A Predictive Machine Learning Tool for Asthma Exacerbations: Results from a 12-Week, Open-Label Study Using an Electronic Multi-Dose Dry Powder Inhaler with Integrated Sensors
Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending...
Saved in:
Published in | Journal of asthma and allergy Vol. 15; pp. 1623 - 1637 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Macclesfield
Dove Medical Press Limited
01.01.2022
Taylor & Francis Ltd Dove Dove Medical Press |
Subjects | |
Online Access | Get full text |
ISSN | 1178-6965 1178-6965 |
DOI | 10.2147/JAA.S377631 |
Cover
Abstract | Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir[R] Digihaler[R], an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 [micro]g/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases. Keywords: digital inhalers, machine learning, personalized medicine, predictive modeling |
---|---|
AbstractList | Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 μg/dose; 1– 2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77– 0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases. Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations.PurposeMachine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations.Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 µg/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis.Patients and MethodsAdult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 µg/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis.Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made.ResultsOf 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made.A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.ConclusionA machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases. Njira L Lugogo,1 Michael DePietro,2 Michael Reich,3 Rajan Merchant,4 Henry Chrystyn,5 Roy Pleasants,6 Lena Granovsky,3 Thomas Li,2 Tanisha Hill,2 Randall W Brown,2 Guilherme Safioti7 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA; 2Teva Branded Pharmaceutical Products R&D Inc, Parsippany, NJ, USA; 3Teva Pharmaceutical Industries Ltd, Tel Aviv, Israel; 4Woodland Clinic Medical Group, Allergy Department, Dignity Health, Woodland, CA, USA; 5Inhalation Consultancy Ltd, Leeds, UK; 6Population Health, University of Michigan, Ann Arbor, MI and Division of Pulmonary Disease and Critical Care Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; 7Teva Pharmaceuticals Europe B.V, Amsterdam, the NetherlandsCorrespondence: Njira L Lugogo, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, 300 North Ingalls St, Suite 2C40, Ann Arbor, MI, 48109, USA, Tel +1 734 647 6477, Email nlugogo@med.umich.eduPurpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations.Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir® Digihaler®, an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 μg/dose; 1– 2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis.Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77– 0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made.Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases.Keywords: digital inhalers, machine learning, personalized medicine, predictive modeling Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending exacerbations. Patients and Methods: Adult patients with poorly controlled asthma were enrolled in a 12-week, open-label study using ProAir[R] Digihaler[R], an electronic multi-dose dry powder inhaler (eMDPI) with integrated sensors, as reliever medication (albuterol, 90 [micro]g/dose; 1-2 inhalations every 4 hours, as needed). Throughout the study, the eMDPI recorded inhaler use, peak inspiratory flow (PIF), inhalation volume, inhalation duration, and time to PIF. A model predictive of impending exacerbations was generated by applying machine learning techniques to data downloaded from the inhalers, together with clinical and demographic information. The generated model was evaluated by receiver operating characteristic area under curve (ROC AUC) analysis. Results: Of 360 patients included in the predictive analysis, 64 experienced a total of 78 exacerbations. Increased albuterol use preceded exacerbations; the mean number of inhalations in the 24-hours preceding an exacerbation was 7.3 (standard deviation 17.3). The machine learning model, using gradient-boosting trees with data from the eMDPI and baseline patient characteristics, predicted an impending exacerbation over the following 5 days with an ROC AUC of 0.83 (95% confidence interval: 0.77-0.90). The feature of the model with the highest weight was the mean number of daily inhalations during the 4 days prior to the day the prediction was made. Conclusion: A machine learning model to predict impending asthma exacerbations using data from the eMDPI was successfully developed. This approach may support a shift from reactive care to proactive, preventative, and personalized management of chronic respiratory diseases. Keywords: digital inhalers, machine learning, personalized medicine, predictive modeling |
Audience | Academic |
Author | DePietro, Michael Reich, Michael Lugogo, Njira L Granovsky, Lena Chrystyn, Henry Safioti, Guilherme Brown, Randall W Hill, Tanisha Merchant, Rajan Li, Thomas Pleasants, Roy |
Author_xml | – sequence: 1 givenname: Njira L surname: Lugogo fullname: Lugogo, Njira L – sequence: 2 givenname: Michael orcidid: 0000-0002-8729-2530 surname: DePietro fullname: DePietro, Michael – sequence: 3 givenname: Michael surname: Reich fullname: Reich, Michael – sequence: 4 givenname: Rajan surname: Merchant fullname: Merchant, Rajan – sequence: 5 givenname: Henry surname: Chrystyn fullname: Chrystyn, Henry – sequence: 6 givenname: Roy surname: Pleasants fullname: Pleasants, Roy – sequence: 7 givenname: Lena surname: Granovsky fullname: Granovsky, Lena – sequence: 8 givenname: Thomas surname: Li fullname: Li, Thomas – sequence: 9 givenname: Tanisha surname: Hill fullname: Hill, Tanisha – sequence: 10 givenname: Randall W surname: Brown fullname: Brown, Randall W – sequence: 11 givenname: Guilherme surname: Safioti fullname: Safioti, Guilherme |
BookMark | eNptklFP1TAUxxeDiYg8-QWamBgT3bVdt3bzweQGUDGXQATiY9O1Z3fF3hbbDuRT-RXtBWK4hO2hXfc7v7Oc_V8WW847KIrXBM8qUvOP3-fz2SnlnFHyrNgmhLcl61iz9WD_otiN8QLni3aMUbZd_J2jkwDaqGSuAB1JNRoHaAEyOOOW6Mx7iwYf0DymcSXRwR-pIPQyGe_iJ_QD4mRTREPwKyQRqcqfAL8-oONLcOVC9mDRaZr0DTqPa5t06MCCSsE7o9BRLjXlvo-A9sMNOvHXGgI6dKO0eb02acwPCZZBJtDoFFz0Ib4qng_SRti9X3eK8y8HZ3vfysXx18O9-aJUTYNT2Ta0h4YA5qxva9ZhVZGWatzhDjDp2qZlreItqXVX94RWPdayblroet7pgWm6UxzeebWXF-IymJUMN8JLI24PfFgKGZJRFgTjNWSt1FpBTWvomtxlyOPlSuIey-z6fOe6nPoVZMqlIO2GdPONM6NY-iuR_1HdVTQL3t0Lgv89QUxiZaICa6UDP0VRccprXtW5507x5hF64afg8qjWFOvqitAH1DLPWhg3-NxXraVizimmnDHcZmr2BJVvDSujcvgGk883Ct4-KBhB2jRGb6fbtGyC7-9AFXyMAYb_wyBYrMMscpjFfZgzTR7RyqTbCObvMfbJmn9udPbv |
CitedBy_id | crossref_primary_10_1080_14656566_2024_2389258 crossref_primary_10_1183_23120541_00014_2024 crossref_primary_10_1038_s41533_024_00382_x crossref_primary_10_1080_17476348_2024_2361048 crossref_primary_10_1080_17476348_2024_2380067 crossref_primary_10_1136_bmjresp_2023_002275 crossref_primary_10_1109_ACCESS_2024_3440502 crossref_primary_10_1016_j_compbiomed_2024_108702 crossref_primary_10_1016_j_jaip_2024_01_043 crossref_primary_10_1177_20406223231209329 crossref_primary_10_1016_j_jaip_2023_12_038 crossref_primary_10_1016_S2213_2600_24_00327_8 crossref_primary_10_1007_s11882_023_01084_z crossref_primary_10_1016_j_jaip_2024_07_017 crossref_primary_10_3390_asi7050078 crossref_primary_10_3389_fphar_2025_1465059 crossref_primary_10_1007_s12325_023_02743_3 crossref_primary_10_1007_s11882_024_01152_y crossref_primary_10_1111_all_15849 crossref_primary_10_1007_s11882_023_01111_z crossref_primary_10_1007_s12325_023_02774_w crossref_primary_10_1183_23120541_01026_2024 crossref_primary_10_2147_POR_S424098 crossref_primary_10_2147_PPA_S385857 crossref_primary_10_1145_3641021 crossref_primary_10_3390_s24216848 |
Cites_doi | 10.1038/nbt0908-1011 10.1159/000338112 10.1016/j.jaip.2020.03.013 10.1016/j.jaci.2014.08.015 10.4104/pcrj.2013.00097 10.1097/CCM.0000000000003891 10.1038/nature14541 10.1038/s41533-017-0067-1 10.1186/s12931-017-0710-y 10.1164/rccm.200801-060ST 10.1136/qhc.11.4.376 10.1161/CIRCHEARTFAILURE.119.006513 10.1183/09031936.00205911 10.1183/16000617.0064-2017 10.1186/cc1451 10.1378/chest.121.2.329 10.1016/j.jaip.2017.01.004 10.1016/j.patrec.2005.10.010 10.1161/CIRCULATIONAHA.119.041980 10.1183/13993003.01872-2019 10.1183/13993003.02238-2016 10.1016/j.rmed.2004.04.010 10.1161/CIRCULATIONAHA.115.001593 10.1111/nyas.13218 10.1164/rccm.201805-0845ED 10.1016/j.entcs.2019.04.007 10.1214/aos/1013203451 10.1089/jamp.2021.0031 10.1038/nature21056 10.1145/2939672.2939785 10.1016/j.jaip.2014.06.001 10.1136/bmjopen-2019-028995 10.1016/j.rmed.2011.01.005 10.1089/jamp.2012.0987 10.1513/AnnalsATS.201803-205ED 10.1001/jama.2016.17216 10.1183/09031936.00166410 10.1016/j.anai.2011.09.001 10.4104/pcrj.2012.00010 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Dove Medical Press Limited 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Lugogo et al. 2022 Lugogo et al. 2022 Lugogo et al. |
Copyright_xml | – notice: COPYRIGHT 2022 Dove Medical Press Limited – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Lugogo et al. – notice: 2022 Lugogo et al. 2022 Lugogo et al. |
DBID | AAYXX CITATION 3V. 7RV 7XB 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ KB0 LK8 M2O M7P MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.2147/JAA.S377631 |
DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Research Library Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Lugogo et al |
EISSN | 1178-6965 |
EndPage | 1637 |
ExternalDocumentID | oai_doaj_org_article_674e09eaddce434e95909f6637ca0b0a PMC9664923 A730376608 10_2147_JAA_S377631 |
GeographicLocations | France United Kingdom Israel United States--US |
GeographicLocations_xml | – name: Israel – name: United Kingdom – name: France – name: United States--US |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 0YH 29J 2WC 5VS 7RV 8C1 8FE 8FH 8FI 8FJ 8G5 AAYXX ABUWG ACGFO ADBBV ADRAZ AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BKEYQ BPHCQ BVXVI CCPQU CITATION DIK DWQXO E3Z EBD EBS EJD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HYE IAO IHR IHW IPNFZ ITC KQ8 LK8 M2O M48 M7P M~E NAPCQ O5R O5S OK1 P2P P6G PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PUEGO RIG RNS RPM TDBHL TR2 UKHRP VDV ALIPV PMFND 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c550t-853be51e076b84690c2183d0909e01985868c7814d94b132b0da458e9b79df6d3 |
IEDL.DBID | M48 |
ISSN | 1178-6965 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Tue Sep 30 17:18:11 EDT 2025 Fri Sep 05 14:50:54 EDT 2025 Fri Jul 25 11:59:06 EDT 2025 Tue Jun 17 21:06:30 EDT 2025 Tue Jun 10 20:26:39 EDT 2025 Thu May 22 21:32:59 EDT 2025 Wed Oct 01 04:12:19 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc/3.0 This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-853be51e076b84690c2183d0909e01985868c7814d94b132b0da458e9b79df6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8729-2530 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/JAA.S377631 |
PQID | 2736942136 |
PQPubID | 3933137 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_674e09eaddce434e95909f6637ca0b0a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9664923 proquest_miscellaneous_2737472466 proquest_journals_2736942136 gale_infotracmisc_A730376608 gale_infotracacademiconefile_A730376608 gale_healthsolutions_A730376608 crossref_primary_10_2147_JAA_S377631 crossref_citationtrail_10_2147_JAA_S377631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Macclesfield |
PublicationPlace_xml | – name: Macclesfield |
PublicationTitle | Journal of asthma and allergy |
PublicationYear | 2022 |
Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Dove Medical Press |
Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
References | Wright (ref4) 2002; 11 ref12 ref37 Kouri (ref14) 2017; 49 ref36 Azouza (ref39) 2012; 21 Honkoop (ref32) 2013; 41 Korn (ref28) 2011; 107 ref30 ref10 Giannini (ref18) 2019; 47 ref1 Atkins (ref8) 2005; 50 Gupta (ref13) 2012; 84 Messinger (ref27) 2018; 198 Usmani (ref5) 2018; 19 Fawcett (ref31) 2006; 27 Patel (ref45) 2014; 2 Laube (ref7) 2011; 37 Gupta (ref15) 2018; 28 Deo (ref22) 2015; 132 Kingsford (ref23) 2008; 26 Lavorini (ref3) 2013; 22 Chrystyn (ref11) 2022; 35 Friedman (ref24) 2001; 29 Cosgriff (ref44) 2018; 15 Broeders (ref9) 2004; 98 Nwaru (ref34) 2020; 55 Stelhick (ref17) 2020; 13 Magadle (ref38) 2002; 121 Chung (ref41) 2017; 26 ref43 Papiris (ref40) 2002; 6 Price (ref6) 2017; 5 Than (ref16) 2019; 140 Finkelstein (ref26) 2017; 1387 Esteva (ref19) 2017; 542 Gulshan (ref20) 2016; 316 Ghahramani (ref21) 2015; 521 Melani (ref2) 2011; 105 Reddel (ref29) 2009; 180 Kocsis (ref42) 2019; 343 Azzi (ref35) 2019; 9 Mahler (ref46) 2013; 26 Amin (ref33) 2020; 8 Bateman (ref25) 2015; 135 |
References_xml | – ident: ref37 – volume: 26 start-page: 1011 year: 2008 ident: ref23 publication-title: Nat Biotechnol doi: 10.1038/nbt0908-1011 – ident: ref1 – volume: 84 start-page: 406 year: 2012 ident: ref13 publication-title: Respiration doi: 10.1159/000338112 – volume: 8 start-page: 2556 year: 2020 ident: ref33 publication-title: J Allergy Clin Immunol Pract doi: 10.1016/j.jaip.2020.03.013 – volume: 135 start-page: 1457 year: 2015 ident: ref25 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2014.08.015 – ident: ref43 – volume: 22 start-page: 385 year: 2013 ident: ref3 publication-title: Prim Care Respir J doi: 10.4104/pcrj.2013.00097 – volume: 47 start-page: 1485 year: 2019 ident: ref18 publication-title: Crit Care Med doi: 10.1097/CCM.0000000000003891 – volume: 521 start-page: 452 year: 2015 ident: ref21 publication-title: Nature doi: 10.1038/nature14541 – volume: 28 start-page: 1 year: 2018 ident: ref15 publication-title: NPJ Prim Care Respir Med doi: 10.1038/s41533-017-0067-1 – volume: 19 start-page: 10 year: 2018 ident: ref5 publication-title: Respir Res doi: 10.1186/s12931-017-0710-y – volume: 180 start-page: 59 year: 2009 ident: ref29 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200801-060ST – volume: 11 start-page: 376 year: 2002 ident: ref4 publication-title: Qual Saf Health Care doi: 10.1136/qhc.11.4.376 – volume: 13 start-page: e006513 year: 2020 ident: ref17 publication-title: Circ Heart Fail doi: 10.1161/CIRCHEARTFAILURE.119.006513 – volume: 41 start-page: 53 year: 2013 ident: ref32 publication-title: Eur Respir J doi: 10.1183/09031936.00205911 – volume: 26 start-page: 170064 year: 2017 ident: ref41 publication-title: Eur Respir Rev doi: 10.1183/16000617.0064-2017 – volume: 6 start-page: 30 year: 2002 ident: ref40 publication-title: Crit Care doi: 10.1186/cc1451 – volume: 121 start-page: 329 year: 2002 ident: ref38 publication-title: Chest doi: 10.1378/chest.121.2.329 – volume: 5 year: 2017 ident: ref6 publication-title: J Allergy Clin Immunol Pract doi: 10.1016/j.jaip.2017.01.004 – volume: 27 start-page: 861 year: 2006 ident: ref31 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 140 start-page: 899 year: 2019 ident: ref16 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041980 – volume: 55 start-page: 1901872 year: 2020 ident: ref34 publication-title: Eur Respir J doi: 10.1183/13993003.01872-2019 – ident: ref36 – volume: 49 start-page: 1602238 year: 2017 ident: ref14 publication-title: Eur Respir J doi: 10.1183/13993003.02238-2016 – volume: 98 start-page: 1173 year: 2004 ident: ref9 publication-title: Resp Med doi: 10.1016/j.rmed.2004.04.010 – volume: 132 start-page: 1920 year: 2015 ident: ref22 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 1387 start-page: 153 year: 2017 ident: ref26 publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.13218 – volume: 198 start-page: 291 year: 2018 ident: ref27 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201805-0845ED – volume: 343 start-page: 3 year: 2019 ident: ref42 publication-title: Electron Notes Theor Comput Sci doi: 10.1016/j.entcs.2019.04.007 – volume: 29 start-page: 1189 year: 2001 ident: ref24 publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 35 start-page: 166 year: 2022 ident: ref11 publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2021.0031 – volume: 542 start-page: 115 year: 2017 ident: ref19 publication-title: Nature doi: 10.1038/nature21056 – volume: 50 start-page: 1304 year: 2005 ident: ref8 publication-title: Respir Care – ident: ref30 doi: 10.1145/2939672.2939785 – volume: 2 start-page: 751 year: 2014 ident: ref45 publication-title: J Allergy Clin Immunol Pract doi: 10.1016/j.jaip.2014.06.001 – volume: 9 start-page: e028995 year: 2019 ident: ref35 publication-title: BMJ Open doi: 10.1136/bmjopen-2019-028995 – volume: 105 start-page: 930 year: 2011 ident: ref2 publication-title: Respir Med doi: 10.1016/j.rmed.2011.01.005 – volume: 26 start-page: 174 year: 2013 ident: ref46 publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2012.0987 – volume: 15 start-page: 804 year: 2018 ident: ref44 publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201803-205ED – volume: 316 start-page: 2402 year: 2016 ident: ref20 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 37 start-page: 1308 year: 2011 ident: ref7 publication-title: Eur Respir J doi: 10.1183/09031936.00166410 – ident: ref10 – volume: 107 start-page: 474 year: 2011 ident: ref28 publication-title: Ann Allergy Asthma Immunol doi: 10.1016/j.anai.2011.09.001 – ident: ref12 – volume: 21 start-page: 208 year: 2012 ident: ref39 publication-title: Prim Care Respir J doi: 10.4104/pcrj.2012.00010 |
SSID | ssj0000396636 |
Score | 2.4091868 |
Snippet | Purpose: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study... Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to... Njira L Lugogo,1 Michael DePietro,2 Michael Reich,3 Rajan Merchant,4 Henry Chrystyn,5 Roy Pleasants,6 Lena Granovsky,3 Thomas Li,2 Tanisha Hill,2 Randall W... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1623 |
SubjectTerms | Algorithms Asthma Decision trees digital inhalers FDA approval Inhalation Inhalers Intervention Learning algorithms Machine learning Original Research Patients personalized medicine Pharmaceutical industry Precision medicine predictive modeling Respiration Respiratory agents Respiratory diseases Sensors Steroids |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kD-KLWD8wWnWEgiDGbpLNbuJbtFfa4kmxLfRtSTZ7nnAmJcmh_av8F53Z5MJFBV98vNs5LrvzvZn5DWP7XBYikgvUNJsaTFBi4edxZPwykcahjRg3h2z-SR5fitOr-Gpr1BfVhPXwwP3BHUglLE9xv6WxIhI2jVOeLtBPKpPzgrvQCN3YVjLlbHCEYbybDxgEmCZJ_NO-OY_G8hycZtnb80ihagUTd-RQ-_-0zb_XS245oKN77O4QOULWP_Euu2Wr--z2fHg3_oD9zOCsoU9kwGDuiiQtDPipX-CirleAESpkbbf8lsPsR27wSPsLu3fw2bbrVdcCtZtADkHoE47vG6CCE_9jXtgVUMnhDbgaA8grmI0DdMB18fqHdWvhsLmBs_p7aRs4qZa4wwboqhdONrAUJZxj5lw37UN2eTS7-HDsD-MYfOQX73x07IWNA8uVLBLKqg2FVyVHflgMFJM4kYkhBK0yFQUmuQUvcxGjDBQqLReyjB6xnaqu7GMGKiRkeRujsUGmxgVyNw6kUibkJpC58tjrDVe0GbDKaWTGSmPOQizUyEI9sNBj-yPxdQ_R8Xey98TekYRwtd0XKG16kDb9L2nz2AsSDt03qY7WQWdoKNFUS5547JWjIPuAj2zyoc0BN05IWxPKvQkl6rWZLm8EUA92pdUYbMpUhEEkPfZyXKZfUq1cZeu1o8EcMRQSadREcCd7n65UX5cOWxzVhiD7nvyPw3rK7oTULOIurPbYTtes7TMM4briudPWXyKPQaM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELZGJyG-IMaL6BhwSJOQEGHOm5MgoSljnbaJVtVepH2LHMddkUoyklawX8Vf5M51AgHEx9ZXNc75Ht_Zd88xtstFHvhihpamE4UBShg4MvSVU8RCGbYRZfqQjSfi-DI4vQqvNtikrYWhtMoWEw1QF5WiM_I93GZFEniuL_ZvvjrUNYpuV9sWGtK2Vig-GIqxO2zTo67KA7Z5MJpMz7pTF-6je0_3lVSoRy169k7T9N25H6GZub2tyTD4_43Tf-ZO_rYZHT1g960XCela7VtsQ5cP2d2xvSd_xH6kMK3pE4EZjE3CpAbLpXoNF1W1APRWIW2W8y8SRt-lwte7Prx7D2e6WS2WDVDpCUhwPYc4fd8CJZ84n2SuF0Dph7dg8g1AljDqmumAqeh1DqtGw2F9C9PqW6FrOCnnOMMa6NgXTlqKigLOMYqu6uYxuzwaXXw8dmxrBgd1x5cObvK5Dl3NI5HHFGErcrUKnvBEo9MYh7GIFbFpFUmQY8Cb80IGIa6HPEqKmSj8J2xQVqV-yiDyiGVehwg8Gn23HAE3dEUUKY8rV8hoyN60WsmU5S2n9hmLDOMXUmGGKsysCodstxO-WdN1_FvsgNTbiRDHtvmiqq8za7KZiAKN08HnUfhggU5CnN0Ml0-kJM-5HLKXtDiydcFqhxRZiqCJsC14PGSvjQRhBT6ykrbkASdOrFs9yZ2eJNq46g-3CzCzGNNkvyxiyF51w_RLypsrdbUyMhgveoFAmai3cHtz74-Un-eGZxxNhej7tv__58_YPY9KQsyx1A4bLOuVfo6O2jJ_Ya3vJ064PU4 priority: 102 providerName: ProQuest |
Title | A Predictive Machine Learning Tool for Asthma Exacerbations: Results from a 12-Week, Open-Label Study Using an Electronic Multi-Dose Dry Powder Inhaler with Integrated Sensors |
URI | https://www.proquest.com/docview/2736942136 https://www.proquest.com/docview/2737472466 https://pubmed.ncbi.nlm.nih.gov/PMC9664923 https://doaj.org/article/674e09eaddce434e95909f6637ca0b0a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: 8C1 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1178-6965 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: M48 dateStart: 20080901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1178-6965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000396636 issn: 1178-6965 databaseCode: 0YH dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swEBd9wNiXsSfL1mU3KBuMuZNfkj0Yw21T0rKU0Ae0n4wtK80gs1s7Yc1ftX9xd4oS5q4f9sUQ62Ik30N38t3vGNvmIg98MUJN07HCACUMnCz0lVNEQhm0EWX6kA2ORf88OLoIL9bYsoTAvsDm3tCO-kmd15Od25v5N1T4r5TG7Aby81GS7Jz6EjXFfX9941BHKfryattrrLNN3KU8kviBdf2NlfbR0TcdBF0XAymB01qU7919ZGvDMrj-_1rvuxmVf21RB4_ZI-tbQrIQhidsTZdP2YOB_Xr-jP1OYFjTLzJxMDBplBoswuoVnFXVBNCHhaSZjn9m0LvNFL70xZHeFzjRzWwybYAKUiAD13MI6fcTUEqK8z3L9QQoKXEOJgsBshJ6qxY7YOp8nf2q0bBfz2FY_Sp0DYflGFdYAx0Gw-ESuKKAU4ytq7p5zs4Pemd7fcc2bHCQo3zq4Naf69DVXIo8orhbkQNW8JjHGl3JKIxEpAhjq4iDHMPgnBdZEKKU5DIuRqLwX7CNsir1SwbSI-x5HaI50ujR5WiGQ1dIqTyuXJHJDvu45EqqLJo5NdWYpBjVEAtTZGFqWdhh2yvi6wWIx_1ku8TeFQkhb5sbVX2VWkVOhQw0Lgfno3BigY5DXN0IRUmqjOc867C3JBzpoox1ZT_SBE0pGnPBow77YChIpnHKKrOFELhwwuJqUW61KFHzVXt4KYDpUnFSdEdFHHiuLzrs3WqY_knZdKWuZoYGo0gvEEgjW4LbWnt7pPwxNujjqDYE6vfqP57-mj30qFrEnFhtsY1pPdNv0Ieb5l22zi_7eI323C7b3O0dD0-65jyka9T0D9RoSGw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxFMYCh2kIiSEqZ9rGwkh06RK2qSqaCr1ZtbrTYMU7GInKvlT8BeZ2dgGA-LWY-JJvKN57ezOfMPYjsVTz-VTtDQVSUxQfM8UvivNLORSo41IPYdsfMQHp97BmX-2wb43vTBUVtn4RO2os0LSGfkuhlkeeY7t8vcXX02aGkW3q80IjbVaHKrVJaZs1bthD-X7wnH2-5O9gVlPFTDxtdbCxPiUKt9WmMCnISWHknYJmRVZkcL9TuiHPJQEBJVFXoq5WmplwvORlTSIsinPXPzfa-w6dRqRXYV7dnumY7mYPNBtKLUB0gCg3YM4fnPiBmjEdifw6fkAf0eBPyszfwt1-3fY7XqPCvFaqe6yDZXfYzfG9S38ffYjhuOSPpGrhLEux1RQI7Wew6Qo5oB7YYirxeyLgP43IVF466PBt_BRVcv5ogJqbAEBtmMSYvBroNIWcyRSNQcqblyBrmYAkUO_HdUDul_Y7BWVgl65guPiMlMlDPMZclgCHSrDsAHAyOAEc_SirB6w0ysR0UO2mRe5esQgcAjDXvno1hTuDFN0577Ng0A6lrS5CAz2qpFKImtUdBrOMU8wOyIRJijCpBahwXZa4os1GMi_yT6QeFsSQvDWXxTleVI7hIQHnkJ2cD0SF-apyEfupqg-gRRWagmDbZNyJOt22NYPJTG6ZAwK3AoN9lJTkCfCJUtRN1Qg44Tp1aHc6lCiB5Hdx40CJrUHq5Jf9maw5-1j-iVV5eWqWGoazEYdjyNN0FHcDu_dJ_nnmUYxR1MhcMDH_3_5Nrs5mIxHyWh4dPiE3XKo-UQfgG2xzUW5VE9xS7hIn2k7BPbpqg3_J9M2cRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVKp4QVxFoNBBKkJCmPi6tpEq5JJETdtEUS9S31x7vWmQgl3sRCVfxX_wVcxs1gED4q2PicfJjmbntjtzhrFdk6euwyeoaTIUmKB4rpF4jjCygAuFNiLUHLLhiB-cu4cX3sUG-1H3wlBZZW0TlaHOCkFn5B10szx0bcvhnYkuixh3-x-vvxo0QYpuWutxGokes5DtKbgx3eRxJJc3mM5Ve4Muyv61bfd7Z58ODD1xwMAlmXMDfVcqPUticp8GlDgKiiAyMzRDibFQ4AU8EAQSlYVuinlcamaJ6yGbqR9mE545-Lt32KZP_aIttrnfG41P1ic-poOpBd2VUpMgjQfqHEbR-1PHRxW3Gm5RTQ_420f8Wbf5myPs32f3dAQL0WrLPWAbMn_Itob6jv4R-x7BuKRPZEhhqIo1JWgc1ys4K4oZYKQMUTWffkmg9y0RKNrVweEHOJHVYjavgNpeIAHLNghP-B1Q4YtxnKRyBlT6uARV6wBJDr31IB9Q3cRGt6gkdMsljIubTJYwyKfIYQl05AyDGh4jg1PM4IuyeszOb0VIT1grL3L5lIFvE8K99NDoSYwbUzT2nsV9X9imsHjit9nbWiqx0JjpNLpjFmPuRCKMUYSxFmGb7a6Jr1dQIf8m2yfxrkkI31t9UZRXsTYXMfddiezgegQuzJWhh9xNcPv4IjFTM2mzHdoc8apZdm2l4ggNNroMbgZt9kZRkJ3CJYtEt1sg44T41aDcblCifRHNx_UGjLV9q-Jf2thmr9aP6U2q2ctlsVA0mKvaLkcav7FxG7w3n-SfpwrjHFWFoAOf_f_Pd9gWGoH4eDA6es7u2tSZok7HtllrXi7kC4wX5-lLrYjALm9b938Cyh58Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Predictive+Machine+Learning+Tool+for+Asthma+Exacerbations%3A+Results+from+a+12-Week%2C+Open-Label+Study+Using+an+Electronic+Multi-Dose+Dry+Powder+Inhaler+with+Integrated+Sensors&rft.jtitle=Journal+of+asthma+and+allergy&rft.au=Lugogo%2C+Njira+L&rft.au=DePietro%2C+Michael&rft.au=Reich%2C+Michael&rft.au=Merchant%2C+Rajan&rft.date=2022-01-01&rft.issn=1178-6965&rft.eissn=1178-6965&rft.volume=15&rft.spage=1623&rft_id=info:doi/10.2147%2FJAA.S377631&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-6965&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-6965&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-6965&client=summon |