GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data
Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in o...
Saved in:
| Published in | Genes Vol. 14; no. 2; p. 269 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
20.01.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4425 2073-4425 |
| DOI | 10.3390/genes14020269 |
Cover
| Abstract | Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods’ implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC. |
|---|---|
| AbstractList | Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC. Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods’ implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC. Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. : In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. : The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC. |
| Audience | Academic |
| Author | Peignier, Sergio Frouté, Timothée Parisot, Nicolas Schmitt, Pauline Calevro, Federica Sorin, Baptiste |
| AuthorAffiliation | 1 Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR0203, F-69621 Villeurbanne, France 2 Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR0203, F-69621 Villeurbanne, France |
| AuthorAffiliation_xml | – name: 2 Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR0203, F-69621 Villeurbanne, France – name: 1 Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR0203, F-69621 Villeurbanne, France |
| Author_xml | – sequence: 1 givenname: Pauline surname: Schmitt fullname: Schmitt, Pauline – sequence: 2 givenname: Baptiste surname: Sorin fullname: Sorin, Baptiste – sequence: 3 givenname: Timothée orcidid: 0000-0002-8945-0213 surname: Frouté fullname: Frouté, Timothée – sequence: 4 givenname: Nicolas orcidid: 0000-0001-5217-8415 surname: Parisot fullname: Parisot, Nicolas – sequence: 5 givenname: Federica orcidid: 0000-0001-7856-9617 surname: Calevro fullname: Calevro, Federica – sequence: 6 givenname: Sergio orcidid: 0000-0002-9004-3033 surname: Peignier fullname: Peignier, Sergio |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36833196$$D View this record in MEDLINE/PubMed https://hal.science/hal-04045297$$DView record in HAL |
| BookMark | eNqFks1v0zAYxiM0xMbYkSuKxAUOGY4_EpsDUrWOrlI10ARny3Vetx6p3dlJx_57HHXQtRIQH2L5_T2P7cfvy-zIeQdZ9rpE54QI9GEBDmJJEUa4Es-yE4xqUlCK2dGT-XF2FuMtSt8AIvYiOyYVJ6QU1UmmJzdwrcZTBx_zUT5WnSrGwW7A5V8fuqV3-czOgwoPeefzqTMQ8knaM7-BRd-qzqfCNXT3PvyIuQl-ta1e_lwHiNEm-eD4KntuVBvh7PF_mn3_fPnt4qqYfZlML0azQjMqusI0uEIYGGYVEUTUpKkBYc0wB8VJZZSuVINwzQwXuKLUzBE1rNEYz7kum5qcZudb396t1cO9alu5DnaVTi9LJIfA5F5gSfBpK1j38xU0GlwX1E7klZX7FWeXcuE3UghWM1olg_dbg-WB7Go0k8NaipwyLOpNmdh3j5sFf9dD7OTKRg1tqxz4PkrMeS244Fj8H605QikBNNz57QF66_vgUsyJqgVjlAixoxaqBWmd8ek6ejCVo5qSkpUlR7v89qg0GlhZnTrP2LS-J3jzNL8_CfxurwSQLaCDjzGAkdp2qkuNkZxt-9dnKQ5U_37GXwT-71U |
| CitedBy_id | crossref_primary_10_3389_fonc_2023_1195392 crossref_primary_10_3389_fimmu_2024_1436114 crossref_primary_10_1016_j_compbiomed_2024_108850 crossref_primary_10_1142_S0218213023600059 crossref_primary_10_3390_biom13030526 |
| Cites_doi | 10.1109/ICTAI.2019.00149 10.2202/1544-6115.1128 10.1146/annurev-biophys-070317-032947 10.4018/978-1-60566-685-3.ch001 10.1242/dev.190629 10.1038/nmeth.4463 10.1038/nmeth.2016 10.1073/pnas.0408031102 10.1109/HPEC.2015.7322475 10.1145/1143844.1143874 10.1371/journal.pone.0012776 10.1007/978-1-4939-8882-2 10.1371/journal.pbio.0050008 10.1016/bs.ctdb.2020.02.010 10.1016/S0167-9473(01)00065-2 10.1186/1752-0509-6-145 10.1016/j.patrec.2005.10.010 10.1007/978-0-387-84858-7 10.4018/978-1-60566-685-3.ch019 10.1186/s13059-014-0550-8 10.1214/09-AOS743 10.1109/ICTAI52525.2021.00024 10.1038/s41592-019-0686-2 10.1186/1471-2164-16-S11-S3 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 1XC VOOES 5PM ADTOC UNPAY |
| DOI | 10.3390/genes14020269 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) Biological Sciences Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 2073-4425 |
| ExternalDocumentID | 10.3390/genes14020269 PMC9957546 oai:HAL:hal-04045297v1 A743151180 36833196 10_3390_genes14020269 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Saint Vincent and the Grenadines France |
| GeographicLocations_xml | – name: Saint Vincent and the Grenadines – name: France |
| GrantInformation_xml | – fundername: French National Institute for Agriculture, Food, and Environment (INRAE), and the National Institute for Applied Sciences (INSA Lyon) – fundername: BQR INSA Lyon 2023 Neurinfo |
| GroupedDBID | --- 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM CGR CUY CVF ECM EIF GROUPED_DOAJ NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 PUEGO 7S9 L.6 1XC ADRAZ C1A IPNFZ RIG VOOES 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c549t-fd2602e5256393973d7e02c528ea836fac6ad0275f892644fb04f5dc22b8c1d73 |
| IEDL.DBID | M48 |
| ISSN | 2073-4425 |
| IngestDate | Sun Oct 26 04:16:59 EDT 2025 Tue Sep 30 17:17:06 EDT 2025 Tue Oct 14 20:26:14 EDT 2025 Thu Oct 02 06:59:58 EDT 2025 Fri Sep 05 08:13:15 EDT 2025 Fri Jul 25 11:54:57 EDT 2025 Mon Oct 20 22:55:21 EDT 2025 Mon Oct 20 17:05:01 EDT 2025 Thu Jan 02 22:52:50 EST 2025 Thu Oct 16 04:40:51 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | ensemble learning systems biology gene regulatory network inference bioinformatics machine learning gene expression Python |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c549t-fd2602e5256393973d7e02c528ea836fac6ad0275f892644fb04f5dc22b8c1d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8945-0213 0000-0001-5217-8415 0000-0001-7856-9617 0000-0002-9004-3033 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-4425/14/2/269/pdf?version=1674187920 |
| PMID | 36833196 |
| PQID | 2779554399 |
| PQPubID | 2032392 |
| ParticipantIDs | unpaywall_primary_10_3390_genes14020269 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9957546 hal_primary_oai_HAL_hal_04045297v1 proquest_miscellaneous_2887989829 proquest_miscellaneous_2780064407 proquest_journals_2779554399 gale_infotracmisc_A743151180 gale_infotracacademiconefile_A743151180 pubmed_primary_36833196 crossref_citationtrail_10_3390_genes14020269 crossref_primary_10_3390_genes14020269 |
| PublicationCentury | 2000 |
| PublicationDate | 20230120 |
| PublicationDateYYYYMMDD | 2023-01-20 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230120 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Genes |
| PublicationTitleAlternate | Genes (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Love (ref_21) 2014; 15 Olshen (ref_23) 2010; 38 Virtanen (ref_20) 2020; 17 Friedman (ref_24) 2002; 38 ref_14 ref_13 ref_12 ref_11 ref_10 Shis (ref_2) 2018; 47 ref_19 ref_18 ref_15 Levine (ref_1) 2005; 102 ref_25 Pedregosa (ref_17) 2011; 12 ref_22 Aibar (ref_5) 2017; 14 Fawcett (ref_29) 2006; 27 ref_28 ref_27 ref_26 ref_9 ref_8 Chen (ref_3) 2020; 139 Marbach (ref_16) 2012; 9 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_13 doi: 10.1109/ICTAI.2019.00149 – ident: ref_26 – ident: ref_8 doi: 10.2202/1544-6115.1128 – volume: 47 start-page: 447 year: 2018 ident: ref_2 article-title: Dynamics of bacterial gene regulatory networks publication-title: Ann. Rev. Biophys. doi: 10.1146/annurev-biophys-070317-032947 – ident: ref_10 doi: 10.4018/978-1-60566-685-3.ch001 – ident: ref_4 doi: 10.1242/dev.190629 – volume: 14 start-page: 1083 year: 2017 ident: ref_5 article-title: Scenic: Single-cell regulatory network inference and clustering publication-title: Nat. Methods doi: 10.1038/nmeth.4463 – volume: 9 start-page: 796 year: 2012 ident: ref_16 article-title: Wisdom of crowds for robust gene network inference publication-title: Nat. Methods doi: 10.1038/nmeth.2016 – volume: 102 start-page: 4936 year: 2005 ident: ref_1 article-title: Gene regulatory networks for development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0408031102 – ident: ref_18 – ident: ref_6 doi: 10.1109/HPEC.2015.7322475 – ident: ref_28 doi: 10.1145/1143844.1143874 – ident: ref_11 doi: 10.1371/journal.pone.0012776 – ident: ref_7 doi: 10.1007/978-1-4939-8882-2 – ident: ref_9 doi: 10.1371/journal.pbio.0050008 – ident: ref_25 – volume: 139 start-page: 89 year: 2020 ident: ref_3 article-title: Gene regulatory networks during the development of the Drosophila visual system publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2020.02.010 – volume: 38 start-page: 367 year: 2002 ident: ref_24 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: ref_12 doi: 10.1186/1752-0509-6-145 – volume: 27 start-page: 861 year: 2006 ident: ref_29 article-title: An introduction to roc analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – ident: ref_14 doi: 10.1007/978-0-387-84858-7 – ident: ref_15 doi: 10.4018/978-1-60566-685-3.ch019 – volume: 15 start-page: 550 year: 2014 ident: ref_21 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with deseq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 12 start-page: 2825 year: 2011 ident: ref_17 article-title: Scikit-learn: Machine learning in python publication-title: JMLR – volume: 38 start-page: 1638 year: 2010 ident: ref_23 article-title: Successive normalization of rectangular arrays publication-title: Ann. Stat. doi: 10.1214/09-AOS743 – ident: ref_19 – ident: ref_27 doi: 10.1109/ICTAI52525.2021.00024 – volume: 17 start-page: 261 year: 2020 ident: ref_20 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – ident: ref_22 doi: 10.1186/1471-2164-16-S11-S3 |
| SSID | ssj0000402005 |
| Score | 2.3278704 |
| Snippet | Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been... Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed.... |
| SourceID | unpaywall pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 269 |
| SubjectTerms | Algorithms Cell division Computational Biology - methods Computer Science computer software data collection Datasets DNA microarrays Gene Expression Gene Regulatory Networks genes Genetic regulation Libraries Methods microarray technology Open source software Public domain Public software Saint Vincent and the Grenadines sequence analysis Software Standardization Transcription factors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9tnRC8IL4JbMggxF6IljhN4kxCU6EdHYJoqpi0t8ixHYZUJWVLgf73u2ucsGiib1F8vbi58_kuvvsdwFvpF8ILTOTKwuTuMBd4pbl2fRkWPImUDmMqcP6WRtOz4Zfz8HwL0rYWhtIqW5u4NtS6UvSN_IDHcYJbH-6nR4tfLnWNotPVtoWGtK0V9Ic1xNg27HBCxhrAzsdJejrrvrp4FC55YQO2GWC8f_CDTIpPtzklPd_YnKyJ3r6gDMnb7uftLMq7y3IhV3_kfH5jizp-APetb8lGjTI8hC1TPoI7TbfJ1WNQn2cmleOT0hyyERvLWrrjSzJ27HRFCALM1jCwumInVAfICJOazZpu9RUOpE3O-BWjopRmdPLXZtKWa45P4Ox48v3T1LU9FlyFkWHtFhoDGm5C9HyCBH2TQMfG4yrkwkgRRIVUkdR0tFmIhHynIveGRagV57lQvo6DpzAoq9I8ByaEJvFSTyuM-bxIRoYOGcPcaKnQk3PgfftyM2UByKkPxjzDQIRkkfVk4cC7jnzRIG_8j3CfJJXRikR-StrCApwVYVtlI3KSKJDyHNjtUeJKUr3hNyjr7mEEvD0dfc3oHuoNnVDHv33k0apCZpf7VfZPOR143Q0Te0phK021JBpB_h8G0Bto0ORTQ0-OfJ412tVNJ4hEQPbSgbind7359kfKnxdrwPAkQad8iL_c7zR08yt9sflPvoR7SEZ5eGhkd2FQXy7NHvpmdf7KLrhrcaQ34w priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvmGBgQxC7IUsiZM4Di8oohsdgmqaqDSeIsd2tmlVWq3ptu6v313jRgsTE-KpVe9ycerz-XfxfRDyQQal8EPDXVmawo0KAd80024g45KlXOk4wQTnn0M-GEXfD-ID-8JtZsMqwRU_XhppBvrnRqBVXhB5zGM89aa6_HJm3yRhAD02y2bgsq_xGLB4j6yNhnvZb-wot7q2KawZgm_vHaL5CNBjYhjgfG0jsub47hFGQ96EmjcjJu_Pq6lcnMvx-Np2tPOI5KsHaaJQTrbmdbGlLv-o8fj_T_qYPLRIlWaNaj0hd0z1lNxrelcunhH1bd8MZX-3Mp9pRvuylm7_FE0n3VtgPQJqMyJoPaG7mFVIscI13TeH2DBsAoRhE4E-o5ji0lC3L2xcbrWU-JyMdrZ_fR24tmODq8DPrN1Sg3vETAw4KkwB6YQ6MT5TMRNGipCXUnGp8aC0FCkisbLwozLWirFCqEAn4QvSqyaVWSdUCI3Kgh2ywIP0ueQGjyzjwmipABc65NNq-nJly5ljV41xDm4NznbemW2HfGzZp00dj78xbqIu5Li-QZ6SNk0BRoWVsvIMIRe6Zb5DNjqcsC5Vh_wetKm9GZbxHmQ_cvwNDCeedydnAchYKVtujccsZ0mSAsoD6OiQdy0ZxWNAXGUmc-QRiCbBHb-FBzYQbA_KQM7LRn_b4YRchGh9HZJ0NLsz3i6lOj5alh9PU4D4EVy52a6B2__SV__M-Zo8gE8M8APrvUF69encvAHQVxdv7cq-ArmFT60 priority: 102 providerName: Unpaywall |
| Title | GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36833196 https://www.proquest.com/docview/2779554399 https://www.proquest.com/docview/2780064407 https://www.proquest.com/docview/2887989829 https://hal.science/hal-04045297 https://pubmed.ncbi.nlm.nih.gov/PMC9957546 https://www.mdpi.com/2073-4425/14/2/269/pdf?version=1674187920 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4425 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2073-4425 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000402005 issn: 2073-4425 databaseCode: M48 dateStart: 20100601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELf2EIIviDeBbTIIbV8IJM7LmTShQDs6xKKqotL4FDm2s02q0q5LYf3vd5e4EVFh4luau1wt-3z-nXwPQt4Jt-COp0NbFDq3_ZzDk2LKdkVQsDiUKogwwfk0DQdj_9tZcLZBVnG6ZgKv_-raYT-p8Xzy4eZq-Qk2_BF6nOCyfzxHq-CiI8TCeH92ZWNPKbx7NQ02Nsk2nFsxNnY4NeC_ttP4RR3jyEDPbR-0tynCuS60c2gZ0715gZGT67B0Pbry_qKcieVvMZn8cXQdPyIPDeakSaMkj8mGLp-Qe00XyuVTIr-OdCp6J6U-pAntiUrYvTkaQTpcYmUBanIbaDWlJ5gfSLFWNR01XeynQEibWPJriskqDbV_YyJsy1riMzI-7v_4MrBN7wVbgsdY2YUCR4fpABCRFwNm8VSkHSYDxrXgXlgIGQqFV54FjxFTFbnjF4GSjOVcuirynpOtclrql4RyrnDZsdcV-IJOKEKNl49BrpWQgPAs8n41uZk0hcmxP8YkAwcF1yLrrIVF9lv2WVOR41-MB7hSGeoOyJPCJBzAqLDmVZYgeEIHy7HITocTdpjskN_CWrd_hgW5B8n3DN-BDuHNdfTLBRkrVchWWpyxKIoBrwEItMibloziMbSt1NMF8nDEheBY38EDRwE2-mQg50WjXe1wvJB7aEctEnX0rjPeLqW8vKgLiccxgHUfvjxoNfTuKX31HyN8TR4ALwbpgQXeIVvVfKF3AbhV-R7Z_txPh6O9eh_Cr3E6TH7eAtYrQw8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0NpDaHxBvAkMMAjYl0VL7DyRJlRoR8u6aqo2ad-CYzsbUpWUNWX0z_HbuGucsGii3_Ytii8Xx3e-R3wPQt4JN4scrgNbZDq1vTSCK8WU7Qo_Y3EglR9igvPRKOifet_O_LM18qfOhcGwylomLgW1KiT-I99jYRiD6gN9-mn608auUXi6WrfQEKa1gtpflhgziR2HenEFLtxsf9AFer9n7KB38qVvmy4DtgTfqLQzBSY90z7ofh6DduYq1A6TPou0iHiQCRkIhYd7WRSj9ZCljpf5SjKWRtJVIQe862TT414Mzt_m597oeNz85XHQPXP8qrgn57Gzd44izMXbDIOsrylDoxLWLzAi86a5ezNqc2ueT8XiSkwm11TiwX1yz9iytFMx3wOypvOH5E7V3XLxiMivYz0S3UGuP9IO7YpS2N1LFK70eIEVC6jJmaBlQQeYd0ixBjYd63NsKVbAwKiKUZ9RTIKpRnu_TeRuvsT4mJzeymo_IRt5ketnhEaRQnbCHlrgYzqBCDQeavqpVkKC5WiR3XpxE2kKnmPfjUkCjg_SImnRwiIfGvBpVenjf4A7SKkEJQDgk8IkMsCssJZW0kGjDB03xyLbLUjYubI1_BZo3bwMC333O8ME7wHf4Il4-MsFHDUrJEa8zJJ_m8Eib5phRI8hc7ku5ggTob0JDvsKGFAx2ECUAZ6nFXc10-FBxFE-WyRs8V1rvu2R_MfFskB5HIMT4MGTOw2Hrl7S56s_8jXZ6p8cDZPhYHT4gtyFRzAGEAT8NtkoL-f6JdiFZfrKbD5Kvt_2fv8LE25z_Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1NpFMF4Q9wUGGATshaiJ09yQJlRIS8tGVFWbtLfg2M6GVCVlTRn9Rb6KcxonLJro296i2DlxfO7xuRDyhttZYDnKM3mmUrObBnAlmTRt7mYs9IR0fUxw_hZ7w5Pu11P3dIP8qXNhMKyylokrQS0Lgf_IO8z3Q1B9oE87mQ6LGEeDj7OfJnaQwpPWup0G120W5MGq3JhO8jhUy0tw5-YHowhw_5axQf_489DUHQdMAX5SaWYSzHumXLADnBA0tSN9ZTHhskDxwPEyLjwu8aAvC0K0JLLU6mauFIylgbCl7wDcTbKNh18gJLY_9ePxpPnjY6GrZrlVoU_HCa3OGYozG28zDLi-ohi1etg8x-jM66bv9QjOnUU-48tLPp1eUY-De-SutmtpryLE-2RD5Q_IrarT5fIhEV8mKubRKFcfaI9GvORmdIGClo6XWL2A6vwJWhZ0hDmIFOth04k6w_ZiBQzEVbz6nGJCTDXa_62jePMVxEfk5EZ2-zHZyotc7RIaBBJJC_tpgb9pedxTeMDppkpyAVakQd7Xm5sIXfwce3BME3CCEBdJCxcGeddMn1VVP_43cR8xlaA0AHiC66QGWBXW1Up6aKChE2cZZK81E7hYtIZfA66bl2HR72HvKMF7QDd4Ou7_sgFGTQqJFjXz5B9jGORVM4zgMXwuV8UC5wRoe4LzvmYOqBtsJsoAzpOKuprlOF7goKw2iN-iu9Z62yP5j_NVsfIwBIegC0_uNxS6fkufrv_Il-Q28H1yNIoPn5E78ASGA4Ks3yNb5cVCPQcTsUxfaN6j5PtNs_tfhXl4LA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvmGBgQxC7IUsiZM4Di8oohsdgmqaqDSeIsd2tmlVWq3ptu6v313jRgsTE-KpVe9ycerz-XfxfRDyQQal8EPDXVmawo0KAd80024g45KlXOk4wQTnn0M-GEXfD-ID-8JtZsMqwRU_XhppBvrnRqBVXhB5zGM89aa6_HJm3yRhAD02y2bgsq_xGLB4j6yNhnvZb-wot7q2KawZgm_vHaL5CNBjYhjgfG0jsub47hFGQ96EmjcjJu_Pq6lcnMvx-Np2tPOI5KsHaaJQTrbmdbGlLv-o8fj_T_qYPLRIlWaNaj0hd0z1lNxrelcunhH1bd8MZX-3Mp9pRvuylm7_FE0n3VtgPQJqMyJoPaG7mFVIscI13TeH2DBsAoRhE4E-o5ji0lC3L2xcbrWU-JyMdrZ_fR24tmODq8DPrN1Sg3vETAw4KkwB6YQ6MT5TMRNGipCXUnGp8aC0FCkisbLwozLWirFCqEAn4QvSqyaVWSdUCI3Kgh2ywIP0ueQGjyzjwmipABc65NNq-nJly5ljV41xDm4NznbemW2HfGzZp00dj78xbqIu5Li-QZ6SNk0BRoWVsvIMIRe6Zb5DNjqcsC5Vh_wetKm9GZbxHmQ_cvwNDCeedydnAchYKVtujccsZ0mSAsoD6OiQdy0ZxWNAXGUmc-QRiCbBHb-FBzYQbA_KQM7LRn_b4YRchGh9HZJ0NLsz3i6lOj5alh9PU4D4EVy52a6B2__SV__M-Zo8gE8M8APrvUF69encvAHQVxdv7cq-ArmFT60 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GReNaDIne%3A+A+Data-Driven+Python+Library+to+Infer+Gene+Regulatory+Networks+from+Gene+Expression+Data&rft.jtitle=Genes&rft.au=Schmitt+Pantel%2C+Pauline&rft.au=Sorin%2C+Baptiste&rft.au=Frout%C3%A9%2C+Timoth%C3%A9e&rft.au=Parisot%2C+Nicolas&rft.date=2023-01-20&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fgenes14020269&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon |