Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes

Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 138; no. 5; pp. 1019 - 1031
Main Authors Wang, Zhibin, Zang, Chongzhi, Cui, Kairong, Schones, Dustin E., Barski, Artem, Peng, Weiqun, Zhao, Keji
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 04.09.2009
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2009.06.049

Cover

Abstract Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.
AbstractList Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) function antagonistically to control histone acetylation states that are crucial to many cellular processes. We describe here genome-wide mapping experiments that reveal that both HATs (CBP, p300, PCAF, Tip60, MOF) and HDACs (HDAC1, HDAC2, HDAC3, HDAC6) on chromatin are positively correlated with gene expression and histone acetylation. We provide evidence that Tip60 and HDAC6 are targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Our results indicate that MLL-mediated H3K4 methylation primes chromatin to facilitate histone acetylation. Our data suggest that the majority of HDACs in the human genome function to reset chromatin by removing acetylation in active genes; the dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding prevents Pol II from binding to the genes primed by H3K4 methylation and poises them for future activation.
Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.
Author Barski, Artem
Schones, Dustin E.
Peng, Weiqun
Zang, Chongzhi
Zhao, Keji
Wang, Zhibin
Cui, Kairong
AuthorAffiliation 1 Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
2 Department of Physics, The George Washington University, D.C
3 These authors contributed equally to this work
AuthorAffiliation_xml – name: 1 Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
– name: 3 These authors contributed equally to this work
– name: 2 Department of Physics, The George Washington University, D.C
Author_xml – sequence: 1
  givenname: Zhibin
  surname: Wang
  fullname: Wang, Zhibin
  organization: Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Chongzhi
  surname: Zang
  fullname: Zang, Chongzhi
  organization: Department of Physics, The George Washington University, Washington D.C. 20052, USA
– sequence: 3
  givenname: Kairong
  surname: Cui
  fullname: Cui, Kairong
  organization: Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Dustin E.
  surname: Schones
  fullname: Schones, Dustin E.
  organization: Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 5
  givenname: Artem
  surname: Barski
  fullname: Barski, Artem
  organization: Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Weiqun
  surname: Peng
  fullname: Peng, Weiqun
  organization: Department of Physics, The George Washington University, Washington D.C. 20052, USA
– sequence: 7
  givenname: Keji
  surname: Zhao
  fullname: Zhao, Keji
  email: zhaok@nhlbi.nih.gov
  organization: Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19698979$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaSZp_0AXRavu7EqyJVlQCsPkMYGEQJltEbJ0nWrwSFPLM6H_vnImDUkX6UYP7jkfh3tO0FGIARD6SElJCRVf1qWFvi8ZIaokoiS1eoNmlChZ1FSyIzTLA1Y0QtbH6CSlNSGk4Zy_Q8dUCdUoqWboxyWEuIHi3jvAN2a79eEOxw4v56uETXB4eTZfJPwd9mD6hM98Gn2wI77Y5dPHkLAPeJ6fe3iQXwVz-GQupPfobZdt8OHxPkWri_PVYllc315eLebXheWcjAWVbdvwlsqmqqQVTrQ1U65itSPAuXQcmK0Ma-oaBCHGGgmM0qZ1XctdJ6pT9O2A3e7aDTgLYRxMr7eD35jht47G65eT4H_qu7jXTHLSCJYBnx8BQ_y1gzTqjU_Tck2AuEtaSFEpUsv_ChmRildyivTpeaSnLH83nwXNQWCHmNIAnbZ-NNNKc0Lfa0r0VLJe6wmvp5I1ETqXnK3sH-sT_TXT14MJcg97D4NO1kOw4PwAdtQu-tfsfwDwXcBv
CitedBy_id crossref_primary_10_1016_j_actbio_2022_01_020
crossref_primary_10_1038_icb_2011_54
crossref_primary_10_1074_jbc_M110_115725
crossref_primary_10_1007_s00018_014_1727_8
crossref_primary_10_1007_s12011_023_03959_8
crossref_primary_10_2217_epi_11_110
crossref_primary_10_1038_emboj_2010_318
crossref_primary_10_18632_oncotarget_18910
crossref_primary_10_1371_journal_pone_0132448
crossref_primary_10_1016_j_stem_2012_04_023
crossref_primary_10_1080_17501911_2024_2419357
crossref_primary_10_1371_journal_pbio_1001105
crossref_primary_10_3389_fnbeh_2017_00041
crossref_primary_10_1002_eji_201343649
crossref_primary_10_1155_2011_371832
crossref_primary_10_1038_emboj_2011_135
crossref_primary_10_1101_gr_116467_110
crossref_primary_10_1128_JVI_01077_12
crossref_primary_10_1016_j_neuropharm_2013_12_024
crossref_primary_10_1586_14789450_2016_1159960
crossref_primary_10_1038_s41576_018_0089_8
crossref_primary_10_3390_cancers15154005
crossref_primary_10_1016_j_febslet_2015_08_009
crossref_primary_10_1158_1940_6207_CAPR_20_0217
crossref_primary_10_1002_bies_202200239
crossref_primary_10_1016_j_pharmthera_2018_06_001
crossref_primary_10_1080_15592294_2016_1278095
crossref_primary_10_1126_sciadv_adq0479
crossref_primary_10_1242_jcs_154245
crossref_primary_10_1038_s41598_021_95398_5
crossref_primary_10_1089_scd_2013_0328
crossref_primary_10_1016_j_bbrc_2014_10_021
crossref_primary_10_1016_j_gde_2010_01_007
crossref_primary_10_1186_s12967_023_04842_9
crossref_primary_10_1016_j_omtn_2021_01_017
crossref_primary_10_3389_fpls_2019_00171
crossref_primary_10_1096_fj_202001654RR
crossref_primary_10_1016_j_isci_2020_100876
crossref_primary_10_1093_nar_gky119
crossref_primary_10_1016_j_tem_2013_09_006
crossref_primary_10_1016_j_toxlet_2022_01_017
crossref_primary_10_1111_liv_14381
crossref_primary_10_1038_ng_3958
crossref_primary_10_1242_dev_200049
crossref_primary_10_3390_biom15010015
crossref_primary_10_1007_s43657_022_00045_2
crossref_primary_10_3748_wjg_v21_i21_6665
crossref_primary_10_1371_journal_pone_0247518
crossref_primary_10_1128_MCB_00622_14
crossref_primary_10_1016_j_molcel_2022_11_002
crossref_primary_10_1186_1742_4690_10_90
crossref_primary_10_1038_s41577_018_0037_z
crossref_primary_10_1093_jmcb_mjv021
crossref_primary_10_1089_ars_2017_7347
crossref_primary_10_1016_j_celrep_2017_02_030
crossref_primary_10_1038_s41576_020_00312_w
crossref_primary_10_1089_cell_2014_0102
crossref_primary_10_1111_adb_12737
crossref_primary_10_3390_genes6030607
crossref_primary_10_1002_ijc_25181
crossref_primary_10_1093_nar_gkq680
crossref_primary_10_1002_cpt_345
crossref_primary_10_3390_ijms20133123
crossref_primary_10_1016_j_biopsych_2016_09_015
crossref_primary_10_1038_srep44279
crossref_primary_10_1016_j_bbagrm_2012_08_015
crossref_primary_10_1242_dev_100487
crossref_primary_10_1016_j_isci_2025_111953
crossref_primary_10_1038_s41591_022_01751_0
crossref_primary_10_1515_med_2023_0665
crossref_primary_10_15252_embr_202154387
crossref_primary_10_1182_bloodadvances_2018015909
crossref_primary_10_1053_j_gastro_2013_12_003
crossref_primary_10_1093_nar_gkx086
crossref_primary_10_1016_j_cell_2011_03_043
crossref_primary_10_1016_j_isci_2024_109367
crossref_primary_10_1016_j_stemcr_2019_08_016
crossref_primary_10_1038_cr_2011_71
crossref_primary_10_7554_eLife_77646
crossref_primary_10_1038_nri3173
crossref_primary_10_1038_s41419_022_05055_6
crossref_primary_10_1016_j_ajpath_2011_05_029
crossref_primary_10_1371_journal_pcbi_1001008
crossref_primary_10_1186_1471_2164_12_378
crossref_primary_10_1038_s41467_018_06235_9
crossref_primary_10_1101_gad_223396_113
crossref_primary_10_1074_jbc_M112_399600
crossref_primary_10_1111_j_1742_4658_2011_08128_x
crossref_primary_10_1152_physrev_00012_2010
crossref_primary_10_1186_s13148_021_01050_4
crossref_primary_10_1093_nar_gkt1232
crossref_primary_10_1016_j_ajpath_2024_08_012
crossref_primary_10_1038_ncomms15315
crossref_primary_10_1038_nrd3031
crossref_primary_10_1074_jbc_M111_233098
crossref_primary_10_1074_jbc_M112_349704
crossref_primary_10_1093_hmg_ddu093
crossref_primary_10_1016_j_mce_2015_07_002
crossref_primary_10_1016_j_celrep_2017_01_019
crossref_primary_10_1016_j_pain_2013_05_021
crossref_primary_10_1038_icb_2011_101
crossref_primary_10_1016_j_bbagrm_2018_10_019
crossref_primary_10_2177_jsci_34_131
crossref_primary_10_1111_jnc_13621
crossref_primary_10_1128_MCB_00133_12
crossref_primary_10_1186_s13072_016_0065_5
crossref_primary_10_1016_j_yjmcc_2015_08_001
crossref_primary_10_1093_nar_gkq1171
crossref_primary_10_1016_j_bios_2022_114468
crossref_primary_10_1158_0008_5472_CAN_18_0161
crossref_primary_10_1093_mp_ssq018
crossref_primary_10_1002_mc_20866
crossref_primary_10_1038_s41467_019_12077_w
crossref_primary_10_1523_JNEUROSCI_5212_13_2014
crossref_primary_10_1242_jcs_106336
crossref_primary_10_1038_cr_2014_113
crossref_primary_10_31887_DCNS_2019_21_4_enestler
crossref_primary_10_1007_s00018_014_1734_9
crossref_primary_10_4049_jimmunol_1301603
crossref_primary_10_1139_bcb_2015_0065
crossref_primary_10_1016_j_molcel_2016_08_030
crossref_primary_10_1158_0008_5472_CAN_13_2837
crossref_primary_10_1021_cr400071f
crossref_primary_10_1038_nrm4074
crossref_primary_10_1093_nar_gkab473
crossref_primary_10_1111_jipb_13368
crossref_primary_10_1093_nar_gkae706
crossref_primary_10_1038_icb_2013_56
crossref_primary_10_1371_journal_pgen_1002649
crossref_primary_10_1371_journal_pgen_1001313
crossref_primary_10_1016_j_preteyeres_2018_03_002
crossref_primary_10_1161_JAHA_124_034816
crossref_primary_10_1016_j_cell_2010_08_011
crossref_primary_10_1016_j_neuron_2014_05_039
crossref_primary_10_1038_s41388_021_01974_4
crossref_primary_10_1158_1541_7786_MCR_21_0923
crossref_primary_10_4161_trns_2_5_17712
crossref_primary_10_1074_jbc_M115_689018
crossref_primary_10_3389_fcell_2020_576946
crossref_primary_10_1038_nbt_1759
crossref_primary_10_1111_j_1349_7006_2011_01904_x
crossref_primary_10_1371_journal_pone_0015651
crossref_primary_10_1016_j_bbalip_2016_06_001
crossref_primary_10_1038_msb_2012_61
crossref_primary_10_1002_dvdy_22246
crossref_primary_10_1128_JVI_03278_13
crossref_primary_10_1038_ni_2008
crossref_primary_10_1016_j_isci_2023_107231
crossref_primary_10_1016_j_cell_2010_08_020
crossref_primary_10_1186_cc13999
crossref_primary_10_1038_ncomms14272
crossref_primary_10_1016_j_jmb_2016_09_023
crossref_primary_10_1007_s13148_010_0012_4
crossref_primary_10_1007_s40572_013_0008_2
crossref_primary_10_1021_ja102758v
crossref_primary_10_1038_s41388_018_0351_8
crossref_primary_10_18632_oncotarget_1948
crossref_primary_10_1016_j_ydbio_2016_06_017
crossref_primary_10_1007_s10238_015_0400_3
crossref_primary_10_1177_1073858417751112
crossref_primary_10_1016_j_molcel_2014_02_032
crossref_primary_10_1038_s41467_021_27321_5
crossref_primary_10_1093_nar_gkq287
crossref_primary_10_1186_s12859_016_1418_6
crossref_primary_10_1371_journal_pone_0185627
crossref_primary_10_3390_cancers11060747
crossref_primary_10_1016_j_celrep_2013_09_018
crossref_primary_10_1016_j_ijbiomac_2021_03_110
crossref_primary_10_1016_j_molcel_2011_07_012
crossref_primary_10_1186_s13046_024_03188_4
crossref_primary_10_4161_epi_23243
crossref_primary_10_1371_journal_pone_0130622
crossref_primary_10_1128_JVI_02665_13
crossref_primary_10_1002_jcp_22679
crossref_primary_10_1084_jem_20180520
crossref_primary_10_1016_j_isci_2019_10_053
crossref_primary_10_1016_j_gdata_2015_06_019
crossref_primary_10_1080_1040841X_2017_1373063
crossref_primary_10_1016_j_tibs_2010_10_001
crossref_primary_10_1111_cge_12946
crossref_primary_10_1016_j_febslet_2011_03_068
crossref_primary_10_15252_embj_2020106459
crossref_primary_10_1016_j_conb_2010_01_003
crossref_primary_10_1111_j_1364_3703_2010_00621_x
crossref_primary_10_1016_j_tibs_2022_07_008
crossref_primary_10_1016_j_cell_2013_02_006
crossref_primary_10_1093_nar_gkr140
crossref_primary_10_1128_JVI_00853_21
crossref_primary_10_1242_dev_201755
crossref_primary_10_1186_s13072_015_0021_9
crossref_primary_10_1016_j_neuroscience_2013_09_018
crossref_primary_10_1016_j_physbeh_2023_114406
crossref_primary_10_1016_j_bbagrm_2015_06_012
crossref_primary_10_1016_j_banm_2023_01_023
crossref_primary_10_1101_gr_230300_117
crossref_primary_10_1016_j_celrep_2018_09_002
crossref_primary_10_3390_ijms20122882
crossref_primary_10_1002_hipo_23297
crossref_primary_10_1186_s13072_015_0043_3
crossref_primary_10_1016_j_celrep_2015_10_013
crossref_primary_10_7554_eLife_01557
crossref_primary_10_1161_CIRCRESAHA_111_255067
crossref_primary_10_1016_j_ymgme_2016_06_013
crossref_primary_10_1074_jbc_M114_603761
crossref_primary_10_1002_iub_1264
crossref_primary_10_1371_journal_pcbi_1002968
crossref_primary_10_1038_s41467_022_35375_2
crossref_primary_10_2176_nmc_ra_2017_0018
crossref_primary_10_1074_jbc_RA120_015534
crossref_primary_10_3389_fpls_2022_849618
crossref_primary_10_1038_s41467_019_11046_7
crossref_primary_10_1089_jir_2014_0022
crossref_primary_10_1186_s13059_014_0451_x
crossref_primary_10_1242_dmm_013219
crossref_primary_10_1038_nsmb_1983
crossref_primary_10_1152_japplphysiol_00979_2010
crossref_primary_10_1038_cr_2013_151
crossref_primary_10_1007_s00018_023_04883_9
crossref_primary_10_1038_s41594_024_01453_w
crossref_primary_10_1016_j_taap_2016_07_001
crossref_primary_10_1155_2012_979168
crossref_primary_10_1038_bjc_2016_36
crossref_primary_10_1134_S1990747819040093
crossref_primary_10_4161_21541264_2014_988093
crossref_primary_10_4161_trns_22601
crossref_primary_10_1158_1940_6207_CAPR_14_0371
crossref_primary_10_1093_nar_gkae329
crossref_primary_10_1242_jeb_163840
crossref_primary_10_1155_2017_2608605
crossref_primary_10_1186_s13072_015_0042_4
crossref_primary_10_1038_s41598_019_44726_x
crossref_primary_10_1146_annurev_immunol_032713_120245
crossref_primary_10_1080_15476286_2017_1356564
crossref_primary_10_1038_nri_2015_18
crossref_primary_10_1016_j_cels_2023_06_008
crossref_primary_10_3389_fcell_2023_1157893
crossref_primary_10_1007_s12975_017_0595_6
crossref_primary_10_1093_database_bav085
crossref_primary_10_1155_2022_6439097
crossref_primary_10_1242_dev_083105
crossref_primary_10_1074_jbc_M116_756643
crossref_primary_10_1371_journal_pone_0034236
crossref_primary_10_3390_genes3020320
crossref_primary_10_1371_journal_pone_0094523
crossref_primary_10_1016_j_celrep_2017_07_044
crossref_primary_10_1161_ATVBAHA_115_305043
crossref_primary_10_1182_bloodadvances_2022007155
crossref_primary_10_1101_gad_619211
crossref_primary_10_1530_JME_13_0227
crossref_primary_10_3390_ph14080765
crossref_primary_10_1038_s41467_021_24950_8
crossref_primary_10_1007_s00125_010_1892_8
crossref_primary_10_1371_journal_pone_0019184
crossref_primary_10_1016_j_apsb_2015_01_007
crossref_primary_10_1128_MCB_00754_14
crossref_primary_10_1186_1471_2199_15_22
crossref_primary_10_7554_eLife_13941
crossref_primary_10_1021_acs_jmedchem_0c00491
crossref_primary_10_1016_j_brainresbull_2020_06_010
crossref_primary_10_3390_ijms20205159
crossref_primary_10_1523_JNEUROSCI_1840_17_2017
crossref_primary_10_1098_rsob_200255
crossref_primary_10_1016_j_mce_2017_01_046
crossref_primary_10_1016_j_gene_2013_11_005
crossref_primary_10_1161_CIRCRESAHA_119_316075
crossref_primary_10_1016_j_acthis_2016_04_002
crossref_primary_10_1093_nar_gku781
crossref_primary_10_1111_febs_12673
crossref_primary_10_1093_nar_gkq184
crossref_primary_10_3389_fmars_2023_1073322
crossref_primary_10_1371_journal_pone_0018087
crossref_primary_10_1038_srep28460
crossref_primary_10_1007_s12032_014_0985_5
crossref_primary_10_1016_j_actbio_2020_09_034
crossref_primary_10_1016_j_bbrc_2023_09_023
crossref_primary_10_7554_eLife_57519
crossref_primary_10_1002_bdra_20797
crossref_primary_10_1371_journal_pone_0018088
crossref_primary_10_1101_gr_139360_112
crossref_primary_10_1016_j_bbagrm_2013_05_005
crossref_primary_10_1016_j_semcdb_2016_03_023
crossref_primary_10_1038_nn_4347
crossref_primary_10_1016_j_biocel_2024_106730
crossref_primary_10_1016_j_stem_2014_04_018
crossref_primary_10_1089_aid_2022_0161
crossref_primary_10_1126_science_1198125
crossref_primary_10_1016_j_conb_2017_08_007
crossref_primary_10_1016_j_it_2012_11_001
crossref_primary_10_1186_gb_2011_12_7_120
crossref_primary_10_1042_EBC20180061
crossref_primary_10_3892_ijmm_2014_1687
crossref_primary_10_1016_j_tcb_2012_11_008
crossref_primary_10_1038_s41598_022_08602_5
crossref_primary_10_1016_j_tig_2020_09_015
crossref_primary_10_1186_s12711_017_0331_4
crossref_primary_10_1021_acs_analchem_6b00400
crossref_primary_10_2119_molmed_2011_00049
crossref_primary_10_1182_blood_2012_07_441949
crossref_primary_10_3389_fimmu_2019_01363
crossref_primary_10_1093_biostatistics_kxt047
crossref_primary_10_1007_s11427_019_1587_x
crossref_primary_10_1016_j_bbagrm_2010_08_012
crossref_primary_10_1093_bioinformatics_btq248
crossref_primary_10_1021_ja408184x
crossref_primary_10_1038_onc_2016_8
crossref_primary_10_1038_nature09261
crossref_primary_10_1080_1354750X_2017_1347961
crossref_primary_10_3389_fonc_2023_1144184
crossref_primary_10_1038_s41467_024_49370_2
crossref_primary_10_1186_s12864_017_3929_6
crossref_primary_10_1186_1741_7007_8_56
crossref_primary_10_1073_pnas_1103344108
crossref_primary_10_1111_pbi_14299
crossref_primary_10_1016_j_neulet_2015_12_012
crossref_primary_10_1016_j_cbi_2022_110032
crossref_primary_10_1093_nar_gkv1516
crossref_primary_10_4161_auto_27280
crossref_primary_10_1038_onc_2016_344
crossref_primary_10_1126_science_1206022
crossref_primary_10_1016_j_immuni_2011_08_007
crossref_primary_10_1074_jbc_M110_208181
crossref_primary_10_1016_j_celrep_2020_108341
crossref_primary_10_1016_j_stem_2014_05_006
crossref_primary_10_1074_jbc_M115_701227
crossref_primary_10_1155_2010_632739
crossref_primary_10_1073_pnas_0909344107
crossref_primary_10_1146_annurev_pharmtox_010510_100237
crossref_primary_10_1371_journal_pcbi_1000952
crossref_primary_10_1186_s12864_018_5016_z
crossref_primary_10_1371_journal_pone_0029171
crossref_primary_10_15252_embj_201696307
crossref_primary_10_1007_s00412_013_0441_x
crossref_primary_10_1016_j_phrs_2010_02_010
crossref_primary_10_1038_s41594_018_0114_9
crossref_primary_10_1016_j_cub_2016_06_011
crossref_primary_10_1016_j_bbcan_2020_188355
crossref_primary_10_1093_plphys_kiad614
crossref_primary_10_1101_gad_552310
crossref_primary_10_1007_s00018_017_2596_8
crossref_primary_10_1016_j_cell_2010_09_009
crossref_primary_10_1172_JCI92852
crossref_primary_10_1111_imm_12100
crossref_primary_10_26508_lsa_202302244
crossref_primary_10_1371_journal_pgen_1000778
crossref_primary_10_1126_scitranslmed_3000813
crossref_primary_10_26508_lsa_202403091
crossref_primary_10_1080_17425255_2016_1215423
crossref_primary_10_1101_gad_260562_115
crossref_primary_10_1525_abt_2020_82_6_372
crossref_primary_10_1186_s40478_021_01234_2
crossref_primary_10_1016_j_celrep_2021_109747
crossref_primary_10_1097_WNR_0000000000001636
crossref_primary_10_1099_jgv_0_000679
crossref_primary_10_1534_g3_114_013565
crossref_primary_10_1021_acs_jproteome_5b01083
crossref_primary_10_1002_eji_201344150
crossref_primary_10_1093_bfgp_els065
crossref_primary_10_1038_s41467_017_00500_z
crossref_primary_10_1242_dev_141465
crossref_primary_10_1074_jbc_M110_154732
crossref_primary_10_1016_j_stem_2012_02_020
crossref_primary_10_3390_pathogens10111517
crossref_primary_10_1016_j_febslet_2015_11_016
crossref_primary_10_1111_nph_17621
crossref_primary_10_1136_gutjnl_2015_311238
crossref_primary_10_1111_imcb_12311
crossref_primary_10_4161_fly_24732
crossref_primary_10_1371_journal_pgen_1000927
crossref_primary_10_1093_bib_bbv101
crossref_primary_10_1186_1744_8069_8_84
crossref_primary_10_1016_j_celrep_2018_11_045
crossref_primary_10_1038_s41423_020_0495_7
crossref_primary_10_1016_j_celrep_2022_111980
crossref_primary_10_3390_ijms25169022
crossref_primary_10_1038_s41467_022_29261_0
crossref_primary_10_1016_j_jprot_2016_04_033
crossref_primary_10_1111_all_14254
crossref_primary_10_1002_ctm2_70145
crossref_primary_10_1038_gt_2013_78
crossref_primary_10_1128_MCB_00740_10
crossref_primary_10_1093_nar_gks1451
crossref_primary_10_1038_ki_2011_39
crossref_primary_10_3390_ijms19020108
crossref_primary_10_1007_s12035_019_01772_w
crossref_primary_10_4155_fmc_12_3
crossref_primary_10_1523_ENEURO_0231_16_2016
crossref_primary_10_1016_j_pneurobio_2014_11_001
crossref_primary_10_1080_10408363_2019_1650714
crossref_primary_10_1371_journal_pgen_1004028
crossref_primary_10_1016_j_bbagrm_2016_01_006
crossref_primary_10_1016_j_cbpb_2017_11_002
crossref_primary_10_1016_j_celrep_2017_06_072
crossref_primary_10_1038_nsmb_2470
crossref_primary_10_1186_s13148_016_0169_6
crossref_primary_10_1016_j_bbrc_2023_149330
crossref_primary_10_1007_s12035_024_04033_7
crossref_primary_10_2217_epi_11_20
crossref_primary_10_1128_MCB_00975_10
crossref_primary_10_1016_j_immuni_2011_06_002
crossref_primary_10_1016_j_tips_2014_01_001
crossref_primary_10_1016_j_yexcr_2019_111673
crossref_primary_10_1002_jcp_29780
crossref_primary_10_1146_annurev_cellbio_051809_102012
crossref_primary_10_1089_jop_2017_0059
crossref_primary_10_1101_gad_2005511
crossref_primary_10_1128_microbiolspec_MCHD_0010_2015
crossref_primary_10_1093_nar_gku1058
crossref_primary_10_1016_j_chembiol_2023_11_009
crossref_primary_10_1093_nar_gky754
crossref_primary_10_1111_j_1349_7006_2012_02215_x
crossref_primary_10_1038_nsmb_3328
crossref_primary_10_1093_nar_gkab1176
crossref_primary_10_3390_ijms19113539
crossref_primary_10_3390_v14051006
crossref_primary_10_1172_JCI130144
crossref_primary_10_1186_gb_2014_15_2_r32
crossref_primary_10_1126_science_1192428
crossref_primary_10_1073_pnas_1321330111
crossref_primary_10_1007_s12016_014_8424_0
crossref_primary_10_1007_s12177_012_9083_0
crossref_primary_10_1074_jbc_M113_505115
crossref_primary_10_1002_arch_21614
crossref_primary_10_3390_cells11152380
crossref_primary_10_1042_BCJ20190599
crossref_primary_10_1093_nar_gky568
crossref_primary_10_1155_2011_416905
crossref_primary_10_1016_j_molcel_2011_02_036
crossref_primary_10_1128_MCB_05017_11
crossref_primary_10_1038_nature14443
crossref_primary_10_1007_s12035_020_01959_6
crossref_primary_10_1016_j_bbagen_2011_03_006
crossref_primary_10_1016_j_celrep_2022_110603
crossref_primary_10_1016_j_mrfmmm_2013_07_002
crossref_primary_10_1210_me_2014_1002
crossref_primary_10_1172_JCI162365
crossref_primary_10_1016_j_stem_2014_03_003
crossref_primary_10_1039_C1MB05363A
crossref_primary_10_1002_jcp_26497
crossref_primary_10_1159_000505535
crossref_primary_10_1016_j_bbrc_2012_06_005
crossref_primary_10_1016_j_tem_2012_09_003
crossref_primary_10_1016_j_biopha_2015_02_019
crossref_primary_10_1039_c2cc36591j
crossref_primary_10_1016_j_pnpbp_2017_12_009
crossref_primary_10_1161_CIRCRESAHA_110_222463
crossref_primary_10_2217_epi_2018_0004
crossref_primary_10_1073_pnas_2116797119
crossref_primary_10_1182_blood_2009_12_257261
crossref_primary_10_1007_s40484_020_0225_2
crossref_primary_10_1016_j_clim_2013_06_006
crossref_primary_10_1016_j_mam_2016_09_004
crossref_primary_10_1186_1471_2164_13_424
crossref_primary_10_1101_gr_155028_113
crossref_primary_10_1007_s00018_015_1871_9
crossref_primary_10_1089_ars_2013_5750
crossref_primary_10_1111_j_1469_185X_2012_00237_x
crossref_primary_10_1186_1742_4690_11_17
crossref_primary_10_7554_eLife_17214
crossref_primary_10_1016_j_biopha_2023_114438
crossref_primary_10_1111_febs_12079
crossref_primary_10_1038_icb_2014_115
crossref_primary_10_1073_pnas_1920866117
crossref_primary_10_1016_j_mce_2011_08_033
crossref_primary_10_3389_fphar_2021_702360
crossref_primary_10_2139_ssrn_3773785
crossref_primary_10_1016_j_pnpbp_2018_07_019
crossref_primary_10_1038_npp_2012_86
crossref_primary_10_1073_pnas_1002746107
crossref_primary_10_1093_bioinformatics_btt126
crossref_primary_10_7554_eLife_89548_4
crossref_primary_10_1103_PhysRevE_101_012419
crossref_primary_10_1101_sqb_2016_81_031021
crossref_primary_10_1016_j_ygeno_2012_11_007
crossref_primary_10_1021_acschembio_1c01000
crossref_primary_10_1038_nn_2762
crossref_primary_10_1126_sciadv_adt3037
crossref_primary_10_4049_jimmunol_2000164
crossref_primary_10_3390_v13040575
crossref_primary_10_1038_s41416_020_0907_6
crossref_primary_10_1007_s11515_018_1502_6
crossref_primary_10_1093_nar_gkab737
crossref_primary_10_1016_j_neuron_2019_01_007
crossref_primary_10_1186_1756_8935_3_18
crossref_primary_10_1128_MCB_05590_11
crossref_primary_10_3109_00498254_2014_897012
crossref_primary_10_1186_s13040_015_0071_3
crossref_primary_10_1017_S1462399410001377
crossref_primary_10_1016_j_nbd_2011_09_005
crossref_primary_10_1016_j_biocel_2018_02_010
crossref_primary_10_1016_j_abb_2012_09_014
crossref_primary_10_1002_glia_23795
crossref_primary_10_1016_j_heliyon_2021_e08664
crossref_primary_10_1371_journal_pone_0144320
crossref_primary_10_3390_ijms252010982
crossref_primary_10_1016_j_ydbio_2014_09_034
crossref_primary_10_1111_cpr_12253
crossref_primary_10_1038_s41598_022_27230_7
crossref_primary_10_1093_g3journal_jkac223
crossref_primary_10_1080_15592294_2019_1669375
crossref_primary_10_1186_1756_8935_3_22
crossref_primary_10_1186_s13072_016_0097_x
crossref_primary_10_1002_bies_201800078
crossref_primary_10_1093_nar_gks959
crossref_primary_10_1016_j_celrep_2018_06_085
crossref_primary_10_1158_2767_9764_CRC_22_0255
crossref_primary_10_1080_02713683_2022_2068182
crossref_primary_10_1016_j_tig_2012_05_005
crossref_primary_10_1016_j_devcel_2011_12_016
crossref_primary_10_1002_dvdy_23868
crossref_primary_10_1074_jbc_M112_413047
crossref_primary_10_1016_j_cell_2012_11_009
crossref_primary_10_1016_j_jdermsci_2012_09_001
crossref_primary_10_1038_nmeth_3733
crossref_primary_10_1093_abbs_gmr090
crossref_primary_10_3390_ijms22041771
crossref_primary_10_1093_nar_gkae1223
crossref_primary_10_4161_epi_28864
crossref_primary_10_1016_j_cell_2011_09_057
crossref_primary_10_1002_jcsm_12522
crossref_primary_10_1038_nrg3607
crossref_primary_10_3389_fcell_2024_1368171
crossref_primary_10_1038_nbt_1685
crossref_primary_10_3746_pnf_2022_27_4_335
crossref_primary_10_1186_s10020_021_00283_6
crossref_primary_10_12677_ACM_2022_12101355
crossref_primary_10_1371_journal_pgen_1003699
crossref_primary_10_15252_embr_202052023
crossref_primary_10_1007_s00726_011_1004_1
crossref_primary_10_1101_lm_029363_112
crossref_primary_10_3389_freae_2024_1439973
crossref_primary_10_1186_s13059_022_02758_z
crossref_primary_10_1016_j_conb_2019_01_023
crossref_primary_10_1101_gr_168781_113
crossref_primary_10_1186_s13072_015_0039_z
crossref_primary_10_1038_s41580_021_00441_y
crossref_primary_10_1038_s41576_020_00300_0
crossref_primary_10_1038_nsmb_1899
crossref_primary_10_1038_nature14226
crossref_primary_10_7554_eLife_50670
crossref_primary_10_1016_j_molcel_2017_09_031
crossref_primary_10_1002_elan_201200414
crossref_primary_10_1146_annurev_genom_120220_085159
crossref_primary_10_1038_s41598_018_34420_9
crossref_primary_10_1038_nrg2736
crossref_primary_10_1093_neuonc_noz218
crossref_primary_10_1007_s00441_014_1835_7
crossref_primary_10_1128_JVI_02771_12
crossref_primary_10_1007_s00381_018_3817_7
crossref_primary_10_1074_mcp_RA117_000550
crossref_primary_10_1074_jbc_M112_371120
crossref_primary_10_3390_genes12070968
crossref_primary_10_1128_MCB_00840_10
crossref_primary_10_1038_nature09934
crossref_primary_10_1038_nm_4483
crossref_primary_10_1016_j_neuropharm_2012_11_015
crossref_primary_10_1038_s42003_019_0506_3
crossref_primary_10_1371_journal_pone_0016685
crossref_primary_10_1111_j_1749_6632_2011_06286_x
crossref_primary_10_1038_s41598_020_58845_3
crossref_primary_10_1080_21505594_2024_2387172
crossref_primary_10_2217_epi_10_75
crossref_primary_10_1016_j_bbagrm_2023_194986
crossref_primary_10_1016_j_immuni_2010_02_001
crossref_primary_10_1016_j_ejmech_2024_116634
crossref_primary_10_1128_JVI_00635_11
crossref_primary_10_1074_mcp_M115_053819
crossref_primary_10_1016_j_molcel_2012_05_011
crossref_primary_10_1016_j_abb_2010_04_002
crossref_primary_10_15252_embr_202254721
crossref_primary_10_1007_s00018_015_1880_8
crossref_primary_10_4093_dmj_2019_0243
crossref_primary_10_1371_journal_pgen_1002175
crossref_primary_10_1002_2211_5463_13896
crossref_primary_10_1158_1535_7163_MCT_22_0207
crossref_primary_10_1007_s00018_009_0252_7
crossref_primary_10_1101_gad_321901_118
crossref_primary_10_1038_s41467_025_57155_4
crossref_primary_10_1371_journal_pone_0032306
crossref_primary_10_2139_ssrn_3155874
crossref_primary_10_1016_j_nlm_2011_04_005
crossref_primary_10_1128_JVI_00326_20
crossref_primary_10_1155_2019_9043675
crossref_primary_10_1073_pnas_1121538109
crossref_primary_10_1038_nrneurol_2017_68
crossref_primary_10_1074_jbc_M113_521625
crossref_primary_10_1073_pnas_1800656115
crossref_primary_10_1038_nrm3949
crossref_primary_10_1016_j_bbagrm_2017_02_004
crossref_primary_10_1111_acel_12486
crossref_primary_10_15252_emmm_201911900
crossref_primary_10_3390_cells9092038
crossref_primary_10_3390_ijms24097876
crossref_primary_10_1038_s41467_020_14617_1
crossref_primary_10_1038_srep24343
crossref_primary_10_1093_nar_gkt829
crossref_primary_10_1002_jcp_26078
crossref_primary_10_1016_j_tig_2014_09_003
crossref_primary_10_1128_MCB_00266_10
crossref_primary_10_1111_j_1365_2567_2011_03483_x
crossref_primary_10_1242_bio_060026
crossref_primary_10_1074_jbc_M112_428318
crossref_primary_10_1371_journal_pgen_1002153
crossref_primary_10_1101_gr_116095_110
crossref_primary_10_1016_j_immuni_2020_09_014
crossref_primary_10_1002_advs_202307804
crossref_primary_10_1096_fj_201900213R
crossref_primary_10_1016_j_freeradbiomed_2020_12_007
crossref_primary_10_1038_nbt_1662
crossref_primary_10_1074_jbc_M114_562447
crossref_primary_10_1371_journal_pone_0163491
crossref_primary_10_7554_eLife_24570
crossref_primary_10_1371_journal_pone_0024023
crossref_primary_10_3390_biomedicines9101445
crossref_primary_10_3389_fphar_2022_797469
crossref_primary_10_1089_ars_2014_5863
crossref_primary_10_3390_v17030390
crossref_primary_10_1016_j_chembiol_2023_07_010
crossref_primary_10_1182_blood_2014_05_575423
crossref_primary_10_1080_21553769_2013_848241
crossref_primary_10_1242_dev_202990
crossref_primary_10_1111_jne_12734
crossref_primary_10_3390_biom9080369
crossref_primary_10_1016_j_gene_2012_11_027
crossref_primary_10_1016_j_jnutbio_2022_109179
crossref_primary_10_1038_s41388_020_1167_x
crossref_primary_10_1101_gad_239749_114
crossref_primary_10_1371_journal_ppat_1011821
crossref_primary_10_1016_j_yexcr_2015_10_009
crossref_primary_10_1038_cr_2010_84
crossref_primary_10_1016_j_bbagrm_2014_02_018
crossref_primary_10_1186_s13148_021_01079_5
crossref_primary_10_3390_ijms222010969
crossref_primary_10_1007_s00394_019_01925_6
crossref_primary_10_1186_s13046_022_02305_5
crossref_primary_10_1002_bdr2_2266
crossref_primary_10_1038_s41467_018_04262_0
crossref_primary_10_1093_jb_mvac033
crossref_primary_10_1016_j_bbadis_2015_10_026
crossref_primary_10_1016_j_cellsig_2016_06_006
crossref_primary_10_1002_eji_201242413
crossref_primary_10_22465_kjuo_2020_18_2_78
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_1016_j_drudis_2019_02_003
crossref_primary_10_1093_nar_gkab313
crossref_primary_10_1042_BST20130010
crossref_primary_10_1016_j_neulet_2016_06_045
crossref_primary_10_1016_j_neuron_2024_11_006
crossref_primary_10_1016_j_yfrne_2019_04_002
crossref_primary_10_1534_genetics_119_302359
crossref_primary_10_1371_journal_pone_0067448
crossref_primary_10_1111_imr_12207
crossref_primary_10_3390_ijms24119127
crossref_primary_10_1111_imr_12200
crossref_primary_10_1053_j_seminhematol_2018_04_008
crossref_primary_10_7554_eLife_89548
crossref_primary_10_1186_ar4074
crossref_primary_10_1038_cr_2010_64
crossref_primary_10_1016_j_molcel_2021_03_008
crossref_primary_10_1093_nar_gkaa234
crossref_primary_10_1146_annurev_immunol_020711_075058
crossref_primary_10_1016_j_biocel_2012_08_001
crossref_primary_10_1038_s41423_023_01032_x
crossref_primary_10_1172_JCI124030
crossref_primary_10_1172_JCI86437
crossref_primary_10_1158_1535_7163_MCT_14_0220
crossref_primary_10_1007_s10637_010_9596_y
crossref_primary_10_1111_ppl_12136
crossref_primary_10_1371_journal_pgen_1010376
crossref_primary_10_1038_onc_2011_267
crossref_primary_10_3389_fpls_2021_755494
crossref_primary_10_1038_cr_2012_15
crossref_primary_10_1172_jci_insight_138088
crossref_primary_10_1161_JAHA_122_025857
crossref_primary_10_1371_journal_pone_0033453
crossref_primary_10_1002_cbic_202200180
crossref_primary_10_1073_pnas_1001148107
crossref_primary_10_1007_s40620_017_0425_7
crossref_primary_10_1038_nsmb_2912
crossref_primary_10_1007_s00726_010_0530_6
crossref_primary_10_1016_j_ijbiomac_2025_141186
crossref_primary_10_1016_j_jsbmb_2016_09_014
crossref_primary_10_3390_v14050953
crossref_primary_10_1002_1873_3468_12999
crossref_primary_10_4161_epi_24449
crossref_primary_10_1038_s41401_021_00643_2
crossref_primary_10_1016_j_celrep_2013_02_030
crossref_primary_10_1186_s13072_023_00485_8
crossref_primary_10_1007_s00018_012_0986_5
crossref_primary_10_1186_s40537_022_00667_3
crossref_primary_10_1093_nargab_lqaa066
crossref_primary_10_1093_nar_gkr016
crossref_primary_10_1186_1471_2105_14_169
crossref_primary_10_18632_oncotarget_28477
crossref_primary_10_1038_jhg_2015_84
crossref_primary_10_1038_ncomms3203
crossref_primary_10_1038_nrg3413
crossref_primary_10_1038_nrg3897
crossref_primary_10_1038_onc_2013_32
crossref_primary_10_1080_15592294_2018_1489659
crossref_primary_10_1007_s10709_019_00065_3
crossref_primary_10_1124_mol_119_118216
crossref_primary_10_18632_oncotarget_17586
crossref_primary_10_1016_j_ejphar_2018_09_032
crossref_primary_10_1002_cmdc_201000158
crossref_primary_10_1124_dmd_122_001007
crossref_primary_10_1111_1440_1681_12377
crossref_primary_10_1038_leu_2013_257
crossref_primary_10_3389_fnbeh_2015_00221
crossref_primary_10_1080_10495398_2019_1622555
crossref_primary_10_1038_ni_2150
crossref_primary_10_1177_1470320311415738
crossref_primary_10_15252_embr_201744311
crossref_primary_10_1242_jcs_077271
crossref_primary_10_1186_s13072_016_0068_2
crossref_primary_10_1146_annurev_genom_090711_163723
crossref_primary_10_1186_s12885_023_11645_0
crossref_primary_10_1152_ajprenal_00029_2017
crossref_primary_10_1038_s41598_018_32942_w
crossref_primary_10_1128_MCB_00819_12
crossref_primary_10_1038_ncomms3656
crossref_primary_10_1161_CIRCRESAHA_118_314366
crossref_primary_10_1186_s40478_024_01775_2
crossref_primary_10_1093_nar_gkr476
crossref_primary_10_7554_eLife_70978
crossref_primary_10_7554_eLife_72917
crossref_primary_10_1038_emboj_2011_431
crossref_primary_10_1007_s42995_024_00219_z
crossref_primary_10_1158_1541_7786_MCR_18_0922
crossref_primary_10_1016_j_cyto_2013_05_010
crossref_primary_10_3382_ps_pew086
crossref_primary_10_1016_j_jrhm_2015_07_002
crossref_primary_10_1007_s00441_014_1815_y
crossref_primary_10_1016_j_molcel_2013_01_038
crossref_primary_10_1016_j_apsb_2024_04_017
crossref_primary_10_1146_annurev_physiol_020911_153242
crossref_primary_10_1186_s12964_024_01687_7
crossref_primary_10_1534_genetics_117_300625
crossref_primary_10_1016_j_celrep_2020_108638
crossref_primary_10_1016_j_ymeth_2019_09_014
crossref_primary_10_1038_msb_2011_62
crossref_primary_10_1016_j_celrep_2017_09_060
crossref_primary_10_1371_journal_pone_0099049
crossref_primary_10_1016_j_jneuroim_2011_12_012
crossref_primary_10_1124_jpet_117_242446
crossref_primary_10_1186_s10020_020_00182_2
crossref_primary_10_1074_jbc_RA117_000234
crossref_primary_10_1016_j_jgg_2012_02_004
crossref_primary_10_1093_nar_gkx951
crossref_primary_10_1177_1535370213480718
crossref_primary_10_1093_nar_gkab180
crossref_primary_10_2217_epi_2016_0040
crossref_primary_10_1093_nar_gkt590
crossref_primary_10_3390_ijms14059514
crossref_primary_10_1038_ni_1899
crossref_primary_10_1101_gad_215400_113
crossref_primary_10_1074_jbc_M111_279950
crossref_primary_10_1182_blood_2010_10_312462
crossref_primary_10_1016_j_mce_2015_05_037
crossref_primary_10_1093_nar_gkab1233
crossref_primary_10_1038_s41698_019_0103_4
crossref_primary_10_1002_bies_202000231
crossref_primary_10_1371_journal_pone_0185441
crossref_primary_10_1371_journal_pgen_1003906
crossref_primary_10_3390_biomedicines9080944
crossref_primary_10_1016_j_molcel_2011_08_037
crossref_primary_10_1093_nar_gkr1151
crossref_primary_10_1182_blood_2020005698
crossref_primary_10_3389_fnmol_2018_00369
crossref_primary_10_1099_jgv_0_001438
crossref_primary_10_1186_2051_1426_1_17
crossref_primary_10_3390_cancers13153782
crossref_primary_10_1007_s10637_021_01127_0
crossref_primary_10_1016_j_neuroscience_2014_08_010
crossref_primary_10_1016_j_virol_2013_07_014
crossref_primary_10_1016_j_jdermsci_2011_11_009
crossref_primary_10_1038_s41587_024_02268_2
crossref_primary_10_1016_j_bbagrm_2020_194567
crossref_primary_10_1038_embor_2012_146
crossref_primary_10_1038_mt_2016_11
crossref_primary_10_1016_j_molcel_2017_04_010
crossref_primary_10_1038_s41598_020_69737_x
crossref_primary_10_1186_s13059_022_02760_5
crossref_primary_10_1073_pnas_1100099108
crossref_primary_10_3892_ijmm_2014_1792
crossref_primary_10_1016_j_clim_2015_03_005
crossref_primary_10_1016_j_trsl_2014_04_007
crossref_primary_10_1038_nrm3230
crossref_primary_10_1016_j_yhbeh_2018_02_011
crossref_primary_10_1016_j_bmcl_2023_129466
crossref_primary_10_1038_s41598_019_41842_6
crossref_primary_10_1111_bph_14467
crossref_primary_10_1111_imb_12627
crossref_primary_10_1002_bies_201600070
crossref_primary_10_1128_MCB_00421_19
crossref_primary_10_18632_oncotarget_18125
crossref_primary_10_1126_sciadv_abd4413
crossref_primary_10_3389_fimmu_2022_935465
crossref_primary_10_1038_s41467_018_06665_5
crossref_primary_10_3390_cells12111523
crossref_primary_10_1101_gr_235747_118
crossref_primary_10_1093_nar_gks066
crossref_primary_10_1038_nrm3048
crossref_primary_10_1016_j_conb_2020_08_011
crossref_primary_10_1128_MCB_00524_10
crossref_primary_10_1242_dev_163386
crossref_primary_10_7554_eLife_11853
crossref_primary_10_1016_j_neurobiolaging_2020_02_006
crossref_primary_10_1038_s41419_020_2500_6
crossref_primary_10_1038_s41588_022_01045_8
crossref_primary_10_1016_j_taap_2018_08_011
crossref_primary_10_1128_MCB_00183_21
crossref_primary_10_1186_1423_0127_19_12
crossref_primary_10_1593_neo_121422
crossref_primary_10_1242_bio_042754
crossref_primary_10_3389_fimmu_2023_1173184
crossref_primary_10_1038_s41588_021_00887_y
crossref_primary_10_15252_embr_202255362
crossref_primary_10_1038_ncomms4818
crossref_primary_10_1038_s42003_020_1043_9
crossref_primary_10_1093_nar_gkx1225
crossref_primary_10_1074_jbc_R111_296491
crossref_primary_10_3389_fgene_2021_742561
crossref_primary_10_1038_nature09130
crossref_primary_10_1097_BOR_0b013e3283389641
crossref_primary_10_1038_s41467_024_46510_6
crossref_primary_10_1111_j_1365_2826_2012_02310_x
crossref_primary_10_1016_j_jid_2017_02_980
crossref_primary_10_15252_embr_201847630
crossref_primary_10_1128_MCB_00546_15
crossref_primary_10_1016_j_neuron_2017_09_015
crossref_primary_10_1038_nrg3124
crossref_primary_10_7554_eLife_79380
crossref_primary_10_1073_pnas_1418603112
crossref_primary_10_1186_1471_2164_13_709
crossref_primary_10_1002_jcp_24311
crossref_primary_10_1038_s41440_020_00562_5
crossref_primary_10_1167_iovs_61_14_4
crossref_primary_10_1186_1471_2199_14_24
crossref_primary_10_1093_bib_bbt060
crossref_primary_10_1038_s41421_023_00573_9
crossref_primary_10_1186_1471_2164_12_24
crossref_primary_10_2217_fca_11_24
crossref_primary_10_1038_s41576_019_0105_7
crossref_primary_10_1097_FBP_0b013e32833c20c0
crossref_primary_10_1016_j_plantsci_2013_07_006
crossref_primary_10_3390_biology11020313
crossref_primary_10_1523_JNEUROSCI_4012_14_2015
crossref_primary_10_1111_ejn_14254
crossref_primary_10_1002_ctm2_313
crossref_primary_10_1016_j_ijbiomac_2022_11_088
crossref_primary_10_1016_j_bcp_2022_115341
crossref_primary_10_1016_j_molcel_2011_10_012
crossref_primary_10_1080_17474124_2021_1854089
crossref_primary_10_1093_lifemedi_lnad019
crossref_primary_10_1371_journal_pone_0273265
crossref_primary_10_1523_JNEUROSCI_3356_12_2013
crossref_primary_10_3934_biophy_2015_4_555
crossref_primary_10_2217_epi_10_27
crossref_primary_10_1016_j_bmcl_2017_09_036
crossref_primary_10_3389_fimmu_2021_672328
crossref_primary_10_3390_ijms23179790
crossref_primary_10_1080_15592294_2021_1959742
crossref_primary_10_1074_jbc_M111_271163
crossref_primary_10_1016_j_bbagen_2012_04_020
crossref_primary_10_1186_1756_8935_6_11
crossref_primary_10_1038_nn_2672
crossref_primary_10_1038_nn_2671
crossref_primary_10_1093_nar_gkt1134
crossref_primary_10_1111_jnc_14601
crossref_primary_10_1038_srep05282
crossref_primary_10_1128_MCB_01613_09
crossref_primary_10_1161_CIRCRESAHA_109_209338
crossref_primary_10_1016_j_jconrel_2019_11_038
crossref_primary_10_1101_gad_2015411
crossref_primary_10_18632_genesandcancer_65
crossref_primary_10_1210_clinem_dgaa699
crossref_primary_10_1128_JVI_00126_16
crossref_primary_10_1186_2041_9414_4_3
crossref_primary_10_1186_s13046_019_1350_5
crossref_primary_10_1186_1471_213X_14_30
crossref_primary_10_1186_s40779_018_0158_5
crossref_primary_10_1152_physiolgenomics_00048_2011
crossref_primary_10_1182_blood_2013_02_482513
crossref_primary_10_1126_sciadv_1500447
crossref_primary_10_3724_SP_J_1005_2012_00950
crossref_primary_10_1186_1756_8935_6_28
crossref_primary_10_1093_nar_gkaa1281
crossref_primary_10_3389_fgene_2020_562868
crossref_primary_10_3390_metabo11040216
crossref_primary_10_1016_j_tibs_2020_08_007
crossref_primary_10_3390_genes16030313
crossref_primary_10_1093_pnasnexus_pgac290
crossref_primary_10_1038_cdd_2016_31
crossref_primary_10_2527_jas2017_2010
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_7554_eLife_86978_3
crossref_primary_10_1177_1087057111417871
crossref_primary_10_1186_s12950_014_0043_2
crossref_primary_10_1016_j_jsbmb_2012_11_011
crossref_primary_10_1016_j_diff_2012_12_001
crossref_primary_10_1101_gr_278050_123
crossref_primary_10_2217_epi_10_55
crossref_primary_10_1101_gad_211037_112
crossref_primary_10_1186_1868_7083_4_5
crossref_primary_10_1371_journal_pone_0062668
crossref_primary_10_1007_s00018_019_03299_8
crossref_primary_10_1080_15592294_2021_1959735
crossref_primary_10_7717_peerj_15961
crossref_primary_10_2147_DDDT_S263787
crossref_primary_10_1016_j_isci_2020_101320
crossref_primary_10_1016_j_jtbi_2012_06_009
crossref_primary_10_1038_nature12313
crossref_primary_10_1161_CIRCRESAHA_116_303630
crossref_primary_10_3390_cancers11030304
crossref_primary_10_1038_s41598_018_32927_9
crossref_primary_10_1177_0022034511406919
crossref_primary_10_1371_journal_pone_0176190
crossref_primary_10_1016_j_semcancer_2019_05_020
crossref_primary_10_7554_eLife_86978
crossref_primary_10_1126_sciadv_aax5150
crossref_primary_10_1182_blood_2014_02_553792
crossref_primary_10_1002_jcp_27687
crossref_primary_10_1523_ENEURO_0020_14_2015
crossref_primary_10_7554_eLife_04235
crossref_primary_10_1093_nar_gks916
crossref_primary_10_1016_j_molcel_2024_11_029
crossref_primary_10_1038_mt_2015_217
crossref_primary_10_1016_j_ijdevneu_2013_02_005
crossref_primary_10_1038_s41586_024_08248_5
crossref_primary_10_1074_jbc_M114_556035
crossref_primary_10_1111_pcn_12426
crossref_primary_10_1262_jrd_2018_060
crossref_primary_10_1016_j_smim_2010_07_001
crossref_primary_10_1111_j_1365_2826_2010_02079_x
crossref_primary_10_1016_j_biochi_2024_11_011
crossref_primary_10_1242_dev_199581
crossref_primary_10_2217_epi_2016_0012
crossref_primary_10_1111_nph_13161
crossref_primary_10_1038_s41576_018_0072_4
crossref_primary_10_1093_bioinformatics_btt012
crossref_primary_10_1073_pnas_1321704111
crossref_primary_10_1074_jbc_RA117_001383
crossref_primary_10_1210_en_2014_1686
crossref_primary_10_1523_JNEUROSCI_2895_11_2012
crossref_primary_10_7554_eLife_43821
crossref_primary_10_1038_nsmb_3233
crossref_primary_10_1038_s41467_021_27471_6
crossref_primary_10_1126_scisignal_aau7632
crossref_primary_10_1158_0008_5472_CAN_20_3209
crossref_primary_10_1158_0008_5472_CAN_17_3691
crossref_primary_10_1016_j_tig_2011_06_006
crossref_primary_10_1186_1756_8935_4_12
crossref_primary_10_2217_epi_10_11
crossref_primary_10_1128_MCB_01102_14
crossref_primary_10_1371_journal_pbio_1001649
crossref_primary_10_1016_j_envres_2020_109906
crossref_primary_10_1038_s41467_017_00772_5
crossref_primary_10_1186_s12864_021_07615_0
crossref_primary_10_4049_jimmunol_0903610
crossref_primary_10_1186_1743_7075_8_12
crossref_primary_10_1073_pnas_1009650107
crossref_primary_10_1186_gb_2013_14_12_r144
crossref_primary_10_1016_j_tem_2010_11_004
crossref_primary_10_1016_j_biopha_2019_01_031
crossref_primary_10_1111_j_1600_065X_2010_00952_x
crossref_primary_10_1182_blood_2011_10_386086
Cites_doi 10.1038/nature04815
10.1093/bioinformatics/btp340
10.1016/S1097-2765(01)00405-1
10.1038/ng.154
10.1128/MCB.25.8.2873-2884.2005
10.1016/j.cell.2007.12.014
10.1038/ng1966
10.1038/35044127
10.1016/j.molcel.2004.09.021
10.1002/bies.20104
10.1016/S1097-2765(03)00231-4
10.1016/S0092-8674(00)00051-9
10.1016/j.cell.2008.02.022
10.1146/annurev.biochem.76.052705.162114
10.1038/20974
10.1016/j.cell.2008.04.036
10.1038/nrm2346
10.1038/sj.onc.1210614
10.1016/j.cell.2005.03.036
10.1101/gr.5767907
10.1038/nature03877
10.1038/33952
10.1038/sj.onc.1210607
10.1038/nature05915
10.1016/S1097-2765(03)00186-2
10.1093/emboj/18.22.6448
10.1128/MCB.26.8.3018-3028.2006
10.1074/jbc.M701574200
10.1128/MCB.18.9.5355
10.1038/ng907
10.1074/jbc.M500437200
10.1038/nature03242
10.1093/nar/gkh252
10.1016/j.cell.2005.04.031
10.1016/j.stem.2008.11.011
10.1016/S0959-437X(99)80021-5
10.1038/nrd2681
10.1016/j.cell.2007.05.009
10.1016/S0092-8674(00)80903-4
10.1016/j.cell.2005.10.025
10.1146/annurev.biochem.70.1.81
10.1126/science.272.5260.408
10.1016/j.molcel.2006.11.020
10.1016/j.cell.2007.01.015
10.1126/science.1077790
10.1016/j.cell.2005.10.023
10.1016/S0092-8674(00)80217-2
10.1016/S0092-8674(01)00279-3
10.1038/nature07730
10.1042/bj20021321
10.1016/j.molcel.2005.11.021
10.1128/MCB.24.5.1884-1896.2004
10.1016/j.gde.2009.02.001
10.1016/j.immuni.2008.12.009
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2009 Elsevier Inc. All rights reserved. 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2009 Elsevier Inc. All rights reserved. 2009
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1016/j.cell.2009.06.049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1031
ExternalDocumentID PMC2750862
19698979
10_1016_j_cell_2009_06_049
S0092867409008411
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 HL005801
GroupedDBID ---
--K
-DZ
-ET
-~X
.-4
.55
.GJ
.HR
0R~
0WA
1CY
1RT
1VV
1~5
29B
2FS
2KS
2WC
3EH
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
6TJ
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABEFU
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AETEA
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AHPSJ
AI.
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
G8K
HH5
HVGLF
HZ~
H~9
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
MVM
N9A
NCXOZ
O-L
O9-
OHT
OK1
OMK
OZT
P2P
PUQ
R2-
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UBW
UHB
UKR
UPT
VH1
VQA
WH7
WQ6
X7M
XFK
YYP
YYQ
YZZ
ZA5
ZCA
ZGI
ZHY
ZKB
ZY4
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c550t-17bb85b178337c6d6b429d324d0e557d5e2c3a2844e600aca7e2118bdfb5df63
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:33:04 EDT 2025
Sun Sep 28 05:39:37 EDT 2025
Sat Sep 27 20:02:40 EDT 2025
Mon Jul 21 06:00:07 EDT 2025
Tue Jul 01 03:51:55 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Fri Feb 23 02:28:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords DNA
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-17bb85b178337c6d6b429d324d0e557d5e2c3a2844e600aca7e2118bdfb5df63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867409008411
PMID 19698979
PQID 20795376
PQPubID 23462
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2750862
proquest_miscellaneous_67639047
proquest_miscellaneous_20795376
pubmed_primary_19698979
crossref_citationtrail_10_1016_j_cell_2009_06_049
crossref_primary_10_1016_j_cell_2009_06_049
elsevier_sciencedirect_doi_10_1016_j_cell_2009_06_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-04
PublicationDateYYYYMMDD 2009-09-04
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-04
  day: 04
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yang, Seto (bib53) 2008; 9
Visel, Blow, Li, Zhang, Akiyama, Holt, Plajzer-Frick, Shoukry, Wright, Chen (bib39) 2009; 457
Rea, Xouri, Akhtar (bib29) 2007; 26
Rundlett, Carmen, Suka, Turner, Grunstein (bib34) 1998; 392
Martin, Grimes, Baetz, Howe (bib26) 2006; 26
Berger (bib2) 2007; 447
Cho, Orphanides, Sun, Yang, Ogryzko, Lees, Nakatani, Reinberg (bib7) 1998; 18
Tian, Nowak, Jamaluddin, Wang, Brasier (bib38) 2005; 280
Yang (bib50) 2004; 26
de Ruijter, van Gennip, Caron, Kemp, van Kuilenburg (bib10) 2003; 370
Wang, Schones, Zhao (bib44) 2009; 19
Boyle, Davis, Shulha, Meltzer, Margulies, Weng, Furey, Crawford (bib5) 2008; 132
Xie, Pierce, Gailus-Durner, Wagner, Winter, Vershon (bib48) 1999; 18
Joshi, Struhl (bib18) 2005; 20
Boyault, Sadoul, Pabion, Khochbin (bib4) 2007; 26
Doyon, Selleck, Lane, Tan, Cote (bib13) 2004; 24
Shahbazian, Grunstein (bib36) 2007; 76
Kind, Vaquerizas, Gebhardt, Gentzel, Luscombe, Bertone, Akhtar (bib23) 2008; 133
Yang, Gregoire (bib52) 2005; 25
Cho, Hong, Hong, Guo, Yu, Kim, Guszczynski, Dressler, Copeland, Kalkum, Ge (bib8) 2007; 282
Boeger, Griesenbeck, Strattan, Kornberg (bib3) 2003; 11
Zang, Schones, Zeng, Cui, Zhao, Peng (bib54) 2009; 25
Xu, Glass, Rosenfeld (bib49) 1999; 9
Wei, Wei, Zhu, Zang, Hu-Li, Yao, Cui, Kanno, Roh, Watford (bib45) 2009; 30
Barski, Cuddapah, Cui, Roh, Schones, Wang, Wei, Chepelev, Zhao (bib1) 2007; 129
Wang, Cao, Xia, Erdjument-Bromage, Borchers, Tempst, Zhang (bib42) 2001; 8
Heintzman, Stuart, Hon, Fu, Ching, Hawkins, Barrera, Van Calcar, Qu, Ching (bib16) 2007; 39
Wysocka, Swigut, Xiao, Milne, Kwon, Landry, Kauer, Tackett, Chait, Badenhorst (bib47) 2006; 442
Govind, Zhang, Qiu, Hofmeyer, Hinnebusch (bib14) 2007; 25
Kim, Barrera, Zheng, Qu, Singer, Richmond, Wu, Green, Ren (bib22) 2005; 436
Robert, Pokholok, Hannett, Rinaldi, Chandy, Rolfe, Workman, Gifford, Young (bib31) 2004; 16
Kurdistani, Robyr, Tavazoie, Grunstein (bib24) 2002; 31
Dou, Milne, Tackett, Smith, Fukuda, Wysocka, Allis, Chait, Hess, Roeder (bib12) 2005; 121
Kazantsev, Thompson (bib20) 2008; 7
Pray-Grant, Daniel, Schieltz, Yates, Grant (bib28) 2005; 433
Wang, Kurdistani, Grunstein (bib41) 2002; 298
Taunton, Hassig, Schreiber (bib37) 1996; 272
Carrozza, Li, Florens, Suganuma, Swanson, Lee, Shia, Anderson, Yates, Washburn, Workman (bib6) 2005; 123
Wysocka, Swigut, Milne, Dou, Zhang, Burlingame, Roeder, Brivanlou, Allis (bib46) 2005; 121
Roth, Denu, Allis (bib33) 2001; 70
Li, Carey, Workman (bib25) 2007; 128
Schones, Cui, Cuddapah, Roh, Barski, Wang, Wei, Zhao (bib35) 2008; 132
Vogelauer, Wu, Suka, Grunstein (bib40) 2000; 408
Dhalluin, Carlson, Zeng, He, Aggarwal, Zhou (bib11) 1999; 399
Ikura, Ogryzko, Grigoriev, Groisman, Wang, Horikoshi, Scully, Qin, Nakatani (bib17) 2000; 102
Roh, Wei, Farrell, Zhao (bib32) 2007; 17
Keogh, Kurdistani, Morris, Ahn, Podolny, Collins, Schuldiner, Chin, Punna, Thompson (bib21) 2005; 123
Wang, Zang, Rosenfeld, Schones, Barski, Cuddapah, Cui, Roh, Peng, Zhang, Zhao (bib43) 2008; 40
Kadosh, Struhl (bib19) 1997; 89
Yang (bib51) 2004; 32
Orphanides, LeRoy, Chang, Luse, Reinberg (bib27) 1998; 92
Reinke, Horz (bib30) 2003; 11
Cui, Zang, Roh, Schones, Childs, Peng, Zhao (bib9) 2009; 4
Hassan, Neely, Workman (bib15) 2001; 104
Kim (10.1016/j.cell.2009.06.049_bib22) 2005; 436
Cho (10.1016/j.cell.2009.06.049_bib7) 1998; 18
Barski (10.1016/j.cell.2009.06.049_bib1) 2007; 129
Keogh (10.1016/j.cell.2009.06.049_bib21) 2005; 123
Kind (10.1016/j.cell.2009.06.049_bib23) 2008; 133
Rea (10.1016/j.cell.2009.06.049_bib29) 2007; 26
Vogelauer (10.1016/j.cell.2009.06.049_bib40) 2000; 408
Doyon (10.1016/j.cell.2009.06.049_bib13) 2004; 24
Carrozza (10.1016/j.cell.2009.06.049_bib6) 2005; 123
Wang (10.1016/j.cell.2009.06.049_bib43) 2008; 40
Wang (10.1016/j.cell.2009.06.049_bib44) 2009; 19
Rundlett (10.1016/j.cell.2009.06.049_bib34) 1998; 392
Martin (10.1016/j.cell.2009.06.049_bib26) 2006; 26
Xie (10.1016/j.cell.2009.06.049_bib48) 1999; 18
Yang (10.1016/j.cell.2009.06.049_bib52) 2005; 25
Zang (10.1016/j.cell.2009.06.049_bib54) 2009; 25
Cui (10.1016/j.cell.2009.06.049_bib9) 2009; 4
Dhalluin (10.1016/j.cell.2009.06.049_bib11) 1999; 399
Wang (10.1016/j.cell.2009.06.049_bib42) 2001; 8
Roth (10.1016/j.cell.2009.06.049_bib33) 2001; 70
Berger (10.1016/j.cell.2009.06.049_bib2) 2007; 447
Cho (10.1016/j.cell.2009.06.049_bib8) 2007; 282
Orphanides (10.1016/j.cell.2009.06.049_bib27) 1998; 92
Tian (10.1016/j.cell.2009.06.049_bib38) 2005; 280
Roh (10.1016/j.cell.2009.06.049_bib32) 2007; 17
Taunton (10.1016/j.cell.2009.06.049_bib37) 1996; 272
Kurdistani (10.1016/j.cell.2009.06.049_bib24) 2002; 31
Pray-Grant (10.1016/j.cell.2009.06.049_bib28) 2005; 433
Boyle (10.1016/j.cell.2009.06.049_bib5) 2008; 132
Joshi (10.1016/j.cell.2009.06.049_bib18) 2005; 20
Govind (10.1016/j.cell.2009.06.049_bib14) 2007; 25
Kadosh (10.1016/j.cell.2009.06.049_bib19) 1997; 89
Wang (10.1016/j.cell.2009.06.049_bib41) 2002; 298
Ikura (10.1016/j.cell.2009.06.049_bib17) 2000; 102
Dou (10.1016/j.cell.2009.06.049_bib12) 2005; 121
Yang (10.1016/j.cell.2009.06.049_bib51) 2004; 32
Yang (10.1016/j.cell.2009.06.049_bib50) 2004; 26
Wei (10.1016/j.cell.2009.06.049_bib45) 2009; 30
Shahbazian (10.1016/j.cell.2009.06.049_bib36) 2007; 76
Boeger (10.1016/j.cell.2009.06.049_bib3) 2003; 11
Yang (10.1016/j.cell.2009.06.049_bib53) 2008; 9
Heintzman (10.1016/j.cell.2009.06.049_bib16) 2007; 39
Hassan (10.1016/j.cell.2009.06.049_bib15) 2001; 104
Wysocka (10.1016/j.cell.2009.06.049_bib47) 2006; 442
Boyault (10.1016/j.cell.2009.06.049_bib4) 2007; 26
Li (10.1016/j.cell.2009.06.049_bib25) 2007; 128
Kazantsev (10.1016/j.cell.2009.06.049_bib20) 2008; 7
Reinke (10.1016/j.cell.2009.06.049_bib30) 2003; 11
Wysocka (10.1016/j.cell.2009.06.049_bib46) 2005; 121
de Ruijter (10.1016/j.cell.2009.06.049_bib10) 2003; 370
Visel (10.1016/j.cell.2009.06.049_bib39) 2009; 457
Robert (10.1016/j.cell.2009.06.049_bib31) 2004; 16
Xu (10.1016/j.cell.2009.06.049_bib49) 1999; 9
Schones (10.1016/j.cell.2009.06.049_bib35) 2008; 132
References_xml – volume: 442
  start-page: 86
  year: 2006
  end-page: 90
  ident: bib47
  article-title: A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling
  publication-title: Nature
– volume: 102
  start-page: 463
  year: 2000
  end-page: 473
  ident: bib17
  article-title: Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis
  publication-title: Cell
– volume: 104
  start-page: 817
  year: 2001
  end-page: 827
  ident: bib15
  article-title: Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
  publication-title: Cell
– volume: 7
  start-page: 854
  year: 2008
  end-page: 868
  ident: bib20
  article-title: Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
  publication-title: Nat. Rev. Drug Discov.
– volume: 11
  start-page: 1587
  year: 2003
  end-page: 1598
  ident: bib3
  article-title: Nucleosomes unfold completely at a transcriptionally active promoter
  publication-title: Mol. Cell
– volume: 121
  start-page: 873
  year: 2005
  end-page: 885
  ident: bib12
  article-title: Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
  publication-title: Cell
– volume: 76
  start-page: 75
  year: 2007
  end-page: 100
  ident: bib36
  article-title: Functions of site-specific histone acetylation and deacetylation
  publication-title: Annu. Rev. Biochem.
– volume: 25
  start-page: 1952
  year: 2009
  end-page: 1958
  ident: bib54
  article-title: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data
  publication-title: Bioinformatics
– volume: 433
  start-page: 434
  year: 2005
  end-page: 438
  ident: bib28
  article-title: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation
  publication-title: Nature
– volume: 9
  start-page: 140
  year: 1999
  end-page: 147
  ident: bib49
  article-title: Coactivator and corepressor complexes in nuclear receptor function
  publication-title: Curr. Opin. Genet. Dev.
– volume: 18
  start-page: 6448
  year: 1999
  end-page: 6454
  ident: bib48
  article-title: Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae
  publication-title: EMBO J.
– volume: 282
  start-page: 20395
  year: 2007
  end-page: 20406
  ident: bib8
  article-title: PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex
  publication-title: J. Biol. Chem.
– volume: 123
  start-page: 581
  year: 2005
  end-page: 592
  ident: bib6
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
– volume: 129
  start-page: 823
  year: 2007
  end-page: 837
  ident: bib1
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
– volume: 26
  start-page: 3018
  year: 2006
  end-page: 3028
  ident: bib26
  article-title: Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin
  publication-title: Mol. Cell. Biol.
– volume: 133
  start-page: 813
  year: 2008
  end-page: 828
  ident: bib23
  article-title: Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila
  publication-title: Cell
– volume: 26
  start-page: 5468
  year: 2007
  end-page: 5476
  ident: bib4
  article-title: HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination
  publication-title: Oncogene
– volume: 272
  start-page: 408
  year: 1996
  end-page: 411
  ident: bib37
  article-title: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
  publication-title: Science
– volume: 457
  start-page: 854
  year: 2009
  end-page: 858
  ident: bib39
  article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers
  publication-title: Nature
– volume: 16
  start-page: 199
  year: 2004
  end-page: 209
  ident: bib31
  article-title: Global position and recruitment of HATs and HDACs in the yeast genome
  publication-title: Mol. Cell
– volume: 24
  start-page: 1884
  year: 2004
  end-page: 1896
  ident: bib13
  article-title: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans
  publication-title: Mol. Cell. Biol.
– volume: 128
  start-page: 707
  year: 2007
  end-page: 719
  ident: bib25
  article-title: The role of chromatin during transcription
  publication-title: Cell
– volume: 70
  start-page: 81
  year: 2001
  end-page: 120
  ident: bib33
  article-title: Histone acetyltransferases
  publication-title: Annu. Rev. Biochem.
– volume: 18
  start-page: 5355
  year: 1998
  end-page: 5363
  ident: bib7
  article-title: A human RNA polymerase II complex containing factors that modify chromatin structure
  publication-title: Mol. Cell. Biol.
– volume: 4
  start-page: 80
  year: 2009
  end-page: 93
  ident: bib9
  article-title: Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation
  publication-title: Cell Stem Cell
– volume: 26
  start-page: 5385
  year: 2007
  end-page: 5394
  ident: bib29
  article-title: Males absent on the first (MOF): from flies to humans
  publication-title: Oncogene
– volume: 280
  start-page: 17435
  year: 2005
  end-page: 17448
  ident: bib38
  article-title: Identification of direct genomic targets downstream of the nuclear factor-kappaB transcription factor mediating tumor necrosis factor signaling
  publication-title: J. Biol. Chem.
– volume: 436
  start-page: 876
  year: 2005
  end-page: 880
  ident: bib22
  article-title: A high-resolution map of active promoters in the human genome
  publication-title: Nature
– volume: 39
  start-page: 311
  year: 2007
  end-page: 318
  ident: bib16
  article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
  publication-title: Nat. Genet.
– volume: 30
  start-page: 155
  year: 2009
  end-page: 167
  ident: bib45
  article-title: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells
  publication-title: Immunity
– volume: 32
  start-page: 959
  year: 2004
  end-page: 976
  ident: bib51
  article-title: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 1207
  year: 2001
  end-page: 1217
  ident: bib42
  article-title: Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase
  publication-title: Mol. Cell
– volume: 447
  start-page: 407
  year: 2007
  end-page: 412
  ident: bib2
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
– volume: 20
  start-page: 971
  year: 2005
  end-page: 978
  ident: bib18
  article-title: Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
  publication-title: Mol. Cell
– volume: 89
  start-page: 365
  year: 1997
  end-page: 371
  ident: bib19
  article-title: Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
  publication-title: Cell
– volume: 31
  start-page: 248
  year: 2002
  end-page: 254
  ident: bib24
  article-title: Genome-wide binding map of the histone deacetylase Rpd3 in yeast
  publication-title: Nat. Genet.
– volume: 298
  start-page: 1412
  year: 2002
  end-page: 1414
  ident: bib41
  article-title: Requirement of Hos2 histone deacetylase for gene activity in yeast
  publication-title: Science
– volume: 132
  start-page: 887
  year: 2008
  end-page: 898
  ident: bib35
  article-title: Dynamic regulation of nucleosome positioning in the human genome
  publication-title: Cell
– volume: 25
  start-page: 2873
  year: 2005
  end-page: 2884
  ident: bib52
  article-title: Class II histone deacetylases: from sequence to function, regulation, and clinical implication
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 127
  year: 2009
  end-page: 134
  ident: bib44
  article-title: Characterization of human epigenomes
  publication-title: Curr. Opin. Genet. Dev.
– volume: 392
  start-page: 831
  year: 1998
  end-page: 835
  ident: bib34
  article-title: Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3
  publication-title: Nature
– volume: 123
  start-page: 593
  year: 2005
  end-page: 605
  ident: bib21
  article-title: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
  publication-title: Cell
– volume: 9
  start-page: 206
  year: 2008
  end-page: 218
  ident: bib53
  article-title: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 25
  start-page: 31
  year: 2007
  end-page: 42
  ident: bib14
  article-title: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
  publication-title: Mol. Cell
– volume: 132
  start-page: 311
  year: 2008
  end-page: 322
  ident: bib5
  article-title: High-resolution mapping and characterization of open chromatin across the genome
  publication-title: Cell
– volume: 370
  start-page: 737
  year: 2003
  end-page: 749
  ident: bib10
  article-title: Histone deacetylases (HDACs): characterization of the classical HDAC family
  publication-title: Biochem. J.
– volume: 399
  start-page: 491
  year: 1999
  end-page: 496
  ident: bib11
  article-title: Structure and ligand of a histone acetyltransferase bromodomain
  publication-title: Nature
– volume: 92
  start-page: 105
  year: 1998
  end-page: 116
  ident: bib27
  article-title: FACT, a factor that facilitates transcript elongation through nucleosomes
  publication-title: Cell
– volume: 17
  start-page: 74
  year: 2007
  end-page: 81
  ident: bib32
  article-title: Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns
  publication-title: Genome Res.
– volume: 11
  start-page: 1599
  year: 2003
  end-page: 1607
  ident: bib30
  article-title: Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter
  publication-title: Mol. Cell
– volume: 408
  start-page: 495
  year: 2000
  end-page: 498
  ident: bib40
  article-title: Global histone acetylation and deacetylation in yeast
  publication-title: Nature
– volume: 40
  start-page: 897
  year: 2008
  end-page: 903
  ident: bib43
  article-title: Combinatorial patterns of histone acetylations and methylations in the human genome
  publication-title: Nat. Genet.
– volume: 26
  start-page: 1076
  year: 2004
  end-page: 1087
  ident: bib50
  article-title: Lysine acetylation and the bromodomain: a new partnership for signaling
  publication-title: Bioessays
– volume: 121
  start-page: 859
  year: 2005
  end-page: 872
  ident: bib46
  article-title: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development
  publication-title: Cell
– volume: 442
  start-page: 86
  year: 2006
  ident: 10.1016/j.cell.2009.06.049_bib47
  article-title: A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling
  publication-title: Nature
  doi: 10.1038/nature04815
– volume: 25
  start-page: 1952
  year: 2009
  ident: 10.1016/j.cell.2009.06.049_bib54
  article-title: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp340
– volume: 8
  start-page: 1207
  year: 2001
  ident: 10.1016/j.cell.2009.06.049_bib42
  article-title: Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00405-1
– volume: 40
  start-page: 897
  year: 2008
  ident: 10.1016/j.cell.2009.06.049_bib43
  article-title: Combinatorial patterns of histone acetylations and methylations in the human genome
  publication-title: Nat. Genet.
  doi: 10.1038/ng.154
– volume: 25
  start-page: 2873
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib52
  article-title: Class II histone deacetylases: from sequence to function, regulation, and clinical implication
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.8.2873-2884.2005
– volume: 132
  start-page: 311
  year: 2008
  ident: 10.1016/j.cell.2009.06.049_bib5
  article-title: High-resolution mapping and characterization of open chromatin across the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.014
– volume: 39
  start-page: 311
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib16
  article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
  publication-title: Nat. Genet.
  doi: 10.1038/ng1966
– volume: 408
  start-page: 495
  year: 2000
  ident: 10.1016/j.cell.2009.06.049_bib40
  article-title: Global histone acetylation and deacetylation in yeast
  publication-title: Nature
  doi: 10.1038/35044127
– volume: 16
  start-page: 199
  year: 2004
  ident: 10.1016/j.cell.2009.06.049_bib31
  article-title: Global position and recruitment of HATs and HDACs in the yeast genome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.09.021
– volume: 26
  start-page: 1076
  year: 2004
  ident: 10.1016/j.cell.2009.06.049_bib50
  article-title: Lysine acetylation and the bromodomain: a new partnership for signaling
  publication-title: Bioessays
  doi: 10.1002/bies.20104
– volume: 11
  start-page: 1587
  year: 2003
  ident: 10.1016/j.cell.2009.06.049_bib3
  article-title: Nucleosomes unfold completely at a transcriptionally active promoter
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00231-4
– volume: 102
  start-page: 463
  year: 2000
  ident: 10.1016/j.cell.2009.06.049_bib17
  article-title: Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00051-9
– volume: 132
  start-page: 887
  year: 2008
  ident: 10.1016/j.cell.2009.06.049_bib35
  article-title: Dynamic regulation of nucleosome positioning in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.022
– volume: 76
  start-page: 75
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib36
  article-title: Functions of site-specific histone acetylation and deacetylation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052705.162114
– volume: 399
  start-page: 491
  year: 1999
  ident: 10.1016/j.cell.2009.06.049_bib11
  article-title: Structure and ligand of a histone acetyltransferase bromodomain
  publication-title: Nature
  doi: 10.1038/20974
– volume: 133
  start-page: 813
  year: 2008
  ident: 10.1016/j.cell.2009.06.049_bib23
  article-title: Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.036
– volume: 9
  start-page: 206
  year: 2008
  ident: 10.1016/j.cell.2009.06.049_bib53
  article-title: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2346
– volume: 26
  start-page: 5468
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib4
  article-title: HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210614
– volume: 121
  start-page: 859
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib46
  article-title: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.036
– volume: 17
  start-page: 74
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib32
  article-title: Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns
  publication-title: Genome Res.
  doi: 10.1101/gr.5767907
– volume: 436
  start-page: 876
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib22
  article-title: A high-resolution map of active promoters in the human genome
  publication-title: Nature
  doi: 10.1038/nature03877
– volume: 392
  start-page: 831
  year: 1998
  ident: 10.1016/j.cell.2009.06.049_bib34
  article-title: Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3
  publication-title: Nature
  doi: 10.1038/33952
– volume: 26
  start-page: 5385
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib29
  article-title: Males absent on the first (MOF): from flies to humans
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210607
– volume: 447
  start-page: 407
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib2
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
  doi: 10.1038/nature05915
– volume: 11
  start-page: 1599
  year: 2003
  ident: 10.1016/j.cell.2009.06.049_bib30
  article-title: Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00186-2
– volume: 18
  start-page: 6448
  year: 1999
  ident: 10.1016/j.cell.2009.06.049_bib48
  article-title: Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.22.6448
– volume: 26
  start-page: 3018
  year: 2006
  ident: 10.1016/j.cell.2009.06.049_bib26
  article-title: Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.8.3018-3028.2006
– volume: 282
  start-page: 20395
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib8
  article-title: PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M701574200
– volume: 18
  start-page: 5355
  year: 1998
  ident: 10.1016/j.cell.2009.06.049_bib7
  article-title: A human RNA polymerase II complex containing factors that modify chromatin structure
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.9.5355
– volume: 31
  start-page: 248
  year: 2002
  ident: 10.1016/j.cell.2009.06.049_bib24
  article-title: Genome-wide binding map of the histone deacetylase Rpd3 in yeast
  publication-title: Nat. Genet.
  doi: 10.1038/ng907
– volume: 280
  start-page: 17435
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib38
  article-title: Identification of direct genomic targets downstream of the nuclear factor-kappaB transcription factor mediating tumor necrosis factor signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500437200
– volume: 433
  start-page: 434
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib28
  article-title: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation
  publication-title: Nature
  doi: 10.1038/nature03242
– volume: 32
  start-page: 959
  year: 2004
  ident: 10.1016/j.cell.2009.06.049_bib51
  article-title: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh252
– volume: 121
  start-page: 873
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib12
  article-title: Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.031
– volume: 4
  start-page: 80
  year: 2009
  ident: 10.1016/j.cell.2009.06.049_bib9
  article-title: Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.11.011
– volume: 9
  start-page: 140
  year: 1999
  ident: 10.1016/j.cell.2009.06.049_bib49
  article-title: Coactivator and corepressor complexes in nuclear receptor function
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(99)80021-5
– volume: 7
  start-page: 854
  year: 2008
  ident: 10.1016/j.cell.2009.06.049_bib20
  article-title: Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2681
– volume: 129
  start-page: 823
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib1
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.009
– volume: 92
  start-page: 105
  year: 1998
  ident: 10.1016/j.cell.2009.06.049_bib27
  article-title: FACT, a factor that facilitates transcript elongation through nucleosomes
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80903-4
– volume: 123
  start-page: 593
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib21
  article-title: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.025
– volume: 70
  start-page: 81
  year: 2001
  ident: 10.1016/j.cell.2009.06.049_bib33
  article-title: Histone acetyltransferases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.70.1.81
– volume: 272
  start-page: 408
  year: 1996
  ident: 10.1016/j.cell.2009.06.049_bib37
  article-title: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
  publication-title: Science
  doi: 10.1126/science.272.5260.408
– volume: 25
  start-page: 31
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib14
  article-title: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.11.020
– volume: 128
  start-page: 707
  year: 2007
  ident: 10.1016/j.cell.2009.06.049_bib25
  article-title: The role of chromatin during transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.015
– volume: 298
  start-page: 1412
  year: 2002
  ident: 10.1016/j.cell.2009.06.049_bib41
  article-title: Requirement of Hos2 histone deacetylase for gene activity in yeast
  publication-title: Science
  doi: 10.1126/science.1077790
– volume: 123
  start-page: 581
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib6
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.023
– volume: 89
  start-page: 365
  year: 1997
  ident: 10.1016/j.cell.2009.06.049_bib19
  article-title: Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80217-2
– volume: 104
  start-page: 817
  year: 2001
  ident: 10.1016/j.cell.2009.06.049_bib15
  article-title: Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00279-3
– volume: 457
  start-page: 854
  year: 2009
  ident: 10.1016/j.cell.2009.06.049_bib39
  article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers
  publication-title: Nature
  doi: 10.1038/nature07730
– volume: 370
  start-page: 737
  year: 2003
  ident: 10.1016/j.cell.2009.06.049_bib10
  article-title: Histone deacetylases (HDACs): characterization of the classical HDAC family
  publication-title: Biochem. J.
  doi: 10.1042/bj20021321
– volume: 20
  start-page: 971
  year: 2005
  ident: 10.1016/j.cell.2009.06.049_bib18
  article-title: Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.11.021
– volume: 24
  start-page: 1884
  year: 2004
  ident: 10.1016/j.cell.2009.06.049_bib13
  article-title: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.5.1884-1896.2004
– volume: 19
  start-page: 127
  year: 2009
  ident: 10.1016/j.cell.2009.06.049_bib44
  article-title: Characterization of human epigenomes
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2009.02.001
– volume: 30
  start-page: 155
  year: 2009
  ident: 10.1016/j.cell.2009.06.049_bib45
  article-title: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.12.009
SSID ssj0008555
Score 2.5537076
Snippet Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for...
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) function antagonistically to control histone acetylation states that are crucial to many...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1019
SubjectTerms Acetylation
Cell Line
DNA
Gene Expression
Genome, Human
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Histone Deacetylase Inhibitors
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Histones - metabolism
Humans
Methylation
Phosphorylation
RNA Polymerase II - metabolism
Title Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes
URI https://dx.doi.org/10.1016/j.cell.2009.06.049
https://www.ncbi.nlm.nih.gov/pubmed/19698979
https://www.proquest.com/docview/20795376
https://www.proquest.com/docview/67639047
https://pubmed.ncbi.nlm.nih.gov/PMC2750862
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1097-4172
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0008555
  issn: 0092-8674
  databaseCode: HH5
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1097-4172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008555
  issn: 0092-8674
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1097-4172
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0008555
  issn: 0092-8674
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1097-4172
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0008555
  issn: 0092-8674
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-4172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008555
  issn: 0092-8674
  databaseCode: AKRWK
  dateStart: 19740101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5VlSpxQbRsoVDmwA2ZOvZsPoa0IQWVAwpSLsiazdQIJhVOQfx73puxU8LSA0d73lj2LG_xvPd9hDxjynJlmzwzwvqMOWkyxS3LGm4LJ7kWLnJGnr8V8_fs9ZIvd8h0qIXBtMpe9yedHrV1f-e4H83jy7bFGt-qUEJCgIKg8LG-t2QyFvEtX260seI8sRhUsPNBui-cSTle-HO8x6wUL3LE0_y7cfrT-fw9h_IXozS7Q2733iSdpBfeJzs-HJC9xC_54y758MqH1ReffW-dp-caoRg-0lVD55NFR3VwdH4ymXb0nf8G7mJHT3C_B7umMzB2cT3SNtBJ1IhR_CzodIFg1d09spidLqbzrOdTyCzEIetsLI1R3IylKktphRMGjJEDj8rlnnPpuC9sqcFeMQ9ukLZaeggPlXGN4a4R5X2yG1bBPyS0aiAsYbpRCsKppmCq0BL8LGShtzovyxEZD-NY2x5rHCkvPtdDUtmnGsceSTCrGjPrWDUizzd9LhPSxo3SfJieemu91GAKbuz3dJjLGjYSNuvgV1cdCMkKsW3-LSFAF1c5kyPyIM399XtWyMMp4elya1VsBBDEe7sltBcRzBvx9SGqfPSf33NIbqXzLTziekx211-v_BNwk9bmCAKEszdHcTf8BJyFEOU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWixBcVrwpr_WBGwqbJn7lWLqUFLZ7QEXqBUV-BYLAXW26IP49M3FSKI89cEw8jhLbM_NNPP6GkKdMWa5snSZGWJ8wJ02iuGVJzW3mJNfCdTUjF6eifMder_hqj0yHszCYVtnb_mjTO2vd3znqR_PorGnwjG-RKSEhQEFSeDzfewXQQIp5XfPVi605VpzHMgYFqD6I9ydnYpIX_h3vSSvF8xQJNf_unf5En78nUf7ilWY3yEEPJ-kkvvFNsufDLXI1Fpj8fpu8f-XD-otPvjXO04VGLoYPdF3TcrJsqQ6OlseTaUvf-q-AF1t6jAof7IbOwNt1C5I2gU46k9iJz4OOF8hW3d4hy9nL5bRM-oIKiYVAZJOMpTGKm7FUeS6tcMKAN3IAqVzqOZeO-8zmGhwW84CDtNXSQ3yojKsNd7XI75L9sA7-PqFFDXEJ07VSEE_VGVOZlgC0sAy91Wmej8h4GMfK9mTjWPPiczVklX2qcOyxCmZRYWodK0bk2bbPWaTauFSaD9NT7SyYCnzBpf0Oh7msQJOwWQe_vmhBSBZIbvNvCQHGuEiZHJF7ce5_vmeBhTglPF3urIqtALJ477aE5mPH5o0E-xBWPvjP7zkk18rl4qQ6mZ--eUiux80u3O96RPY35xf-MWCmjXnS6cQP6VITDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+mapping+of+HATs+and+HDACs+reveals+distinct+functions+in+active+and+inactive+genes&rft.jtitle=Cell&rft.au=Wang%2C+Zhibin&rft.au=Zang%2C+Chongzhi&rft.au=Cui%2C+Kairong&rft.au=Schones%2C+Dustin+E.&rft.date=2009-09-04&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=138&rft.issue=5&rft.spage=1019&rft.epage=1031&rft_id=info:doi/10.1016%2Fj.cell.2009.06.049&rft_id=info%3Apmid%2F19698979&rft.externalDocID=PMC2750862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon