GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data

Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in o...

Full description

Saved in:
Bibliographic Details
Published inGenes Vol. 14; no. 2; p. 269
Main Authors Schmitt, Pauline, Sorin, Baptiste, Frouté, Timothée, Parisot, Nicolas, Calevro, Federica, Peignier, Sergio
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN2073-4425
2073-4425
DOI10.3390/genes14020269

Cover

Abstract Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods’ implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.
AbstractList Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.
Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods’ implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.
Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. : In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. : The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.
Audience Academic
Author Peignier, Sergio
Frouté, Timothée
Parisot, Nicolas
Schmitt, Pauline
Calevro, Federica
Sorin, Baptiste
AuthorAffiliation 1 Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR0203, F-69621 Villeurbanne, France
2 Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR0203, F-69621 Villeurbanne, France
AuthorAffiliation_xml – name: 2 Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR0203, F-69621 Villeurbanne, France
– name: 1 Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR0203, F-69621 Villeurbanne, France
Author_xml – sequence: 1
  givenname: Pauline
  surname: Schmitt
  fullname: Schmitt, Pauline
– sequence: 2
  givenname: Baptiste
  surname: Sorin
  fullname: Sorin, Baptiste
– sequence: 3
  givenname: Timothée
  orcidid: 0000-0002-8945-0213
  surname: Frouté
  fullname: Frouté, Timothée
– sequence: 4
  givenname: Nicolas
  orcidid: 0000-0001-5217-8415
  surname: Parisot
  fullname: Parisot, Nicolas
– sequence: 5
  givenname: Federica
  orcidid: 0000-0001-7856-9617
  surname: Calevro
  fullname: Calevro, Federica
– sequence: 6
  givenname: Sergio
  orcidid: 0000-0002-9004-3033
  surname: Peignier
  fullname: Peignier, Sergio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36833196$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04045297$$DView record in HAL
BookMark eNqFks1v0zAYxiM0xMbYkSuKxAUOGY4_EpsDUrWOrlI10ARny3Vetx6p3dlJx_57HHXQtRIQH2L5_T2P7cfvy-zIeQdZ9rpE54QI9GEBDmJJEUa4Es-yE4xqUlCK2dGT-XF2FuMtSt8AIvYiOyYVJ6QU1UmmJzdwrcZTBx_zUT5WnSrGwW7A5V8fuqV3-czOgwoPeefzqTMQ8knaM7-BRd-qzqfCNXT3PvyIuQl-ta1e_lwHiNEm-eD4KntuVBvh7PF_mn3_fPnt4qqYfZlML0azQjMqusI0uEIYGGYVEUTUpKkBYc0wB8VJZZSuVINwzQwXuKLUzBE1rNEYz7kum5qcZudb396t1cO9alu5DnaVTi9LJIfA5F5gSfBpK1j38xU0GlwX1E7klZX7FWeXcuE3UghWM1olg_dbg-WB7Go0k8NaipwyLOpNmdh3j5sFf9dD7OTKRg1tqxz4PkrMeS244Fj8H605QikBNNz57QF66_vgUsyJqgVjlAixoxaqBWmd8ek6ejCVo5qSkpUlR7v89qg0GlhZnTrP2LS-J3jzNL8_CfxurwSQLaCDjzGAkdp2qkuNkZxt-9dnKQ5U_37GXwT-71U
CitedBy_id crossref_primary_10_3389_fonc_2023_1195392
crossref_primary_10_3389_fimmu_2024_1436114
crossref_primary_10_1016_j_compbiomed_2024_108850
crossref_primary_10_1142_S0218213023600059
crossref_primary_10_3390_biom13030526
Cites_doi 10.1109/ICTAI.2019.00149
10.2202/1544-6115.1128
10.1146/annurev-biophys-070317-032947
10.4018/978-1-60566-685-3.ch001
10.1242/dev.190629
10.1038/nmeth.4463
10.1038/nmeth.2016
10.1073/pnas.0408031102
10.1109/HPEC.2015.7322475
10.1145/1143844.1143874
10.1371/journal.pone.0012776
10.1007/978-1-4939-8882-2
10.1371/journal.pbio.0050008
10.1016/bs.ctdb.2020.02.010
10.1016/S0167-9473(01)00065-2
10.1186/1752-0509-6-145
10.1016/j.patrec.2005.10.010
10.1007/978-0-387-84858-7
10.4018/978-1-60566-685-3.ch019
10.1186/s13059-014-0550-8
10.1214/09-AOS743
10.1109/ICTAI52525.2021.00024
10.1038/s41592-019-0686-2
10.1186/1471-2164-16-S11-S3
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.3390/genes14020269
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest)
Biological Sciences
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2073-4425
ExternalDocumentID 10.3390/genes14020269
PMC9957546
oai:HAL:hal-04045297v1
A743151180
36833196
10_3390_genes14020269
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Saint Vincent and the Grenadines
France
GeographicLocations_xml – name: Saint Vincent and the Grenadines
– name: France
GrantInformation_xml – fundername: French National Institute for Agriculture, Food, and Environment (INRAE), and the National Institute for Applied Sciences (INSA Lyon)
– fundername: BQR INSA Lyon 2023 Neurinfo
GroupedDBID ---
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
PUEGO
7S9
L.6
1XC
ADRAZ
C1A
IPNFZ
RIG
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c549t-fd2602e5256393973d7e02c528ea836fac6ad0275f892644fb04f5dc22b8c1d73
IEDL.DBID M48
ISSN 2073-4425
IngestDate Sun Oct 26 04:16:59 EDT 2025
Tue Sep 30 17:17:06 EDT 2025
Tue Oct 14 20:26:14 EDT 2025
Thu Oct 02 06:59:58 EDT 2025
Fri Sep 05 08:13:15 EDT 2025
Fri Jul 25 11:54:57 EDT 2025
Mon Oct 20 22:55:21 EDT 2025
Mon Oct 20 17:05:01 EDT 2025
Thu Jan 02 22:52:50 EST 2025
Thu Oct 16 04:40:51 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ensemble learning
systems biology
gene regulatory network inference
bioinformatics
machine learning
gene expression
Python
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-fd2602e5256393973d7e02c528ea836fac6ad0275f892644fb04f5dc22b8c1d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8945-0213
0000-0001-5217-8415
0000-0001-7856-9617
0000-0002-9004-3033
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-4425/14/2/269/pdf?version=1674187920
PMID 36833196
PQID 2779554399
PQPubID 2032392
ParticipantIDs unpaywall_primary_10_3390_genes14020269
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9957546
hal_primary_oai_HAL_hal_04045297v1
proquest_miscellaneous_2887989829
proquest_miscellaneous_2780064407
proquest_journals_2779554399
gale_infotracmisc_A743151180
gale_infotracacademiconefile_A743151180
pubmed_primary_36833196
crossref_citationtrail_10_3390_genes14020269
crossref_primary_10_3390_genes14020269
PublicationCentury 2000
PublicationDate 20230120
PublicationDateYYYYMMDD 2023-01-20
PublicationDate_xml – month: 1
  year: 2023
  text: 20230120
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Genes
PublicationTitleAlternate Genes (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Love (ref_21) 2014; 15
Olshen (ref_23) 2010; 38
Virtanen (ref_20) 2020; 17
Friedman (ref_24) 2002; 38
ref_14
ref_13
ref_12
ref_11
ref_10
Shis (ref_2) 2018; 47
ref_19
ref_18
ref_15
Levine (ref_1) 2005; 102
ref_25
Pedregosa (ref_17) 2011; 12
ref_22
Aibar (ref_5) 2017; 14
Fawcett (ref_29) 2006; 27
ref_28
ref_27
ref_26
ref_9
ref_8
Chen (ref_3) 2020; 139
Marbach (ref_16) 2012; 9
ref_4
ref_7
ref_6
References_xml – ident: ref_13
  doi: 10.1109/ICTAI.2019.00149
– ident: ref_26
– ident: ref_8
  doi: 10.2202/1544-6115.1128
– volume: 47
  start-page: 447
  year: 2018
  ident: ref_2
  article-title: Dynamics of bacterial gene regulatory networks
  publication-title: Ann. Rev. Biophys.
  doi: 10.1146/annurev-biophys-070317-032947
– ident: ref_10
  doi: 10.4018/978-1-60566-685-3.ch001
– ident: ref_4
  doi: 10.1242/dev.190629
– volume: 14
  start-page: 1083
  year: 2017
  ident: ref_5
  article-title: Scenic: Single-cell regulatory network inference and clustering
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4463
– volume: 9
  start-page: 796
  year: 2012
  ident: ref_16
  article-title: Wisdom of crowds for robust gene network inference
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2016
– volume: 102
  start-page: 4936
  year: 2005
  ident: ref_1
  article-title: Gene regulatory networks for development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408031102
– ident: ref_18
– ident: ref_6
  doi: 10.1109/HPEC.2015.7322475
– ident: ref_28
  doi: 10.1145/1143844.1143874
– ident: ref_11
  doi: 10.1371/journal.pone.0012776
– ident: ref_7
  doi: 10.1007/978-1-4939-8882-2
– ident: ref_9
  doi: 10.1371/journal.pbio.0050008
– ident: ref_25
– volume: 139
  start-page: 89
  year: 2020
  ident: ref_3
  article-title: Gene regulatory networks during the development of the Drosophila visual system
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/bs.ctdb.2020.02.010
– volume: 38
  start-page: 367
  year: 2002
  ident: ref_24
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: ref_12
  doi: 10.1186/1752-0509-6-145
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_29
  article-title: An introduction to roc analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref_14
  doi: 10.1007/978-0-387-84858-7
– ident: ref_15
  doi: 10.4018/978-1-60566-685-3.ch019
– volume: 15
  start-page: 550
  year: 2014
  ident: ref_21
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with deseq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_17
  article-title: Scikit-learn: Machine learning in python
  publication-title: JMLR
– volume: 38
  start-page: 1638
  year: 2010
  ident: ref_23
  article-title: Successive normalization of rectangular arrays
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS743
– ident: ref_19
– ident: ref_27
  doi: 10.1109/ICTAI52525.2021.00024
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_20
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: ref_22
  doi: 10.1186/1471-2164-16-S11-S3
SSID ssj0000402005
Score 2.3278704
Snippet Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been...
Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed....
SourceID unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 269
SubjectTerms Algorithms
Cell division
Computational Biology - methods
Computer Science
computer software
data collection
Datasets
DNA microarrays
Gene Expression
Gene Regulatory Networks
genes
Genetic regulation
Libraries
Methods
microarray technology
Open source software
Public domain
Public software
Saint Vincent and the Grenadines
sequence analysis
Software
Standardization
Transcription factors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9tnRC8IL4JbMggxF6IljhN4kxCU6EdHYJoqpi0t8ixHYZUJWVLgf73u2ucsGiib1F8vbi58_kuvvsdwFvpF8ILTOTKwuTuMBd4pbl2fRkWPImUDmMqcP6WRtOz4Zfz8HwL0rYWhtIqW5u4NtS6UvSN_IDHcYJbH-6nR4tfLnWNotPVtoWGtK0V9Ic1xNg27HBCxhrAzsdJejrrvrp4FC55YQO2GWC8f_CDTIpPtzklPd_YnKyJ3r6gDMnb7uftLMq7y3IhV3_kfH5jizp-APetb8lGjTI8hC1TPoI7TbfJ1WNQn2cmleOT0hyyERvLWrrjSzJ27HRFCALM1jCwumInVAfICJOazZpu9RUOpE3O-BWjopRmdPLXZtKWa45P4Ox48v3T1LU9FlyFkWHtFhoDGm5C9HyCBH2TQMfG4yrkwkgRRIVUkdR0tFmIhHynIveGRagV57lQvo6DpzAoq9I8ByaEJvFSTyuM-bxIRoYOGcPcaKnQk3PgfftyM2UByKkPxjzDQIRkkfVk4cC7jnzRIG_8j3CfJJXRikR-StrCApwVYVtlI3KSKJDyHNjtUeJKUr3hNyjr7mEEvD0dfc3oHuoNnVDHv33k0apCZpf7VfZPOR143Q0Te0phK021JBpB_h8G0Bto0ORTQ0-OfJ412tVNJ4hEQPbSgbind7359kfKnxdrwPAkQad8iL_c7zR08yt9sflPvoR7SEZ5eGhkd2FQXy7NHvpmdf7KLrhrcaQ34w
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvmGBgQxC7IUsiZM4Di8oohsdgmqaqDSeIsd2tmlVWq3ptu6v313jRgsTE-KpVe9ycerz-XfxfRDyQQal8EPDXVmawo0KAd80024g45KlXOk4wQTnn0M-GEXfD-ID-8JtZsMqwRU_XhppBvrnRqBVXhB5zGM89aa6_HJm3yRhAD02y2bgsq_xGLB4j6yNhnvZb-wot7q2KawZgm_vHaL5CNBjYhjgfG0jsub47hFGQ96EmjcjJu_Pq6lcnMvx-Np2tPOI5KsHaaJQTrbmdbGlLv-o8fj_T_qYPLRIlWaNaj0hd0z1lNxrelcunhH1bd8MZX-3Mp9pRvuylm7_FE0n3VtgPQJqMyJoPaG7mFVIscI13TeH2DBsAoRhE4E-o5ji0lC3L2xcbrWU-JyMdrZ_fR24tmODq8DPrN1Sg3vETAw4KkwB6YQ6MT5TMRNGipCXUnGp8aC0FCkisbLwozLWirFCqEAn4QvSqyaVWSdUCI3Kgh2ywIP0ueQGjyzjwmipABc65NNq-nJly5ljV41xDm4NznbemW2HfGzZp00dj78xbqIu5Li-QZ6SNk0BRoWVsvIMIRe6Zb5DNjqcsC5Vh_wetKm9GZbxHmQ_cvwNDCeedydnAchYKVtujccsZ0mSAsoD6OiQdy0ZxWNAXGUmc-QRiCbBHb-FBzYQbA_KQM7LRn_b4YRchGh9HZJ0NLsz3i6lOj5alh9PU4D4EVy52a6B2__SV__M-Zo8gE8M8APrvUF69encvAHQVxdv7cq-ArmFT60
  priority: 102
  providerName: Unpaywall
Title GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data
URI https://www.ncbi.nlm.nih.gov/pubmed/36833196
https://www.proquest.com/docview/2779554399
https://www.proquest.com/docview/2780064407
https://www.proquest.com/docview/2887989829
https://hal.science/hal-04045297
https://pubmed.ncbi.nlm.nih.gov/PMC9957546
https://www.mdpi.com/2073-4425/14/2/269/pdf?version=1674187920
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402005
  issn: 2073-4425
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2073-4425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402005
  issn: 2073-4425
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402005
  issn: 2073-4425
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2073-4425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402005
  issn: 2073-4425
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402005
  issn: 2073-4425
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2073-4425
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000402005
  issn: 2073-4425
  databaseCode: M48
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELf2EIIviDeBbTIIbV8IJM7LmTShQDs6xKKqotL4FDm2s02q0q5LYf3vd5e4EVFh4luau1wt-3z-nXwPQt4Jt-COp0NbFDq3_ZzDk2LKdkVQsDiUKogwwfk0DQdj_9tZcLZBVnG6ZgKv_-raYT-p8Xzy4eZq-Qk2_BF6nOCyfzxHq-CiI8TCeH92ZWNPKbx7NQ02Nsk2nFsxNnY4NeC_ttP4RR3jyEDPbR-0tynCuS60c2gZ0715gZGT67B0Pbry_qKcieVvMZn8cXQdPyIPDeakSaMkj8mGLp-Qe00XyuVTIr-OdCp6J6U-pAntiUrYvTkaQTpcYmUBanIbaDWlJ5gfSLFWNR01XeynQEibWPJriskqDbV_YyJsy1riMzI-7v_4MrBN7wVbgsdY2YUCR4fpABCRFwNm8VSkHSYDxrXgXlgIGQqFV54FjxFTFbnjF4GSjOVcuirynpOtclrql4RyrnDZsdcV-IJOKEKNl49BrpWQgPAs8n41uZk0hcmxP8YkAwcF1yLrrIVF9lv2WVOR41-MB7hSGeoOyJPCJBzAqLDmVZYgeEIHy7HITocTdpjskN_CWrd_hgW5B8n3DN-BDuHNdfTLBRkrVchWWpyxKIoBrwEItMibloziMbSt1NMF8nDEheBY38EDRwE2-mQg50WjXe1wvJB7aEctEnX0rjPeLqW8vKgLiccxgHUfvjxoNfTuKX31HyN8TR4ALwbpgQXeIVvVfKF3AbhV-R7Z_txPh6O9eh_Cr3E6TH7eAtYrQw8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0NpDaHxBvAkMMAjYl0VL7DyRJlRoR8u6aqo2ad-CYzsbUpWUNWX0z_HbuGucsGii3_Ytii8Xx3e-R3wPQt4JN4scrgNbZDq1vTSCK8WU7Qo_Y3EglR9igvPRKOifet_O_LM18qfOhcGwylomLgW1KiT-I99jYRiD6gN9-mn608auUXi6WrfQEKa1gtpflhgziR2HenEFLtxsf9AFer9n7KB38qVvmy4DtgTfqLQzBSY90z7ofh6DduYq1A6TPou0iHiQCRkIhYd7WRSj9ZCljpf5SjKWRtJVIQe862TT414Mzt_m597oeNz85XHQPXP8qrgn57Gzd44izMXbDIOsrylDoxLWLzAi86a5ezNqc2ueT8XiSkwm11TiwX1yz9iytFMx3wOypvOH5E7V3XLxiMivYz0S3UGuP9IO7YpS2N1LFK70eIEVC6jJmaBlQQeYd0ixBjYd63NsKVbAwKiKUZ9RTIKpRnu_TeRuvsT4mJzeymo_IRt5ketnhEaRQnbCHlrgYzqBCDQeavqpVkKC5WiR3XpxE2kKnmPfjUkCjg_SImnRwiIfGvBpVenjf4A7SKkEJQDgk8IkMsCssJZW0kGjDB03xyLbLUjYubI1_BZo3bwMC333O8ME7wHf4Il4-MsFHDUrJEa8zJJ_m8Eib5phRI8hc7ku5ggTob0JDvsKGFAx2ECUAZ6nFXc10-FBxFE-WyRs8V1rvu2R_MfFskB5HIMT4MGTOw2Hrl7S56s_8jXZ6p8cDZPhYHT4gtyFRzAGEAT8NtkoL-f6JdiFZfrKbD5Kvt_2fv8LE25z_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1NpFMF4Q9wUGGATshaiJ09yQJlRIS8tGVFWbtLfg2M6GVCVlTRn9Rb6KcxonLJro296i2DlxfO7xuRDyhttZYDnKM3mmUrObBnAlmTRt7mYs9IR0fUxw_hZ7w5Pu11P3dIP8qXNhMKyylokrQS0Lgf_IO8z3Q1B9oE87mQ6LGEeDj7OfJnaQwpPWup0G120W5MGq3JhO8jhUy0tw5-YHowhw_5axQf_489DUHQdMAX5SaWYSzHumXLADnBA0tSN9ZTHhskDxwPEyLjwu8aAvC0K0JLLU6mauFIylgbCl7wDcTbKNh18gJLY_9ePxpPnjY6GrZrlVoU_HCa3OGYozG28zDLi-ohi1etg8x-jM66bv9QjOnUU-48tLPp1eUY-De-SutmtpryLE-2RD5Q_IrarT5fIhEV8mKubRKFcfaI9GvORmdIGClo6XWL2A6vwJWhZ0hDmIFOth04k6w_ZiBQzEVbz6nGJCTDXa_62jePMVxEfk5EZ2-zHZyotc7RIaBBJJC_tpgb9pedxTeMDppkpyAVakQd7Xm5sIXfwce3BME3CCEBdJCxcGeddMn1VVP_43cR8xlaA0AHiC66QGWBXW1Up6aKChE2cZZK81E7hYtIZfA66bl2HR72HvKMF7QDd4Ou7_sgFGTQqJFjXz5B9jGORVM4zgMXwuV8UC5wRoe4LzvmYOqBtsJsoAzpOKuprlOF7goKw2iN-iu9Z62yP5j_NVsfIwBIegC0_uNxS6fkufrv_Il-Q28H1yNIoPn5E78ASGA4Ks3yNb5cVCPQcTsUxfaN6j5PtNs_tfhXl4LA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvmGBgQxC7IUsiZM4Di8oohsdgmqaqDSeIsd2tmlVWq3ptu6v313jRgsTE-KpVe9ycerz-XfxfRDyQQal8EPDXVmawo0KAd80024g45KlXOk4wQTnn0M-GEXfD-ID-8JtZsMqwRU_XhppBvrnRqBVXhB5zGM89aa6_HJm3yRhAD02y2bgsq_xGLB4j6yNhnvZb-wot7q2KawZgm_vHaL5CNBjYhjgfG0jsub47hFGQ96EmjcjJu_Pq6lcnMvx-Np2tPOI5KsHaaJQTrbmdbGlLv-o8fj_T_qYPLRIlWaNaj0hd0z1lNxrelcunhH1bd8MZX-3Mp9pRvuylm7_FE0n3VtgPQJqMyJoPaG7mFVIscI13TeH2DBsAoRhE4E-o5ji0lC3L2xcbrWU-JyMdrZ_fR24tmODq8DPrN1Sg3vETAw4KkwB6YQ6MT5TMRNGipCXUnGp8aC0FCkisbLwozLWirFCqEAn4QvSqyaVWSdUCI3Kgh2ywIP0ueQGjyzjwmipABc65NNq-nJly5ljV41xDm4NznbemW2HfGzZp00dj78xbqIu5Li-QZ6SNk0BRoWVsvIMIRe6Zb5DNjqcsC5Vh_wetKm9GZbxHmQ_cvwNDCeedydnAchYKVtujccsZ0mSAsoD6OiQdy0ZxWNAXGUmc-QRiCbBHb-FBzYQbA_KQM7LRn_b4YRchGh9HZJ0NLsz3i6lOj5alh9PU4D4EVy52a6B2__SV__M-Zo8gE8M8APrvUF69encvAHQVxdv7cq-ArmFT60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GReNaDIne%3A+A+Data-Driven+Python+Library+to+Infer+Gene+Regulatory+Networks+from+Gene+Expression+Data&rft.jtitle=Genes&rft.au=Schmitt+Pantel%2C+Pauline&rft.au=Sorin%2C+Baptiste&rft.au=Frout%C3%A9%2C+Timoth%C3%A9e&rft.au=Parisot%2C+Nicolas&rft.date=2023-01-20&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fgenes14020269&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon