Diabetic Retinopathy Features Segmentation without Coding Experience with Computer Vision Models YOLOv8 and YOLOv9
Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrh...
Saved in:
| Published in | Vision (Basel) Vol. 8; no. 3; p. 48 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.09.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2411-5150 2411-5150 |
| DOI | 10.3390/vision8030048 |
Cover
| Abstract | Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets. |
|---|---|
| AbstractList | Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets. Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets.Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets. |
| Audience | Academic |
| Author | Ozoliņš, Maris Rizzieri, Nicola Dall’Asta, Luca |
| AuthorAffiliation | 1 Department of Optometry and Vision Science, Faculty of Physics, Mathematics and Optometry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia 3 Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia 2 Research and Development, LIFE Srl, IT-70100 Bari, Italy |
| AuthorAffiliation_xml | – name: 3 Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia – name: 1 Department of Optometry and Vision Science, Faculty of Physics, Mathematics and Optometry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia – name: 2 Research and Development, LIFE Srl, IT-70100 Bari, Italy |
| Author_xml | – sequence: 1 givenname: Nicola orcidid: 0009-0003-6189-4255 surname: Rizzieri fullname: Rizzieri, Nicola – sequence: 2 givenname: Luca orcidid: 0000-0002-6700-6701 surname: Dall’Asta fullname: Dall’Asta, Luca – sequence: 3 givenname: Maris surname: Ozoliņš fullname: Ozoliņš, Maris |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39311316$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstr3DAQxk1JadI0x16LoZdeNtXDD-lUQpq0gS0LfUFPQpZGu1psyZHsTfe_r7JOk2ygFIMsRr_5NN9oXmYHzjvIstcYnVLK0fuNjdY7hihCBXuWHZEC41mJS3TwaH-YncS4RgiRBHFUvcgOKacYU1wdZeGjlQ0MVuVf0-p8L4fVNr8EOYwBYv4Nlh24QQ7pmvzGDis_Dvm519Yt84vfPQQLTsHuJIW7fhwg5D93VeVfvIY25r8W88WG5dLpactfZc-NbCOc3P2Psx-XF9_PP8_mi09X52fzmSoLPsw4IUzRAjhhkjVlUxOmSdFoTbAxYFRdE2NQITmtCqrLopJVJXEFhtdGQ6npcXY16Wov16IPtpNhK7y0YhfwYSlkSM5bEIoRg2pUUNOo1COQVGJSc665amqDqqR1OmmNrpfbG9m294IYidu3EHtvkRI-TAn92HSgVWpikO1eFfsnzq7E0m8ExgWuOaFJ4d2dQvDXI8RBdDYqaFvpwI9RUIwY5aQucULfPkHXfgwuNTdRGFW8YIQ9UEuZLFtnfLpY3YqKM4ZxEkOofnC6R6VPQ2dVGj9jU3wv4c1jp_cW_85YAmYToIKPMYD5b-voE17ZaQJTJbb9R9Yf0i31gg |
| CitedBy_id | crossref_primary_10_3390_app142411926 crossref_primary_10_1016_j_bspc_2024_107040 crossref_primary_10_3390_pr12122892 crossref_primary_10_3390_aerospace12010031 |
| Cites_doi | 10.3390/s22176441 10.1038/s41598-020-62022-x 10.3390/s23167190 10.1590/1677-5449.200186 10.1016/j.compbiomed.2021.105000 10.1016/j.ins.2019.06.011 10.1109/CVPR.2018.00913 10.1001/jama.2016.17216 10.1016/S0140-6736(23)01301-6 10.5566/ias.1155 10.1016/j.xops.2022.100228 10.1016/S0140-6736(20)30925-9 10.1109/CVPR.2016.308 10.3390/app14125103 10.1016/j.compmedimag.2015.03.004 10.4103/ijo.IJO_1989_18 10.1001/jama.2020.0734 10.2337/dc11-1909 10.1016/S0161-6420(13)38014-2 10.1007/s10278-012-9549-4 10.1167/iovs.64.15.47 10.1016/j.ophtha.2021.04.027 10.1016/j.ins.2007.07.020 10.1109/ACCESS.2023.3271895 10.1016/S2589-7500(19)30108-6 10.1109/CVPR.2016.91 10.3390/s21113704 10.1056/NEJMra1005073 10.3390/bioengineering10121405 10.1016/S0161-6420(03)00475-5 10.1007/s13534-019-00136-6 10.3389/fendo.2022.1079217 10.1016/S0140-6736(20)32374-6 10.3390/make5040083 10.1038/s41598-021-97649-x 10.1109/IJCNN52387.2021.9534354 10.1016/j.compbiomed.2019.103537 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/vision8030048 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 2411-5150 |
| ExternalDocumentID | oai_doaj_org_article_c82f07043fbc489ea3a12799d9cb7f06 10.3390/vision8030048 PMC11417923 A811839007 39311316 10_3390_vision8030048 |
| Genre | Journal Article |
| GroupedDBID | 8FE 8FH AAFWJ AAYXX ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c549t-9228c34e928a8b5b728d24bdd21ffefc772ff04a93643d546a66a16ef97fde5d3 |
| IEDL.DBID | DOA |
| ISSN | 2411-5150 |
| IngestDate | Tue Oct 14 18:37:40 EDT 2025 Sun Oct 26 02:59:24 EDT 2025 Tue Sep 30 17:07:39 EDT 2025 Thu Sep 04 20:29:22 EDT 2025 Fri Jul 25 11:50:41 EDT 2025 Mon Oct 20 22:48:40 EDT 2025 Mon Oct 20 16:58:13 EDT 2025 Thu Apr 03 07:07:13 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Thu Oct 16 04:36:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | YOLOv9 segmentation diabetic retinopathy retinal fundus YOLOv8 computer vision |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c549t-9228c34e928a8b5b728d24bdd21ffefc772ff04a93643d546a66a16ef97fde5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6700-6701 0009-0003-6189-4255 |
| OpenAccessLink | https://doaj.org/article/c82f07043fbc489ea3a12799d9cb7f06 |
| PMID | 39311316 |
| PQID | 3110694828 |
| PQPubID | 2059539 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c82f07043fbc489ea3a12799d9cb7f06 unpaywall_primary_10_3390_vision8030048 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11417923 proquest_miscellaneous_3108392751 proquest_journals_3110694828 gale_infotracmisc_A811839007 gale_infotracacademiconefile_A811839007 pubmed_primary_39311316 crossref_primary_10_3390_vision8030048 crossref_citationtrail_10_3390_vision8030048 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Vision (Basel) |
| PublicationTitleAlternate | Vision (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 Vos (ref_3) 2020; 396 Wilkinson (ref_11) 2003; 110 ref_12 ref_56 ref_52 ref_51 ref_18 Teo (ref_9) 2021; 128 Lim (ref_15) 2022; 3 Faes (ref_23) 2019; 1 ref_25 ref_22 ref_21 Padhy (ref_16) 2019; 67 Akella (ref_54) 2023; 262 Mahdi (ref_50) 2023; 16 ref_29 Zheng (ref_39) 2020; 34 ref_28 ref_27 Gulshan (ref_17) 2016; 316 ref_26 Dieleman (ref_5) 2020; 323 Santos (ref_53) 2023; 11 Chan (ref_2) 2021; 396 Rizzieri (ref_35) 2024; 15 Tariq (ref_13) 2013; 26 Ong (ref_6) 2023; 402 Polo (ref_55) 2020; 19 ref_36 ref_34 ref_33 ref_32 Li (ref_40) 2020; Volume 33 ref_30 Zhang (ref_24) 2014; 33 Antonetti (ref_7) 2012; 366 Li (ref_31) 2019; 501 ref_37 Wong (ref_10) 2023; 64 Yun (ref_19) 2008; 178 Yau (ref_8) 2012; 35 Imani (ref_20) 2015; 43 ref_47 ref_46 Akut (ref_48) 2019; 9 ref_45 ref_44 ref_43 ref_42 ref_41 ref_1 ref_49 Terven (ref_38) 2023; 5 ref_4 |
| References_xml | – ident: ref_32 doi: 10.3390/s22176441 – volume: Volume 33 start-page: 21002 year: 2020 ident: ref_40 article-title: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection publication-title: Proceedings of the Advances in Neural Information Processing Systems – ident: ref_30 doi: 10.1038/s41598-020-62022-x – ident: ref_42 doi: 10.3390/s23167190 – volume: 19 start-page: e20200186 year: 2020 ident: ref_55 article-title: Use of ROC Curves in Clinical and Experimental Studies publication-title: J. Vasc. Bras. doi: 10.1590/1677-5449.200186 – ident: ref_22 doi: 10.1016/j.compbiomed.2021.105000 – ident: ref_26 – volume: 501 start-page: 511 year: 2019 ident: ref_31 article-title: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.06.011 – ident: ref_43 doi: 10.1109/CVPR.2018.00913 – volume: 262 start-page: 1 year: 2023 ident: ref_54 article-title: An Advanced Deep Learning Method to Detect and Classify Diabetic Retinopathy Based on Color Fundus Images publication-title: Graefes Arch. Clin. Exp. Ophthalmol. – ident: ref_1 – volume: 316 start-page: 2402 year: 2016 ident: ref_17 article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 402 start-page: 203 year: 2023 ident: ref_6 article-title: Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021 publication-title: Lancet doi: 10.1016/S0140-6736(23)01301-6 – volume: 33 start-page: 231 year: 2014 ident: ref_24 article-title: Feedback on a publicly distributed image database: The messidor database publication-title: Image Anal. Stereol. doi: 10.5566/ias.1155 – volume: 15 start-page: 1 year: 2024 ident: ref_35 article-title: AVA Spring Meeting 2024 Loughborough University publication-title: i-Perception – ident: ref_4 – volume: 3 start-page: 100228 year: 2022 ident: ref_15 article-title: Artificial Intelligence Detection of Diabetic Retinopathy publication-title: Ophthalmol. Sci. doi: 10.1016/j.xops.2022.100228 – volume: 396 start-page: 1204 year: 2020 ident: ref_3 article-title: Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019 publication-title: Lancet doi: 10.1016/S0140-6736(20)30925-9 – ident: ref_18 doi: 10.1109/CVPR.2016.308 – ident: ref_51 doi: 10.3390/app14125103 – volume: 34 start-page: 12993 year: 2020 ident: ref_39 article-title: Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 43 start-page: 78 year: 2015 ident: ref_20 article-title: Fully Automated Diabetic Retinopathy Screening Using Morphological Component Analysis publication-title: Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. doi: 10.1016/j.compmedimag.2015.03.004 – ident: ref_41 – volume: 67 start-page: 1004 year: 2019 ident: ref_16 article-title: Artificial Intelligence in Diabetic Retinopathy: A Natural Step to the Future publication-title: Indian J. Ophthalmol. doi: 10.4103/ijo.IJO_1989_18 – volume: 323 start-page: 863 year: 2020 ident: ref_5 article-title: US Health Care Spending by Payer and Health Condition, 1996–2016 publication-title: JAMA doi: 10.1001/jama.2020.0734 – volume: 35 start-page: 556 year: 2012 ident: ref_8 article-title: Global Prevalence and Major Risk Factors of Diabetic Retinopathy publication-title: Diabetes Care doi: 10.2337/dc11-1909 – ident: ref_14 doi: 10.1016/S0161-6420(13)38014-2 – volume: 26 start-page: 803 year: 2013 ident: ref_13 article-title: Automated Detection and Grading of Diabetic Maculopathy in Digital Retinal Images publication-title: J. Digit. Imaging doi: 10.1007/s10278-012-9549-4 – ident: ref_45 – volume: 16 start-page: 2023 year: 2023 ident: ref_50 article-title: Optic Disc Localization in Retinal Fundus Images Based on You Only Look Once Network (YOLO) publication-title: Int. J. Intell. Eng. Syst. – volume: 64 start-page: 47 year: 2023 ident: ref_10 article-title: The Diabetic Retinopathy “Pandemic” and Evolving Global Strategies: The 2023 Friedenwald Lecture publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.64.15.47 – volume: 128 start-page: 1580 year: 2021 ident: ref_9 article-title: Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.04.027 – ident: ref_28 – volume: 178 start-page: 106 year: 2008 ident: ref_19 article-title: Identification of Different Stages of Diabetic Retinopathy Using Retinal Optical Images publication-title: Inf. Sci. doi: 10.1016/j.ins.2007.07.020 – ident: ref_34 – ident: ref_47 – volume: 11 start-page: 43603 year: 2023 ident: ref_53 article-title: A New Approach for Fundus Lesions Instance Segmentation Based on Mask R-CNN X101-FPN Pre-Trained Architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3271895 – volume: 1 start-page: e232 year: 2019 ident: ref_23 article-title: Automated Deep Learning Design for Medical Image Classification by Health-Care Professionals with No Coding Experience: A Feasibility Study publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(19)30108-6 – ident: ref_27 doi: 10.1109/CVPR.2016.91 – ident: ref_37 – ident: ref_44 – ident: ref_49 doi: 10.3390/s21113704 – volume: 366 start-page: 1227 year: 2012 ident: ref_7 article-title: Diabetic Retinopathy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1005073 – ident: ref_29 doi: 10.3390/bioengineering10121405 – ident: ref_25 – ident: ref_33 – ident: ref_46 – volume: 110 start-page: 1677 year: 2003 ident: ref_11 article-title: Proposed International Clinical Diabetic Retinopathy and Diabetic Macular Edema Disease Severity Scales publication-title: Ophthalmology doi: 10.1016/S0161-6420(03)00475-5 – volume: 9 start-page: 497 year: 2019 ident: ref_48 article-title: FILM: Finding the Location of Microaneurysms on the Retina publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-019-00136-6 – ident: ref_12 doi: 10.3389/fendo.2022.1079217 – volume: 396 start-page: 2019 year: 2021 ident: ref_2 article-title: The Lancet Commission on Diabetes: Using Data to Transform Diabetes Care and Patient Lives publication-title: Lancet doi: 10.1016/S0140-6736(20)32374-6 – ident: ref_36 – volume: 5 start-page: 1680 year: 2023 ident: ref_38 article-title: A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make5040083 – ident: ref_21 doi: 10.1038/s41598-021-97649-x – ident: ref_52 doi: 10.1109/IJCNN52387.2021.9534354 – ident: ref_56 doi: 10.1016/j.compbiomed.2019.103537 |
| SSID | ssj0002048906 |
| Score | 2.3210366 |
| Snippet | Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 48 |
| SubjectTerms | Algorithms Artificial intelligence Blood vessels Computer vision Datasets Deep learning Diabetes Diabetes mellitus Diabetic retinopathy Disease Early experience Edema Exudates Eye diseases Hemorrhage Image processing Lesions Localization Machine vision Mathematical functions Neural networks retinal fundus Retinopathy Segmentation YOLOv8 YOLOv9 |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9RAEN_gkagvRsGPKpo1MfhiQ7u7bXcfjDkIhBg5DIrBp2a7H0hytOdxp7n_3pl-QTXydulOL53O7HxsZ35DyJtEcx8lxmDkxkLhlQslUyCQmDnFNSRFDhucjybp4an4eJacrZFJ1wuDZZWdTawNta0MnpHvcPBTqRKQIHyY_QxxahR-Xe1GaOh2tIJ9X0OM3SHrDJGxRmR9d3_y-aQ_dUGYWhWlDdgmh3x_p2nhlhEiT8mBc6ox_P-11Ddc1d9llPeW5Uyvfuvp9IaPOnhIHrTBJR032vCIrLlyg2yOS0isL1d0m9blnvU5-ga5e9R-Vd8k86Ys5sLQE2yArnBK8YpicLiEZJx-ceeXbYdSSfHctlou6F6FTo9eIyXXK7QbEkG_1QxTHLU2vaLfjz8d_5JUl7b5qR6T04P9r3uHYTuLITSQQS5CxZg0XDjFpJZFUmRMWiYKa1nsvfMGRO19JLTiEOLYRKQ6TXWcOq8yb11i-RMyKqvSPSPUKieMUJkWOOskYVrGHoLIhFuTpRkTAXnXCSE3LVA5zsuY5pCwoMzygcwCst2TzxqEjv8R7qJEeyIE1q4vVPPzvN2nuZHMgxUU3BcGVMVprmOWKWWVKTIfpQF5i_qQ4_aHhzK67WIA1hBIKx_LGGNOiLwCsjWghG1rhsudRuWt2bjKr5U8IK_7ZbwTS-FKVy2RJsKgNkvigDxtFLBniSv4Bx7DU8qBag54Hq6UFz9qUHHIi2PEkgQGey2-_X0-v52DF-Q-gwCwqcfbIqPFfOleQgC3KF61u_IPt5BG4g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTgJe-Nj4CAxkJDReyJrYTmJLSKhMTBNiGwKKtgcUOY49Krqk6pqh8tdzl4-yDIEQb1V9qXLO5e537t3vCHkWae6CyBhEbswXTllfMgUPJGRWcQ1JkcUG54PDeH8s3h5Hx2vkZdcLg2WVkIpPaicN0SX0IeAGQznkQyGHs9y9umjPkSDyQiiHCAsOeD2OAIkPyPr48P3oBOfJdVc2tJocMvth06wtA-SYkr0wVLP1_-6TLwWlqwWT16tippff9XR6KRrt3SJfOj2aIpRvO9Ui2zE_rlA8_q-it8nNFqbSUWNXd8iaLTbI5qiAFP1sSbdpXThan8hvkGsH7f_zm2TeFNhMDP2ArdQlzjteUoSZFaT19KM9PWt7nQqKJ8BltaC7JYZP-otzuV6h3bgJ-rneUIpD26bn9OTo3dGFpLrIm4_qLhnvvfm0u--3Ux18A7nowleMScOFVUxqmUVZwmTORJbnLHTOOgNG41wgtOIAlvJIxDqOdRhbpxKX2yjn98igKAv7gNBcWWGESrTAqSkR0zJ0AEcjnpskhl3zyIvuIaempTzHyRvTFFIftIm0ZxMe2V6Jzxqujz8JvkaLWQkhRXf9RTk_Tds3PjWSOfCngrvMCKms5jpkiVK5Mlnigtgjz9HeUnQkcFNGt_0QoBpScqUjGSJ6BQznka2eJDgA01_uLDZtHdB5ygHWxUpAPu2Rp6tlvBKL6gpbVigTIDxOotAj9xsDX6nEFfwCD-EuZc_0ezr3V4rJ15qeHDLsEFkpQcHVW_L3_Xz4z5KPyA0GqLIp8tsig8W8so8BFS6yJ-3L_xP-EV4X priority: 102 providerName: Unpaywall |
| Title | Diabetic Retinopathy Features Segmentation without Coding Experience with Computer Vision Models YOLOv8 and YOLOv9 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39311316 https://www.proquest.com/docview/3110694828 https://www.proquest.com/docview/3108392751 https://pubmed.ncbi.nlm.nih.gov/PMC11417923 https://www.mdpi.com/2411-5150/8/3/48/pdf?version=1724410632 https://doaj.org/article/c82f07043fbc489ea3a12799d9cb7f06 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2411-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048906 issn: 2411-5150 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2411-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048906 issn: 2411-5150 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2411-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048906 issn: 2411-5150 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2411-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048906 issn: 2411-5150 databaseCode: BENPR dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQkIAXBBsfgTEZCY0XqiW2k9iP3bRpQqybBkXbU-T4Ywx1ybQ1oP733MVpaEDAC29Nfa18vnP8u-Tud4S8STX3cWoMIjc2El65kWQKDJIwp7iGoMhhgfPRJDucivdn6dlKqy_MCQv0wGHhdoxkHtxScF8aIZXTXCcsV8oqU-Y-kG3HUq0EU1_b12sgG2eBVJNDXL8TSrVljAxTcnAItVz9v9-RV46kX9Ml7zfVtV5817PZyll08Ig87EAkHYfJPyZ3XLVONsYVBNBXC7pN27TO9nn5Orl31L093yA3If3l0tBTLHSusRvxgiIIbCDoph_dxVVXiVRRfD5bN3O6V-PhRn8yIrcjdNkMgn5uFabYUm12S8-PPxx_k1RXNnxUT8j0YP_T3uGo67kwMhApzkeKMWm4cIpJLcu0zJm0TJTWssR75w2Y1PtYaMUBythUZDrLdJI5r3JvXWr5U7JW1ZV7TqhVThihci2wp0nKtEw8gMWUW5NnORMRebc0QmE6QnLsizErIDBBmxUDm0Vkuxe_DkwcfxLcRYv2Qkig3X4BblV0blX8y60i8hb9ocBtDpMyuqtWANWQMKsYywSxJSCsiGwOJGF7muHw0qOK7vZwW3AAXZkSEO1G5HU_jL_ElLfK1Q3KxAhe8zSJyLPggL1KXME_8ARmKQeuOdB5OFJdfmnJwyH-TZAzEhTsvfjv6_nif6znS_KAARwM2XmbZG1-07hXAOfm5Ra5u7s_OTndancwXE0nJ-PzH685TFc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJOKLUfBSRR0TxRcb2pnpZR6IWRCyyC4YBINPdTqdQZKlXfci2T_nb_OctluoRt542-zMNj17Ts9les73EfImUNx6gdaYuTFXWGncmElQiM-M5AqKIoMDzv2DsHsiPp0Gpwvk93wWBtsq5z6xdNRZofGMfINDnAqlgALhw_Cni6xR-HZ1TqGhamqFbLOEGKsHO_bN7BJKuPHm3kfQ91vGdneOt7tuzTLgaqiNJq5kLNZcGMliFadBGrE4YyLNMuZba6wGIaz1hJIcgncWiFCFofJDY2VkMxNkHK57hywJLiQUf0tbOwefj5pTHoTFlV5YgXtyLr2NamQ89hDpKm4Fw5Iz4N_IcC00_t22uTzNh2p2qQaDazFx9wG5XyeztFNZ30OyYPIVstrJoZC_mNF1WraXluf2K-Ruv36Lv0pGVRvOuaZHOHBdICvyjGIyOoXin34xZxf1RFRO8Zy4mE7odoFBll4hM5crdE5KQb-WAlOkdhuM6bfD3uGvmKo8qz7KR-TkVrTymCzmRW6eEppJIzQoRwnkVgmYin0LSWvAMx2FERMOeT9XQqJrYHTk5xgkUCChzpKWzhyy3mwfVogg_9u4hRptNiGQd_lFMTpLar-Q6JhZ8LqC21SDqRjFlc8iKTOp08h6oUPeoT0k6G7gprSqpyZANATuSjqxjzkuZHoOWWvtBDeh28tzi0pqNzVOrh4qh7xulvGX2HqXm2KKezxMoqPAd8iTygAbkbiEK3Af7jJumWZL5vZKfv6jBDGHOtxH7EoQsLHim__PZzdL8Iosd4_7vaS3d7D_nNxjkHxWvYBrZHEympoXkDxO0pf1E0rJ99t2Cn8AhTuEog |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKKxVeELQcgQJGgvJCtImdw36o0PZYtfRUoVV5Co5jl0rbZNmDav8iv4qZHNsGRN_6FsWzUWZnMoc98w0h70LFrRdqjZEbcwMrjSuYBIH4zEiuICky2OC8fxBtnwSfz8KzOfK76YXBssrGJpaGOis07pF3OPipSAaQIHRsXRZxtNn7NPjp4gQpPGltxmmoesxCtlbCjdVNHrtmegXp3GhtZxNk_56x3tbXjW23njjgasiTxq5kTGgeGMmEEmmYxkxkLEizjPnWGquBIWu9QEkOjjwLg0hFkfIjY2VsMxNmHJ57jyzg4RcYiYX1rYOj49mOD0LkSi-qgD45l16nah8XHqJeiZZjLOcH_OslbrjJv0s470_ygZpeqX7_hn_sPSIP68CWditNfEzmTL5Elrs5JPWXU7pKy1LTcg9_iSzu1yf6y2RYleRcaHqMzdcFTkieUgxMJ0Mzol_M-WXdHZVT3DMuJmO6UaDDpdcozeUKbQZU0NOSYYpj3voj-u1w7_CXoCrPqkv5hJzciVSekvm8yM1zQjNpAh3IWAU4ZyVkSvgWAtiQZzqOYhY45GMjhETXIOk4q6OfQLKEMktaMnPI6ox8UKGD_I9wHSU6I0JQ7_JGMTxPahuRaMEsWOCA21SDqhjFlc9iKTOp09h6kUM-oD4kaHrgpbSqOyiANQTxSrrCx3gXoj6HrLQowWTo9nKjUUltskbJ9QfmkLezZfwlluHlppggjYcBdRz6DnlWKeCMJS7hCdyHtxQt1Wzx3F7JL36UgOaQk_uIYwkMzrT49v_zxe0cvCGLYBySvZ2D3ZfkAYM4tCoLXCHz4-HEvII4cpy-rj9QSr7ftU34A4HmiNE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTgJe-Nj4CAxkJDReyJrYTmJLSKhMTBNiGwKKtgcUOY49Krqk6pqh8tdzl4-yDIEQb1V9qXLO5e537t3vCHkWae6CyBhEbswXTllfMgUPJGRWcQ1JkcUG54PDeH8s3h5Hx2vkZdcLg2WVkIpPaicN0SX0IeAGQznkQyGHs9y9umjPkSDyQiiHCAsOeD2OAIkPyPr48P3oBOfJdVc2tJocMvth06wtA-SYkr0wVLP1_-6TLwWlqwWT16tippff9XR6KRrt3SJfOj2aIpRvO9Ui2zE_rlA8_q-it8nNFqbSUWNXd8iaLTbI5qiAFP1sSbdpXThan8hvkGsH7f_zm2TeFNhMDP2ArdQlzjteUoSZFaT19KM9PWt7nQqKJ8BltaC7JYZP-otzuV6h3bgJ-rneUIpD26bn9OTo3dGFpLrIm4_qLhnvvfm0u--3Ux18A7nowleMScOFVUxqmUVZwmTORJbnLHTOOgNG41wgtOIAlvJIxDqOdRhbpxKX2yjn98igKAv7gNBcWWGESrTAqSkR0zJ0AEcjnpskhl3zyIvuIaempTzHyRvTFFIftIm0ZxMe2V6Jzxqujz8JvkaLWQkhRXf9RTk_Tds3PjWSOfCngrvMCKms5jpkiVK5Mlnigtgjz9HeUnQkcFNGt_0QoBpScqUjGSJ6BQznka2eJDgA01_uLDZtHdB5ygHWxUpAPu2Rp6tlvBKL6gpbVigTIDxOotAj9xsDX6nEFfwCD-EuZc_0ezr3V4rJ15qeHDLsEFkpQcHVW_L3_Xz4z5KPyA0GqLIp8tsig8W8so8BFS6yJ-3L_xP-EV4X |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diabetic+Retinopathy+Features+Segmentation+without+Coding+Experience+with+Computer+Vision+Models+YOLOv8+and+YOLOv9&rft.jtitle=Vision+%28Basel%29&rft.au=Rizzieri%2C+Nicola&rft.au=Dall%E2%80%99Asta%2C+Luca&rft.au=Ozoli%C5%86%C5%A1%2C+Maris&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2411-5150&rft.eissn=2411-5150&rft.volume=8&rft.issue=3&rft_id=info:doi/10.3390%2Fvision8030048&rft.externalDocID=A811839007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-5150&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-5150&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-5150&client=summon |