Polydiacetylene Liposome Microarray Toward Influenza A Virus Detection: Effect of Target Size on Turn-On Signaling
Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the large...
Saved in:
Published in | Macromolecular rapid communications. Vol. 34; no. 9; pp. 743 - 748 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
14.05.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1022-1336 1521-3927 1521-3927 |
DOI | 10.1002/marc.201200819 |
Cover
Abstract | Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe–target complexes not the strength of the probe–target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA.
The 2009 influenza pandemic highlighted the need for a rapid and sensitive influenza A virus detection kit. A systematically investigated polydiacetylene microarray sensor allows a turn‐on sensory signal within 1 h and comparable detection limit with conventional kits. Denser probe molecules and larger targets contribute to PDA sensitivity, providing insight for designing future PDA‐based sensors. |
---|---|
AbstractList | Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe–target complexes not the strength of the probe–target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. magnified image Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. [PUBLICATION ABSTRACT] Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe–target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe–target complexes not the strength of the probe–target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. The 2009 influenza pandemic highlighted the need for a rapid and sensitive influenza A virus detection kit. A systematically investigated polydiacetylene microarray sensor allows a turn‐on sensory signal within 1 h and comparable detection limit with conventional kits. Denser probe molecules and larger targets contribute to PDA sensitivity, providing insight for designing future PDA‐based sensors. Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA.Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1 peptide and M1 antibody were selected as a probe-target pair. While red fluorescence from the PDA liposome microarrays was observed when the larger M1 antibody was used as a target, when the same M1 antibody was used as a probe to detect the smaller M1 peptide sensory signal did not appear. The results reveal that the intensity of the PDA sensory signal is mainly related to the steric repulsion between probe-target complexes not the strength of the probe-target binding force. Based on this finding, we devised a PDA sensory system that directly detects influenza A whole virus as a larger target, and confirmed the target size effect on the signaling efficiency of PDA. The 2009 influenza pandemic highlighted the need for a rapid and sensitive influenza A virus detection kit. A systematically investigated polydiacetylene microarray sensor allows a turn-on sensory signal within 1 h and comparable detection limit with conventional kits. Denser probe molecules and larger targets contribute to PDA sensitivity, providing insight for designing future PDA-based sensors. |
Author | Seo, Sungbaek Lee, Jiseok Kim, Eun-Ju Song, Jae-Young Choi, Eun-Jin Kim, Jinsang |
Author_xml | – sequence: 1 givenname: Sungbaek surname: Seo fullname: Seo, Sungbaek organization: Macromolecular Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109-2136, USA – sequence: 2 givenname: Jiseok surname: Lee fullname: Lee, Jiseok organization: Macromolecular Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109-2136, USA – sequence: 3 givenname: Eun-Jin surname: Choi fullname: Choi, Eun-Jin organization: Animal Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-Gu, Anyangsi, Gyeonggido, 430-757, Republic of Korea – sequence: 4 givenname: Eun-Ju surname: Kim fullname: Kim, Eun-Ju organization: Animal Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-Gu, Anyangsi, Gyeonggido, 430-757, Republic of Korea – sequence: 5 givenname: Jae-Young surname: Song fullname: Song, Jae-Young organization: Animal Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-Gu, Anyangsi, Gyeonggido, 430-757, Republic of Korea – sequence: 6 givenname: Jinsang surname: Kim fullname: Kim, Jinsang email: jinsang@umich.edu organization: Macromolecular Science and Engineering, Materials Science and Engineering, Chemical Engineering, Biomedical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109-2136, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23386374$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURiNURB-wZYkssWGTwc8kZjcdSlsxpaiEdmk5jj1yydiDnahNf30dTVuhSqgrX0vnXOl-336247zTWfYewRmCEH9ey6BmGCIMYYX4q2wPMYxywnG5k2aIcY4IKXaz_RivYWIoxG-yXUxIVZCS7mXhp-_G1kql-7HTToOl3fjo1xqcWRW8DEGOoPY3MrTg1Jlu0O5Ogjm4tGGI4Kvuteqtd1_AkTFpBN6AWoaV7sEve6eBd6AegsvPXfqvnOysW73NXhvZRf3u4T3Ifn87qhcn-fL8-HQxX-aKMchzxivTNlw1SlOOEeKkVUYyAitNcRpR2xqEaGlgo1RTYFQ2UOKypA1ksmKGHGSftns3wf8ddOzF2kalu0467YcoEE0x4bIi6GWU0IpBWPAJ_fgMvfbpwnTIRJWU0QLhRH14oIZmrVuxCTY1NYrH4BNAt0AKOcagjVC2l1OUfZC2EwiKqV8x9Sue-k3a7Jn2uPm_At8KN7bT4wu0OJtfLP51861rY69vn1wZ_oiiJCUTVz-OxWV9BS8Ov3NxQu4BOaLGrQ |
CitedBy_id | crossref_primary_10_1039_C6CC03584A crossref_primary_10_1039_C6RA06689E crossref_primary_10_1021_acs_iecr_8b00848 crossref_primary_10_1016_j_colsurfa_2017_01_006 crossref_primary_10_1016_j_bios_2015_10_090 crossref_primary_10_3390_molecules23010107 crossref_primary_10_1021_acsami_9b20438 crossref_primary_10_1002_app_45011 crossref_primary_10_1002_adfm_201504632 crossref_primary_10_1016_j_bios_2021_113120 crossref_primary_10_1021_acsapm_3c02670 crossref_primary_10_1016_j_smaim_2023_10_002 crossref_primary_10_1016_S1872_2040_19_61213_2 crossref_primary_10_1016_j_snb_2020_127906 crossref_primary_10_1021_am502319m crossref_primary_10_1093_bulcsj_uoae034 crossref_primary_10_1002_app_44997 crossref_primary_10_1039_C5CC01621E crossref_primary_10_1002_mame_201700640 crossref_primary_10_1021_acs_analchem_3c01433 crossref_primary_10_1016_j_jiec_2018_02_028 crossref_primary_10_1177_2472630316689286 crossref_primary_10_1016_j_saa_2019_04_030 crossref_primary_10_1016_j_snb_2017_11_191 crossref_primary_10_52711_0974_360X_2023_00247 crossref_primary_10_1039_C7TC02072D crossref_primary_10_1088_1361_6528_ab0ccf crossref_primary_10_1088_2053_1591_aae6f5 crossref_primary_10_1088_2631_6331_ab9123 crossref_primary_10_1021_cg401380a crossref_primary_10_1021_acs_langmuir_9b01593 crossref_primary_10_1039_C5CC08566G crossref_primary_10_1016_j_synthmet_2017_12_009 crossref_primary_10_1021_am402701n crossref_primary_10_1016_j_snb_2019_04_081 crossref_primary_10_1021_am501414z crossref_primary_10_1016_j_jcis_2014_06_047 crossref_primary_10_1039_c3ra42639d crossref_primary_10_1016_S1872_2040_19_61179_5 crossref_primary_10_1039_C7NR08557E crossref_primary_10_1016_j_cis_2017_05_020 crossref_primary_10_1016_j_tsf_2017_10_018 crossref_primary_10_1021_acsami_7b17104 crossref_primary_10_1371_journal_pone_0143454 crossref_primary_10_1021_acsami_1c25066 crossref_primary_10_1016_j_talanta_2024_126571 crossref_primary_10_1038_s41598_019_47537_2 crossref_primary_10_1016_j_snb_2016_02_065 crossref_primary_10_1039_C5TA00608B crossref_primary_10_1016_j_snb_2024_135573 crossref_primary_10_1021_acsami_5b06058 crossref_primary_10_1007_s13233_020_8088_y crossref_primary_10_1039_C9PY00949C crossref_primary_10_1002_app_47688 crossref_primary_10_1016_j_rechem_2020_100065 crossref_primary_10_1021_acsami_7b14086 crossref_primary_10_1021_acssensors_1c01167 crossref_primary_10_1039_C8AN01097H crossref_primary_10_1002_app_46394 crossref_primary_10_1002_adfm_202004605 |
Cites_doi | 10.1073/pnas.91.5.1604 10.1002/anie.200905041 10.1039/c2cc31466e 10.1039/c1an15303j 10.1002/adfm.201000262 10.1002/adfm.200900393 10.1021/ja0034139 10.1021/ar7002489 10.1002/adfm.201102486 10.1039/C0CC02183K 10.1021/ma960882f 10.1016/0040-6090(89)90161-2 10.1126/science.8342021 10.1016/j.colsurfb.2008.06.020 10.1039/b819539k 10.1021/ja984190d 10.1002/adfm.200700929 10.1021/ja808077d 10.1039/b703691d 10.1021/ja709996c 10.1021/la300863d 10.1039/c0an00239a 10.1016/j.bios.2011.03.006 10.1038/nature08157 10.1021/la990706a 10.1021/la980185b 10.1021/bc900251u 10.1002/adma.200900639 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 7U9 H94 |
DOI | 10.1002/marc.201200819 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | 748 |
ExternalDocumentID | 2959531881 23386374 10_1002_marc_201200819 MARC201200819 ark_67375_WNG_VTW0RBK9_H |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWB RWI WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 7U9 H94 |
ID | FETCH-LOGICAL-c5509-598fdb9cbce4921193dcfa5308e42dcf1ddf1147f0bccb6217b0a2774b05a85f3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Thu Jul 10 16:57:06 EDT 2025 Fri Jul 11 07:14:05 EDT 2025 Fri Jul 25 10:32:22 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Jul 01 01:50:10 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Wed Jan 22 16:40:26 EST 2025 Sun Sep 21 06:20:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5509-598fdb9cbce4921193dcfa5308e42dcf1ddf1147f0bccb6217b0a2774b05a85f3 |
Notes | ark:/67375/WNG-VTW0RBK9-H ArticleID:MARC201200819 istex:780B1456876A7CAD3770F53B86E959E36008B014 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/2027.42/98172 |
PMID | 23386374 |
PQID | 1347454612 |
PQPubID | 1016394 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1439227831 proquest_miscellaneous_1348500691 proquest_journals_1347454612 pubmed_primary_23386374 crossref_citationtrail_10_1002_marc_201200819 crossref_primary_10_1002_marc_201200819 wiley_primary_10_1002_marc_201200819_MARC201200819 istex_primary_ark_67375_WNG_VTW0RBK9_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 14, 2013 |
PublicationDateYYYYMMDD | 2013-05-14 |
PublicationDate_xml | – month: 05 year: 2013 text: May 14, 2013 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol. Rapid Commun |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | b) U. Jonas, K. Shah, S. Norvez, D. H. Charych, J. Am. Chem. Soc. 1999, 121, 4580. b) J. D. Driskell, C. A. Jones, S. M. Tompkins, R. A. Tripp, Analyst 2011, 136, 3083. e) J. Lee, E. Jeong Jeong, J. Kim, Chem. Commun. 2011, 47, 358 c) B. Yoon, S. Lee, J.-M. Kim, Chem. Soc. Rev. 2009, 38, 1958 a) K.-Y. Lien, L.-Y. Hung, T.-B. Huang, Y.-C. Tsai, H.-Y. Lei, G.-B. Lee, Biosens. Bioelectron. 2011, 26, 3900 b) J. Lee, H. Jun, J. Kim, Adv. Mater. 2009, 21, 3674 c) Y. K. Jung, T. W. Kim, J. Kim, J.-M. Kim, H. G. Park, Adv. Funct. Mater. 2008, 18, 701 c) D. H. Kang, H.-S. Jung, N. Ahn, J. Lee, S. Seo, K.-Y. Suh, J. Kim, K. Kim, Chem. Commun. 2012, 48, 5313. G. Neumann, T. Noda, Y. Kawaoka, Nature 2009, 459, 931. b) S. Ryu, I. Yoo, S. Song, B. Yoon, J.-M. Kim, J. Am. Chem. Soc. 2009, 131, 3800. b) W. T. Ong, A. R. Omar, A. Ideris, S. S. Hanssan, J. Virological, Methods 2007, 144, 57. *The hemagglutination assay is a protein quantification method devised specific for influenza virus because hemagglutinin, a surface protein of influenza viruses, agglutinates red blood cells. Virus samples are serial two-fold diluted for the assay. The hemagglutination units (HAU) is expressed as the reciprocal number of the highest dilution which causes complete agglutination. Agglutination of 0.5% chicken red blood cells is determined after the incubation of the virus for 1 h. In this study, the stock influenza H1N2 virus solution at 256 HAU was serial diluted and tested. The diluted virus samples having a concentration of ranging from 2−2 dilution (64 HAU) to 2−10 dilution (0.25 HAU) were used to determine the detection limit. b) D. H. Kang, H.-S. Jung, J. Lee, S. Seo, J. Kim, K. Kim, K.-Y. Suh, Langmuir 2012, 28, 7551. f) X. Chen, S. Kang, M. J. Kim, J. Kim, Y. S. Kim, H. Kim, B. Chi, S.-J. Kim, J. Y. Lee, J. Yoon, Angew. Chem. Int. Ed. 2010, 49, 1422 a) K.-W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, Colloids Surf., B 2008, 66, 213 d) C. H. Park, J. P. Kim, S. W. Lee, N. L. Jeon, P. J. Yoo, S. J. Sim, Adv. Funct. Mater. 2009, 19, 3703 b) S. Kolusheva, R. Kafri, M. Katz, R. Jelinek, J. Am. Chem. Soc. 2000, 123, 417 b) K. Tashiro, H. Nishimura, M. Kobayashi, Macromolecules 1996, 29, 8188. b) D. J. Ahn, J. M. Kim, Acc. Chem. Res. 2008, 41, 805 a) D. Charych, J. Nagy, W. Spevak, M. Bednarski, Science 1993, 261, 585 a) M. A. Reppy, B. A. Pindzola, Chem. Commun. 2007, 42, 4317 a) Y. Tomioka, N. Tanaka, S. Imazeki, Thin Solid Films 1989, 179, 27 a) Q. Cheng, R. C. Stevens, Langmuir 1998, 14, 1974 a) J. Lee, H.-J. Kim, J. Kim, J. Am. Chem. Soc. 2008, 130, 5010 a) R. W. Carpick, D. Y. Sasaki, A. R. Burns, Langmuir 2000, 16, 1270 d) K. Lee, L. K. Povlich, J. Kim, Analyst 2010, 135, 2179. D. Seo, J. Kim, Adv. Funct. Mater. 2010, 20, 1397. O. Poungpair, A. Pootong, S. Maneewatch, P. Srimanote, P. Tongtawe, T. Songserm, P. Tapchaisri, W. Chaicumpa, Bioconjugate Chem. 2010, 21, 1134. g) J. Lee, S. Seo, J. Kim, Adv. Funct. Mater. 2012, 22, 1632. a) N. Ban, C. Escobar, R. Garcia, K. Hasel, J. Day, G. Aaron, A. McPherson, Proc. Natl. Acad. Sci. USA 1994, 91, 1604 2010; 21 2010; 20 1989 1996; 179 29 2009; 459 1994 2011; 91 136 2007 2008 2009 2010; 42 41 38 135 2008 2009 2012; 130 21 48 2000 2009; 16 131 1993 2000 2008 2009 2011 2010 2012; 261 123 18 19 47 49 22 1998 1999; 14 121 2008 2012; 66 28 2011 2007; 26 144 e_1_2_6_12_2 Ong W. T. (e_1_2_6_11_3) 2007; 144 e_1_2_6_12_3 e_1_2_6_10_2 e_1_2_6_10_3 e_1_2_6_11_2 e_1_2_6_5_8 e_1_2_6_5_5 e_1_2_6_6_4 e_1_2_6_7_3 e_1_2_6_8_2 e_1_2_6_5_4 e_1_2_6_6_3 e_1_2_6_7_2 e_1_2_6_5_7 e_1_2_6_5_6 e_1_2_6_6_5 e_1_2_6_7_4 e_1_2_6_9_2 e_1_2_6_3_3 e_1_2_6_4_2 e_1_2_6_2_3 e_1_2_6_3_2 e_1_2_6_5_3 e_1_2_6_6_2 e_1_2_6_4_3 e_1_2_6_5_2 e_1_2_6_2_2 e_1_2_6_1_2 |
References_xml | – reference: b) J. Lee, H. Jun, J. Kim, Adv. Mater. 2009, 21, 3674; – reference: c) D. H. Kang, H.-S. Jung, N. Ahn, J. Lee, S. Seo, K.-Y. Suh, J. Kim, K. Kim, Chem. Commun. 2012, 48, 5313. – reference: a) N. Ban, C. Escobar, R. Garcia, K. Hasel, J. Day, G. Aaron, A. McPherson, Proc. Natl. Acad. Sci. USA 1994, 91, 1604; – reference: a) R. W. Carpick, D. Y. Sasaki, A. R. Burns, Langmuir 2000, 16, 1270; – reference: c) Y. K. Jung, T. W. Kim, J. Kim, J.-M. Kim, H. G. Park, Adv. Funct. Mater. 2008, 18, 701; – reference: b) D. H. Kang, H.-S. Jung, J. Lee, S. Seo, J. Kim, K. Kim, K.-Y. Suh, Langmuir 2012, 28, 7551. – reference: a) J. Lee, H.-J. Kim, J. Kim, J. Am. Chem. Soc. 2008, 130, 5010; – reference: b) W. T. Ong, A. R. Omar, A. Ideris, S. S. Hanssan, J. Virological, Methods 2007, 144, 57. *The hemagglutination assay is a protein quantification method devised specific for influenza virus because hemagglutinin, a surface protein of influenza viruses, agglutinates red blood cells. Virus samples are serial two-fold diluted for the assay. The hemagglutination units (HAU) is expressed as the reciprocal number of the highest dilution which causes complete agglutination. Agglutination of 0.5% chicken red blood cells is determined after the incubation of the virus for 1 h. In this study, the stock influenza H1N2 virus solution at 256 HAU was serial diluted and tested. The diluted virus samples having a concentration of ranging from 2−2 dilution (64 HAU) to 2−10 dilution (0.25 HAU) were used to determine the detection limit. – reference: f) X. Chen, S. Kang, M. J. Kim, J. Kim, Y. S. Kim, H. Kim, B. Chi, S.-J. Kim, J. Y. Lee, J. Yoon, Angew. Chem. Int. Ed. 2010, 49, 1422; – reference: g) J. Lee, S. Seo, J. Kim, Adv. Funct. Mater. 2012, 22, 1632. – reference: d) K. Lee, L. K. Povlich, J. Kim, Analyst 2010, 135, 2179. – reference: d) C. H. Park, J. P. Kim, S. W. Lee, N. L. Jeon, P. J. Yoo, S. J. Sim, Adv. Funct. Mater. 2009, 19, 3703; – reference: D. Seo, J. Kim, Adv. Funct. Mater. 2010, 20, 1397. – reference: O. Poungpair, A. Pootong, S. Maneewatch, P. Srimanote, P. Tongtawe, T. Songserm, P. Tapchaisri, W. Chaicumpa, Bioconjugate Chem. 2010, 21, 1134. – reference: a) D. Charych, J. Nagy, W. Spevak, M. Bednarski, Science 1993, 261, 585; – reference: a) M. A. Reppy, B. A. Pindzola, Chem. Commun. 2007, 42, 4317; – reference: a) K.-W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, Colloids Surf., B 2008, 66, 213; – reference: b) U. Jonas, K. Shah, S. Norvez, D. H. Charych, J. Am. Chem. Soc. 1999, 121, 4580. – reference: e) J. Lee, E. Jeong Jeong, J. Kim, Chem. Commun. 2011, 47, 358; – reference: a) Q. Cheng, R. C. Stevens, Langmuir 1998, 14, 1974; – reference: b) D. J. Ahn, J. M. Kim, Acc. Chem. Res. 2008, 41, 805; – reference: b) S. Ryu, I. Yoo, S. Song, B. Yoon, J.-M. Kim, J. Am. Chem. Soc. 2009, 131, 3800. – reference: b) S. Kolusheva, R. Kafri, M. Katz, R. Jelinek, J. Am. Chem. Soc. 2000, 123, 417; – reference: G. Neumann, T. Noda, Y. Kawaoka, Nature 2009, 459, 931. – reference: c) B. Yoon, S. Lee, J.-M. Kim, Chem. Soc. Rev. 2009, 38, 1958; – reference: b) J. D. Driskell, C. A. Jones, S. M. Tompkins, R. A. Tripp, Analyst 2011, 136, 3083. – reference: b) K. Tashiro, H. Nishimura, M. Kobayashi, Macromolecules 1996, 29, 8188. – reference: a) Y. Tomioka, N. Tanaka, S. Imazeki, Thin Solid Films 1989, 179, 27; – reference: a) K.-Y. Lien, L.-Y. Hung, T.-B. Huang, Y.-C. Tsai, H.-Y. Lei, G.-B. Lee, Biosens. Bioelectron. 2011, 26, 3900; – volume: 20 start-page: 1397 year: 2010 publication-title: Adv. Funct. Mater. – volume: 42 41 38 135 start-page: 4317 805 1958 2179 year: 2007 2008 2009 2010 publication-title: Chem. Commun. Acc. Chem. Res. Chem. Soc. Rev. Analyst – volume: 26 144 start-page: 3900 57 year: 2011 2007 publication-title: Biosens. Bioelectron. Methods – volume: 66 28 start-page: 213 7551 year: 2008 2012 publication-title: Colloids Surf., B Langmuir – volume: 14 121 start-page: 1974 4580 year: 1998 1999 publication-title: Langmuir J. Am. Chem. Soc. – volume: 21 start-page: 1134 year: 2010 publication-title: Bioconjugate Chem. – volume: 130 21 48 start-page: 5010 3674 5313 year: 2008 2009 2012 publication-title: J. Am. Chem. Soc. Adv. Mater. Chem. Commun. – volume: 91 136 start-page: 1604 3083 year: 1994 2011 publication-title: Proc. Natl. Acad. Sci. USA Analyst – volume: 459 start-page: 931 year: 2009 publication-title: Nature – volume: 261 123 18 19 47 49 22 start-page: 585 417 701 3703 358 1422 1632 year: 1993 2000 2008 2009 2011 2010 2012 publication-title: Science J. Am. Chem. Soc. Adv. Funct. Mater. Adv. Funct. Mater. Chem. Commun. Angew. Chem. Int. Ed. Adv. Funct. Mater. – volume: 16 131 start-page: 1270 3800 year: 2000 2009 publication-title: Langmuir J. Am. Chem. Soc. – volume: 179 29 start-page: 27 8188 year: 1989 1996 publication-title: Thin Solid Films Macromolecules – ident: e_1_2_6_10_2 doi: 10.1073/pnas.91.5.1604 – ident: e_1_2_6_5_7 doi: 10.1002/anie.200905041 – ident: e_1_2_6_7_4 doi: 10.1039/c2cc31466e – ident: e_1_2_6_10_3 doi: 10.1039/c1an15303j – ident: e_1_2_6_8_2 doi: 10.1002/adfm.201000262 – ident: e_1_2_6_5_5 doi: 10.1002/adfm.200900393 – ident: e_1_2_6_5_3 doi: 10.1021/ja0034139 – ident: e_1_2_6_6_3 doi: 10.1021/ar7002489 – ident: e_1_2_6_5_8 doi: 10.1002/adfm.201102486 – ident: e_1_2_6_5_6 doi: 10.1039/C0CC02183K – volume: 144 start-page: 57 year: 2007 ident: e_1_2_6_11_3 publication-title: Methods – ident: e_1_2_6_4_3 doi: 10.1021/ma960882f – ident: e_1_2_6_4_2 doi: 10.1016/0040-6090(89)90161-2 – ident: e_1_2_6_5_2 doi: 10.1126/science.8342021 – ident: e_1_2_6_12_2 doi: 10.1016/j.colsurfb.2008.06.020 – ident: e_1_2_6_6_4 doi: 10.1039/b819539k – ident: e_1_2_6_3_3 doi: 10.1021/ja984190d – ident: e_1_2_6_5_4 doi: 10.1002/adfm.200700929 – ident: e_1_2_6_2_3 doi: 10.1021/ja808077d – ident: e_1_2_6_6_2 doi: 10.1039/b703691d – ident: e_1_2_6_7_2 doi: 10.1021/ja709996c – ident: e_1_2_6_12_3 doi: 10.1021/la300863d – ident: e_1_2_6_6_5 doi: 10.1039/c0an00239a – ident: e_1_2_6_11_2 doi: 10.1016/j.bios.2011.03.006 – ident: e_1_2_6_1_2 doi: 10.1038/nature08157 – ident: e_1_2_6_2_2 doi: 10.1021/la990706a – ident: e_1_2_6_3_2 doi: 10.1021/la980185b – ident: e_1_2_6_9_2 doi: 10.1021/bc900251u – ident: e_1_2_6_7_3 doi: 10.1002/adma.200900639 |
SSID | ssj0008402 |
Score | 2.340396 |
Snippet | Target size effect on the sensory signaling intensity of polydiacetylene (PDA) liposome microarrays was systematically investigated. Influenza A virus M1... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 743 |
SubjectTerms | Biosensing Techniques - methods conjugated polymers Dimyristoylphosphatidylcholine - chemistry Influenza Influenza A virus Influenza A virus - chemistry Influenza A virus - genetics liposome microarray Liposomes - chemistry Microarray Analysis - methods Polyacetylenes - chemistry Polymers - chemistry RNA Probes - chemistry RNA, Viral - analysis sensors Studies target size |
Title | Polydiacetylene Liposome Microarray Toward Influenza A Virus Detection: Effect of Target Size on Turn-On Signaling |
URI | https://api.istex.fr/ark:/67375/WNG-VTW0RBK9-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201200819 https://www.ncbi.nlm.nih.gov/pubmed/23386374 https://www.proquest.com/docview/1347454612 https://www.proquest.com/docview/1348500691 https://www.proquest.com/docview/1439227831 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQKiMhOKVNYjvrcFu2lOWxBS3p42bZjlOtWpIqm5XYPfET-hv7Szp2NimLeEhwy2Ms-TH2fGOPv0HoOY9jMAs58QNCA5-GsA4mJJY-g69hkPMoV3a_Y7QXD_fp-yN29MMt_oYfottwszPDrdd2gks13b4iDbVUDzY0K3JWDRbhkMSWPH9nfMUfBd5Lc9wJHhc4Y3HL2hhE26vFV6zSddvB334FOVcRrDNBu7eRbCvfRJ6cbM1qtaUXP_E6_k_r7qBbS3yK-41C3UXXTHEP3Ri0aeHuo_pzeToHpdKmnoPFMvjj5Kycll8NHtnYPllVco5TF4yL3zUZUBYS9_HBpJpN8Y6pXexX8Qo3vMm4zHHqotHxl8nC4LLAKVTh4vv5pwK-HFs_oTh-gPZ336SDob9M3eBrcHkSnyU8z1SilTY0sSRyJNO5ZCTghkbwGGZZDp5YLw-U1ioGv0gFMgIoqgImOejOQ7RWlIVZRzjjMjMG9CeUjGoATIBpedYDnBMbTqn0kN8OndBLXnObXuNUNIzMkbB9Kbq-9NDLTv6sYfT4reQLpwmdmKxObBxcj4nDvbfiID0Mxq8_JGLooY1WVcRyCZgKe0eXMgoI0kPPut8wWPZERhamnDkZzixZdPgHGYCM9r4yAZlHjRp2FYoI4THpUQ9FTpn-0iAx6o8H3dvjfyn0BN2MXEIQ5od0A63V1cw8BVhWq0039S4BJW4tdA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgexgv3NkCA4yE4ClbLnbq8NYVRsfagkp2ebNsx5mqjWRKU4n2iZ_Ab9wv4dhpMhVxkeAtl2PJl2Of79jH30HoJYsiMAtZ6Hoh8VziwzoYh5FwKXz1vYwFmTT7HcNR1D8iH05pE01o7sLU_BDthpuZGXa9NhPcbEjvXrOGGq4HE5sVWLN2E63bQzqDi8bXDFLgv9QHnuBzgTsWNbyNXrC7Wn7FLq2bLv76K9C5imGtEdq_g2RT_Tr25HxnVskdtfiJ2fG_2ncX3V5CVNytdeoeuqHz-2ij12SGe4CqT8XFHPRK6WoORkvjweSymBZfNB6a8D5RlmKOExuPiw_qJCgLgbv4eFLOpvitrmz4V_4G19TJuMhwYgPS8efJQuMixwlU4erb9485fDkzrkJ-9hAd7b9Len13mb3BVeD1xC6NWZbKWEmlSWx45MJUZYKGHtMkgEc_TTNwxjqZJ5WSEbhG0hMBoFHpUcFAfR6htbzI9RbCKROp1qBCvqBEAWYCWMvSDkCdSDNChIPcZuy4WlKbmwwbF7wmZQ646Uve9qWDXrfylzWpx28lX1lVaMVEeW5C4TqUn4ze8-PkxBvvHca876DtRlf4chWYcnNNl1ACINJBL9rfMFjmUEbkuphZGUYNX7T_BxlAjebKcggym7UethUKwpBFYYc4KLDa9JcG8WF33GvfHv9Loedoo58MB3xwMDp8gm4FNj8IdX2yjdaqcqafAkqr5DM7D38A9Psxkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk4AXxm0sMMBICJ6y5WKnzt5KR-nYWqaSXd4sx3GmaltSpalE-7SfsN_IL-HYaTKKuEjwlsux5Muxz3fs4-8g9IYFAZiF1Lcdnzg2cWEdDP1A2BS-uk7KvDTW-x39QdA7Ip9O6ekPt_grfohmw03PDLNe6wk-TtLtG9JQTfWgQ7M8Y9Vuo1USgK3UsGh4QyAF7kt13gkuF3hjQU3b6Hjby-WXzNKq7uGvv8KcyxDW2KDuGhJ17avQk_OtaRlvyflPxI7_07wH6P4CoOJ2pVEP0S2VPUJ3O3VeuMeoPMwvZqBVUpUzMFkKH4zG-SS_VLivg_tEUYgZjkw0Lt6rUqDMBW7j41ExneBdVZrgr2wHV8TJOE9xZMLR8ZfRXOE8wxFU4dvV9ecMvpxpRyE7e4KOuh-iTs9e5G6wJfg8oU1DliZxKGOpSKhZ5PxEpoL6DlPEg0c3SVJwxVqpE0sZB-AYxY7wAIvGDhUMlGcdrWR5pjYQTphIlAIFcgUlEhATgFqWtADoBIoRIixk10PH5YLYXOfXuOAVJbPHdV_ypi8t9K6RH1eUHr-VfGs0oRETxbkOhGtRfjL4yI-jE2f4fj_kPQtt1qrCF2vAhOtLuoQSgJAWet38hsHSRzIiU_nUyDCq2aLdP8gAZtQXln2QeVqpYVMhz_dZ4LeIhTyjTH9pEO-3h53m7dm_FHqF7hzudvnB3mD_ObrnmeQg1HbJJlopi6l6ARCtjF-aWfgdMTQwQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polydiacetylene+liposome+microarray+toward+influenza+a+virus+detection%3A+effect+of+target+size+on+turn-on+signaling&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Seo%2C+Sungbaek&rft.au=Lee%2C+Jiseok&rft.au=Choi%2C+Eun-Jin&rft.au=Kim%2C+Eun-Ju&rft.date=2013-05-14&rft.eissn=1521-3927&rft.volume=34&rft.issue=9&rft.spage=743&rft_id=info:doi/10.1002%2Fmarc.201200819&rft_id=info%3Apmid%2F23386374&rft.externalDocID=23386374 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |