10.4161/nucl.2.3.16246 10.1016/j.celrep.2013.05.045 10.15252/embj.2018101379 10.1038/nrc1885 10.1073/pnas.1615395114 10.1002/j.1460-2075.1992.tb05099.x 10.1038/s41586-020-2256-2 10.1083/jcb.200204159 10.1038/nrc1430 10.1016/S0092-8674(00)80493-6 10.1016/j.cub.2015.11.065 10.1016/S0968-0004(99)01460-7 10.1016/j.cell.2016.10.002 10.1126/scitranslmed.aap8307 10.1042/BJ20081411 10.1074/mcp.M111.009241 10.1007/s00412-015-0507-z 10.1016/j.cell.2016.11.054 10.1016/j.jsb.2011.02.003 10.1016/S0021-9258(18)32356-1 10.7554/eLife.47533 10.1126/science.288.5470.1385 10.7554/eLife.01641 10.1016/j.molcel.2010.09.024 10.1016/j.bbadis.2013.12.010 10.1038/s41596-018-0044-3 10.1111/j.1601-5223.1946.tb02783.x 10.1083/jcb.133.2.235 10.1038/s41467-018-03255-3 10.15252/embj.2018100278 10.7554/eLife.13722 10.1017/S002211209900662X 10.1093/nar/gkq653 10.1016/j.molcel.2019.11.015 10.1083/jcb.200405013 10.1039/C8SM02045K 10.1038/ncomms16083 10.1128/JVI.00077-08 10.1038/sj.emboj.7601035 10.1016/S0960-9822(01)00650-9 10.1016/j.cell.2016.04.047 10.1016/j.cell.2015.12.038 10.1074/mcp.M900338-MCP200 10.1038/nrm2184 10.1126/science.1254917 10.1074/jbc.M109.074211 10.1126/science.aaf4382 10.1146/annurev-biophys-121219-081629 10.1038/srep16607 10.1073/pnas.1017150108 10.1016/j.molcel.2015.09.017 10.1016/j.neuron.2015.10.030 10.1016/j.tig.2019.07.004 10.1038/35007077 10.1073/pnas.1500953112 10.1111/j.1365-2559.2008.03168.x 10.1016/j.cell.2017.04.011 10.1073/pnas.1321007111 10.7554/eLife.13571 10.1016/j.tcb.2019.04.003 10.1038/nphys3532 10.1039/C6SM01087C 10.1016/j.tcb.2005.02.007 10.1038/nature03207 10.1126/science.284.5416.958 10.1016/j.cell.2015.07.047 10.1126/science.aaw9157 10.1021/cr400525m 10.1073/pnas.1821038116 10.1091/mbc.e04-08-0742 10.1021/pr800308v 10.1016/j.jmb.2018.06.014 10.1016/j.celrep.2013.08.049 10.1038/nsmb.2939 10.1002/wrna.39 10.1126/science.277.5330.1313 10.1038/ncb2830 10.1083/jcb.200201024 10.1016/j.neuron.2014.12.010 10.1371/journal.pgen.1000889 10.1016/j.cell.2015.09.015 10.1016/j.cub.2015.01.012 10.1017/S1355838200001564 10.1111/j.1742-4658.2008.06693.x 10.15252/embj.201591458 10.1016/j.neuron.2019.01.048 10.1111/jnc.14576 10.1016/j.cell.2020.03.050 10.1038/d41586-020-01280-1 10.1093/nar/26.17.3871 10.1038/nrm.2017.7 10.1016/j.tibs.2009.12.006 10.1103/PhysRevLett.121.148101 10.1091/mbc.e02-05-0271 10.1038/ncomms11390 10.1016/j.bpj.2019.08.030 10.1128/MCB.24.18.7976-7986.2004 10.1038/s41586-018-0279-8 10.1016/j.jsb.2019.09.015 10.1073/pnas.1903870116 10.1073/pnas.1504822112 10.1038/s41594-019-0193-2 10.1093/oso/9780198520597.003.0006 10.1016/j.molcel.2019.08.014 10.1101/737387 10.1101/2020.01.30.923003 10.1007/3-540-26449-3_1 10.1101/2020.06.03.128561 10.1101/2020.01.24.918706 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2020 COPYRIGHT 2021 Nature Publishing Group Springer Nature Limited 2020. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Nature Limited 2020 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Springer Nature Limited 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7RV 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 1XC |
DOI | 10.1038/s41580-020-0272-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts Proquest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-0080 |
EndPage | 182 |
ExternalDocumentID | oai_HAL_hal_03836500v1 A655715989 32873929 10_1038_s41580_020_0272_6 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Belgium |
GeographicLocations_xml | – name: Belgium |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NIDA NIH HHS grantid: U01 DA040601 |
GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D0L D1J DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PCBAR PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PUEGO CGR CUY CVF ECM EIF NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 1XC |
ID | FETCH-LOGICAL-c550t-9a63520098bf08fff8bec1d7b5d2cb23c5123d7a4dd9f304b8bfce8c5ed041dd3 |
IEDL.DBID | 7X7 |
ISSN | 1471-0072 1471-0080 |
IngestDate | Tue Sep 02 06:29:29 EDT 2025 Thu Sep 04 16:34:00 EDT 2025 Sat Aug 23 13:05:08 EDT 2025 Thu Jul 17 05:58:55 EDT 2025 Thu Jul 17 05:59:28 EDT 2025 Fri Jun 27 05:25:22 EDT 2025 Mon Jul 21 05:13:47 EDT 2025 Wed Oct 01 05:08:57 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:38:00 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-9a63520098bf08fff8bec1d7b5d2cb23c5123d7a4dd9f304b8bfce8c5ed041dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7295-6288 0000-0002-3494-0610 0000-0002-1350-9960 0000-0002-1516-4484 |
OpenAccessLink | http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/312927 |
PMID | 32873929 |
PQID | 2493255312 |
PQPubID | 27585 |
PageCount | 18 |
ParticipantIDs | hal_primary_oai_HAL_hal_03836500v1 proquest_miscellaneous_2439633409 proquest_journals_2493255312 gale_infotracmisc_A655715989 gale_infotracacademiconefile_A655715989 gale_incontextgauss_ISR_A655715989 pubmed_primary_32873929 crossref_citationtrail_10_1038_s41580_020_0272_6 crossref_primary_10_1038_s41580_020_0272_6 springer_journals_10_1038_s41580_020_0272_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Molecular cell biology |
PublicationTitleAbbrev | Nat Rev Mol Cell Biol |
PublicationTitleAlternate | Nat Rev Mol Cell Biol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Andersen (CR7) 2002; 12 Sanders (CR53) 2020; 181 Falahati, Pelham-Webb, Blythe, Wieschaus (CR72) 2016; 26 Mao, Kuldinow, Haataja, Kosmrlj (CR52) 2019; 15 CR35 Lewis, Tollervey (CR109) 2000; 288 Grisendi, Mecucci, Falini, Pandolfi (CR48) 2006; 6 Weber, Brangwynne (CR20) 2015; 25 Nicolas (CR81) 2016; 7 Boisvert, van Koningsbruggen, Navascues, Lamond (CR2) 2007; 8 Girard (CR39) 1992; 11 Thiry, Lafontaine (CR32) 2005; 15 Mitrea (CR18) 2016; 5 van der Lee (CR114) 2014; 114 Taylor (CR45) 2016; 12 Bartholome (CR34) 2019; 208 Taylor, Wei, Stone, Brangwynne (CR103) 2019; 117 Amon (CR5) 2008; 275 Thiry, Cheutin, O’Donohue, Kaplan, Ploton (CR74) 2000; 6 Burger (CR80) 2010; 285 Brangwynne, Mitchison, Hyman (CR15) 2011; 108 Sobecki (CR70) 2016; 5 Mitrea (CR49) 2014; 111 CR46 Warner (CR110) 1999; 24 Calle (CR11) 2008; 82 Zhang (CR57) 2015; 60 Mitrea (CR17) 2018; 9 Dundr, Misteli, Olson (CR63) 2000; 150 Moore (CR62) 2011; 10 Phair, Misteli (CR28) 2000; 404 Lam, Evans, Heesom, Lamond, Matthews (CR61) 2010; 9 Booth (CR69) 2014; 3 Xing (CR38) 2017; 169 Andersen (CR60) 2005; 433 Iarovaia (CR4) 2019; 29 Frankowski (CR14) 2018; 10 Huang (CR108) 2002; 157 Kwon (CR92) 2014; 345 Tiku (CR97) 2017; 8 Roussel, Andre, Comai, Hernandez-Verdun (CR105) 1996; 133 CR54 Leung (CR64) 2004; 166 Riback (CR75) 2020; 581 Ehrenberg (CR27) 1946; 32 Handwerger, Cordero, Gall (CR29) 2005; 16 Boulon, Westman, Hutten, Boisvert, Lamond (CR6) 2010; 40 Berry, Weber, Vaidya, Haataja, Brangwynne (CR44) 2015; 112 Donati, Peddigari, Mercer, Thomas (CR82) 2013; 4 Derenzini, Montanaro, Trere (CR90) 2009; 54 Boeynaems (CR96) 2019; 116 Feric, Brangwynne (CR50) 2013; 15 Caragine, Haley, Zidovska (CR21) 2019; 8 Wen (CR93) 2014; 84 CR67 Hernandez-Verdun, Roussel, Thiry, Sirri, Lafontaine (CR79) 2010; 1 Frottin (CR22) 2019; 365 Choi, Holehouse, Pappu (CR115) 2020; 49 Nott (CR112) 2015; 57 Sirri, Hernandez-Verdun, Roussel (CR68) 2002; 156 Shin, Brangwynne (CR25) 2017; 357 Dez, Houseley, Tollervey (CR77) 2006; 25 Hetman, Slomnicki (CR10) 2019; 148 Lafontaine (CR37) 2019; 76 Falahati, Wieschaus (CR19) 2017; 114 Sinclair, Guarente (CR98) 1997; 91 Galea (CR89) 2009; 8 White (CR95) 2019; 74 Colau, Thiry, Leduc, Bordonne, Lafontaine (CR41) 2004; 24 Mann (CR86) 2019; 102 Pederson (CR1) 1998; 26 Sloan, Bohnsack, Watkins (CR83) 2013; 5 Sinclair, Mills, Guarente (CR99) 1997; 277 Farley, Surovtseva, Merkel, Baserga (CR106) 2015; 124 Scott, Boisvert, McDowall, Lamond, Barton (CR40) 2010; 38 Chong, Vernon, Forman-Kay (CR43) 2018; 430 Kilic (CR87) 2019; 38 Cuylen (CR71) 2016; 535 Lafontaine (CR78) 2010; 35 Eggers, Lister, Stone (CR59) 1999; 401 Banani, Lee, Hyman, Rosen (CR26) 2017; 18 Molliex (CR55) 2015; 163 Duncan, Hershey (CR111) 1983; 258 Stamatopoulou, Parisot, De Vleeschouwer, Lafontaine (CR13) 2018; 13 Lafontaine (CR3) 2015; 22 CR88 Bohnsack, Bohnsack (CR76) 2019; 38 Jain (CR101) 2016; 164 Scherl (CR8) 2002; 13 Feric (CR16) 2016; 165 Putnam, Cassani, Smith, Seydoux (CR102) 2019; 26 Shin (CR84) 2017; 168 Rai, Chen, Selbach, Pelkmans (CR66) 2018; 559 Farley-Barnes, Ogawa, Baserga (CR91) 2019; 35 Patel (CR56) 2015; 162 Lee (CR31) 2020; 581 Lamaye, Galliot, Alibardi, Lafontaine, Thiry (CR33) 2011; 174 Brangwynne, Tompa, Pappu (CR113) 2015; 11 Murakami (CR58) 2015; 88 Caudron-Herger (CR73) 2015; 34 Amin, Matsunaga, Uchiyama, Fukui (CR47) 2008; 415 Zhu (CR85) 2019; 116 Salvetti, Greco (CR9) 2014; 1842 Nemeth (CR36) 2010; 6 Zink, Fischer, Nickerson (CR12) 2004; 4 Feric, Broedersz, Brangwynne (CR51) 2015; 5 Lee (CR94) 2016; 167 Ferrolino, Mitrea, Michael, Kriwacki (CR24) 2018; 9 CR23 Houtsmuller (CR30) 1999; 284 CR104 Caragine, Haley, Zidovska (CR107) 2018; 121 CR100 Hernandez-Verdun (CR65) 2011; 2 Elbaum-Garfinkle (CR42) 2015; 112 DM Mitrea (272_CR17) 2018; 9 MS Scott (272_CR40) 2010; 38 SC Weber (272_CR20) 2015; 25 G Donati (272_CR82) 2013; 4 DLJ Lafontaine (272_CR78) 2010; 35 S Kilic (272_CR87) 2019; 38 V Tiku (272_CR97) 2017; 8 S Elbaum-Garfinkle (272_CR42) 2015; 112 T Murakami (272_CR58) 2015; 88 F Lamaye (272_CR33) 2011; 174 DLJ Lafontaine (272_CR37) 2019; 76 JM Choi (272_CR115) 2020; 49 N Taylor (272_CR45) 2016; 12 S Grisendi (272_CR48) 2006; 6 NO Taylor (272_CR103) 2019; 117 S Mao (272_CR52) 2019; 15 D Hernandez-Verdun (272_CR65) 2011; 2 DA Sinclair (272_CR98) 1997; 91 DM Mitrea (272_CR18) 2016; 5 YW Lam (272_CR61) 2010; 9 E Nicolas (272_CR81) 2016; 7 CM Caragine (272_CR107) 2018; 121 S Boulon (272_CR6) 2010; 40 JS Andersen (272_CR7) 2002; 12 M Thiry (272_CR32) 2005; 15 YH Xing (272_CR38) 2017; 169 A Calle (272_CR11) 2008; 82 C Brangwynne (272_CR113) 2015; 11 G Colau (272_CR41) 2004; 24 KI Farley-Barnes (272_CR91) 2019; 35 Y Shin (272_CR25) 2017; 357 272_CR88 S Huang (272_CR108) 2002; 157 JP Girard (272_CR39) 1992; 11 A Amon (272_CR5) 2008; 275 JS Andersen (272_CR60) 2005; 433 O Bartholome (272_CR34) 2019; 208 M Hetman (272_CR10) 2019; 148 DG Booth (272_CR69) 2014; 3 S Cuylen (272_CR71) 2016; 535 M Thiry (272_CR74) 2000; 6 CF Lee (272_CR31) 2020; 581 SF Banani (272_CR26) 2017; 18 272_CR100 A Molliex (272_CR55) 2015; 163 272_CR104 AK Leung (272_CR64) 2004; 166 MC Ferrolino (272_CR24) 2018; 9 CP Brangwynne (272_CR15) 2011; 108 X Wen (272_CR93) 2014; 84 AB Houtsmuller (272_CR30) 1999; 284 H Falahati (272_CR19) 2017; 114 MA Amin (272_CR47) 2008; 415 272_CR23 R van der Lee (272_CR114) 2014; 114 S Boeynaems (272_CR96) 2019; 116 T Pederson (272_CR1) 1998; 26 AK Rai (272_CR66) 2018; 559 M Feric (272_CR16) 2016; 165 S Jain (272_CR101) 2016; 164 CM Caragine (272_CR21) 2019; 8 M Sobecki (272_CR70) 2016; 5 272_CR35 D Zink (272_CR12) 2004; 4 L Zhu (272_CR85) 2019; 116 H Zhang (272_CR57) 2015; 60 C Dez (272_CR77) 2006; 25 KE Bohnsack (272_CR76) 2019; 38 PA Chong (272_CR43) 2018; 430 CA Galea (272_CR89) 2009; 8 H Falahati (272_CR72) 2016; 26 M Feric (272_CR51) 2015; 5 JR Mann (272_CR86) 2019; 102 M Dundr (272_CR63) 2000; 150 KE Handwerger (272_CR29) 2005; 16 J Berry (272_CR44) 2015; 112 272_CR46 K Burger (272_CR80) 2010; 285 KJ Frankowski (272_CR14) 2018; 10 D Hernandez-Verdun (272_CR79) 2010; 1 I Kwon (272_CR92) 2014; 345 A Scherl (272_CR8) 2002; 13 A Salvetti (272_CR9) 2014; 1842 A Patel (272_CR56) 2015; 162 FM Boisvert (272_CR2) 2007; 8 RD Phair (272_CR28) 2000; 404 M Derenzini (272_CR90) 2009; 54 DM Mitrea (272_CR49) 2014; 111 Y Shin (272_CR84) 2017; 168 KE Sloan (272_CR83) 2013; 5 M Caudron-Herger (272_CR73) 2015; 34 KI Farley (272_CR106) 2015; 124 JD Lewis (272_CR109) 2000; 288 J Eggers (272_CR59) 1999; 401 V Sirri (272_CR68) 2002; 156 272_CR54 R Duncan (272_CR111) 1983; 258 A Nemeth (272_CR36) 2010; 6 DA Sinclair (272_CR99) 1997; 277 P Roussel (272_CR105) 1996; 133 JR Warner (272_CR110) 1999; 24 DLJ Lafontaine (272_CR3) 2015; 22 MR White (272_CR95) 2019; 74 KH Lee (272_CR94) 2016; 167 F Frottin (272_CR22) 2019; 365 JA Riback (272_CR75) 2020; 581 A Putnam (272_CR102) 2019; 26 TJ Nott (272_CR112) 2015; 57 V Stamatopoulou (272_CR13) 2018; 13 OV Iarovaia (272_CR4) 2019; 29 L Ehrenberg (272_CR27) 1946; 32 272_CR67 DW Sanders (272_CR53) 2020; 181 M Feric (272_CR50) 2013; 15 HM Moore (272_CR62) 2011; 10 |
References_xml | – volume: 9 year: 2018 ident: CR24 article-title: Compositional adaptability in NPM1–SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms publication-title: Nat. Commun. doi: 10.1038/s41467-018-07530-1 – volume: 150 start-page: 433 year: 2000 end-page: 446 ident: CR63 article-title: The dynamics of postmitotic reassembly of the nucleolus publication-title: J. Cell Biol. doi: 10.1083/jcb.150.3.433 – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: CR112 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 535 start-page: 308 year: 2016 end-page: 312 ident: CR71 article-title: Ki-67 acts as a biological surfactant to disperse mitotic chromosomes publication-title: Nature doi: 10.1038/nature18610 – volume: 74 start-page: 713 year: 2019 end-page: 728.e6 ident: CR95 article-title: C9orf72 poly(PR) dipeptide repeats disturb biomolecular phase separation and disrupt nucleolar function publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.019 – volume: 2 start-page: 189 year: 2011 end-page: 194 ident: CR65 article-title: Assembly and disassembly of the nucleolus during the cell cycle publication-title: Nucleus doi: 10.4161/nucl.2.3.16246 – volume: 4 start-page: 87 year: 2013 end-page: 98 ident: CR82 article-title: 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2–p53 checkpoint publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.045 – volume: 38 year: 2019 ident: CR87 article-title: Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments publication-title: EMBO J. doi: 10.15252/embj.2018101379 – volume: 6 start-page: 493 year: 2006 end-page: 505 ident: CR48 article-title: Nucleophosmin and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1885 – volume: 114 start-page: 1335 year: 2017 end-page: 1340 ident: CR19 article-title: Independent active and thermodynamic processes govern the nucleolus assembly in vivo publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1615395114 – ident: CR54 – volume: 11 start-page: 673 year: 1992 end-page: 682 ident: CR39 article-title: GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05099.x – volume: 581 start-page: 209 year: 2020 end-page: 214 ident: CR75 article-title: Composition-dependent thermodynamics of intracellular phase separation publication-title: Nature doi: 10.1038/s41586-020-2256-2 – volume: 157 start-page: 739 year: 2002 end-page: 741 ident: CR108 article-title: Building an efficient factory: where is pre-rRNA synthesized in the nucleolus? publication-title: J. Cell Biol. doi: 10.1083/jcb.200204159 – volume: 4 start-page: 677 year: 2004 end-page: 687 ident: CR12 article-title: Nuclear structure in cancer cells publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1430 – volume: 91 start-page: 1033 year: 1997 end-page: 1042 ident: CR98 article-title: Extrachromosomal rDNA circles — a cause of aging in yeast publication-title: Cell doi: 10.1016/S0092-8674(00)80493-6 – volume: 26 start-page: 277 year: 2016 end-page: 285 ident: CR72 article-title: Nucleation by rRNA dictates the precision of nucleolus assembly publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.11.065 – volume: 24 start-page: 437 year: 1999 end-page: 440 ident: CR110 article-title: The economics of ribosome biosynthesis in yeast publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01460-7 – volume: 167 start-page: 774 year: 2016 end-page: 788.e17 ident: CR94 article-title: C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles publication-title: Cell doi: 10.1016/j.cell.2016.10.002 – volume: 10 start-page: eaap8307 year: 2018 ident: CR14 article-title: Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aap8307 – volume: 415 start-page: 345 year: 2008 end-page: 351 ident: CR47 article-title: Depletion of nucleophosmin leads to distortion of nucleolar and nuclear structures in HeLa cells publication-title: Biochem. J. doi: 10.1042/BJ20081411 – volume: 10 start-page: M111 009241 year: 2011 ident: CR62 article-title: Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.009241 – volume: 124 start-page: 323 year: 2015 end-page: 331 ident: CR106 article-title: Determinants of mammalian nucleolar architecture publication-title: Chromosoma doi: 10.1007/s00412-015-0507-z – ident: CR88 – volume: 168 start-page: 159 year: 2017 end-page: 171.e14 ident: CR84 article-title: Spatiotemporal control of intracellular phase transitions using light-activated optodroplets publication-title: Cell doi: 10.1016/j.cell.2016.11.054 – volume: 174 start-page: 352 year: 2011 end-page: 359 ident: CR33 article-title: Nucleolar structure across evolution: the transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.02.003 – volume: 258 start-page: 7228 year: 1983 end-page: 7235 ident: CR111 article-title: Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32356-1 – volume: 8 year: 2019 ident: CR21 article-title: Nucleolar dynamics and interactions with nucleoplasm in living cells publication-title: eLife doi: 10.7554/eLife.47533 – volume: 288 start-page: 1385 year: 2000 end-page: 1389 ident: CR109 article-title: Like attracts like: getting RNA processing together in the nucleus publication-title: Science doi: 10.1126/science.288.5470.1385 – volume: 3 year: 2014 ident: CR69 article-title: Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery publication-title: eLife doi: 10.7554/eLife.01641 – volume: 40 start-page: 216 year: 2010 end-page: 227 ident: CR6 article-title: The nucleolus under stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.024 – ident: CR100 – volume: 1842 start-page: 840 year: 2014 end-page: 847 ident: CR9 article-title: Viruses and the nucleolus: the fatal attraction publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.12.010 – volume: 13 start-page: 2387 year: 2018 end-page: 2406 ident: CR13 article-title: Use of the iNo score to discriminate normal from altered nucleolar morphology, with applications in basic cell biology and potential in human disease diagnostics publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0044-3 – volume: 32 start-page: 407 year: 1946 end-page: 418 ident: CR27 article-title: Influence of temperature on the nucleolus and its coacervate nature publication-title: Hereditas doi: 10.1111/j.1601-5223.1946.tb02783.x – volume: 133 start-page: 235 year: 1996 end-page: 246 ident: CR105 article-title: The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs publication-title: J. Cell Biol. doi: 10.1083/jcb.133.2.235 – volume: 9 year: 2018 ident: CR17 article-title: Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation publication-title: Nat. Commun. doi: 10.1038/s41467-018-03255-3 – volume: 38 year: 2019 ident: CR76 article-title: Uncovering the assembly pathway of human ribosomes and its emerging links to disease publication-title: EMBO J. doi: 10.15252/embj.2018100278 – volume: 5 year: 2016 ident: CR70 article-title: The cell proliferation antigen Ki-67 organises heterochromatin publication-title: eLife doi: 10.7554/eLife.13722 – volume: 401 start-page: 293 year: 1999 end-page: 310 ident: CR59 article-title: Coalescence of liquid drops publication-title: J. fluid Mech. doi: 10.1017/S002211209900662X – volume: 38 start-page: 7388 year: 2010 end-page: 7399 ident: CR40 article-title: Characterization and prediction of protein nucleolar localization sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq653 – volume: 76 start-page: 694 year: 2019 end-page: 696 ident: CR37 article-title: Birth of nucleolar compartments: phase separation-driven ribosomal RNA sorting and processing publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.015 – volume: 166 start-page: 787 year: 2004 end-page: 800 ident: CR64 article-title: Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200405013 – volume: 15 start-page: 1297 year: 2019 end-page: 1311 ident: CR52 article-title: Phase behavior and morphology of multicomponent liquid mixtures publication-title: Soft Matter doi: 10.1039/C8SM02045K – volume: 8 year: 2017 ident: CR97 article-title: Small nucleoli are a cellular hallmark of longevity publication-title: Nat. Commun. doi: 10.1038/ncomms16083 – volume: 82 start-page: 4762 year: 2008 end-page: 4773 ident: CR11 article-title: Nucleolin is required for an efficient herpes simplex virus type 1 infection publication-title: J. Virol. doi: 10.1128/JVI.00077-08 – volume: 25 start-page: 1534 year: 2006 end-page: 1546 ident: CR77 article-title: Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of publication-title: EMBO J. doi: 10.1038/sj.emboj.7601035 – volume: 12 start-page: 1 year: 2002 end-page: 11 ident: CR7 article-title: Directed proteomic analysis of the human nucleolus publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00650-9 – volume: 165 start-page: 1686 year: 2016 end-page: 1697 ident: CR16 article-title: Coexisting liquid phases underlie nucleolar subcompartments publication-title: Cell doi: 10.1016/j.cell.2016.04.047 – volume: 164 start-page: 487 year: 2016 end-page: 498 ident: CR101 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 9 start-page: 117 year: 2010 end-page: 130 ident: CR61 article-title: Proteomics analysis of the nucleolus in adenovirus-infected cells publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900338-MCP200 – volume: 8 start-page: 574 year: 2007 end-page: 585 ident: CR2 article-title: The multifunctional nucleolus publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2184 – volume: 345 start-page: 1139 year: 2014 end-page: 1145 ident: CR92 article-title: Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells publication-title: Science doi: 10.1126/science.1254917 – volume: 285 start-page: 12416 year: 2010 end-page: 12425 ident: CR80 article-title: Chemotherapeutic drugs inhibit ribosome biogenesis at various levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.074211 – volume: 357 start-page: eaaf4382 year: 2017 ident: CR25 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science doi: 10.1126/science.aaf4382 – volume: 49 start-page: 107 year: 2020 end-page: 133 ident: CR115 article-title: Physical principles underlying the complex biology of intracellular phase transitions publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-121219-081629 – volume: 5 year: 2015 ident: CR51 article-title: Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep publication-title: Sci. Rep. doi: 10.1038/srep16607 – volume: 108 start-page: 4334 year: 2011 end-page: 4339 ident: CR15 article-title: Active liquid-like behavior of nucleoli determines their size and shape in oocytes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017150108 – volume: 60 start-page: 220 year: 2015 end-page: 230 ident: CR57 article-title: RNA controls PolyQ protein phase transitions publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.017 – volume: 88 start-page: 678 year: 2015 end-page: 690 ident: CR58 article-title: ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function publication-title: Neuron doi: 10.1016/j.neuron.2015.10.030 – volume: 35 start-page: 754 year: 2019 end-page: 767 ident: CR91 article-title: Ribosomopathies: old concepts, new controversies publication-title: Trends Genet. doi: 10.1016/j.tig.2019.07.004 – volume: 404 start-page: 604 year: 2000 end-page: 609 ident: CR28 article-title: High mobility of proteins in the mammalian cell nucleus publication-title: Nature doi: 10.1038/35007077 – volume: 112 start-page: E5237 year: 2015 end-page: E5245 ident: CR44 article-title: RNA transcription modulates phase transition-driven nuclear body assembly publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1500953112 – volume: 54 start-page: 753 year: 2009 end-page: 762 ident: CR90 article-title: What the nucleolus says to a tumour pathologist publication-title: Histopathology doi: 10.1111/j.1365-2559.2008.03168.x – volume: 169 start-page: 664 year: 2017 end-page: 678.e16 ident: CR38 article-title: SLERT regulates DDX21 rings associated with Pol I transcription publication-title: Cell doi: 10.1016/j.cell.2017.04.011 – volume: 111 start-page: 4466 year: 2014 end-page: 4471 ident: CR49 article-title: Structural polymorphism in the N-terminal oligomerization domain of NPM1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1321007111 – volume: 5 year: 2016 ident: CR18 article-title: Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA publication-title: eLife doi: 10.7554/eLife.13571 – volume: 29 start-page: 647 year: 2019 end-page: 659 ident: CR4 article-title: Nucleolus: a central hub for nuclear functions publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.04.003 – volume: 11 start-page: 899 year: 2015 end-page: 904 ident: CR113 article-title: Polymer physics of intracellular phase transitions publication-title: Nat. Phys. doi: 10.1038/nphys3532 – ident: CR35 – ident: CR46 – volume: 12 start-page: 9142 year: 2016 end-page: 9150 ident: CR45 article-title: Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics publication-title: Soft Matter doi: 10.1039/C6SM01087C – volume: 15 start-page: 194 year: 2005 end-page: 199 ident: CR32 article-title: Birth of a nucleolus: the evolution of nucleolar compartments publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2005.02.007 – volume: 433 start-page: 77 year: 2005 end-page: 83 ident: CR60 article-title: Nucleolar proteome dynamics publication-title: Nature doi: 10.1038/nature03207 – ident: CR67 – volume: 284 start-page: 958 year: 1999 end-page: 961 ident: CR30 article-title: Action of DNA repair endonuclease ERCC1/XPF in living cells publication-title: Science doi: 10.1126/science.284.5416.958 – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: CR56 article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 365 start-page: 342 year: 2019 end-page: 347 ident: CR22 article-title: The nucleolus functions as a phase-separated protein quality control compartment publication-title: Science doi: 10.1126/science.aaw9157 – volume: 114 start-page: 6589 year: 2014 end-page: 6631 ident: CR114 article-title: Classification of intrinsically disordered regions and proteins publication-title: Chem. Rev. doi: 10.1021/cr400525m – volume: 116 start-page: 7889 year: 2019 end-page: 7898 ident: CR96 article-title: Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821038116 – volume: 16 start-page: 202 year: 2005 end-page: 211 ident: CR29 article-title: Cajal bodies, nucleoli, and speckles in the nucleus have a low-density, sponge-like structure publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-08-0742 – volume: 8 start-page: 211 year: 2009 end-page: 226 ident: CR89 article-title: Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome publication-title: J. Proteome Res. doi: 10.1021/pr800308v – volume: 430 start-page: 4650 year: 2018 end-page: 4665 ident: CR43 article-title: RGG/RG motif regions in RNA binding and phase separation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.06.014 – volume: 5 start-page: 237 year: 2013 end-page: 247 ident: CR83 article-title: The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.08.049 – volume: 22 start-page: 11 year: 2015 end-page: 19 ident: CR3 article-title: Noncoding RNAs in eukaryotic ribosome synthesis and function publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2939 – volume: 1 start-page: 415 year: 2010 end-page: 431 ident: CR79 article-title: The nucleolus: structure/function relationship in RNA metabolism publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.39 – volume: 277 start-page: 1313 year: 1997 end-page: 1316 ident: CR99 article-title: Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants publication-title: Science doi: 10.1126/science.277.5330.1313 – volume: 15 start-page: 1253 year: 2013 end-page: 1259 ident: CR50 article-title: A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2830 – volume: 156 start-page: 969 year: 2002 end-page: 981 ident: CR68 article-title: Cyclin-dependent kinases govern formation and maintenance of the nucleolus publication-title: J. Cell Biol. doi: 10.1083/jcb.200201024 – volume: 84 start-page: 1213 year: 2014 end-page: 1225 ident: CR93 article-title: Antisense proline–arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death publication-title: Neuron doi: 10.1016/j.neuron.2014.12.010 – volume: 6 year: 2010 ident: CR36 article-title: Initial genomics of the human nucleolus publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000889 – volume: 163 start-page: 123 year: 2015 end-page: 133 ident: CR55 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 25 start-page: 641 year: 2015 end-page: 646 ident: CR20 article-title: Inverse size scaling of the nucleolus by a concentration-dependent phase transition publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.012 – volume: 6 start-page: 1750 year: 2000 end-page: 1761 ident: CR74 article-title: Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus publication-title: RNA doi: 10.1017/S1355838200001564 – volume: 275 start-page: 5774 year: 2008 end-page: 5784 ident: CR5 article-title: A decade of Cdc14 — a personal perspective. Delivered on 9 July 2007 at the 32nd FEBS Congress in Vienna, Austria publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06693.x – volume: 34 start-page: 2758 year: 2015 end-page: 2774 ident: CR73 article-title: Alu element-containing RNAs maintain nucleolar structure and function publication-title: EMBO J. doi: 10.15252/embj.201591458 – volume: 102 start-page: 321 year: 2019 end-page: 338.e8 ident: CR86 article-title: RNA binding antagonizes neurotoxic phase transitions of TDP-43 publication-title: Neuron doi: 10.1016/j.neuron.2019.01.048 – volume: 148 start-page: 325 year: 2019 end-page: 347 ident: CR10 article-title: Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies publication-title: J. Neurochem. doi: 10.1111/jnc.14576 – volume: 181 start-page: 306 year: 2020 end-page: 324 ident: CR53 article-title: Competing protein–RNA interaction networks control multiphase intracellular organization publication-title: Cell doi: 10.1016/j.cell.2020.03.050 – volume: 581 start-page: 144 year: 2020 end-page: 145 ident: CR31 article-title: Formation of liquid-like cellular organelles depends on their composition publication-title: Nature doi: 10.1038/d41586-020-01280-1 – volume: 26 start-page: 3871 year: 1998 end-page: 3876 ident: CR1 article-title: The plurifunctional nucleolus publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.17.3871 – volume: 18 start-page: 285 year: 2017 end-page: 298 ident: CR26 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.7 – volume: 35 start-page: 267 year: 2010 end-page: 277 ident: CR78 article-title: A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2009.12.006 – ident: CR104 – volume: 121 start-page: 148101 year: 2018 ident: CR107 article-title: Surface fluctuations and coalescence of nucleolar droplets in the human cell nucleus publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.148101 – ident: CR23 – volume: 13 start-page: 4100 year: 2002 end-page: 4109 ident: CR8 article-title: Functional proteomic analysis of human nucleolus publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-05-0271 – volume: 7 year: 2016 ident: CR81 article-title: Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress publication-title: Nat. Commun. doi: 10.1038/ncomms11390 – volume: 117 start-page: 1285 year: 2019 end-page: 1300 ident: CR103 article-title: Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.08.030 – volume: 24 start-page: 7976 year: 2004 end-page: 7986 ident: CR41 article-title: The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.18.7976-7986.2004 – volume: 559 start-page: 211 year: 2018 end-page: 216 ident: CR66 article-title: Kinase-controlled phase transition of membraneless organelles in mitosis publication-title: Nature doi: 10.1038/s41586-018-0279-8 – volume: 208 start-page: 107398 year: 2019 ident: CR34 article-title: Relationships between the structural and functional organization of the turtle cell nucleolus publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2019.09.015 – volume: 116 start-page: 17330 year: 2019 end-page: 17335 ident: CR85 article-title: Controlling the material properties and rRNA processing function of the nucleolus using light publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903870116 – volume: 112 start-page: 7189 year: 2015 end-page: 7194 ident: CR42 article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1504822112 – volume: 26 start-page: 220 year: 2019 end-page: 226 ident: CR102 article-title: A gel phase promotes condensation of liquid P granules in embryos publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0193-2 – volume: 91 start-page: 1033 year: 1997 ident: 272_CR98 publication-title: Cell doi: 10.1016/S0092-8674(00)80493-6 – volume: 1842 start-page: 840 year: 2014 ident: 272_CR9 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.12.010 – volume: 121 start-page: 148101 year: 2018 ident: 272_CR107 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.148101 – volume: 535 start-page: 308 year: 2016 ident: 272_CR71 publication-title: Nature doi: 10.1038/nature18610 – volume: 108 start-page: 4334 year: 2011 ident: 272_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017150108 – volume: 5 year: 2016 ident: 272_CR18 publication-title: eLife doi: 10.7554/eLife.13571 – volume: 54 start-page: 753 year: 2009 ident: 272_CR90 publication-title: Histopathology doi: 10.1111/j.1365-2559.2008.03168.x – ident: 272_CR54 doi: 10.1093/oso/9780198520597.003.0006 – volume: 102 start-page: 321 year: 2019 ident: 272_CR86 publication-title: Neuron doi: 10.1016/j.neuron.2019.01.048 – volume: 6 year: 2010 ident: 272_CR36 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000889 – volume: 24 start-page: 437 year: 1999 ident: 272_CR110 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01460-7 – volume: 112 start-page: E5237 year: 2015 ident: 272_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1500953112 – volume: 15 start-page: 1297 year: 2019 ident: 272_CR52 publication-title: Soft Matter doi: 10.1039/C8SM02045K – volume: 181 start-page: 306 year: 2020 ident: 272_CR53 publication-title: Cell doi: 10.1016/j.cell.2020.03.050 – volume: 22 start-page: 11 year: 2015 ident: 272_CR3 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2939 – volume: 401 start-page: 293 year: 1999 ident: 272_CR59 publication-title: J. fluid Mech. doi: 10.1017/S002211209900662X – volume: 345 start-page: 1139 year: 2014 ident: 272_CR92 publication-title: Science doi: 10.1126/science.1254917 – ident: 272_CR23 doi: 10.1016/j.molcel.2019.08.014 – volume: 112 start-page: 7189 year: 2015 ident: 272_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1504822112 – volume: 415 start-page: 345 year: 2008 ident: 272_CR47 publication-title: Biochem. J. doi: 10.1042/BJ20081411 – volume: 82 start-page: 4762 year: 2008 ident: 272_CR11 publication-title: J. Virol. doi: 10.1128/JVI.00077-08 – volume: 165 start-page: 1686 year: 2016 ident: 272_CR16 publication-title: Cell doi: 10.1016/j.cell.2016.04.047 – volume: 26 start-page: 3871 year: 1998 ident: 272_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.17.3871 – volume: 365 start-page: 342 year: 2019 ident: 272_CR22 publication-title: Science doi: 10.1126/science.aaw9157 – volume: 88 start-page: 678 year: 2015 ident: 272_CR58 publication-title: Neuron doi: 10.1016/j.neuron.2015.10.030 – volume: 25 start-page: 641 year: 2015 ident: 272_CR20 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.012 – volume: 288 start-page: 1385 year: 2000 ident: 272_CR109 publication-title: Science doi: 10.1126/science.288.5470.1385 – volume: 18 start-page: 285 year: 2017 ident: 272_CR26 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.7 – volume: 168 start-page: 159 year: 2017 ident: 272_CR84 publication-title: Cell doi: 10.1016/j.cell.2016.11.054 – volume: 38 year: 2019 ident: 272_CR87 publication-title: EMBO J. doi: 10.15252/embj.2018101379 – volume: 581 start-page: 209 year: 2020 ident: 272_CR75 publication-title: Nature doi: 10.1038/s41586-020-2256-2 – volume: 35 start-page: 267 year: 2010 ident: 272_CR78 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2009.12.006 – volume: 148 start-page: 325 year: 2019 ident: 272_CR10 publication-title: J. Neurochem. doi: 10.1111/jnc.14576 – ident: 272_CR88 doi: 10.1101/737387 – volume: 32 start-page: 407 year: 1946 ident: 272_CR27 publication-title: Hereditas doi: 10.1111/j.1601-5223.1946.tb02783.x – volume: 357 start-page: eaaf4382 year: 2017 ident: 272_CR25 publication-title: Science doi: 10.1126/science.aaf4382 – volume: 74 start-page: 713 year: 2019 ident: 272_CR95 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.019 – volume: 60 start-page: 220 year: 2015 ident: 272_CR57 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.017 – volume: 6 start-page: 493 year: 2006 ident: 272_CR48 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1885 – volume: 57 start-page: 936 year: 2015 ident: 272_CR112 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 166 start-page: 787 year: 2004 ident: 272_CR64 publication-title: J. Cell Biol. doi: 10.1083/jcb.200405013 – volume: 2 start-page: 189 year: 2011 ident: 272_CR65 publication-title: Nucleus doi: 10.4161/nucl.2.3.16246 – volume: 208 start-page: 107398 year: 2019 ident: 272_CR34 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2019.09.015 – volume: 114 start-page: 6589 year: 2014 ident: 272_CR114 publication-title: Chem. Rev. doi: 10.1021/cr400525m – ident: 272_CR67 – volume: 16 start-page: 202 year: 2005 ident: 272_CR29 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-08-0742 – volume: 29 start-page: 647 year: 2019 ident: 272_CR4 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.04.003 – volume: 133 start-page: 235 year: 1996 ident: 272_CR105 publication-title: J. Cell Biol. doi: 10.1083/jcb.133.2.235 – volume: 404 start-page: 604 year: 2000 ident: 272_CR28 publication-title: Nature doi: 10.1038/35007077 – volume: 162 start-page: 1066 year: 2015 ident: 272_CR56 publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 3 year: 2014 ident: 272_CR69 publication-title: eLife doi: 10.7554/eLife.01641 – volume: 84 start-page: 1213 year: 2014 ident: 272_CR93 publication-title: Neuron doi: 10.1016/j.neuron.2014.12.010 – volume: 11 start-page: 899 year: 2015 ident: 272_CR113 publication-title: Nat. Phys. doi: 10.1038/nphys3532 – volume: 4 start-page: 677 year: 2004 ident: 272_CR12 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1430 – volume: 24 start-page: 7976 year: 2004 ident: 272_CR41 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.18.7976-7986.2004 – volume: 284 start-page: 958 year: 1999 ident: 272_CR30 publication-title: Science doi: 10.1126/science.284.5416.958 – ident: 272_CR35 doi: 10.1101/2020.01.30.923003 – volume: 8 start-page: 211 year: 2009 ident: 272_CR89 publication-title: J. Proteome Res. doi: 10.1021/pr800308v – volume: 275 start-page: 5774 year: 2008 ident: 272_CR5 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06693.x – volume: 25 start-page: 1534 year: 2006 ident: 272_CR77 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601035 – volume: 156 start-page: 969 year: 2002 ident: 272_CR68 publication-title: J. Cell Biol. doi: 10.1083/jcb.200201024 – volume: 5 year: 2016 ident: 272_CR70 publication-title: eLife doi: 10.7554/eLife.13722 – volume: 277 start-page: 1313 year: 1997 ident: 272_CR99 publication-title: Science doi: 10.1126/science.277.5330.1313 – volume: 34 start-page: 2758 year: 2015 ident: 272_CR73 publication-title: EMBO J. doi: 10.15252/embj.201591458 – volume: 114 start-page: 1335 year: 2017 ident: 272_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1615395114 – volume: 285 start-page: 12416 year: 2010 ident: 272_CR80 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.074211 – volume: 559 start-page: 211 year: 2018 ident: 272_CR66 publication-title: Nature doi: 10.1038/s41586-018-0279-8 – volume: 164 start-page: 487 year: 2016 ident: 272_CR101 publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 5 start-page: 237 year: 2013 ident: 272_CR83 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.08.049 – volume: 40 start-page: 216 year: 2010 ident: 272_CR6 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.024 – volume: 9 year: 2018 ident: 272_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07530-1 – volume: 38 start-page: 7388 year: 2010 ident: 272_CR40 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq653 – ident: 272_CR104 doi: 10.1007/3-540-26449-3_1 – volume: 9 start-page: 117 year: 2010 ident: 272_CR61 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900338-MCP200 – volume: 157 start-page: 739 year: 2002 ident: 272_CR108 publication-title: J. Cell Biol. doi: 10.1083/jcb.200204159 – volume: 35 start-page: 754 year: 2019 ident: 272_CR91 publication-title: Trends Genet. doi: 10.1016/j.tig.2019.07.004 – volume: 174 start-page: 352 year: 2011 ident: 272_CR33 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.02.003 – volume: 13 start-page: 4100 year: 2002 ident: 272_CR8 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-05-0271 – volume: 12 start-page: 1 year: 2002 ident: 272_CR7 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00650-9 – volume: 7 year: 2016 ident: 272_CR81 publication-title: Nat. Commun. doi: 10.1038/ncomms11390 – volume: 26 start-page: 277 year: 2016 ident: 272_CR72 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.11.065 – volume: 117 start-page: 1285 year: 2019 ident: 272_CR103 publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.08.030 – volume: 258 start-page: 7228 year: 1983 ident: 272_CR111 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32356-1 – volume: 15 start-page: 1253 year: 2013 ident: 272_CR50 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2830 – volume: 10 start-page: eaap8307 year: 2018 ident: 272_CR14 publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aap8307 – volume: 26 start-page: 220 year: 2019 ident: 272_CR102 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0193-2 – volume: 4 start-page: 87 year: 2013 ident: 272_CR82 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.045 – volume: 5 year: 2015 ident: 272_CR51 publication-title: Sci. Rep. doi: 10.1038/srep16607 – volume: 1 start-page: 415 year: 2010 ident: 272_CR79 publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.39 – volume: 8 year: 2017 ident: 272_CR97 publication-title: Nat. Commun. doi: 10.1038/ncomms16083 – volume: 581 start-page: 144 year: 2020 ident: 272_CR31 publication-title: Nature doi: 10.1038/d41586-020-01280-1 – volume: 49 start-page: 107 year: 2020 ident: 272_CR115 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-121219-081629 – ident: 272_CR46 doi: 10.1101/2020.06.03.128561 – volume: 9 year: 2018 ident: 272_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03255-3 – volume: 430 start-page: 4650 year: 2018 ident: 272_CR43 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.06.014 – volume: 124 start-page: 323 year: 2015 ident: 272_CR106 publication-title: Chromosoma doi: 10.1007/s00412-015-0507-z – volume: 116 start-page: 17330 year: 2019 ident: 272_CR85 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903870116 – volume: 167 start-page: 774 year: 2016 ident: 272_CR94 publication-title: Cell doi: 10.1016/j.cell.2016.10.002 – volume: 13 start-page: 2387 year: 2018 ident: 272_CR13 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0044-3 – volume: 111 start-page: 4466 year: 2014 ident: 272_CR49 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1321007111 – volume: 116 start-page: 7889 year: 2019 ident: 272_CR96 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821038116 – volume: 150 start-page: 433 year: 2000 ident: 272_CR63 publication-title: J. Cell Biol. doi: 10.1083/jcb.150.3.433 – volume: 12 start-page: 9142 year: 2016 ident: 272_CR45 publication-title: Soft Matter doi: 10.1039/C6SM01087C – volume: 11 start-page: 673 year: 1992 ident: 272_CR39 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05099.x – volume: 76 start-page: 694 year: 2019 ident: 272_CR37 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.015 – volume: 163 start-page: 123 year: 2015 ident: 272_CR55 publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 8 year: 2019 ident: 272_CR21 publication-title: eLife doi: 10.7554/eLife.47533 – volume: 15 start-page: 194 year: 2005 ident: 272_CR32 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2005.02.007 – volume: 169 start-page: 664 year: 2017 ident: 272_CR38 publication-title: Cell doi: 10.1016/j.cell.2017.04.011 – volume: 10 start-page: M111 009241 year: 2011 ident: 272_CR62 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.009241 – volume: 6 start-page: 1750 year: 2000 ident: 272_CR74 publication-title: RNA doi: 10.1017/S1355838200001564 – ident: 272_CR100 doi: 10.1101/2020.01.24.918706 – volume: 8 start-page: 574 year: 2007 ident: 272_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2184 – volume: 433 start-page: 77 year: 2005 ident: 272_CR60 publication-title: Nature doi: 10.1038/nature03207 – volume: 38 year: 2019 ident: 272_CR76 publication-title: EMBO J. doi: 10.15252/embj.2018100278 |
SSID | ssj0016175 |
Score | 2.7316937 |
SecondaryResourceType | review_article |
Snippet | The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly,... |
SourceID | hal proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165 |
SubjectTerms | 631/57 631/80/386/1362 Aging Aging - genetics Aging - metabolism Aging - pathology Animals Assembly Biochemistry Biomedical and Life Sciences Biosynthesis Cancer Research Cell Biology Cell Cycle - physiology Cell Nucleolus - chemistry Cell Nucleolus - genetics Cell Nucleolus - metabolism Cell organelles Cell research Cellular Biology Chemical Fractionation Condensates Developmental Biology Gene Expression Gene regulation Humans Life Sciences Liquid phases Liquid-Liquid Extraction Multiphase Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Neurodegeneration Nucleoli Phase separation Properties Review Article Ribonucleoproteins - metabolism Ribosomes Ribosomes - physiology Stem Cells Structure-function relationships Subcellular Processes Yeast |
Title | The nucleolus as a multiphase liquid condensate |
URI | https://link.springer.com/article/10.1038/s41580-020-0272-6 https://www.ncbi.nlm.nih.gov/pubmed/32873929 https://www.proquest.com/docview/2493255312 https://www.proquest.com/docview/2439633409 https://hal.science/hal-03836500 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1471-0080 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9tADBdry2AvY99z1xWvDAYbR3y-s315GklpyMYWRrdC3g7fh9dCcdo5Key_n2SfXUJZITgQy-eLdCf9ZMkSwHvnUNBSVKwoU8uk4p4Z1JXMe-mNdLJSbTGd74t8fia_LrNleODWhLTKXie2itqtLD0jH6GbIBD-Cp5-vrpm1DWKoquhhcYO7HGEKrSqi-XgcBF0z9q3iwp0mZMi7aOaQo0aNFwqYeQ8oWOWsnzLLgXtvHNOyZF3keedqGlrjGZP4HFAkfGkE_tTeODrZ_Cw6yv59zmMUPhxTZWKcWE1cYmfuMscPEejFV9eXG8uXIyeMCqdBsHmCzibnfw6nrPQGYFZ9CjWbFwiTqC4hjJVoqqqUigK7gqTudSaVFg048IVpXRuXIlEGqSzXtnMu0Ry58RL2K1XtX8NsbEoDm4KbriROFKZowNmi8wq4QmeRZD0fNE2lA2n7hWXug1fC6U7VmpkpSZW6jyCj8MlV13NjPuIj4jZmmpR1JTs8rvcNI3-8vNUT_IsKxBuqXEEHwJRtcKb2zK8O4B_gcpXbVEebFHiZrFbp49QpsOsqLb2fPJN0284O4FwNbnhOEYvch12dKNv118E74bTNDxlqdV-tSEagfpMoMscwatuqQy3EuiaEhaN4FO_dm4H_y939u-fyht4lFKOTZsTdwC76z8b_xZB0toctjsBj-qYH8LeZDadLvB7erL4cfoPneAMFw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61RQguFW9cCpgKhASyYnvteHNAKAKqhKY9QCvltngfppUqp8UJqH-K38g3fqSKKnqrlFN2Ml7PzM7Ml52dJXptLRSdiCLI8tgEiYxcoOErA-cSpxObFLJuprN_0B8dJV-n6XSN_nZnYbissvOJtaO2M8P_kfcAEwTSXxHFH8_OA741indXuys0GrPYcxd_ANmqD-PP0O-bON79cvhpFLS3CgQG2fg8GOSIsbwnIHURyqIoJF4jsplObWx0LAxCoLBZnlg7KAD2NeiMkyZ1NkwiawX4rtOtBEPcqz-bLgEeQ4W0Ps2UAaKHWdztogrZqxAoZRgwWAMQjIP-Shxso8H6MRdjXs10r-zS1sFv9x5ttlmrP2zM7D6tufIB3W7usbx4SD0Ym19yZ2QYcuXn-PhNpeIxgqR_enK-OLE-kDecXIXk9hEd3YjMHtNGOSvdU_K1gfojnUU60gk45X0APpOlRgrH6aBHYScXZdo25Xxbxqmqt8uFVI0oFUSpWJSq79G75U_Omh4d1xHvsLAV974oubjmZ76oKjX-_k0N-2maIb2TA4_etkTFDA83eXtWAa_A7bJWKLdXKLE4zcrwDnS6nBX38h4NJ4q_w-wE0uPwdwQencpV60EqdWnvHr1aDjN7roor3WzBNAL-UwCie_SkMZXlowSgMOe-Hr3vbOeS-X-ls3X9VF7SndHh_kRNxgd7z-huzPU9dT3eNm3Mfy3ccyRoc_2iXhU-_bjpZfgPFqFHBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_aiuJL8dvUqrEogrJckt1k9x5EDutxZ2sRtXBva_YjtlByrblT-q_51zmTr3IU-1bIUzK32czOzszvZnYG4KVzuNCCF0zmiWVCxZ4Z1JXMe-GNcKJQdTGdzwfZ5FB8mqWzNfjbnYWhtMpOJ9aK2s0t_Uc-QJjA0f3lcTIo2rSIL7vj96dnjDpIUaS1a6fRiMieP_-D8K16N93FtX6VJOOP3z9MWNthgFn0zBdsmKO9pfiAMkWkiqJQ-EmxkyZ1iTUJt2gOuZO5cG5YIPA3SGe9sql3kYid4zjuOtyQXHBKJ5OzHuwRbEjrk00S4Xokky6iytWgQqOpIkbADUFhwrIVm9hahvUjSsy87PVeitjWhnB8BzZbDzYcNSJ3F9Z8eQ9uNj0tz-_DAAUvLKlKMgp1FeZ4hU3W4hEazPDk-Gx57EJE4ajwKnR0H8DhtfDsIWyU89I_htBYFIXYyNjERuBIeYbgz8rUKu7JNQwg6viibVuynDpnnOg6dM6VblipkZWaWKmzAN70Pzlt6nVcRbxDzNZUB6MkifqZL6tKT7991aMsTSW6emoYwOuWqJjjy23enlvAT6DSWSuU2yuUuFHtyuMdXNN-VlTXezLa13QPZ8fRVY5-xzhGt-S61SaVvpD9AF70j2l4ypAr_XxJNBx1KUe4HsCjRlT6V3GExeQHB_C2k52Lwf_Lna2rp_IcbuEG1PvTg70ncDuhVJ86NW8bNha_lv4p-moL86zeFCH8uO5d-A-yRks_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nucleolus+as+a+multiphase+liquid+condensate&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Lafontaine%2C+Denis+L.+J.&rft.au=Riback%2C+Joshua+A.&rft.au=Bascetin%2C+R%C3%BCmeyza&rft.au=Brangwynne%2C+Clifford+P.&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=22&rft.issue=3&rft.spage=165&rft.epage=182&rft_id=info:doi/10.1038%2Fs41580-020-0272-6&rft.externalDocID=10_1038_s41580_020_0272_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon |