Polydiacetylene Liposome Microarray Toward Influenza A Virus Detection: Effect of Target Size on Turn-On Signaling

Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the large...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 34; no. 9; pp. 743 - 748
Main Authors Seo, Sungbaek, Lee, Jiseok, Choi, Eun-Jin, Kim, Eun-Ju, Song, Jae-Young, Kim, Jinsang
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 14.05.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1022-1336
1521-3927
1521-3927
DOI10.1002/marc.201200819

Cover

Abstract Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe–target complexes not the strength of the probe–target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. The 2009 influenza pandemic highlighted the need for a rapid and sensitive influenza A virus detection kit. A systematically investigated polydiacetylene microarray sensor allows a turn‐on sensory signal within 1 h and comparable detection limit with conventional kits. Denser probe molecules and larger targets contribute to PDA sensitivity, providing insight for designing future PDA‐based sensors.
AbstractList Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA.
Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe–target complexes not the strength of the probe–target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. magnified image
Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. [PUBLICATION ABSTRACT]
Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe–target complexes not the strength of the probe–target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. The 2009 influenza pandemic highlighted the need for a rapid and sensitive influenza A virus detection kit. A systematically investigated polydiacetylene microarray sensor allows a turn‐on sensory signal within 1 h and comparable detection limit with conventional kits. Denser probe molecules and larger targets contribute to PDA sensitivity, providing insight for designing future PDA‐based sensors.
Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA.Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA.
Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. The 2009 influenza pandemic highlighted the need for a rapid and sensitive influenza A virus detection kit. A systematically investigated polydiacetylene microarray sensor allows a turn-on sensory signal within 1 h and comparable detection limit with conventional kits. Denser probe molecules and larger targets contribute to PDA sensitivity, providing insight for designing future PDA-based sensors.
Author Seo, Sungbaek
Lee, Jiseok
Kim, Eun-Ju
Song, Jae-Young
Choi, Eun-Jin
Kim, Jinsang
Author_xml – sequence: 1
  givenname: Sungbaek
  surname: Seo
  fullname: Seo, Sungbaek
  organization: Macromolecular Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109-2136, USA
– sequence: 2
  givenname: Jiseok
  surname: Lee
  fullname: Lee, Jiseok
  organization: Macromolecular Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109-2136, USA
– sequence: 3
  givenname: Eun-Jin
  surname: Choi
  fullname: Choi, Eun-Jin
  organization: Animal Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-Gu, Anyangsi, Gyeonggido, 430-757, Republic of Korea
– sequence: 4
  givenname: Eun-Ju
  surname: Kim
  fullname: Kim, Eun-Ju
  organization: Animal Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-Gu, Anyangsi, Gyeonggido, 430-757, Republic of Korea
– sequence: 5
  givenname: Jae-Young
  surname: Song
  fullname: Song, Jae-Young
  organization: Animal Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-Gu, Anyangsi, Gyeonggido, 430-757, Republic of Korea
– sequence: 6
  givenname: Jinsang
  surname: Kim
  fullname: Kim, Jinsang
  email: jinsang@umich.edu
  organization: Macromolecular Science and Engineering, Materials Science and Engineering, Chemical Engineering, Biomedical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109-2136, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23386374$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURiNURB-wZYkssWGTwc8kZjcdSlsxpaiEdmk5jj1yydiDnahNf30dTVuhSqgrX0vnXOl-336247zTWfYewRmCEH9ey6BmGCIMYYX4q2wPMYxywnG5k2aIcY4IKXaz_RivYWIoxG-yXUxIVZCS7mXhp-_G1kql-7HTToOl3fjo1xqcWRW8DEGOoPY3MrTg1Jlu0O5Ogjm4tGGI4Kvuteqtd1_AkTFpBN6AWoaV7sEve6eBd6AegsvPXfqvnOysW73NXhvZRf3u4T3Ifn87qhcn-fL8-HQxX-aKMchzxivTNlw1SlOOEeKkVUYyAitNcRpR2xqEaGlgo1RTYFQ2UOKypA1ksmKGHGSftns3wf8ddOzF2kalu0467YcoEE0x4bIi6GWU0IpBWPAJ_fgMvfbpwnTIRJWU0QLhRH14oIZmrVuxCTY1NYrH4BNAt0AKOcagjVC2l1OUfZC2EwiKqV8x9Sue-k3a7Jn2uPm_At8KN7bT4wu0OJtfLP51861rY69vn1wZ_oiiJCUTVz-OxWV9BS8Ov3NxQu4BOaLGrQ
CitedBy_id crossref_primary_10_1039_C6CC03584A
crossref_primary_10_1039_C6RA06689E
crossref_primary_10_1021_acs_iecr_8b00848
crossref_primary_10_1016_j_colsurfa_2017_01_006
crossref_primary_10_1016_j_bios_2015_10_090
crossref_primary_10_3390_molecules23010107
crossref_primary_10_1021_acsami_9b20438
crossref_primary_10_1002_app_45011
crossref_primary_10_1002_adfm_201504632
crossref_primary_10_1016_j_bios_2021_113120
crossref_primary_10_1021_acsapm_3c02670
crossref_primary_10_1016_j_smaim_2023_10_002
crossref_primary_10_1016_S1872_2040_19_61213_2
crossref_primary_10_1016_j_snb_2020_127906
crossref_primary_10_1021_am502319m
crossref_primary_10_1093_bulcsj_uoae034
crossref_primary_10_1002_app_44997
crossref_primary_10_1039_C5CC01621E
crossref_primary_10_1002_mame_201700640
crossref_primary_10_1021_acs_analchem_3c01433
crossref_primary_10_1016_j_jiec_2018_02_028
crossref_primary_10_1177_2472630316689286
crossref_primary_10_1016_j_saa_2019_04_030
crossref_primary_10_1016_j_snb_2017_11_191
crossref_primary_10_52711_0974_360X_2023_00247
crossref_primary_10_1039_C7TC02072D
crossref_primary_10_1088_1361_6528_ab0ccf
crossref_primary_10_1088_2053_1591_aae6f5
crossref_primary_10_1088_2631_6331_ab9123
crossref_primary_10_1021_cg401380a
crossref_primary_10_1021_acs_langmuir_9b01593
crossref_primary_10_1039_C5CC08566G
crossref_primary_10_1016_j_synthmet_2017_12_009
crossref_primary_10_1021_am402701n
crossref_primary_10_1016_j_snb_2019_04_081
crossref_primary_10_1021_am501414z
crossref_primary_10_1016_j_jcis_2014_06_047
crossref_primary_10_1039_c3ra42639d
crossref_primary_10_1016_S1872_2040_19_61179_5
crossref_primary_10_1039_C7NR08557E
crossref_primary_10_1016_j_cis_2017_05_020
crossref_primary_10_1016_j_tsf_2017_10_018
crossref_primary_10_1021_acsami_7b17104
crossref_primary_10_1371_journal_pone_0143454
crossref_primary_10_1021_acsami_1c25066
crossref_primary_10_1016_j_talanta_2024_126571
crossref_primary_10_1038_s41598_019_47537_2
crossref_primary_10_1016_j_snb_2016_02_065
crossref_primary_10_1039_C5TA00608B
crossref_primary_10_1016_j_snb_2024_135573
crossref_primary_10_1021_acsami_5b06058
crossref_primary_10_1007_s13233_020_8088_y
crossref_primary_10_1039_C9PY00949C
crossref_primary_10_1002_app_47688
crossref_primary_10_1016_j_rechem_2020_100065
crossref_primary_10_1021_acsami_7b14086
crossref_primary_10_1021_acssensors_1c01167
crossref_primary_10_1039_C8AN01097H
crossref_primary_10_1002_app_46394
crossref_primary_10_1002_adfm_202004605
Cites_doi 10.1073/pnas.91.5.1604
10.1002/anie.200905041
10.1039/c2cc31466e
10.1039/c1an15303j
10.1002/adfm.201000262
10.1002/adfm.200900393
10.1021/ja0034139
10.1021/ar7002489
10.1002/adfm.201102486
10.1039/C0CC02183K
10.1021/ma960882f
10.1016/0040-6090(89)90161-2
10.1126/science.8342021
10.1016/j.colsurfb.2008.06.020
10.1039/b819539k
10.1021/ja984190d
10.1002/adfm.200700929
10.1021/ja808077d
10.1039/b703691d
10.1021/ja709996c
10.1021/la300863d
10.1039/c0an00239a
10.1016/j.bios.2011.03.006
10.1038/nature08157
10.1021/la990706a
10.1021/la980185b
10.1021/bc900251u
10.1002/adma.200900639
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
7U9
H94
DOI 10.1002/marc.201200819
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList MEDLINE
CrossRef
Materials Research Database

MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage 748
ExternalDocumentID 2959531881
23386374
10_1002_marc_201200819
MARC201200819
ark_67375_WNG_VTW0RBK9_H
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWB
RWI
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
7U9
H94
ID FETCH-LOGICAL-c5509-598fdb9cbce4921193dcfa5308e42dcf1ddf1147f0bccb6217b0a2774b05a85f3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Thu Jul 10 16:57:06 EDT 2025
Fri Jul 11 07:14:05 EDT 2025
Fri Jul 25 10:32:22 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Tue Jul 01 01:50:10 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Wed Jan 22 16:40:26 EST 2025
Sun Sep 21 06:20:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5509-598fdb9cbce4921193dcfa5308e42dcf1ddf1147f0bccb6217b0a2774b05a85f3
Notes ark:/67375/WNG-VTW0RBK9-H
ArticleID:MARC201200819
istex:780B1456876A7CAD3770F53B86E959E36008B014
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/2027.42/98172
PMID 23386374
PQID 1347454612
PQPubID 1016394
PageCount 6
ParticipantIDs proquest_miscellaneous_1439227831
proquest_miscellaneous_1348500691
proquest_journals_1347454612
pubmed_primary_23386374
crossref_citationtrail_10_1002_marc_201200819
crossref_primary_10_1002_marc_201200819
wiley_primary_10_1002_marc_201200819_MARC201200819
istex_primary_ark_67375_WNG_VTW0RBK9_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 14, 2013
PublicationDateYYYYMMDD 2013-05-14
PublicationDate_xml – month: 05
  year: 2013
  text: May 14, 2013
  day: 14
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References b) U. Jonas, K. Shah, S. Norvez, D. H. Charych, J. Am. Chem. Soc. 1999, 121, 4580.
b) J. D. Driskell, C. A. Jones, S. M. Tompkins, R. A. Tripp, Analyst 2011, 136, 3083.
e) J. Lee, E. Jeong Jeong, J. Kim, Chem. Commun. 2011, 47, 358
c) B. Yoon, S. Lee, J.-M. Kim, Chem. Soc. Rev. 2009, 38, 1958
a) K.-Y. Lien, L.-Y. Hung, T.-B. Huang, Y.-C. Tsai, H.-Y. Lei, G.-B. Lee, Biosens. Bioelectron. 2011, 26, 3900
b) J. Lee, H. Jun, J. Kim, Adv. Mater. 2009, 21, 3674
c) Y. K. Jung, T. W. Kim, J. Kim, J.-M. Kim, H. G. Park, Adv. Funct. Mater. 2008, 18, 701
c) D. H. Kang, H.-S. Jung, N. Ahn, J. Lee, S. Seo, K.-Y. Suh, J. Kim, K. Kim, Chem. Commun. 2012, 48, 5313.
G. Neumann, T. Noda, Y. Kawaoka, Nature 2009, 459, 931.
b) S. Ryu, I. Yoo, S. Song, B. Yoon, J.-M. Kim, J. Am. Chem. Soc. 2009, 131, 3800.
b) W. T. Ong, A. R. Omar, A. Ideris, S. S. Hanssan, J. Virological, Methods 2007, 144, 57. *The hemagglutination assay is a protein quantification method devised specific for influenza virus because hemagglutinin, a surface protein of influenza viruses, agglutinates red blood cells. Virus samples are serial two-fold diluted for the assay. The hemagglutination units (HAU) is expressed as the reciprocal number of the highest dilution which causes complete agglutination. Agglutination of 0.5% chicken red blood cells is determined after the incubation of the virus for 1 h. In this study, the stock influenza H1N2 virus solution at 256 HAU was serial diluted and tested. The diluted virus samples having a concentration of ranging from 2−2 dilution (64 HAU) to 2−10 dilution (0.25 HAU) were used to determine the detection limit.
b) D. H. Kang, H.-S. Jung, J. Lee, S. Seo, J. Kim, K. Kim, K.-Y. Suh, Langmuir 2012, 28, 7551.
f) X. Chen, S. Kang, M. J. Kim, J. Kim, Y. S. Kim, H. Kim, B. Chi, S.-J. Kim, J. Y. Lee, J. Yoon, Angew. Chem. Int. Ed. 2010, 49, 1422
a) K.-W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, Colloids Surf., B 2008, 66, 213
d) C. H. Park, J. P. Kim, S. W. Lee, N. L. Jeon, P. J. Yoo, S. J. Sim, Adv. Funct. Mater. 2009, 19, 3703
b) S. Kolusheva, R. Kafri, M. Katz, R. Jelinek, J. Am. Chem. Soc. 2000, 123, 417
b) K. Tashiro, H. Nishimura, M. Kobayashi, Macromolecules 1996, 29, 8188.
b) D. J. Ahn, J. M. Kim, Acc. Chem. Res. 2008, 41, 805
a) D. Charych, J. Nagy, W. Spevak, M. Bednarski, Science 1993, 261, 585
a) M. A. Reppy, B. A. Pindzola, Chem. Commun. 2007, 42, 4317
a) Y. Tomioka, N. Tanaka, S. Imazeki, Thin Solid Films 1989, 179, 27
a) Q. Cheng, R. C. Stevens, Langmuir 1998, 14, 1974
a) J. Lee, H.-J. Kim, J. Kim, J. Am. Chem. Soc. 2008, 130, 5010
a) R. W. Carpick, D. Y. Sasaki, A. R. Burns, Langmuir 2000, 16, 1270
d) K. Lee, L. K. Povlich, J. Kim, Analyst 2010, 135, 2179.
D. Seo, J. Kim, Adv. Funct. Mater. 2010, 20, 1397.
O. Poungpair, A. Pootong, S. Maneewatch, P. Srimanote, P. Tongtawe, T. Songserm, P. Tapchaisri, W. Chaicumpa, Bioconjugate Chem. 2010, 21, 1134.
g) J. Lee, S. Seo, J. Kim, Adv. Funct. Mater. 2012, 22, 1632.
a) N. Ban, C. Escobar, R. Garcia, K. Hasel, J. Day, G. Aaron, A. McPherson, Proc. Natl. Acad. Sci. USA 1994, 91, 1604
2010; 21
2010; 20
1989 1996; 179 29
2009; 459
1994 2011; 91 136
2007 2008 2009 2010; 42 41 38 135
2008 2009 2012; 130 21 48
2000 2009; 16 131
1993 2000 2008 2009 2011 2010 2012; 261 123 18 19 47 49 22
1998 1999; 14 121
2008 2012; 66 28
2011 2007; 26 144
e_1_2_6_12_2
Ong W. T. (e_1_2_6_11_3) 2007; 144
e_1_2_6_12_3
e_1_2_6_10_2
e_1_2_6_10_3
e_1_2_6_11_2
e_1_2_6_5_8
e_1_2_6_5_5
e_1_2_6_6_4
e_1_2_6_7_3
e_1_2_6_8_2
e_1_2_6_5_4
e_1_2_6_6_3
e_1_2_6_7_2
e_1_2_6_5_7
e_1_2_6_5_6
e_1_2_6_6_5
e_1_2_6_7_4
e_1_2_6_9_2
e_1_2_6_3_3
e_1_2_6_4_2
e_1_2_6_2_3
e_1_2_6_3_2
e_1_2_6_5_3
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_5_2
e_1_2_6_2_2
e_1_2_6_1_2
References_xml – reference: b) J. Lee, H. Jun, J. Kim, Adv. Mater. 2009, 21, 3674;
– reference: c) D. H. Kang, H.-S. Jung, N. Ahn, J. Lee, S. Seo, K.-Y. Suh, J. Kim, K. Kim, Chem. Commun. 2012, 48, 5313.
– reference: a) N. Ban, C. Escobar, R. Garcia, K. Hasel, J. Day, G. Aaron, A. McPherson, Proc. Natl. Acad. Sci. USA 1994, 91, 1604;
– reference: a) R. W. Carpick, D. Y. Sasaki, A. R. Burns, Langmuir 2000, 16, 1270;
– reference: c) Y. K. Jung, T. W. Kim, J. Kim, J.-M. Kim, H. G. Park, Adv. Funct. Mater. 2008, 18, 701;
– reference: b) D. H. Kang, H.-S. Jung, J. Lee, S. Seo, J. Kim, K. Kim, K.-Y. Suh, Langmuir 2012, 28, 7551.
– reference: a) J. Lee, H.-J. Kim, J. Kim, J. Am. Chem. Soc. 2008, 130, 5010;
– reference: b) W. T. Ong, A. R. Omar, A. Ideris, S. S. Hanssan, J. Virological, Methods 2007, 144, 57. *The hemagglutination assay is a protein quantification method devised specific for influenza virus because hemagglutinin, a surface protein of influenza viruses, agglutinates red blood cells. Virus samples are serial two-fold diluted for the assay. The hemagglutination units (HAU) is expressed as the reciprocal number of the highest dilution which causes complete agglutination. Agglutination of 0.5% chicken red blood cells is determined after the incubation of the virus for 1 h. In this study, the stock influenza H1N2 virus solution at 256 HAU was serial diluted and tested. The diluted virus samples having a concentration of ranging from 2−2 dilution (64 HAU) to 2−10 dilution (0.25 HAU) were used to determine the detection limit.
– reference: f) X. Chen, S. Kang, M. J. Kim, J. Kim, Y. S. Kim, H. Kim, B. Chi, S.-J. Kim, J. Y. Lee, J. Yoon, Angew. Chem. Int. Ed. 2010, 49, 1422;
– reference: g) J. Lee, S. Seo, J. Kim, Adv. Funct. Mater. 2012, 22, 1632.
– reference: d) K. Lee, L. K. Povlich, J. Kim, Analyst 2010, 135, 2179.
– reference: d) C. H. Park, J. P. Kim, S. W. Lee, N. L. Jeon, P. J. Yoo, S. J. Sim, Adv. Funct. Mater. 2009, 19, 3703;
– reference: D. Seo, J. Kim, Adv. Funct. Mater. 2010, 20, 1397.
– reference: O. Poungpair, A. Pootong, S. Maneewatch, P. Srimanote, P. Tongtawe, T. Songserm, P. Tapchaisri, W. Chaicumpa, Bioconjugate Chem. 2010, 21, 1134.
– reference: a) D. Charych, J. Nagy, W. Spevak, M. Bednarski, Science 1993, 261, 585;
– reference: a) M. A. Reppy, B. A. Pindzola, Chem. Commun. 2007, 42, 4317;
– reference: a) K.-W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, Colloids Surf., B 2008, 66, 213;
– reference: b) U. Jonas, K. Shah, S. Norvez, D. H. Charych, J. Am. Chem. Soc. 1999, 121, 4580.
– reference: e) J. Lee, E. Jeong Jeong, J. Kim, Chem. Commun. 2011, 47, 358;
– reference: a) Q. Cheng, R. C. Stevens, Langmuir 1998, 14, 1974;
– reference: b) D. J. Ahn, J. M. Kim, Acc. Chem. Res. 2008, 41, 805;
– reference: b) S. Ryu, I. Yoo, S. Song, B. Yoon, J.-M. Kim, J. Am. Chem. Soc. 2009, 131, 3800.
– reference: b) S. Kolusheva, R. Kafri, M. Katz, R. Jelinek, J. Am. Chem. Soc. 2000, 123, 417;
– reference: G. Neumann, T. Noda, Y. Kawaoka, Nature 2009, 459, 931.
– reference: c) B. Yoon, S. Lee, J.-M. Kim, Chem. Soc. Rev. 2009, 38, 1958;
– reference: b) J. D. Driskell, C. A. Jones, S. M. Tompkins, R. A. Tripp, Analyst 2011, 136, 3083.
– reference: b) K. Tashiro, H. Nishimura, M. Kobayashi, Macromolecules 1996, 29, 8188.
– reference: a) Y. Tomioka, N. Tanaka, S. Imazeki, Thin Solid Films 1989, 179, 27;
– reference: a) K.-Y. Lien, L.-Y. Hung, T.-B. Huang, Y.-C. Tsai, H.-Y. Lei, G.-B. Lee, Biosens. Bioelectron. 2011, 26, 3900;
– volume: 20
  start-page: 1397
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 42 41 38 135
  start-page: 4317 805 1958 2179
  year: 2007 2008 2009 2010
  publication-title: Chem. Commun. Acc. Chem. Res. Chem. Soc. Rev. Analyst
– volume: 26 144
  start-page: 3900 57
  year: 2011 2007
  publication-title: Biosens. Bioelectron. Methods
– volume: 66 28
  start-page: 213 7551
  year: 2008 2012
  publication-title: Colloids Surf., B Langmuir
– volume: 14 121
  start-page: 1974 4580
  year: 1998 1999
  publication-title: Langmuir J. Am. Chem. Soc.
– volume: 21
  start-page: 1134
  year: 2010
  publication-title: Bioconjugate Chem.
– volume: 130 21 48
  start-page: 5010 3674 5313
  year: 2008 2009 2012
  publication-title: J. Am. Chem. Soc. Adv. Mater. Chem. Commun.
– volume: 91 136
  start-page: 1604 3083
  year: 1994 2011
  publication-title: Proc. Natl. Acad. Sci. USA Analyst
– volume: 459
  start-page: 931
  year: 2009
  publication-title: Nature
– volume: 261 123 18 19 47 49 22
  start-page: 585 417 701 3703 358 1422 1632
  year: 1993 2000 2008 2009 2011 2010 2012
  publication-title: Science J. Am. Chem. Soc. Adv. Funct. Mater. Adv. Funct. Mater. Chem. Commun. Angew. Chem. Int. Ed. Adv. Funct. Mater.
– volume: 16 131
  start-page: 1270 3800
  year: 2000 2009
  publication-title: Langmuir J. Am. Chem. Soc.
– volume: 179 29
  start-page: 27 8188
  year: 1989 1996
  publication-title: Thin Solid Films Macromolecules
– ident: e_1_2_6_10_2
  doi: 10.1073/pnas.91.5.1604
– ident: e_1_2_6_5_7
  doi: 10.1002/anie.200905041
– ident: e_1_2_6_7_4
  doi: 10.1039/c2cc31466e
– ident: e_1_2_6_10_3
  doi: 10.1039/c1an15303j
– ident: e_1_2_6_8_2
  doi: 10.1002/adfm.201000262
– ident: e_1_2_6_5_5
  doi: 10.1002/adfm.200900393
– ident: e_1_2_6_5_3
  doi: 10.1021/ja0034139
– ident: e_1_2_6_6_3
  doi: 10.1021/ar7002489
– ident: e_1_2_6_5_8
  doi: 10.1002/adfm.201102486
– ident: e_1_2_6_5_6
  doi: 10.1039/C0CC02183K
– volume: 144
  start-page: 57
  year: 2007
  ident: e_1_2_6_11_3
  publication-title: Methods
– ident: e_1_2_6_4_3
  doi: 10.1021/ma960882f
– ident: e_1_2_6_4_2
  doi: 10.1016/0040-6090(89)90161-2
– ident: e_1_2_6_5_2
  doi: 10.1126/science.8342021
– ident: e_1_2_6_12_2
  doi: 10.1016/j.colsurfb.2008.06.020
– ident: e_1_2_6_6_4
  doi: 10.1039/b819539k
– ident: e_1_2_6_3_3
  doi: 10.1021/ja984190d
– ident: e_1_2_6_5_4
  doi: 10.1002/adfm.200700929
– ident: e_1_2_6_2_3
  doi: 10.1021/ja808077d
– ident: e_1_2_6_6_2
  doi: 10.1039/b703691d
– ident: e_1_2_6_7_2
  doi: 10.1021/ja709996c
– ident: e_1_2_6_12_3
  doi: 10.1021/la300863d
– ident: e_1_2_6_6_5
  doi: 10.1039/c0an00239a
– ident: e_1_2_6_11_2
  doi: 10.1016/j.bios.2011.03.006
– ident: e_1_2_6_1_2
  doi: 10.1038/nature08157
– ident: e_1_2_6_2_2
  doi: 10.1021/la990706a
– ident: e_1_2_6_3_2
  doi: 10.1021/la980185b
– ident: e_1_2_6_9_2
  doi: 10.1021/bc900251u
– ident: e_1_2_6_7_3
  doi: 10.1002/adma.200900639
SSID ssj0008402
Score 2.340396
Snippet Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 743
SubjectTerms Biosensing Techniques - methods
conjugated polymers
Dimyristoylphosphatidylcholine - chemistry
Influenza
Influenza A virus
Influenza A virus - chemistry
Influenza A virus - genetics
liposome microarray
Liposomes - chemistry
Microarray Analysis - methods
Polyacetylenes - chemistry
Polymers - chemistry
RNA Probes - chemistry
RNA, Viral - analysis
sensors
Studies
target size
Title Polydiacetylene Liposome Microarray Toward Influenza A Virus Detection: Effect of Target Size on Turn-On Signaling
URI https://api.istex.fr/ark:/67375/WNG-VTW0RBK9-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201200819
https://www.ncbi.nlm.nih.gov/pubmed/23386374
https://www.proquest.com/docview/1347454612
https://www.proquest.com/docview/1348500691
https://www.proquest.com/docview/1439227831
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQKiMhOKVNYjvrcFu2lOWxBS3p42bZjlOtWpIqm5XYPfET-hv7Szp2NimLeEhwy2Ms-TH2fGOPv0HoOY9jMAs58QNCA5-GsA4mJJY-g69hkPMoV3a_Y7QXD_fp-yN29MMt_oYfottwszPDrdd2gks13b4iDbVUDzY0K3JWDRbhkMSWPH9nfMUfBd5Lc9wJHhc4Y3HL2hhE26vFV6zSddvB334FOVcRrDNBu7eRbCvfRJ6cbM1qtaUXP_E6_k_r7qBbS3yK-41C3UXXTHEP3Ri0aeHuo_pzeToHpdKmnoPFMvjj5Kycll8NHtnYPllVco5TF4yL3zUZUBYS9_HBpJpN8Y6pXexX8Qo3vMm4zHHqotHxl8nC4LLAKVTh4vv5pwK-HFs_oTh-gPZ336SDob9M3eBrcHkSnyU8z1SilTY0sSRyJNO5ZCTghkbwGGZZDp5YLw-U1ioGv0gFMgIoqgImOejOQ7RWlIVZRzjjMjMG9CeUjGoATIBpedYDnBMbTqn0kN8OndBLXnObXuNUNIzMkbB9Kbq-9NDLTv6sYfT4reQLpwmdmKxObBxcj4nDvbfiID0Mxq8_JGLooY1WVcRyCZgKe0eXMgoI0kPPut8wWPZERhamnDkZzixZdPgHGYCM9r4yAZlHjRp2FYoI4THpUQ9FTpn-0iAx6o8H3dvjfyn0BN2MXEIQ5od0A63V1cw8BVhWq0039S4BJW4tdA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgexgv3NkCA4yE4ClbLnbq8NYVRsfagkp2ebNsx5mqjWRKU4n2iZ_Ab9wv4dhpMhVxkeAtl2PJl2Of79jH30HoJYsiMAtZ6Hoh8VziwzoYh5FwKXz1vYwFmTT7HcNR1D8iH05pE01o7sLU_BDthpuZGXa9NhPcbEjvXrOGGq4HE5sVWLN2E63bQzqDi8bXDFLgv9QHnuBzgTsWNbyNXrC7Wn7FLq2bLv76K9C5imGtEdq_g2RT_Tr25HxnVskdtfiJ2fG_2ncX3V5CVNytdeoeuqHz-2ij12SGe4CqT8XFHPRK6WoORkvjweSymBZfNB6a8D5RlmKOExuPiw_qJCgLgbv4eFLOpvitrmz4V_4G19TJuMhwYgPS8efJQuMixwlU4erb9485fDkzrkJ-9hAd7b9Len13mb3BVeD1xC6NWZbKWEmlSWx45MJUZYKGHtMkgEc_TTNwxjqZJ5WSEbhG0hMBoFHpUcFAfR6htbzI9RbCKROp1qBCvqBEAWYCWMvSDkCdSDNChIPcZuy4WlKbmwwbF7wmZQ646Uve9qWDXrfylzWpx28lX1lVaMVEeW5C4TqUn4ze8-PkxBvvHca876DtRlf4chWYcnNNl1ACINJBL9rfMFjmUEbkuphZGUYNX7T_BxlAjebKcggym7UethUKwpBFYYc4KLDa9JcG8WF33GvfHv9Loedoo58MB3xwMDp8gm4FNj8IdX2yjdaqcqafAkqr5DM7D38A9Psxkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk4AXxm0sMMBICJ6y5WKnzt5KR-nYWqaSXd4sx3GmaltSpalE-7SfsN_IL-HYaTKKuEjwlsux5Muxz3fs4-8g9IYFAZiF1Lcdnzg2cWEdDP1A2BS-uk7KvDTW-x39QdA7Ip9O6ekPt_grfohmw03PDLNe6wk-TtLtG9JQTfWgQ7M8Y9Vuo1USgK3UsGh4QyAF7kt13gkuF3hjQU3b6Hjby-WXzNKq7uGvv8KcyxDW2KDuGhJ17avQk_OtaRlvyflPxI7_07wH6P4CoOJ2pVEP0S2VPUJ3O3VeuMeoPMwvZqBVUpUzMFkKH4zG-SS_VLivg_tEUYgZjkw0Lt6rUqDMBW7j41ExneBdVZrgr2wHV8TJOE9xZMLR8ZfRXOE8wxFU4dvV9ecMvpxpRyE7e4KOuh-iTs9e5G6wJfg8oU1DliZxKGOpSKhZ5PxEpoL6DlPEg0c3SVJwxVqpE0sZB-AYxY7wAIvGDhUMlGcdrWR5pjYQTphIlAIFcgUlEhATgFqWtADoBIoRIixk10PH5YLYXOfXuOAVJbPHdV_ypi8t9K6RH1eUHr-VfGs0oRETxbkOhGtRfjL4yI-jE2f4fj_kPQtt1qrCF2vAhOtLuoQSgJAWet38hsHSRzIiU_nUyDCq2aLdP8gAZtQXln2QeVqpYVMhz_dZ4LeIhTyjTH9pEO-3h53m7dm_FHqF7hzudvnB3mD_ObrnmeQg1HbJJlopi6l6ARCtjF-aWfgdMTQwQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polydiacetylene+liposome+microarray+toward+influenza+a+virus+detection%3A+effect+of+target+size+on+turn-on+signaling&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Seo%2C+Sungbaek&rft.au=Lee%2C+Jiseok&rft.au=Choi%2C+Eun-Jin&rft.au=Kim%2C+Eun-Ju&rft.date=2013-05-14&rft.eissn=1521-3927&rft.volume=34&rft.issue=9&rft.spage=743&rft_id=info:doi/10.1002%2Fmarc.201200819&rft_id=info%3Apmid%2F23386374&rft.externalDocID=23386374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon