The Aqua-Planet Experiment (APE): CONTROL SST Simulation
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different mod...
Saved in:
| Published in | Journal of the Meteorological Society of Japan Vol. 91A; pp. 17 - 56 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Meteorological Society of Japan
2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0026-1165 2186-9049 2186-9057 2186-9057 |
| DOI | 10.2151/jmsj.2013-A02 |
Cover
| Abstract | Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution. |
|---|---|
| AbstractList | Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution. |
| Author | OHFUCHI, Wataru ZHAO, Ming TOMITA, Hirofumi SATOH, Masaki BORTH, Hartmut KIMOTO, Masahide WILLIAMSON, David L. BECHTOLD, Peter WEDI, Nils P. TAKAHASHI, Yoshiyuki O. WANG, Zaizhi NAKAMURA, Hisashi ISHIWATARI, Masaki WATANABE, Masahiro RAJENDRAN, Kavirajan STRATTON, Rachel KITOH, Akio LIU, Yimin FRANK, Helmut MOLOD, Andrea HAYASHI, Yoshi-Yuki SUAREZ, Max J. NAKAJIMA, Kensuke HELD, Isaac M. WIRTH, Volkmar LEE, Myong-In BLACKBURN, Michael McGREGOR, John L. |
| Author_xml | – sequence: 1 fullname: McGREGOR, John L. organization: CSIRO Marine and Atmospheric Research, Aspendale, Australia – sequence: 1 fullname: LIU, Yimin organization: State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, CAS, Beijing, China – sequence: 1 fullname: HAYASHI, Yoshi-Yuki organization: Faculty of Science, Kobe University, Kobe, Japan – sequence: 1 fullname: ZHAO, Ming organization: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, USA – sequence: 1 fullname: STRATTON, Rachel organization: Met Office, Exeter, UK – sequence: 1 fullname: TAKAHASHI, Yoshiyuki O. organization: Faculty of Science, Kobe University, Kobe, Japan – sequence: 1 fullname: SUAREZ, Max J. organization: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA – sequence: 1 fullname: BECHTOLD, Peter organization: European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, UK – sequence: 1 fullname: NAKAJIMA, Kensuke organization: Faculty of Sciences, Kyushu University, Fukuoka, Japan – sequence: 1 fullname: WIRTH, Volkmar organization: Institute for Atmospheric Physics, University of Mainz, Mainz, Germany – sequence: 1 fullname: WATANABE, Masahiro organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan – sequence: 1 fullname: BLACKBURN, Michael organization: National Centre for Atmospheric Science, University of Reading, Reading, UK – sequence: 1 fullname: TOMITA, Hirofumi organization: Advanced Institute for Computational Science, RIKEN, Kobe, Japan – sequence: 1 fullname: WANG, Zaizhi organization: National Climate Center, China Meteorological Administration, Beijing, China – sequence: 1 fullname: WILLIAMSON, David L. organization: National Center for Atmospheric Research, Boulder, Colorado, USA – sequence: 1 fullname: MOLOD, Andrea organization: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA – sequence: 1 fullname: KITOH, Akio organization: Meteorological Research Institute, Tsukuba, Japan – sequence: 1 fullname: RAJENDRAN, Kavirajan organization: Center for Mathematical Modelling and Computer Simulation, National Aerospace Laboratories, Bangalore, India – sequence: 1 fullname: SATOH, Masaki organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan – sequence: 1 fullname: ISHIWATARI, Masaki organization: Graduate School of Science, Hokkaido University, Sapporo, Japan – sequence: 1 fullname: HELD, Isaac M. organization: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, USA – sequence: 1 fullname: WEDI, Nils P. organization: European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, UK – sequence: 1 fullname: BORTH, Hartmut organization: Theoretical Meteorology, University of Hamburg, Hamburg, Germany – sequence: 1 fullname: LEE, Myong-In organization: Ulsan National Institute of Science and Technology, Ulsan, Korea – sequence: 1 fullname: OHFUCHI, Wataru organization: Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan – sequence: 1 fullname: FRANK, Helmut organization: Research and Development, Deutscher Wetterdienst, Offenbach, Germany – sequence: 1 fullname: NAKAMURA, Hisashi organization: Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan – sequence: 1 fullname: KIMOTO, Masahide organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan |
| BookMark | eNp1j71PwzAQxS1UJEphZM8Ig4sdx47DFlXhQ6poRcNs2Y5DE7luSVxB_3uaBjogWO50uve7e-8cDNzaGQCuMBqHmOLbetXW4xBhAlMUnoBhiDmDCaLxAAwRChnEmNEzcN62dTdGMRsCni9NkL5vJZxb6YwPss-NaaqVcT64TufZzV0wmT3nL7NpsFjkwaJaba301dpdgNNS2tZcfvcReL3P8skjnM4enibpFGoaJR7qRPMyLnWBlaacx4pxRBMkQxQzRRjmujARVxIrpDEhlOjIlIwrrYiKikKRERj3d7duI3cf0lqx2fuTzU5gJLrcosstutxConAPkB7QzbptG1MKXfmDZd_Iyv5BpQcK_qL-_9Lrs15ft16-maNaNr7S1vTqBKcCHeoPd9zrpWyEceQL6DSFHw |
| CitedBy_id | crossref_primary_10_1007_s40641_019_00131_0 crossref_primary_10_1007_s00382_024_07427_4 crossref_primary_10_1007_s00382_014_2138_0 crossref_primary_10_2151_jmsj_2013_A10 crossref_primary_10_3402_tellusa_v67_25151 crossref_primary_10_1088_1748_9326_ad9b3c crossref_primary_10_1029_2023MS003723 crossref_primary_10_1029_2020MS002179 crossref_primary_10_1029_2020MS002459 crossref_primary_10_2151_jmsj_2020_024 crossref_primary_10_1175_JAS_D_13_0163_1 crossref_primary_10_1029_2022MS003300 crossref_primary_10_1029_2020MS002418 crossref_primary_10_1175_JCLI_D_17_0749_1 crossref_primary_10_1007_s13351_018_8016_7 crossref_primary_10_1175_JAS_D_19_0082_1 crossref_primary_10_1175_JCLI_D_14_00004_1 crossref_primary_10_1038_ngeo2345 crossref_primary_10_5194_gmd_9_1263_2016 crossref_primary_10_1175_JCLI_D_16_0812_1 crossref_primary_10_1002_2016JD025022 crossref_primary_10_1029_2019MS001999 crossref_primary_10_1002_2015MS000560 crossref_primary_10_1029_2021MS002902 crossref_primary_10_5194_gmd_15_1177_2022 crossref_primary_10_3847_PSJ_ac83be crossref_primary_10_1016_j_icarus_2013_11_027 crossref_primary_10_1175_JAS_D_20_0191_1 crossref_primary_10_1007_s40641_019_00133_y crossref_primary_10_1186_s40645_014_0018_1 crossref_primary_10_1038_s41612_020_00134_x crossref_primary_10_5194_gmd_13_685_2020 crossref_primary_10_1175_JAS_D_13_0331_1 crossref_primary_10_1175_JCLI_D_15_0389_1 crossref_primary_10_1002_2015JD023970 crossref_primary_10_1002_2015MS000470 crossref_primary_10_1007_s00703_016_0489_2 crossref_primary_10_1002_2015MS000593 crossref_primary_10_1007_s00703_016_0448_y crossref_primary_10_1186_s40645_017_0159_0 crossref_primary_10_1175_JCLI_D_17_0723_1 crossref_primary_10_1175_JAS_D_14_0268_1 crossref_primary_10_2151_jmsj_2013_A01 crossref_primary_10_5194_gmd_17_2493_2024 crossref_primary_10_1175_JCLI_D_19_0289_1 crossref_primary_10_2151_jmsj_2013_A05 crossref_primary_10_5194_acp_14_8701_2014 crossref_primary_10_2151_jmsj_2013_A03 crossref_primary_10_1002_2016JD025004 crossref_primary_10_1175_JCLI_D_15_0399_1 crossref_primary_10_1175_JCLI_D_17_0794_1 crossref_primary_10_1007_s00382_017_3682_1 |
| Cites_doi | 10.1029/2008JD009785 10.1002/qj.289 10.1175/1520-0493(1998)126<1001:ACOSLA>2.0.CO;2 10.1175/2011JAS3573.1 10.2151/jmsj1965.64.4_451 10.1175/1520-0442(1996)009<1126:ACOCSF>2.0.CO;2 10.1029/2006GL026429 10.1175/2009JAS2953.1 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2 10.1007/BF00231106 10.1007/s00382-006-0111-2 10.1007/s00382-009-0694-5 10.1175/1520-0493(1994)122<1594:CSWASL>2.0.CO;2 10.1029/2006GL027274 10.1016/0169-8095(94)00080-W 10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2 10.1029/2004GL021869 10.1126/science.245.4917.513 10.1029/JD095iD10p16601 10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2 10.1002/qj.49710946206 10.1006/asle.2000.0024 10.1111/j.1600-0870.2008.00339.x 10.1256/qj.06.12 10.2151/jmsj1965.66.6_823 10.1029/95GL00113 10.1029/92JD00722 10.1029/2001JD000448 10.1111/j.1600-0870.2008.00340.x 10.1175/1520-0469(1993)050<0691:MOTICZ>2.0.CO;2 10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2 10.1007/s00382-003-0387-4 10.1126/science.1110252 10.1175/1520-0493(1998)126<0991:ACOSLA>2.0.CO;2 10.1175/1520-0442(2001)014<3065:TROWVA>2.0.CO;2 10.1175/BAMS-88-9-1383 10.1006/asle.2000.0022 10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2 10.1175/1520-0469(1993)050<1874:DAEBOT>2.0.CO;2 10.1175/2008BAMS2634.1 10.2151/jmsj.2013-A03 10.1029/2006GL028669 10.1029/2005GL023851 10.1256/qj.02.62 10.2151/jmsj.81.963 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2 10.2151/jmsj.2013-A01 10.1175/JCLI4272.1 10.1175/2008JCLI1891.1 |
| ContentType | Journal Article |
| Copyright | 2013 by Meteorological Society of Japan |
| Copyright_xml | – notice: 2013 by Meteorological Society of Japan |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.2151/jmsj.2013-A02 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 2186-9057 |
| EndPage | 56 |
| ExternalDocumentID | 10.2151/jmsj.2013-a02 10_2151_jmsj_2013_A02 article_jmsj_91A_0_91A_2013_A02_article_char_en |
| GroupedDBID | 29L 2WC 5GY 7.U ABEFU AENEX AI. ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBS ECGQY EJD GROUPED_DOAJ JSF KQ8 OK1 P2P RJT RNS TKC VH1 VOH ZY4 ~02 AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c549t-c9c8f7fcd1bc5887b680590a2076b3618cde48ba1b0c13353c4ef68bcb3b4ddb3 |
| IEDL.DBID | UNPAY |
| ISSN | 0026-1165 2186-9049 2186-9057 |
| IngestDate | Thu Aug 28 10:57:22 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Tue Jul 01 01:59:49 EDT 2025 Wed Sep 03 06:29:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c549t-c9c8f7fcd1bc5887b680590a2076b3618cde48ba1b0c13353c4ef68bcb3b4ddb3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jmsj/91A/0/91A_2013-A02/_pdf |
| PageCount | 40 |
| ParticipantIDs | unpaywall_primary_10_2151_jmsj_2013_a02 crossref_citationtrail_10_2151_jmsj_2013_A02 crossref_primary_10_2151_jmsj_2013_A02 jstage_primary_article_jmsj_91A_0_91A_2013_A02_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of the Meteorological Society of Japan |
| PublicationYear | 2013 |
| Publisher | Meteorological Society of Japan |
| Publisher_xml | – name: Meteorological Society of Japan |
| References | Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497-4525. Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B. P. Briegleb, C. M. Bitz, S.-J. Lin, M. Zhang, and Y. Dai, 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). Tech. Rep. NCAR/TN-464+STR, National Center for Atmospheric Research. Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo, 2001: The representation of water vapor and its dependence on vertical resolution in the Hadley Centre climate model. J. Climate, 14, 3065-3085. Webb, M. J., C. A. Senior, D. M. H. Sexton, W. J. Ingram, K. D. Williams, M. A. Ringer, B. J. McAvaney, R. Colman, B. J. Soden, R. Gudgel, T. Knutson, S. Emori, T. Ogura, Y. Tsushima, N. Andronova, B. Li, I. Musat, S. Bony, and K. E. Taylor, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 17-38. Gleckler, P. J., D. A. Randall, G. Boer, R. Colman, M. Dix, V. Galin, M. Helfand, J. Kiehl, A. Kitoh, W. Lau, X.-Y. Liang, V. Lykossov, B. McAvaney, K. Miyakoda, S. Planton, and W. Stern, 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett., 22, 791-794. Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385-399. Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337-1351. Williamson, D. L., M. Blackburn, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91A, 57-89, doi:10.2151/jmsj.2013-A03. Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447-459. Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth. J. Atmos. Sci., 50, 691-713. MacVean, M. K., 1983: The effects of horizontal diffusion on baroclinic development in a spectral model. Quart. J. Roy. Meteor. Soc., 109, 771-783. Neale, R. B., and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1, 101-107, doi:10.1006/asle.2000.0022. Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18 110, doi:10.1029/2008JD009785. Williamson, D. L., and J. G. Olson, 1998: A comparison of semi-Lagrangian and Eulerian polar climate simulations. Mon. Wea. Rev., 126, 991-1000. Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943-2975. Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311-323. Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, and I. Yagai, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513-515, doi:10.1126/science.245.4917.513. Lin, J.-L., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665-2690. Neale, R. B., and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parameterizations. II: Results for the Met Office model. Atmos. Sci. Lett., 1, 108-114, doi:10.1006/asle.2000.0024. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. Tech. Rep., Programme for Climate Model Diagnosis and Intercomparison, 33 pp. [Available at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.] Watanabe, M., 2005: On the presence of annular variability in an aquaplanet model. Geophys. Res. Lett., 32, L05 701, doi:10.1029/2004GL021869. Williamson, D. L., M. Blackburn, B. J. Hoskins, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2012: The APE Atlas. NCAR Technical Note NCAR/TN-484+STR, National Center for Atmospheric Research, Boulder, Colorado, xxii+508 pp, doi:10.5065/D6FF3QBR. [Available at http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-865.] Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383-1394. Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 1874-1887. Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107, doi:10.1029/2001JD000448. Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 6, 823-839. Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374-399. Sparrow, S. N., M. Blackburn, and J. D. Haigh, 2009: Annular variability and eddy-zonal flow interactions in a simplified atmospheric GCM: Part I - Characterization of high and low frequency behaviour. J. Atmos. Sci., 66, 3075-3094. Boer, G. J., K. Arpe, M. Blackburn, M. Déqué, W. L. Gates, T. L. Hart, H. Le Treut, E. Roeckner, D. A. Sheinin, I. Simmonds, R. N. B. Smith, T. Tokioka, R. T. Wetherald, and D. L. Williamson, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, 12771-12786. Hayashi, Y.-Y., and A. Sumi, 1986: The 30-40 day oscillations simulated in an ”aqua planet” model. J. Meteor. Soc. Japan, 64, 451-467. Chen, M., and J. R. Bates, 1996: A comparison of climate simulations from a semi-Lagrangian and an Eulerian GCM. J. Climate, 9, 1126-1149. Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963-992. Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429. Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950-960. Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851. Williamson, D. L., and J. G. Olson, 1994: Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon. Wea. Rev., 122, 1594-1610. Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91A, 1-15, doi:10.2151/jmsj.2013-A01. Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. Del Genio, M. Déqué, V. Dymnikov, V. Galin, W. L. Gates, S. J. Ghan, J. T. Kiehl, A. A. Lacis, H. Le Treut, Z.-H. Li, X.-Z. Liang, B. J. McAvaney, V. P. Meleshko, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, L. Rikus, E. Roeckner, J. F. Royer, U. Schlese, D. A. Sheinin, A. Slingo, A. P. Sokolov, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, and M.-H. Zhang, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601-16637, doi:10.1029/JD095iD10p16601. Hansen, J., L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T.Novakov, J. Perlwitz, G. Russel, G. A. Schmidt, and N. Tausnev, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431-1435, doi:10.1126/science.1110252. Slingo, J. M., K. R. Sperber, J. S. Boyle, J.-P. Ceron, M. Dix, B. Dugas, W. Ebisuzaki, J. Fyfe, D. Gregory, J.-F. Gueremy, J. Hack, A. Harzallah, P. Inness, A. Kitoh, W. K.-M. Lau, B. McAvaney, R. Madden, A. Matthews, T. N. Palmer, C.-K. Parkas, D. Randall, and N. Renno, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Climate Dyn., 12, 325-357. Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for Atmospheric General Circulation Models. J. Climate, 21, 4934-4954. Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515-53 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
| References_xml | – reference: Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B. P. Briegleb, C. M. Bitz, S.-J. Lin, M. Zhang, and Y. Dai, 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). Tech. Rep. NCAR/TN-464+STR, National Center for Atmospheric Research. – reference: Slingo, J. M., K. R. Sperber, J. S. Boyle, J.-P. Ceron, M. Dix, B. Dugas, W. Ebisuzaki, J. Fyfe, D. Gregory, J.-F. Gueremy, J. Hack, A. Harzallah, P. Inness, A. Kitoh, W. K.-M. Lau, B. McAvaney, R. Madden, A. Matthews, T. N. Palmer, C.-K. Parkas, D. Randall, and N. Renno, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Climate Dyn., 12, 325-357. – reference: Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383-1394. – reference: Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, and I. Yagai, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513-515, doi:10.1126/science.245.4917.513. – reference: Liang, X.-Z., and W.-C. Wang, 1996: Atmospheric ozone climatology for use in General Circulation Models. Atmospheric Sciences Research Center, State University of New York at Albany. [Available at http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/OZONE/OZONE2/o3wangdoc.html.] – reference: Wang, W.-C., X.-Z. Liang, M. P. Dudek, D. Pollard, and S. L. Thompson, 1995: Atmospheric ozone as a climate gas. Atmos. Res., 37, 247-256. – reference: Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337-1351. – reference: Cash, B. A., P. Kushner, and G. Vallis, 2007: Comment on “On the presence of annular variability in an aquaplanet model” by Masahiro Watanabe. Geophys. Res. Lett., 34, L03707, doi:10.1029/2006GL027274. – reference: Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447-459. – reference: Williamson, D. L., M. Blackburn, B. J. Hoskins, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2012: The APE Atlas. NCAR Technical Note NCAR/TN-484+STR, National Center for Atmospheric Research, Boulder, Colorado, xxii+508 pp, doi:10.5065/D6FF3QBR. [Available at http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-865.] – reference: Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 1962-1979. – reference: Chen, M., and J. R. Bates, 1996: A comparison of climate simulations from a semi-Lagrangian and an Eulerian GCM. J. Climate, 9, 1126-1149. – reference: Neale, R. B., and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parameterizations. II: Results for the Met Office model. Atmos. Sci. Lett., 1, 108-114, doi:10.1006/asle.2000.0024. – reference: Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851. – reference: Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. Del Genio, M. Déqué, V. Dymnikov, V. Galin, W. L. Gates, S. J. Ghan, J. T. Kiehl, A. A. Lacis, H. Le Treut, Z.-H. Li, X.-Z. Liang, B. J. McAvaney, V. P. Meleshko, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, L. Rikus, E. Roeckner, J. F. Royer, U. Schlese, D. A. Sheinin, A. Slingo, A. P. Sokolov, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, and M.-H. Zhang, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601-16637, doi:10.1029/JD095iD10p16601. – reference: Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. part II: Meridional structures and poleward transports. J. Climate, 21, 2313-2325. – reference: Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963-992. – reference: Watanabe, M., 2005: On the presence of annular variability in an aquaplanet model. Geophys. Res. Lett., 32, L05 701, doi:10.1029/2004GL021869. – reference: Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429. – reference: Kållberg, P., P. Berrisford, B. J. Hoskins, A. J. Simmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 Atlas. ERA-40 Report Series No. 19, European Centre for Medium-range Weather Forecasts, Reading, England, 191 pp. [Available at http://www.ecmwf.int/research/era/ERA-40_Atlas.] – reference: Zappa, G., V. Lucarini, and A. Navarra, 2011: Baroclinic stationary waves in aquaplanet models. J. Atmos. Sci., 68, 1023-1040. – reference: Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374-399. – reference: MacVean, M. K., 1983: The effects of horizontal diffusion on baroclinic development in a spectral model. Quart. J. Roy. Meteor. Soc., 109, 771-783. – reference: Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for Atmospheric General Circulation Models. J. Climate, 21, 4934-4954. – reference: Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo, 2001: The representation of water vapor and its dependence on vertical resolution in the Hadley Centre climate model. J. Climate, 14, 3065-3085. – reference: Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91A, 1-15, doi:10.2151/jmsj.2013-A01. – reference: Williamson, D. L., M. Blackburn, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. L. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91A, 57-89, doi:10.2151/jmsj.2013-A03. – reference: Williamson, D. L., and J. G. Olson, 1998: A comparison of semi-Lagrangian and Eulerian polar climate simulations. Mon. Wea. Rev., 126, 991-1000. – reference: Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311-323. – reference: Neale, R. B., and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1, 101-107, doi:10.1006/asle.2000.0022. – reference: Watanabe, M., 2007: Reply to comment by B. A. Cash et al. on “On the presence of annular variability in an aquaplanet model”. Geophys. Res. Lett., 34, L03 708, doi:10.1029/2006GL028669. – reference: Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515-533. – reference: Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18 110, doi:10.1029/2008JD009785. – reference: Williamson, D. L., and J. G. Olson, 2003: Dependence of aqua-planet simulations on time step. Quart. J. Roy. Meteor. Soc., 129, 2049-2064. – reference: Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth. J. Atmos. Sci., 50, 691-713. – reference: Boer, G. J., K. Arpe, M. Blackburn, M. Déqué, W. L. Gates, T. L. Hart, H. Le Treut, E. Roeckner, D. A. Sheinin, I. Simmonds, R. N. B. Smith, T. Tokioka, R. T. Wetherald, and D. L. Williamson, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, 12771-12786. – reference: Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943-2975. – reference: Williamson, D. L., and J. G. Olson, 1994: Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model. Mon. Wea. Rev., 122, 1594-1610. – reference: Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107, doi:10.1029/2001JD000448. – reference: Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 6, 823-839. – reference: Gleckler, P. J., D. A. Randall, G. Boer, R. Colman, M. Dix, V. Galin, M. Helfand, J. Kiehl, A. Kitoh, W. Lau, X.-Y. Liang, V. Lykossov, B. McAvaney, K. Miyakoda, S. Planton, and W. Stern, 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett., 22, 791-794. – reference: Hansen, J., L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T.Novakov, J. Perlwitz, G. Russel, G. A. Schmidt, and N. Tausnev, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431-1435, doi:10.1126/science.1110252. – reference: Hayashi, Y.-Y., and A. Sumi, 1986: The 30-40 day oscillations simulated in an ”aqua planet” model. J. Meteor. Soc. Japan, 64, 451-467. – reference: Sparrow, S. N., M. Blackburn, and J. D. Haigh, 2009: Annular variability and eddy-zonal flow interactions in a simplified atmospheric GCM: Part I - Characterization of high and low frequency behaviour. J. Atmos. Sci., 66, 3075-3094. – reference: Williamson, D. L., 2008b: Equivalent finite volume and spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60A, 839-847. – reference: Wang, W., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423-1457. – reference: Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595-1612. – reference: Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 1874-1887. – reference: Williamson, D. L., J. G. Olson, and B. A. Boville, 1998: A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev., 126, 1001-1012. – reference: Webb, M. J., C. A. Senior, D. M. H. Sexton, W. J. Ingram, K. D. Williams, M. A. Ringer, B. J. McAvaney, R. Colman, B. J. Soden, R. Gudgel, T. Knutson, S. Emori, T. Ogura, Y. Tsushima, N. Andronova, B. Li, I. Musat, S. Bony, and K. E. Taylor, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 17-38. – reference: Gates, W. L., J. S. Boyle, C. Covey, C. G. Dease, C. M. Doutriaux, R. S. Drach, M. Fiorino, P. J. Gleckler, J. J. Hnilo, S. M. Marlais, T. J. Phillips, G. L. Potter, B. D. Santer, K. R. Sperber, K. E. Taylor, and D. N. Williams, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29-55. – reference: Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. Tech. Rep., Programme for Climate Model Diagnosis and Intercomparison, 33 pp. [Available at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.] – reference: Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497-4525. – reference: Lin, J.-L., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665-2690. – reference: Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385-399. – reference: Williamson, D. L., 2008a: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus, 60A, 848-862. – reference: Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950-960. – ident: 15 doi: 10.1029/2008JD009785 – ident: 1 doi: 10.1002/qj.289 – ident: 54 doi: 10.1175/1520-0493(1998)126<1001:ACOSLA>2.0.CO;2 – ident: 57 doi: 10.1175/2011JAS3573.1 – ident: 17 doi: 10.2151/jmsj1965.64.4_451 – ident: 9 doi: 10.1175/1520-0442(1996)009<1126:ACOCSF>2.0.CO;2 – ident: 39 doi: 10.1029/2006GL026429 – ident: 38 doi: 10.1175/2009JAS2953.1 – ident: 55 – ident: 22 – ident: 48 doi: 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2 – ident: 12 doi: 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2 – ident: 37 doi: 10.1007/BF00231106 – ident: 47 doi: 10.1007/s00382-006-0111-2 – ident: 29 doi: 10.1007/s00382-009-0694-5 – ident: 51 doi: 10.1175/1520-0493(1994)122<1594:CSWASL>2.0.CO;2 – ident: 5 doi: 10.1029/2006GL027274 – ident: 44 doi: 10.1016/0169-8095(94)00080-W – ident: 18 doi: 10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2 – ident: 45 doi: 10.1029/2004GL021869 – ident: 6 doi: 10.1126/science.245.4917.513 – ident: 7 doi: 10.1029/JD095iD10p16601 – ident: 27 – ident: 40 – ident: 43 doi: 10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2 – ident: 28 doi: 10.1002/qj.49710946206 – ident: 34 doi: 10.1006/asle.2000.0024 – ident: 49 doi: 10.1111/j.1600-0870.2008.00339.x – ident: 10 – ident: 21 doi: 10.1256/qj.06.12 – ident: 31 doi: 10.2151/jmsj1965.66.6_823 – ident: 14 doi: 10.1029/95GL00113 – ident: 3 doi: 10.1029/92JD00722 – ident: 41 doi: 10.1029/2001JD000448 – ident: 50 doi: 10.1111/j.1600-0870.2008.00340.x – ident: 19 doi: 10.1175/1520-0469(1993)050<0691:MOTICZ>2.0.CO;2 – ident: 20 doi: 10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2 – ident: 8 doi: 10.1007/s00382-003-0387-4 – ident: 16 doi: 10.1126/science.1110252 – ident: 52 doi: 10.1175/1520-0493(1998)126<0991:ACOSLA>2.0.CO;2 – ident: 36 doi: 10.1175/1520-0442(2001)014<3065:TROWVA>2.0.CO;2 – ident: 30 doi: 10.1175/BAMS-88-9-1383 – ident: 33 doi: 10.1006/asle.2000.0022 – ident: 13 doi: 10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2 – ident: 35 doi: 10.1175/1520-0469(1993)050<1874:DAEBOT>2.0.CO;2 – ident: 42 doi: 10.1175/2008BAMS2634.1 – ident: 11 – ident: 56 doi: 10.2151/jmsj.2013-A03 – ident: 46 doi: 10.1029/2006GL028669 – ident: 4 doi: 10.1029/2005GL023851 – ident: 53 doi: 10.1256/qj.02.62 – ident: 23 doi: 10.2151/jmsj.81.963 – ident: 32 doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2 – ident: 2 doi: 10.2151/jmsj.2013-A01 – ident: 26 doi: 10.1175/JCLI4272.1 – ident: 24 doi: 10.1175/2008JCLI1891.1 – ident: 25 |
| SSID | ssj0026476 ssib026971113 |
| Score | 2.2896593 |
| Snippet | Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface... |
| SourceID | unpaywall crossref jstage |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | comparison of atmospheric general circulation models (GCMs) global energy buget idealized model configuration precipitation tropical wave spectrum |
| Title | The Aqua-Planet Experiment (APE): CONTROL SST Simulation |
| URI | https://www.jstage.jst.go.jp/article/jmsj/91A/0/91A_2013-A02/_article/-char/en https://www.jstage.jst.go.jp/article/jmsj/91A/0/91A_2013-A02/_pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 91A |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of the Meteorological Society of Japan. Ser. II, 2013, Vol.91A, pp.17-56 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2186-9057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0026476 issn: 0026-1165 databaseCode: KQ8 dateStart: 19650101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD64XUF98C7Wy5IHWRXMdK5pxgdhKF0WdburbUGfhtxm2dpt6-4U0V_vySQziKAIvsz1JJP5cki-E07OAXgmGZPcqIwKnaYUR0lFRaRiyoZ5VOlEZzqxG4WPJuxwnr79lLXehJferXKBvOjU2FNwug4Wm4EHcbA4v1wM8qhAOx6PZWwzExRhPCg3utqBXZYhHe_B7nxyUnx2rh2M2vAyNsFcxBnNHR3219nQxdy0k15TddBUKPwKSztHXXXNuQHXtquN-P5NLJe_zEAHt0C2bXeOJ1-CbS0D9eO3sI7_9XO34abnp6Rw4nfgilndhf4RUuv1RbMCT_bJaHmGPLe5uwccFY0UX7eC2vxHpibjLmcAeVGcjF--JqPjyezj8Xsync7I9OzcJwy7D_OD8Wx0SH06BqrQiKypyhWvhpXSkVQZjk2ScbtzVcThkMmERVxpk3IpIhkqtHyzRKWmYlwqmchUa5k8gN5qvTIPgcjccIGWjZI6TtGE4iZWeaWVyFN8xsI-vGo7oFQ-VrlNmbEs0Wax_VVatBqMSsSoD_ud-MYF6fiT4BuHfyfm0XdiFvewbNG3Bbr3dg8cDiR9eN5pwV8-hTr06J8lH8P1prObdZ0n0KsvtuYpMp1a7sHOuw98z2v0T-0f-l0 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEB-0J6gPfou9U8mDnApmu59p1gdhKT0O8XqHbUGflnztcbXX9u62iPfXO9lkFxEUwZf9nGSzvwzJb8JkBuCVZExyozIqdJpSHCUVFZGKKRvmUaUTnenEbhQ-mrDDefrxS9Z6E155t8oF8qJTY0_B6TpYbAYexMHi_GoxyKMC7Xg8lrHNTFCE8aDc6Oom7LAM6XgPduaTk-Krc-1g1IaXsQnmIs5o7uiwv86GLuamnfSaqoOmQuFXWNo56pZrzl24vV1txI_vYrn8ZQY6uA-ybbtzPPkWbGsZqOvfwjr-1889gHuen5LCiT-EG2b1CPpHSK3Xl80KPNkno-UZ8tzm7jFwVDRSXGwFtfmPTE3GXc4A8qY4Gb99T0bHk9nn409kOp2R6dm5Txj2BOYH49nokPp0DFShEVlTlSteDSulI6kyHJsk43bnqojDIZMJi7jSJuVSRDJUaPlmiUpNxbhUMpGp1jJ5Cr3VemWeAZG54QItGyV1nKIJxU2s8korkaf4jIV9eNd2QKl8rHKbMmNZos1i-6u0aDUYlYhRH_Y78Y0L0vEnwQ8O_07Mo-_ELO5h2aJvC3Tv7R44HEj68LrTgr98CnVo958l9-BO09nNus5z6NWXW_MCmU4tX3pd_gkUYflo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Aqua-Planet+Experiment+%28APE%29%3A+CONTROL+SST+Simulation&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan.+Ser.+II&rft.au=McGREGOR%2C+John+L.&rft.au=LIU%2C+Yimin&rft.au=HAYASHI%2C+Yoshi-Yuki&rft.au=ZHAO%2C+Ming&rft.date=2013&rft.pub=Meteorological+Society+of+Japan&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=91A&rft.spage=17&rft.epage=56&rft_id=info:doi/10.2151%2Fjmsj.2013-A02&rft.externalDocID=article_jmsj_91A_0_91A_2013_A02_article_char_en |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon |