A Predictive Machine Learning Tool for Asthma Exacerbations: Results from a 12-Week, Open-Label Study Using an Electronic Multi-Dose Dry Powder Inhaler with Integrated Sensors

Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending...

Full description

Saved in:
Bibliographic Details
Published inJournal of asthma and allergy Vol. 15; pp. 1623 - 1637
Main Authors Lugogo, Njira L, DePietro, Michael, Reich, Michael, Merchant, Rajan, Chrystyn, Henry, Pleasants, Roy, Granovsky, Lena, Li, Thomas, Hill, Tanisha, Brown, Randall W, Safioti, Guilherme
Format Journal Article
LanguageEnglish
Published Macclesfield Dove Medical Press Limited 01.01.2022
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text
ISSN1178-6965
1178-6965
DOI10.2147/JAA.S377631

Cover

Abstract Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir[R] Digihaler[R], an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 [micro]g/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases. Keywords: digital inhalers, machine learning, personalized medicine, predictive modeling
AbstractList Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 μg/dose; 1– 2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77– 0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.
Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations.PurposeMachine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations.Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 µg/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis.Patients and MethodsAdult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 µg/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis.Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made.ResultsOf 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made.A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.ConclusionA machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.
Njira L Lugogo,1 Michael DePietro,2 Michael Reich,3 Rajan Merchant,4 Henry Chrystyn,5 Roy Pleasants,6 Lena Granovsky,3 Thomas Li,2 Tanisha Hill,2 Randall W Brown,2 Guilherme Safioti7 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA; 2Teva Branded Pharmaceutical Products R&D Inc, Parsippany, NJ, USA; 3Teva Pharmaceutical Industries Ltd, Tel Aviv, Israel; 4Woodland Clinic Medical Group, Allergy Department, Dignity Health, Woodland, CA, USA; 5Inhalation Consultancy Ltd, Leeds, UK; 6Population Health, University of Michigan, Ann Arbor, MI and Division of Pulmonary Disease and Critical Care Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; 7Teva Pharmaceuticals Europe B.V, Amsterdam, the NetherlandsCorrespondence: Njira L Lugogo, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, 300 North Ingalls St, Suite 2C40, Ann Arbor, MI, 48109, USA, Tel +1 734 647 6477, Email nlugogo@med.umich.eduPurpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations.Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 μg/dose; 1– 2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis.Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77– 0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made.Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.Keywords: digital inhalers, machine learning, personalized medicine, predictive modeling
Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir[R] Digihaler[R], an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 [micro]g/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases. Keywords: digital inhalers, machine learning, personalized medicine, predictive modeling
Audience Academic
Author DePietro, Michael
Reich, Michael
Lugogo, Njira L
Granovsky, Lena
Chrystyn, Henry
Safioti, Guilherme
Brown, Randall W
Hill, Tanisha
Merchant, Rajan
Li, Thomas
Pleasants, Roy
Author_xml – sequence: 1
  givenname: Njira L
  surname: Lugogo
  fullname: Lugogo, Njira L
– sequence: 2
  givenname: Michael
  orcidid: 0000-0002-8729-2530
  surname: DePietro
  fullname: DePietro, Michael
– sequence: 3
  givenname: Michael
  surname: Reich
  fullname: Reich, Michael
– sequence: 4
  givenname: Rajan
  surname: Merchant
  fullname: Merchant, Rajan
– sequence: 5
  givenname: Henry
  surname: Chrystyn
  fullname: Chrystyn, Henry
– sequence: 6
  givenname: Roy
  surname: Pleasants
  fullname: Pleasants, Roy
– sequence: 7
  givenname: Lena
  surname: Granovsky
  fullname: Granovsky, Lena
– sequence: 8
  givenname: Thomas
  surname: Li
  fullname: Li, Thomas
– sequence: 9
  givenname: Tanisha
  surname: Hill
  fullname: Hill, Tanisha
– sequence: 10
  givenname: Randall W
  surname: Brown
  fullname: Brown, Randall W
– sequence: 11
  givenname: Guilherme
  surname: Safioti
  fullname: Safioti, Guilherme
BookMark eNptklFP1TAUxxeDiYg8-QWamBgT3bVdt3bzweQGUDGXQATiY9O1Z3fF3hbbDuRT-RXtBWK4hO2hXfc7v7Oc_V8WW847KIrXBM8qUvOP3-fz2SnlnFHyrNgmhLcl61iz9WD_otiN8QLni3aMUbZd_J2jkwDaqGSuAB1JNRoHaAEyOOOW6Mx7iwYf0DymcSXRwR-pIPQyGe_iJ_QD4mRTREPwKyQRqcqfAL8-oONLcOVC9mDRaZr0DTqPa5t06MCCSsE7o9BRLjXlvo-A9sMNOvHXGgI6dKO0eb02acwPCZZBJtDoFFz0Ib4qng_SRti9X3eK8y8HZ3vfysXx18O9-aJUTYNT2Ta0h4YA5qxva9ZhVZGWatzhDjDp2qZlreItqXVX94RWPdayblroet7pgWm6UxzeebWXF-IymJUMN8JLI24PfFgKGZJRFgTjNWSt1FpBTWvomtxlyOPlSuIey-z6fOe6nPoVZMqlIO2GdPONM6NY-iuR_1HdVTQL3t0Lgv89QUxiZaICa6UDP0VRccprXtW5507x5hF64afg8qjWFOvqitAH1DLPWhg3-NxXraVizimmnDHcZmr2BJVvDSujcvgGk883Ct4-KBhB2jRGb6fbtGyC7-9AFXyMAYb_wyBYrMMscpjFfZgzTR7RyqTbCObvMfbJmn9udPbv
CitedBy_id crossref_primary_10_1080_14656566_2024_2389258
crossref_primary_10_1183_23120541_00014_2024
crossref_primary_10_1038_s41533_024_00382_x
crossref_primary_10_1080_17476348_2024_2361048
crossref_primary_10_1080_17476348_2024_2380067
crossref_primary_10_1136_bmjresp_2023_002275
crossref_primary_10_1109_ACCESS_2024_3440502
crossref_primary_10_1016_j_compbiomed_2024_108702
crossref_primary_10_1016_j_jaip_2024_01_043
crossref_primary_10_1177_20406223231209329
crossref_primary_10_1016_j_jaip_2023_12_038
crossref_primary_10_1016_S2213_2600_24_00327_8
crossref_primary_10_1007_s11882_023_01084_z
crossref_primary_10_1016_j_jaip_2024_07_017
crossref_primary_10_3390_asi7050078
crossref_primary_10_3389_fphar_2025_1465059
crossref_primary_10_1007_s12325_023_02743_3
crossref_primary_10_1007_s11882_024_01152_y
crossref_primary_10_1111_all_15849
crossref_primary_10_1007_s11882_023_01111_z
crossref_primary_10_1007_s12325_023_02774_w
crossref_primary_10_1183_23120541_01026_2024
crossref_primary_10_2147_POR_S424098
crossref_primary_10_2147_PPA_S385857
crossref_primary_10_1145_3641021
crossref_primary_10_3390_s24216848
Cites_doi 10.1038/nbt0908-1011
10.1159/000338112
10.1016/j.jaip.2020.03.013
10.1016/j.jaci.2014.08.015
10.4104/pcrj.2013.00097
10.1097/CCM.0000000000003891
10.1038/nature14541
10.1038/s41533-017-0067-1
10.1186/s12931-017-0710-y
10.1164/rccm.200801-060ST
10.1136/qhc.11.4.376
10.1161/CIRCHEARTFAILURE.119.006513
10.1183/09031936.00205911
10.1183/16000617.0064-2017
10.1186/cc1451
10.1378/chest.121.2.329
10.1016/j.jaip.2017.01.004
10.1016/j.patrec.2005.10.010
10.1161/CIRCULATIONAHA.119.041980
10.1183/13993003.01872-2019
10.1183/13993003.02238-2016
10.1016/j.rmed.2004.04.010
10.1161/CIRCULATIONAHA.115.001593
10.1111/nyas.13218
10.1164/rccm.201805-0845ED
10.1016/j.entcs.2019.04.007
10.1214/aos/1013203451
10.1089/jamp.2021.0031
10.1038/nature21056
10.1145/2939672.2939785
10.1016/j.jaip.2014.06.001
10.1136/bmjopen-2019-028995
10.1016/j.rmed.2011.01.005
10.1089/jamp.2012.0987
10.1513/AnnalsATS.201803-205ED
10.1001/jama.2016.17216
10.1183/09031936.00166410
10.1016/j.anai.2011.09.001
10.4104/pcrj.2012.00010
ContentType Journal Article
Copyright COPYRIGHT 2022 Dove Medical Press Limited
2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Lugogo et al.
2022 Lugogo et al. 2022 Lugogo et al.
Copyright_xml – notice: COPYRIGHT 2022 Dove Medical Press Limited
– notice: 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Lugogo et al.
– notice: 2022 Lugogo et al. 2022 Lugogo et al.
DBID AAYXX
CITATION
3V.
7RV
7XB
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
KB0
LK8
M2O
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.2147/JAA.S377631
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Lugogo et al
EISSN 1178-6965
EndPage 1637
ExternalDocumentID oai_doaj_org_article_674e09eaddce434e95909f6637ca0b0a
PMC9664923
A730376608
10_2147_JAA_S377631
GeographicLocations France
United Kingdom
Israel
United States--US
GeographicLocations_xml – name: Israel
– name: United Kingdom
– name: France
– name: United States--US
GrantInformation_xml – fundername: ;
GroupedDBID ---
0YH
29J
2WC
5VS
7RV
8C1
8FE
8FH
8FI
8FJ
8G5
AAYXX
ABUWG
ACGFO
ADBBV
ADRAZ
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
EBS
EJD
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
LK8
M2O
M48
M7P
M~E
NAPCQ
O5R
O5S
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PUEGO
RIG
RNS
RPM
TDBHL
TR2
UKHRP
VDV
ALIPV
PMFND
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c550t-853be51e076b84690c2183d0909e01985868c7814d94b132b0da458e9b79df6d3
IEDL.DBID M48
ISSN 1178-6965
IngestDate Wed Aug 27 01:31:56 EDT 2025
Tue Sep 30 17:18:11 EDT 2025
Fri Sep 05 14:50:54 EDT 2025
Fri Jul 25 11:59:06 EDT 2025
Tue Jun 17 21:06:30 EDT 2025
Tue Jun 10 20:26:39 EDT 2025
Thu May 22 21:32:59 EDT 2025
Wed Oct 01 04:12:19 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc/3.0
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-853be51e076b84690c2183d0909e01985868c7814d94b132b0da458e9b79df6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8729-2530
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/JAA.S377631
PQID 2736942136
PQPubID 3933137
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_674e09eaddce434e95909f6637ca0b0a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9664923
proquest_miscellaneous_2737472466
proquest_journals_2736942136
gale_infotracmisc_A730376608
gale_infotracacademiconefile_A730376608
gale_healthsolutions_A730376608
crossref_primary_10_2147_JAA_S377631
crossref_citationtrail_10_2147_JAA_S377631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Macclesfield
PublicationPlace_xml – name: Macclesfield
PublicationTitle Journal of asthma and allergy
PublicationYear 2022
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Wright (ref4) 2002; 11
ref12
ref37
Kouri (ref14) 2017; 49
ref36
Azouza (ref39) 2012; 21
Honkoop (ref32) 2013; 41
Korn (ref28) 2011; 107
ref30
ref10
Giannini (ref18) 2019; 47
ref1
Atkins (ref8) 2005; 50
Gupta (ref13) 2012; 84
Messinger (ref27) 2018; 198
Usmani (ref5) 2018; 19
Fawcett (ref31) 2006; 27
Patel (ref45) 2014; 2
Laube (ref7) 2011; 37
Gupta (ref15) 2018; 28
Deo (ref22) 2015; 132
Kingsford (ref23) 2008; 26
Lavorini (ref3) 2013; 22
Chrystyn (ref11) 2022; 35
Friedman (ref24) 2001; 29
Cosgriff (ref44) 2018; 15
Broeders (ref9) 2004; 98
Nwaru (ref34) 2020; 55
Stelhick (ref17) 2020; 13
Magadle (ref38) 2002; 121
Chung (ref41) 2017; 26
ref43
Papiris (ref40) 2002; 6
Price (ref6) 2017; 5
Than (ref16) 2019; 140
Finkelstein (ref26) 2017; 1387
Esteva (ref19) 2017; 542
Gulshan (ref20) 2016; 316
Ghahramani (ref21) 2015; 521
Melani (ref2) 2011; 105
Reddel (ref29) 2009; 180
Kocsis (ref42) 2019; 343
Azzi (ref35) 2019; 9
Mahler (ref46) 2013; 26
Amin (ref33) 2020; 8
Bateman (ref25) 2015; 135
References_xml – ident: ref37
– volume: 26
  start-page: 1011
  year: 2008
  ident: ref23
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0908-1011
– ident: ref1
– volume: 84
  start-page: 406
  year: 2012
  ident: ref13
  publication-title: Respiration
  doi: 10.1159/000338112
– volume: 8
  start-page: 2556
  year: 2020
  ident: ref33
  publication-title: J Allergy Clin Immunol Pract
  doi: 10.1016/j.jaip.2020.03.013
– volume: 135
  start-page: 1457
  year: 2015
  ident: ref25
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.08.015
– ident: ref43
– volume: 22
  start-page: 385
  year: 2013
  ident: ref3
  publication-title: Prim Care Respir J
  doi: 10.4104/pcrj.2013.00097
– volume: 47
  start-page: 1485
  year: 2019
  ident: ref18
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000003891
– volume: 521
  start-page: 452
  year: 2015
  ident: ref21
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 28
  start-page: 1
  year: 2018
  ident: ref15
  publication-title: NPJ Prim Care Respir Med
  doi: 10.1038/s41533-017-0067-1
– volume: 19
  start-page: 10
  year: 2018
  ident: ref5
  publication-title: Respir Res
  doi: 10.1186/s12931-017-0710-y
– volume: 180
  start-page: 59
  year: 2009
  ident: ref29
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200801-060ST
– volume: 11
  start-page: 376
  year: 2002
  ident: ref4
  publication-title: Qual Saf Health Care
  doi: 10.1136/qhc.11.4.376
– volume: 13
  start-page: e006513
  year: 2020
  ident: ref17
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.119.006513
– volume: 41
  start-page: 53
  year: 2013
  ident: ref32
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00205911
– volume: 26
  start-page: 170064
  year: 2017
  ident: ref41
  publication-title: Eur Respir Rev
  doi: 10.1183/16000617.0064-2017
– volume: 6
  start-page: 30
  year: 2002
  ident: ref40
  publication-title: Crit Care
  doi: 10.1186/cc1451
– volume: 121
  start-page: 329
  year: 2002
  ident: ref38
  publication-title: Chest
  doi: 10.1378/chest.121.2.329
– volume: 5
  year: 2017
  ident: ref6
  publication-title: J Allergy Clin Immunol Pract
  doi: 10.1016/j.jaip.2017.01.004
– volume: 27
  start-page: 861
  year: 2006
  ident: ref31
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 140
  start-page: 899
  year: 2019
  ident: ref16
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041980
– volume: 55
  start-page: 1901872
  year: 2020
  ident: ref34
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01872-2019
– ident: ref36
– volume: 49
  start-page: 1602238
  year: 2017
  ident: ref14
  publication-title: Eur Respir J
  doi: 10.1183/13993003.02238-2016
– volume: 98
  start-page: 1173
  year: 2004
  ident: ref9
  publication-title: Resp Med
  doi: 10.1016/j.rmed.2004.04.010
– volume: 132
  start-page: 1920
  year: 2015
  ident: ref22
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 1387
  start-page: 153
  year: 2017
  ident: ref26
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.13218
– volume: 198
  start-page: 291
  year: 2018
  ident: ref27
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201805-0845ED
– volume: 343
  start-page: 3
  year: 2019
  ident: ref42
  publication-title: Electron Notes Theor Comput Sci
  doi: 10.1016/j.entcs.2019.04.007
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref24
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 35
  start-page: 166
  year: 2022
  ident: ref11
  publication-title: J Aerosol Med Pulm Drug Deliv
  doi: 10.1089/jamp.2021.0031
– volume: 542
  start-page: 115
  year: 2017
  ident: ref19
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 50
  start-page: 1304
  year: 2005
  ident: ref8
  publication-title: Respir Care
– ident: ref30
  doi: 10.1145/2939672.2939785
– volume: 2
  start-page: 751
  year: 2014
  ident: ref45
  publication-title: J Allergy Clin Immunol Pract
  doi: 10.1016/j.jaip.2014.06.001
– volume: 9
  start-page: e028995
  year: 2019
  ident: ref35
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-028995
– volume: 105
  start-page: 930
  year: 2011
  ident: ref2
  publication-title: Respir Med
  doi: 10.1016/j.rmed.2011.01.005
– volume: 26
  start-page: 174
  year: 2013
  ident: ref46
  publication-title: J Aerosol Med Pulm Drug Deliv
  doi: 10.1089/jamp.2012.0987
– volume: 15
  start-page: 804
  year: 2018
  ident: ref44
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201803-205ED
– volume: 316
  start-page: 2402
  year: 2016
  ident: ref20
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 37
  start-page: 1308
  year: 2011
  ident: ref7
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00166410
– ident: ref10
– volume: 107
  start-page: 474
  year: 2011
  ident: ref28
  publication-title: Ann Allergy Asthma Immunol
  doi: 10.1016/j.anai.2011.09.001
– ident: ref12
– volume: 21
  start-page: 208
  year: 2012
  ident: ref39
  publication-title: Prim Care Respir J
  doi: 10.4104/pcrj.2012.00010
SSID ssj0000396636
Score 2.4091868
Snippet Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study...
Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to...
Njira L Lugogo,1 Michael DePietro,2 Michael Reich,3 Rajan Merchant,4 Henry Chrystyn,5 Roy Pleasants,6 Lena Granovsky,3 Thomas Li,2 Tanisha Hill,2 Randall W...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1623
SubjectTerms Algorithms
Asthma
Decision trees
digital inhalers
FDA approval
Inhalation
Inhalers
Intervention
Learning algorithms
Machine learning
Original Research
Patients
personalized medicine
Pharmaceutical industry
Precision medicine
predictive modeling
Respiration
Respiratory agents
Respiratory diseases
Sensors
Steroids
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kD-KLWD8wWnWEgiDGbpLNbuJbtFfa4kmxLfRtSTZ7nnAmJcmh_av8F53Z5MJFBV98vNs5LrvzvZn5DWP7XBYikgvUNJsaTFBi4edxZPwykcahjRg3h2z-SR5fitOr-Gpr1BfVhPXwwP3BHUglLE9xv6WxIhI2jVOeLtBPKpPzgrvQCN3YVjLlbHCEYbybDxgEmCZJ_NO-OY_G8hycZtnb80ihagUTd-RQ-_-0zb_XS245oKN77O4QOULWP_Euu2Wr--z2fHg3_oD9zOCsoU9kwGDuiiQtDPipX-CirleAESpkbbf8lsPsR27wSPsLu3fw2bbrVdcCtZtADkHoE47vG6CCE_9jXtgVUMnhDbgaA8grmI0DdMB18fqHdWvhsLmBs_p7aRs4qZa4wwboqhdONrAUJZxj5lw37UN2eTS7-HDsD-MYfOQX73x07IWNA8uVLBLKqg2FVyVHflgMFJM4kYkhBK0yFQUmuQUvcxGjDBQqLReyjB6xnaqu7GMGKiRkeRujsUGmxgVyNw6kUibkJpC58tjrDVe0GbDKaWTGSmPOQizUyEI9sNBj-yPxdQ_R8Xey98TekYRwtd0XKG16kDb9L2nz2AsSDt03qY7WQWdoKNFUS5547JWjIPuAj2zyoc0BN05IWxPKvQkl6rWZLm8EUA92pdUYbMpUhEEkPfZyXKZfUq1cZeu1o8EcMRQSadREcCd7n65UX5cOWxzVhiD7nvyPw3rK7oTULOIurPbYTtes7TMM4briudPWXyKPQaM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELZGJyG-IMaL6BhwSJOQEGHOm5MgoSljnbaJVtVepH2LHMddkUoyklawX8Vf5M51AgHEx9ZXNc75Ht_Zd88xtstFHvhihpamE4UBShg4MvSVU8RCGbYRZfqQjSfi-DI4vQqvNtikrYWhtMoWEw1QF5WiM_I93GZFEniuL_ZvvjrUNYpuV9sWGtK2Vig-GIqxO2zTo67KA7Z5MJpMz7pTF-6je0_3lVSoRy169k7T9N25H6GZub2tyTD4_43Tf-ZO_rYZHT1g960XCela7VtsQ5cP2d2xvSd_xH6kMK3pE4EZjE3CpAbLpXoNF1W1APRWIW2W8y8SRt-lwte7Prx7D2e6WS2WDVDpCUhwPYc4fd8CJZ84n2SuF0Dph7dg8g1AljDqmumAqeh1DqtGw2F9C9PqW6FrOCnnOMMa6NgXTlqKigLOMYqu6uYxuzwaXXw8dmxrBgd1x5cObvK5Dl3NI5HHFGErcrUKnvBEo9MYh7GIFbFpFUmQY8Cb80IGIa6HPEqKmSj8J2xQVqV-yiDyiGVehwg8Gn23HAE3dEUUKY8rV8hoyN60WsmU5S2n9hmLDOMXUmGGKsysCodstxO-WdN1_FvsgNTbiRDHtvmiqq8za7KZiAKN08HnUfhggU5CnN0Ml0-kJM-5HLKXtDiydcFqhxRZiqCJsC14PGSvjQRhBT6ykrbkASdOrFs9yZ2eJNq46g-3CzCzGNNkvyxiyF51w_RLypsrdbUyMhgveoFAmai3cHtz74-Un-eGZxxNhej7tv__58_YPY9KQsyx1A4bLOuVfo6O2jJ_Ya3vJ064PU4
  priority: 102
  providerName: ProQuest
Title A Predictive Machine Learning Tool for Asthma Exacerbations: Results from a 12-Week, Open-Label Study Using an Electronic Multi-Dose Dry Powder Inhaler with Integrated Sensors
URI https://www.proquest.com/docview/2736942136
https://www.proquest.com/docview/2737472466
https://pubmed.ncbi.nlm.nih.gov/PMC9664923
https://doaj.org/article/674e09eaddce434e95909f6637ca0b0a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: 8C1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: M48
  dateStart: 20080901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1178-6965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000396636
  issn: 1178-6965
  databaseCode: 0YH
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swEBd9wNiXsSfL1mU3KBuMuZNfkj0Yw21T0rKU0Ae0n4wtK80gs1s7Yc1ftX9xd4oS5q4f9sUQ62Ik30N38t3vGNvmIg98MUJN07HCACUMnCz0lVNEQhm0EWX6kA2ORf88OLoIL9bYsoTAvsDm3tCO-kmd15Od25v5N1T4r5TG7Aby81GS7Jz6EjXFfX9941BHKfryattrrLNN3KU8kviBdf2NlfbR0TcdBF0XAymB01qU7919ZGvDMrj-_1rvuxmVf21RB4_ZI-tbQrIQhidsTZdP2YOB_Xr-jP1OYFjTLzJxMDBplBoswuoVnFXVBNCHhaSZjn9m0LvNFL70xZHeFzjRzWwybYAKUiAD13MI6fcTUEqK8z3L9QQoKXEOJgsBshJ6qxY7YOp8nf2q0bBfz2FY_Sp0DYflGFdYAx0Gw-ESuKKAU4ytq7p5zs4Pemd7fcc2bHCQo3zq4Naf69DVXIo8orhbkQNW8JjHGl3JKIxEpAhjq4iDHMPgnBdZEKKU5DIuRqLwX7CNsir1SwbSI-x5HaI50ujR5WiGQ1dIqTyuXJHJDvu45EqqLJo5NdWYpBjVEAtTZGFqWdhh2yvi6wWIx_1ku8TeFQkhb5sbVX2VWkVOhQw0Lgfno3BigY5DXN0IRUmqjOc867C3JBzpoox1ZT_SBE0pGnPBow77YChIpnHKKrOFELhwwuJqUW61KFHzVXt4KYDpUnFSdEdFHHiuLzrs3WqY_knZdKWuZoYGo0gvEEgjW4LbWnt7pPwxNujjqDYE6vfqP57-mj30qFrEnFhtsY1pPdNv0Ieb5l22zi_7eI323C7b3O0dD0-65jyka9T0D9RoSGw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxFMYCh2kIiSEqZ9rGwkh06RK2qSqaCr1ZtbrTYMU7GInKvlT8BeZ2dgGA-LWY-JJvKN57ezOfMPYjsVTz-VTtDQVSUxQfM8UvivNLORSo41IPYdsfMQHp97BmX-2wb43vTBUVtn4RO2os0LSGfkuhlkeeY7t8vcXX02aGkW3q80IjbVaHKrVJaZs1bthD-X7wnH2-5O9gVlPFTDxtdbCxPiUKt9WmMCnISWHknYJmRVZkcL9TuiHPJQEBJVFXoq5WmplwvORlTSIsinPXPzfa-w6dRqRXYV7dnumY7mYPNBtKLUB0gCg3YM4fnPiBmjEdifw6fkAf0eBPyszfwt1-3fY7XqPCvFaqe6yDZXfYzfG9S38ffYjhuOSPpGrhLEux1RQI7Wew6Qo5oB7YYirxeyLgP43IVF466PBt_BRVcv5ogJqbAEBtmMSYvBroNIWcyRSNQcqblyBrmYAkUO_HdUDul_Y7BWVgl65guPiMlMlDPMZclgCHSrDsAHAyOAEc_SirB6w0ysR0UO2mRe5esQgcAjDXvno1hTuDFN0577Ng0A6lrS5CAz2qpFKImtUdBrOMU8wOyIRJijCpBahwXZa4os1GMi_yT6QeFsSQvDWXxTleVI7hIQHnkJ2cD0SF-apyEfupqg-gRRWagmDbZNyJOt22NYPJTG6ZAwK3AoN9lJTkCfCJUtRN1Qg44Tp1aHc6lCiB5Hdx40CJrUHq5Jf9maw5-1j-iVV5eWqWGoazEYdjyNN0FHcDu_dJ_nnmUYxR1MhcMDH_3_5Nrs5mIxHyWh4dPiE3XKo-UQfgG2xzUW5VE9xS7hIn2k7BPbpqg3_J9M2cRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVKp4QVxFoNBBKkJCmPi6tpEq5JJETdtEUS9S31x7vWmQgl3sRCVfxX_wVcxs1gED4q2PicfJjmbntjtzhrFdk6euwyeoaTIUmKB4rpF4jjCygAuFNiLUHLLhiB-cu4cX3sUG-1H3wlBZZW0TlaHOCkFn5B10szx0bcvhnYkuixh3-x-vvxo0QYpuWutxGokes5DtKbgx3eRxJJc3mM5Ve4Muyv61bfd7Z58ODD1xwMAlmXMDfVcqPUticp8GlDgKiiAyMzRDibFQ4AU8EAQSlYVuinlcamaJ6yGbqR9mE545-Lt32KZP_aIttrnfG41P1ic-poOpBd2VUpMgjQfqHEbR-1PHRxW3Gm5RTQ_420f8Wbf5myPs32f3dAQL0WrLPWAbMn_Itob6jv4R-x7BuKRPZEhhqIo1JWgc1ys4K4oZYKQMUTWffkmg9y0RKNrVweEHOJHVYjavgNpeIAHLNghP-B1Q4YtxnKRyBlT6uARV6wBJDr31IB9Q3cRGt6gkdMsljIubTJYwyKfIYQl05AyDGh4jg1PM4IuyeszOb0VIT1grL3L5lIFvE8K99NDoSYwbUzT2nsV9X9imsHjit9nbWiqx0JjpNLpjFmPuRCKMUYSxFmGb7a6Jr1dQIf8m2yfxrkkI31t9UZRXsTYXMfddiezgegQuzJWhh9xNcPv4IjFTM2mzHdoc8apZdm2l4ggNNroMbgZt9kZRkJ3CJYtEt1sg44T41aDcblCifRHNx_UGjLV9q-Jf2thmr9aP6U2q2ctlsVA0mKvaLkcav7FxG7w3n-SfpwrjHFWFoAOf_f_Pd9gWGoH4eDA6es7u2tSZok7HtllrXi7kC4wX5-lLrYjALm9b938Cyh58Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Predictive+Machine+Learning+Tool+for+Asthma+Exacerbations%3A+Results+from+a+12-Week%2C+Open-Label+Study+Using+an+Electronic+Multi-Dose+Dry+Powder+Inhaler+with+Integrated+Sensors&rft.jtitle=Journal+of+asthma+and+allergy&rft.au=Lugogo%2C+Njira+L&rft.au=DePietro%2C+Michael&rft.au=Reich%2C+Michael&rft.au=Merchant%2C+Rajan&rft.date=2022-01-01&rft.issn=1178-6965&rft.eissn=1178-6965&rft.volume=15&rft.spage=1623&rft_id=info:doi/10.2147%2FJAA.S377631&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-6965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-6965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-6965&client=summon