The Aqua-Planet Experiment (APE): CONTROL SST Simulation

Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Meteorological Society of Japan Vol. 91A; pp. 17 - 56
Main Authors McGREGOR, John L., LIU, Yimin, HAYASHI, Yoshi-Yuki, ZHAO, Ming, STRATTON, Rachel, TAKAHASHI, Yoshiyuki O., SUAREZ, Max J., BECHTOLD, Peter, NAKAJIMA, Kensuke, WIRTH, Volkmar, WATANABE, Masahiro, BLACKBURN, Michael, TOMITA, Hirofumi, WANG, Zaizhi, WILLIAMSON, David L., MOLOD, Andrea, KITOH, Akio, RAJENDRAN, Kavirajan, SATOH, Masaki, ISHIWATARI, Masaki, HELD, Isaac M., WEDI, Nils P., BORTH, Hartmut, LEE, Myong-In, OHFUCHI, Wataru, FRANK, Helmut, NAKAMURA, Hisashi, KIMOTO, Masahide
Format Journal Article
LanguageEnglish
Published Meteorological Society of Japan 2013
Subjects
Online AccessGet full text
ISSN0026-1165
2186-9049
2186-9057
2186-9057
DOI10.2151/jmsj.2013-A02

Cover

Abstract Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.
AbstractList Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.
Author OHFUCHI, Wataru
ZHAO, Ming
TOMITA, Hirofumi
SATOH, Masaki
BORTH, Hartmut
KIMOTO, Masahide
WILLIAMSON, David L.
BECHTOLD, Peter
WEDI, Nils P.
TAKAHASHI, Yoshiyuki O.
WANG, Zaizhi
NAKAMURA, Hisashi
ISHIWATARI, Masaki
WATANABE, Masahiro
RAJENDRAN, Kavirajan
STRATTON, Rachel
KITOH, Akio
LIU, Yimin
FRANK, Helmut
MOLOD, Andrea
HAYASHI, Yoshi-Yuki
SUAREZ, Max J.
NAKAJIMA, Kensuke
HELD, Isaac M.
WIRTH, Volkmar
LEE, Myong-In
BLACKBURN, Michael
McGREGOR, John L.
Author_xml – sequence: 1
  fullname: McGREGOR, John L.
  organization: CSIRO Marine and Atmospheric Research, Aspendale, Australia
– sequence: 1
  fullname: LIU, Yimin
  organization: State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, CAS, Beijing, China
– sequence: 1
  fullname: HAYASHI, Yoshi-Yuki
  organization: Faculty of Science, Kobe University, Kobe, Japan
– sequence: 1
  fullname: ZHAO, Ming
  organization: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, USA
– sequence: 1
  fullname: STRATTON, Rachel
  organization: Met Office, Exeter, UK
– sequence: 1
  fullname: TAKAHASHI, Yoshiyuki O.
  organization: Faculty of Science, Kobe University, Kobe, Japan
– sequence: 1
  fullname: SUAREZ, Max J.
  organization: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
– sequence: 1
  fullname: BECHTOLD, Peter
  organization: European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, UK
– sequence: 1
  fullname: NAKAJIMA, Kensuke
  organization: Faculty of Sciences, Kyushu University, Fukuoka, Japan
– sequence: 1
  fullname: WIRTH, Volkmar
  organization: Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
– sequence: 1
  fullname: WATANABE, Masahiro
  organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
– sequence: 1
  fullname: BLACKBURN, Michael
  organization: National Centre for Atmospheric Science, University of Reading, Reading, UK
– sequence: 1
  fullname: TOMITA, Hirofumi
  organization: Advanced Institute for Computational Science, RIKEN, Kobe, Japan
– sequence: 1
  fullname: WANG, Zaizhi
  organization: National Climate Center, China Meteorological Administration, Beijing, China
– sequence: 1
  fullname: WILLIAMSON, David L.
  organization: National Center for Atmospheric Research, Boulder, Colorado, USA
– sequence: 1
  fullname: MOLOD, Andrea
  organization: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
– sequence: 1
  fullname: KITOH, Akio
  organization: Meteorological Research Institute, Tsukuba, Japan
– sequence: 1
  fullname: RAJENDRAN, Kavirajan
  organization: Center for Mathematical Modelling and Computer Simulation, National Aerospace Laboratories, Bangalore, India
– sequence: 1
  fullname: SATOH, Masaki
  organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
– sequence: 1
  fullname: ISHIWATARI, Masaki
  organization: Graduate School of Science, Hokkaido University, Sapporo, Japan
– sequence: 1
  fullname: HELD, Isaac M.
  organization: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, USA
– sequence: 1
  fullname: WEDI, Nils P.
  organization: European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, UK
– sequence: 1
  fullname: BORTH, Hartmut
  organization: Theoretical Meteorology, University of Hamburg, Hamburg, Germany
– sequence: 1
  fullname: LEE, Myong-In
  organization: Ulsan National Institute of Science and Technology, Ulsan, Korea
– sequence: 1
  fullname: OHFUCHI, Wataru
  organization: Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 1
  fullname: FRANK, Helmut
  organization: Research and Development, Deutscher Wetterdienst, Offenbach, Germany
– sequence: 1
  fullname: NAKAMURA, Hisashi
  organization: Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
– sequence: 1
  fullname: KIMOTO, Masahide
  organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
BookMark eNp1j71PwzAQxS1UJEphZM8Ig4sdx47DFlXhQ6poRcNs2Y5DE7luSVxB_3uaBjogWO50uve7e-8cDNzaGQCuMBqHmOLbetXW4xBhAlMUnoBhiDmDCaLxAAwRChnEmNEzcN62dTdGMRsCni9NkL5vJZxb6YwPss-NaaqVcT64TufZzV0wmT3nL7NpsFjkwaJaba301dpdgNNS2tZcfvcReL3P8skjnM4enibpFGoaJR7qRPMyLnWBlaacx4pxRBMkQxQzRRjmujARVxIrpDEhlOjIlIwrrYiKikKRERj3d7duI3cf0lqx2fuTzU5gJLrcosstutxConAPkB7QzbptG1MKXfmDZd_Iyv5BpQcK_qL-_9Lrs15ft16-maNaNr7S1vTqBKcCHeoPd9zrpWyEceQL6DSFHw
CitedBy_id crossref_primary_10_1007_s40641_019_00131_0
crossref_primary_10_1007_s00382_024_07427_4
crossref_primary_10_1007_s00382_014_2138_0
crossref_primary_10_2151_jmsj_2013_A10
crossref_primary_10_3402_tellusa_v67_25151
crossref_primary_10_1088_1748_9326_ad9b3c
crossref_primary_10_1029_2023MS003723
crossref_primary_10_1029_2020MS002179
crossref_primary_10_1029_2020MS002459
crossref_primary_10_2151_jmsj_2020_024
crossref_primary_10_1175_JAS_D_13_0163_1
crossref_primary_10_1029_2022MS003300
crossref_primary_10_1029_2020MS002418
crossref_primary_10_1175_JCLI_D_17_0749_1
crossref_primary_10_1007_s13351_018_8016_7
crossref_primary_10_1175_JAS_D_19_0082_1
crossref_primary_10_1175_JCLI_D_14_00004_1
crossref_primary_10_1038_ngeo2345
crossref_primary_10_5194_gmd_9_1263_2016
crossref_primary_10_1175_JCLI_D_16_0812_1
crossref_primary_10_1002_2016JD025022
crossref_primary_10_1029_2019MS001999
crossref_primary_10_1002_2015MS000560
crossref_primary_10_1029_2021MS002902
crossref_primary_10_5194_gmd_15_1177_2022
crossref_primary_10_3847_PSJ_ac83be
crossref_primary_10_1016_j_icarus_2013_11_027
crossref_primary_10_1175_JAS_D_20_0191_1
crossref_primary_10_1007_s40641_019_00133_y
crossref_primary_10_1186_s40645_014_0018_1
crossref_primary_10_1038_s41612_020_00134_x
crossref_primary_10_5194_gmd_13_685_2020
crossref_primary_10_1175_JAS_D_13_0331_1
crossref_primary_10_1175_JCLI_D_15_0389_1
crossref_primary_10_1002_2015JD023970
crossref_primary_10_1002_2015MS000470
crossref_primary_10_1007_s00703_016_0489_2
crossref_primary_10_1002_2015MS000593
crossref_primary_10_1007_s00703_016_0448_y
crossref_primary_10_1186_s40645_017_0159_0
crossref_primary_10_1175_JCLI_D_17_0723_1
crossref_primary_10_1175_JAS_D_14_0268_1
crossref_primary_10_2151_jmsj_2013_A01
crossref_primary_10_5194_gmd_17_2493_2024
crossref_primary_10_1175_JCLI_D_19_0289_1
crossref_primary_10_2151_jmsj_2013_A05
crossref_primary_10_5194_acp_14_8701_2014
crossref_primary_10_2151_jmsj_2013_A03
crossref_primary_10_1002_2016JD025004
crossref_primary_10_1175_JCLI_D_15_0399_1
crossref_primary_10_1175_JCLI_D_17_0794_1
crossref_primary_10_1007_s00382_017_3682_1
Cites_doi 10.1029/2008JD009785
10.1002/qj.289
10.1175/1520-0493(1998)126<1001:ACOSLA>2.0.CO;2
10.1175/2011JAS3573.1
10.2151/jmsj1965.64.4_451
10.1175/1520-0442(1996)009<1126:ACOCSF>2.0.CO;2
10.1029/2006GL026429
10.1175/2009JAS2953.1
10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
10.1007/BF00231106
10.1007/s00382-006-0111-2
10.1007/s00382-009-0694-5
10.1175/1520-0493(1994)122<1594:CSWASL>2.0.CO;2
10.1029/2006GL027274
10.1016/0169-8095(94)00080-W
10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2
10.1029/2004GL021869
10.1126/science.245.4917.513
10.1029/JD095iD10p16601
10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2
10.1002/qj.49710946206
10.1006/asle.2000.0024
10.1111/j.1600-0870.2008.00339.x
10.1256/qj.06.12
10.2151/jmsj1965.66.6_823
10.1029/95GL00113
10.1029/92JD00722
10.1029/2001JD000448
10.1111/j.1600-0870.2008.00340.x
10.1175/1520-0469(1993)050<0691:MOTICZ>2.0.CO;2
10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2
10.1007/s00382-003-0387-4
10.1126/science.1110252
10.1175/1520-0493(1998)126<0991:ACOSLA>2.0.CO;2
10.1175/1520-0442(2001)014<3065:TROWVA>2.0.CO;2
10.1175/BAMS-88-9-1383
10.1006/asle.2000.0022
10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
10.1175/1520-0469(1993)050<1874:DAEBOT>2.0.CO;2
10.1175/2008BAMS2634.1
10.2151/jmsj.2013-A03
10.1029/2006GL028669
10.1029/2005GL023851
10.1256/qj.02.62
10.2151/jmsj.81.963
10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
10.2151/jmsj.2013-A01
10.1175/JCLI4272.1
10.1175/2008JCLI1891.1
ContentType Journal Article
Copyright 2013 by Meteorological Society of Japan
Copyright_xml – notice: 2013 by Meteorological Society of Japan
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.2151/jmsj.2013-A02
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2186-9057
EndPage 56
ExternalDocumentID 10.2151/jmsj.2013-a02
10_2151_jmsj_2013_A02
article_jmsj_91A_0_91A_2013_A02_article_char_en
GroupedDBID 29L
2WC
5GY
7.U
ABEFU
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
ECGQY
EJD
GROUPED_DOAJ
JSF
KQ8
OK1
P2P
RJT
RNS
TKC
VH1
VOH
ZY4
~02
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c549t-c9c8f7fcd1bc5887b680590a2076b3618cde48ba1b0c13353c4ef68bcb3b4ddb3
IEDL.DBID UNPAY
ISSN 0026-1165
2186-9049
2186-9057
IngestDate Thu Aug 28 10:57:22 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Tue Jul 01 01:59:49 EDT 2025
Wed Sep 03 06:29:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-c9c8f7fcd1bc5887b680590a2076b3618cde48ba1b0c13353c4ef68bcb3b4ddb3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jmsj/91A/0/91A_2013-A02/_pdf
PageCount 40
ParticipantIDs unpaywall_primary_10_2151_jmsj_2013_a02
crossref_citationtrail_10_2151_jmsj_2013_A02
crossref_primary_10_2151_jmsj_2013_A02
jstage_primary_article_jmsj_91A_0_91A_2013_A02_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationTitle Journal of the Meteorological Society of Japan
PublicationYear 2013
Publisher Meteorological Society of Japan
Publisher_xml – name: Meteorological Society of Japan
References Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497-4525.
Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B. P. Briegleb, C. M. Bitz, S.-J. Lin, M. Zhang, and Y. Dai, 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). Tech. Rep. NCAR/TN-464+STR, National Center for Atmospheric Research.
Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo, 2001: The representation of water vapor and its dependence on vertical resolution in the Hadley Centre climate model. J. Climate, 14, 3065-3085.
Webb, M. J., C. A. Senior, D. M. H. Sexton, W. J. Ingram, K. D. Williams, M. A. Ringer, B. J. McAvaney, R. Colman, B. J. Soden, R. Gudgel, T. Knutson, S. Emori, T. Ogura, Y. Tsushima, N. Andronova, B. Li, I. Musat, S. Bony, and K. E. Taylor, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 17-38.
Gleckler, P. J., D. A. Randall, G. Boer, R. Colman, M. Dix, V. Galin, M. Helfand, J. Kiehl, A. Kitoh, W. Lau, X.-Y. Liang, V. Lykossov, B. McAvaney, K. Miyakoda, S. Planton, and W. Stern, 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett., 22, 791-794.
Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385-399.
Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337-1351.
Williamson, D. L., M. Blackburn, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91A, 57-89, doi:10.2151/jmsj.2013-A03.
Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447-459.
Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth. J. Atmos. Sci., 50, 691-713.
MacVean, M. K., 1983: The effects of horizontal diffusion on baroclinic development in a spectral model. Quart. J. Roy. Meteor. Soc., 109, 771-783.
Neale, R. B., and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1, 101-107, doi:10.1006/asle.2000.0022.
Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18 110, doi:10.1029/2008JD009785.
Williamson, D. L., and J. G. Olson, 1998: A comparison of semi-Lagrangian and Eulerian polar climate simulations. Mon. Wea. Rev., 126, 991-1000.
Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943-2975.
Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311-323.
Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, and I. Yagai, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513-515, doi:10.1126/science.245.4917.513.
Lin, J.-L., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665-2690.
Neale, R. B., and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parameterizations. II: Results for the Met Office model. Atmos. Sci. Lett., 1, 108-114, doi:10.1006/asle.2000.0024.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. Tech. Rep., Programme for Climate Model Diagnosis and Intercomparison, 33 pp. [Available at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]
Watanabe, M., 2005: On the presence of annular variability in an aquaplanet model. Geophys. Res. Lett., 32, L05 701, doi:10.1029/2004GL021869.
Williamson, D. L., M. Blackburn, B. J. Hoskins, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2012: The APE Atlas. NCAR Technical Note NCAR/TN-484+STR, National Center for Atmospheric Research, Boulder, Colorado, xxii+508 pp, doi:10.5065/D6FF3QBR. [Available at http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-865.]
Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383-1394.
Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 1874-1887.
Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107, doi:10.1029/2001JD000448.
Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 6, 823-839.
Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374-399.
Sparrow, S. N., M. Blackburn, and J. D. Haigh, 2009: Annular variability and eddy-zonal flow interactions in a simplified atmospheric GCM: Part I - Characterization of high and low frequency behaviour. J. Atmos. Sci., 66, 3075-3094.
Boer, G. J., K. Arpe, M. Blackburn, M. Déqué, W. L. Gates, T. L. Hart, H. Le Treut, E. Roeckner, D. A. Sheinin, I. Simmonds, R. N. B. Smith, T. Tokioka, R. T. Wetherald, and D. L. Williamson, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, 12771-12786.
Hayashi, Y.-Y., and A. Sumi, 1986: The 30-40 day oscillations simulated in an ”aqua planet” model. J. Meteor. Soc. Japan, 64, 451-467.
Chen, M., and J. R. Bates, 1996: A comparison of climate simulations from a semi-Lagrangian and an Eulerian GCM. J. Climate, 9, 1126-1149.
Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963-992.
Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.
Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950-960.
Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.
Williamson, D. L., and J. G. Olson, 1994: Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon. Wea. Rev., 122, 1594-1610.
Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91A, 1-15, doi:10.2151/jmsj.2013-A01.
Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. Del Genio, M. Déqué, V. Dymnikov, V. Galin, W. L. Gates, S. J. Ghan, J. T. Kiehl, A. A. Lacis, H. Le Treut, Z.-H. Li, X.-Z. Liang, B. J. McAvaney, V. P. Meleshko, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, L. Rikus, E. Roeckner, J. F. Royer, U. Schlese, D. A. Sheinin, A. Slingo, A. P. Sokolov, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, and M.-H. Zhang, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601-16637, doi:10.1029/JD095iD10p16601.
Hansen, J., L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T.Novakov, J. Perlwitz, G. Russel, G. A. Schmidt, and N. Tausnev, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431-1435, doi:10.1126/science.1110252.
Slingo, J. M., K. R. Sperber, J. S. Boyle, J.-P. Ceron, M. Dix, B. Dugas, W. Ebisuzaki, J. Fyfe, D. Gregory, J.-F. Gueremy, J. Hack, A. Harzallah, P. Inness, A. Kitoh, W. K.-M. Lau, B. McAvaney, R. Madden, A. Matthews, T. N. Palmer, C.-K. Parkas, D. Randall, and N. Renno, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Climate Dyn., 12, 325-357.
Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for Atmospheric General Circulation Models. J. Climate, 21, 4934-4954.
Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515-53
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B. P. Briegleb, C. M. Bitz, S.-J. Lin, M. Zhang, and Y. Dai, 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). Tech. Rep. NCAR/TN-464+STR, National Center for Atmospheric Research.
– reference: Slingo, J. M., K. R. Sperber, J. S. Boyle, J.-P. Ceron, M. Dix, B. Dugas, W. Ebisuzaki, J. Fyfe, D. Gregory, J.-F. Gueremy, J. Hack, A. Harzallah, P. Inness, A. Kitoh, W. K.-M. Lau, B. McAvaney, R. Madden, A. Matthews, T. N. Palmer, C.-K. Parkas, D. Randall, and N. Renno, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Climate Dyn., 12, 325-357.
– reference: Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383-1394.
– reference: Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, and I. Yagai, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513-515, doi:10.1126/science.245.4917.513.
– reference: Liang, X.-Z., and W.-C. Wang, 1996: Atmospheric ozone climatology for use in General Circulation Models. Atmospheric Sciences Research Center, State University of New York at Albany. [Available at http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/OZONE/OZONE2/o3wangdoc.html.]
– reference: Wang, W.-C., X.-Z. Liang, M. P. Dudek, D. Pollard, and S. L. Thompson, 1995: Atmospheric ozone as a climate gas. Atmos. Res., 37, 247-256.
– reference: Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337-1351.
– reference: Cash, B. A., P. Kushner, and G. Vallis, 2007: Comment on “On the presence of annular variability in an aquaplanet model” by Masahiro Watanabe. Geophys. Res. Lett., 34, L03707, doi:10.1029/2006GL027274.
– reference: Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447-459.
– reference: Williamson, D. L., M. Blackburn, B. J. Hoskins, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2012: The APE Atlas. NCAR Technical Note NCAR/TN-484+STR, National Center for Atmospheric Research, Boulder, Colorado, xxii+508 pp, doi:10.5065/D6FF3QBR. [Available at http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-865.]
– reference: Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 1962-1979.
– reference: Chen, M., and J. R. Bates, 1996: A comparison of climate simulations from a semi-Lagrangian and an Eulerian GCM. J. Climate, 9, 1126-1149.
– reference: Neale, R. B., and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parameterizations. II: Results for the Met Office model. Atmos. Sci. Lett., 1, 108-114, doi:10.1006/asle.2000.0024.
– reference: Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.
– reference: Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. Del Genio, M. Déqué, V. Dymnikov, V. Galin, W. L. Gates, S. J. Ghan, J. T. Kiehl, A. A. Lacis, H. Le Treut, Z.-H. Li, X.-Z. Liang, B. J. McAvaney, V. P. Meleshko, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, L. Rikus, E. Roeckner, J. F. Royer, U. Schlese, D. A. Sheinin, A. Slingo, A. P. Sokolov, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, and M.-H. Zhang, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601-16637, doi:10.1029/JD095iD10p16601.
– reference: Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. part II: Meridional structures and poleward transports. J. Climate, 21, 2313-2325.
– reference: Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963-992.
– reference: Watanabe, M., 2005: On the presence of annular variability in an aquaplanet model. Geophys. Res. Lett., 32, L05 701, doi:10.1029/2004GL021869.
– reference: Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.
– reference: Kållberg, P., P. Berrisford, B. J. Hoskins, A. J. Simmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 Atlas. ERA-40 Report Series No. 19, European Centre for Medium-range Weather Forecasts, Reading, England, 191 pp. [Available at http://www.ecmwf.int/research/era/ERA-40_Atlas.]
– reference: Zappa, G., V. Lucarini, and A. Navarra, 2011: Baroclinic stationary waves in aquaplanet models. J. Atmos. Sci., 68, 1023-1040.
– reference: Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374-399.
– reference: MacVean, M. K., 1983: The effects of horizontal diffusion on baroclinic development in a spectral model. Quart. J. Roy. Meteor. Soc., 109, 771-783.
– reference: Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for Atmospheric General Circulation Models. J. Climate, 21, 4934-4954.
– reference: Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo, 2001: The representation of water vapor and its dependence on vertical resolution in the Hadley Centre climate model. J. Climate, 14, 3065-3085.
– reference: Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91A, 1-15, doi:10.2151/jmsj.2013-A01.
– reference: Williamson, D. L., M. Blackburn, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91A, 57-89, doi:10.2151/jmsj.2013-A03.
– reference: Williamson, D. L., and J. G. Olson, 1998: A comparison of semi-Lagrangian and Eulerian polar climate simulations. Mon. Wea. Rev., 126, 991-1000.
– reference: Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311-323.
– reference: Neale, R. B., and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1, 101-107, doi:10.1006/asle.2000.0022.
– reference: Watanabe, M., 2007: Reply to comment by B. A. Cash et al. on “On the presence of annular variability in an aquaplanet model”. Geophys. Res. Lett., 34, L03 708, doi:10.1029/2006GL028669.
– reference: Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515-533.
– reference: Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18 110, doi:10.1029/2008JD009785.
– reference: Williamson, D. L., and J. G. Olson, 2003: Dependence of aqua-planet simulations on time step. Quart. J. Roy. Meteor. Soc., 129, 2049-2064.
– reference: Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth. J. Atmos. Sci., 50, 691-713.
– reference: Boer, G. J., K. Arpe, M. Blackburn, M. Déqué, W. L. Gates, T. L. Hart, H. Le Treut, E. Roeckner, D. A. Sheinin, I. Simmonds, R. N. B. Smith, T. Tokioka, R. T. Wetherald, and D. L. Williamson, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, 12771-12786.
– reference: Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943-2975.
– reference: Williamson, D. L., and J. G. Olson, 1994: Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon. Wea. Rev., 122, 1594-1610.
– reference: Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107, doi:10.1029/2001JD000448.
– reference: Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 6, 823-839.
– reference: Gleckler, P. J., D. A. Randall, G. Boer, R. Colman, M. Dix, V. Galin, M. Helfand, J. Kiehl, A. Kitoh, W. Lau, X.-Y. Liang, V. Lykossov, B. McAvaney, K. Miyakoda, S. Planton, and W. Stern, 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett., 22, 791-794.
– reference: Hansen, J., L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T.Novakov, J. Perlwitz, G. Russel, G. A. Schmidt, and N. Tausnev, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431-1435, doi:10.1126/science.1110252.
– reference: Hayashi, Y.-Y., and A. Sumi, 1986: The 30-40 day oscillations simulated in an ”aqua planet” model. J. Meteor. Soc. Japan, 64, 451-467.
– reference: Sparrow, S. N., M. Blackburn, and J. D. Haigh, 2009: Annular variability and eddy-zonal flow interactions in a simplified atmospheric GCM: Part I - Characterization of high and low frequency behaviour. J. Atmos. Sci., 66, 3075-3094.
– reference: Williamson, D. L., 2008b: Equivalent finite volume and spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60A, 839-847.
– reference: Wang, W., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423-1457.
– reference: Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595-1612.
– reference: Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 1874-1887.
– reference: Williamson, D. L., J. G. Olson, and B. A. Boville, 1998: A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev., 126, 1001-1012.
– reference: Webb, M. J., C. A. Senior, D. M. H. Sexton, W. J. Ingram, K. D. Williams, M. A. Ringer, B. J. McAvaney, R. Colman, B. J. Soden, R. Gudgel, T. Knutson, S. Emori, T. Ogura, Y. Tsushima, N. Andronova, B. Li, I. Musat, S. Bony, and K. E. Taylor, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 17-38.
– reference: Gates, W. L., J. S. Boyle, C. Covey, C. G. Dease, C. M. Doutriaux, R. S. Drach, M. Fiorino, P. J. Gleckler, J. J. Hnilo, S. M. Marlais, T. J. Phillips, G. L. Potter, B. D. Santer, K. R. Sperber, K. E. Taylor, and D. N. Williams, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29-55.
– reference: Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. Tech. Rep., Programme for Climate Model Diagnosis and Intercomparison, 33 pp. [Available at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]
– reference: Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497-4525.
– reference: Lin, J.-L., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665-2690.
– reference: Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385-399.
– reference: Williamson, D. L., 2008a: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus, 60A, 848-862.
– reference: Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950-960.
– ident: 15
  doi: 10.1029/2008JD009785
– ident: 1
  doi: 10.1002/qj.289
– ident: 54
  doi: 10.1175/1520-0493(1998)126<1001:ACOSLA>2.0.CO;2
– ident: 57
  doi: 10.1175/2011JAS3573.1
– ident: 17
  doi: 10.2151/jmsj1965.64.4_451
– ident: 9
  doi: 10.1175/1520-0442(1996)009<1126:ACOCSF>2.0.CO;2
– ident: 39
  doi: 10.1029/2006GL026429
– ident: 38
  doi: 10.1175/2009JAS2953.1
– ident: 55
– ident: 22
– ident: 48
  doi: 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
– ident: 12
  doi: 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
– ident: 37
  doi: 10.1007/BF00231106
– ident: 47
  doi: 10.1007/s00382-006-0111-2
– ident: 29
  doi: 10.1007/s00382-009-0694-5
– ident: 51
  doi: 10.1175/1520-0493(1994)122<1594:CSWASL>2.0.CO;2
– ident: 5
  doi: 10.1029/2006GL027274
– ident: 44
  doi: 10.1016/0169-8095(94)00080-W
– ident: 18
  doi: 10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2
– ident: 45
  doi: 10.1029/2004GL021869
– ident: 6
  doi: 10.1126/science.245.4917.513
– ident: 7
  doi: 10.1029/JD095iD10p16601
– ident: 27
– ident: 40
– ident: 43
  doi: 10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2
– ident: 28
  doi: 10.1002/qj.49710946206
– ident: 34
  doi: 10.1006/asle.2000.0024
– ident: 49
  doi: 10.1111/j.1600-0870.2008.00339.x
– ident: 10
– ident: 21
  doi: 10.1256/qj.06.12
– ident: 31
  doi: 10.2151/jmsj1965.66.6_823
– ident: 14
  doi: 10.1029/95GL00113
– ident: 3
  doi: 10.1029/92JD00722
– ident: 41
  doi: 10.1029/2001JD000448
– ident: 50
  doi: 10.1111/j.1600-0870.2008.00340.x
– ident: 19
  doi: 10.1175/1520-0469(1993)050<0691:MOTICZ>2.0.CO;2
– ident: 20
  doi: 10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2
– ident: 8
  doi: 10.1007/s00382-003-0387-4
– ident: 16
  doi: 10.1126/science.1110252
– ident: 52
  doi: 10.1175/1520-0493(1998)126<0991:ACOSLA>2.0.CO;2
– ident: 36
  doi: 10.1175/1520-0442(2001)014<3065:TROWVA>2.0.CO;2
– ident: 30
  doi: 10.1175/BAMS-88-9-1383
– ident: 33
  doi: 10.1006/asle.2000.0022
– ident: 13
  doi: 10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
– ident: 35
  doi: 10.1175/1520-0469(1993)050<1874:DAEBOT>2.0.CO;2
– ident: 42
  doi: 10.1175/2008BAMS2634.1
– ident: 11
– ident: 56
  doi: 10.2151/jmsj.2013-A03
– ident: 46
  doi: 10.1029/2006GL028669
– ident: 4
  doi: 10.1029/2005GL023851
– ident: 53
  doi: 10.1256/qj.02.62
– ident: 23
  doi: 10.2151/jmsj.81.963
– ident: 32
  doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
– ident: 2
  doi: 10.2151/jmsj.2013-A01
– ident: 26
  doi: 10.1175/JCLI4272.1
– ident: 24
  doi: 10.1175/2008JCLI1891.1
– ident: 25
SSID ssj0026476
ssib026971113
Score 2.2896593
Snippet Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface...
SourceID unpaywall
crossref
jstage
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms comparison of atmospheric general circulation models (GCMs)
global energy buget
idealized model configuration
precipitation
tropical wave spectrum
Title The Aqua-Planet Experiment (APE): CONTROL SST Simulation
URI https://www.jstage.jst.go.jp/article/jmsj/91A/0/91A_2013-A02/_article/-char/en
https://www.jstage.jst.go.jp/article/jmsj/91A/0/91A_2013-A02/_pdf
UnpaywallVersion publishedVersion
Volume 91A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Meteorological Society of Japan. Ser. II, 2013, Vol.91A, pp.17-56
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2186-9057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0026476
  issn: 0026-1165
  databaseCode: KQ8
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD64XUF98C7Wy5IHWRXMdK5pxgdhKF0WdburbUGfhtxm2dpt6-4U0V_vySQziKAIvsz1JJP5cki-E07OAXgmGZPcqIwKnaYUR0lFRaRiyoZ5VOlEZzqxG4WPJuxwnr79lLXehJferXKBvOjU2FNwug4Wm4EHcbA4v1wM8qhAOx6PZWwzExRhPCg3utqBXZYhHe_B7nxyUnx2rh2M2vAyNsFcxBnNHR3219nQxdy0k15TddBUKPwKSztHXXXNuQHXtquN-P5NLJe_zEAHt0C2bXeOJ1-CbS0D9eO3sI7_9XO34abnp6Rw4nfgilndhf4RUuv1RbMCT_bJaHmGPLe5uwccFY0UX7eC2vxHpibjLmcAeVGcjF--JqPjyezj8Xsync7I9OzcJwy7D_OD8Wx0SH06BqrQiKypyhWvhpXSkVQZjk2ScbtzVcThkMmERVxpk3IpIhkqtHyzRKWmYlwqmchUa5k8gN5qvTIPgcjccIGWjZI6TtGE4iZWeaWVyFN8xsI-vGo7oFQ-VrlNmbEs0Wax_VVatBqMSsSoD_ud-MYF6fiT4BuHfyfm0XdiFvewbNG3Bbr3dg8cDiR9eN5pwV8-hTr06J8lH8P1prObdZ0n0KsvtuYpMp1a7sHOuw98z2v0T-0f-l0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEB-0J6gPfou9U8mDnApmu59p1gdhKT0O8XqHbUGflnztcbXX9u62iPfXO9lkFxEUwZf9nGSzvwzJb8JkBuCVZExyozIqdJpSHCUVFZGKKRvmUaUTnenEbhQ-mrDDefrxS9Z6E155t8oF8qJTY0_B6TpYbAYexMHi_GoxyKMC7Xg8lrHNTFCE8aDc6Oom7LAM6XgPduaTk-Krc-1g1IaXsQnmIs5o7uiwv86GLuamnfSaqoOmQuFXWNo56pZrzl24vV1txI_vYrn8ZQY6uA-ybbtzPPkWbGsZqOvfwjr-1889gHuen5LCiT-EG2b1CPpHSK3Xl80KPNkno-UZ8tzm7jFwVDRSXGwFtfmPTE3GXc4A8qY4Gb99T0bHk9nn409kOp2R6dm5Txj2BOYH49nokPp0DFShEVlTlSteDSulI6kyHJsk43bnqojDIZMJi7jSJuVSRDJUaPlmiUpNxbhUMpGp1jJ5Cr3VemWeAZG54QItGyV1nKIJxU2s8korkaf4jIV9eNd2QKl8rHKbMmNZos1i-6u0aDUYlYhRH_Y78Y0L0vEnwQ8O_07Mo-_ELO5h2aJvC3Tv7R44HEj68LrTgr98CnVo958l9-BO09nNus5z6NWXW_MCmU4tX3pd_gkUYflo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Aqua-Planet+Experiment+%28APE%29%3A+CONTROL+SST+Simulation&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan.+Ser.+II&rft.au=McGREGOR%2C+John+L.&rft.au=LIU%2C+Yimin&rft.au=HAYASHI%2C+Yoshi-Yuki&rft.au=ZHAO%2C+Ming&rft.date=2013&rft.pub=Meteorological+Society+of+Japan&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=91A&rft.spage=17&rft.epage=56&rft_id=info:doi/10.2151%2Fjmsj.2013-A02&rft.externalDocID=article_jmsj_91A_0_91A_2013_A02_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon