Diabetic Retinopathy Features Segmentation without Coding Experience with Computer Vision Models YOLOv8 and YOLOv9

Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrh...

Full description

Saved in:
Bibliographic Details
Published inVision (Basel) Vol. 8; no. 3; p. 48
Main Authors Rizzieri, Nicola, Dall’Asta, Luca, Ozoliņš, Maris
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2024
MDPI
Subjects
Online AccessGet full text
ISSN2411-5150
2411-5150
DOI10.3390/vision8030048

Cover

Abstract Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets.
AbstractList Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets.
Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets.Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms (MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as objects to be detected by computer vision models. In this work, we tested the performances of the state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without coding experience or a programming background. We took one hundred DR images from the public MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the detection abilities of different model variants. We increased the diversity of the training sample by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We compared our results with related works in the literature involving different neural networks. Our results are promising, but far from being ready for implementation into clinical practice. Accurate lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate lesion detection further, especially MA segmentation, with improved extraction techniques, image pre-processing, and standardized datasets.
Audience Academic
Author Ozoliņš, Maris
Rizzieri, Nicola
Dall’Asta, Luca
AuthorAffiliation 1 Department of Optometry and Vision Science, Faculty of Physics, Mathematics and Optometry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
3 Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
2 Research and Development, LIFE Srl, IT-70100 Bari, Italy
AuthorAffiliation_xml – name: 3 Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
– name: 1 Department of Optometry and Vision Science, Faculty of Physics, Mathematics and Optometry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
– name: 2 Research and Development, LIFE Srl, IT-70100 Bari, Italy
Author_xml – sequence: 1
  givenname: Nicola
  orcidid: 0009-0003-6189-4255
  surname: Rizzieri
  fullname: Rizzieri, Nicola
– sequence: 2
  givenname: Luca
  orcidid: 0000-0002-6700-6701
  surname: Dall’Asta
  fullname: Dall’Asta, Luca
– sequence: 3
  givenname: Maris
  surname: Ozoliņš
  fullname: Ozoliņš, Maris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39311316$$D View this record in MEDLINE/PubMed
BookMark eNqFkstr3DAQxk1JadI0x16LoZdeNtXDD-lUQpq0gS0LfUFPQpZGu1psyZHsTfe_r7JOk2ygFIMsRr_5NN9oXmYHzjvIstcYnVLK0fuNjdY7hihCBXuWHZEC41mJS3TwaH-YncS4RgiRBHFUvcgOKacYU1wdZeGjlQ0MVuVf0-p8L4fVNr8EOYwBYv4Nlh24QQ7pmvzGDis_Dvm519Yt84vfPQQLTsHuJIW7fhwg5D93VeVfvIY25r8W88WG5dLpactfZc-NbCOc3P2Psx-XF9_PP8_mi09X52fzmSoLPsw4IUzRAjhhkjVlUxOmSdFoTbAxYFRdE2NQITmtCqrLopJVJXEFhtdGQ6npcXY16Wov16IPtpNhK7y0YhfwYSlkSM5bEIoRg2pUUNOo1COQVGJSc665amqDqqR1OmmNrpfbG9m294IYidu3EHtvkRI-TAn92HSgVWpikO1eFfsnzq7E0m8ExgWuOaFJ4d2dQvDXI8RBdDYqaFvpwI9RUIwY5aQucULfPkHXfgwuNTdRGFW8YIQ9UEuZLFtnfLpY3YqKM4ZxEkOofnC6R6VPQ2dVGj9jU3wv4c1jp_cW_85YAmYToIKPMYD5b-voE17ZaQJTJbb9R9Yf0i31gg
CitedBy_id crossref_primary_10_3390_app142411926
crossref_primary_10_1016_j_bspc_2024_107040
crossref_primary_10_3390_pr12122892
crossref_primary_10_3390_aerospace12010031
Cites_doi 10.3390/s22176441
10.1038/s41598-020-62022-x
10.3390/s23167190
10.1590/1677-5449.200186
10.1016/j.compbiomed.2021.105000
10.1016/j.ins.2019.06.011
10.1109/CVPR.2018.00913
10.1001/jama.2016.17216
10.1016/S0140-6736(23)01301-6
10.5566/ias.1155
10.1016/j.xops.2022.100228
10.1016/S0140-6736(20)30925-9
10.1109/CVPR.2016.308
10.3390/app14125103
10.1016/j.compmedimag.2015.03.004
10.4103/ijo.IJO_1989_18
10.1001/jama.2020.0734
10.2337/dc11-1909
10.1016/S0161-6420(13)38014-2
10.1007/s10278-012-9549-4
10.1167/iovs.64.15.47
10.1016/j.ophtha.2021.04.027
10.1016/j.ins.2007.07.020
10.1109/ACCESS.2023.3271895
10.1016/S2589-7500(19)30108-6
10.1109/CVPR.2016.91
10.3390/s21113704
10.1056/NEJMra1005073
10.3390/bioengineering10121405
10.1016/S0161-6420(03)00475-5
10.1007/s13534-019-00136-6
10.3389/fendo.2022.1079217
10.1016/S0140-6736(20)32374-6
10.3390/make5040083
10.1038/s41598-021-97649-x
10.1109/IJCNN52387.2021.9534354
10.1016/j.compbiomed.2019.103537
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/vision8030048
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2411-5150
ExternalDocumentID oai_doaj_org_article_c82f07043fbc489ea3a12799d9cb7f06
10.3390/vision8030048
PMC11417923
A811839007
39311316
10_3390_vision8030048
Genre Journal Article
GroupedDBID 8FE
8FH
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c549t-9228c34e928a8b5b728d24bdd21ffefc772ff04a93643d546a66a16ef97fde5d3
IEDL.DBID DOA
ISSN 2411-5150
IngestDate Tue Oct 14 18:37:40 EDT 2025
Sun Oct 26 02:59:24 EDT 2025
Tue Sep 30 17:07:39 EDT 2025
Thu Sep 04 20:29:22 EDT 2025
Fri Jul 25 11:50:41 EDT 2025
Mon Oct 20 22:48:40 EDT 2025
Mon Oct 20 16:58:13 EDT 2025
Thu Apr 03 07:07:13 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Thu Oct 16 04:36:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords YOLOv9
segmentation
diabetic retinopathy
retinal fundus
YOLOv8
computer vision
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-9228c34e928a8b5b728d24bdd21ffefc772ff04a93643d546a66a16ef97fde5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6700-6701
0009-0003-6189-4255
OpenAccessLink https://doaj.org/article/c82f07043fbc489ea3a12799d9cb7f06
PMID 39311316
PQID 3110694828
PQPubID 2059539
ParticipantIDs doaj_primary_oai_doaj_org_article_c82f07043fbc489ea3a12799d9cb7f06
unpaywall_primary_10_3390_vision8030048
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11417923
proquest_miscellaneous_3108392751
proquest_journals_3110694828
gale_infotracmisc_A811839007
gale_infotracacademiconefile_A811839007
pubmed_primary_39311316
crossref_primary_10_3390_vision8030048
crossref_citationtrail_10_3390_vision8030048
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Vision (Basel)
PublicationTitleAlternate Vision (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
Vos (ref_3) 2020; 396
Wilkinson (ref_11) 2003; 110
ref_12
ref_56
ref_52
ref_51
ref_18
Teo (ref_9) 2021; 128
Lim (ref_15) 2022; 3
Faes (ref_23) 2019; 1
ref_25
ref_22
ref_21
Padhy (ref_16) 2019; 67
Akella (ref_54) 2023; 262
Mahdi (ref_50) 2023; 16
ref_29
Zheng (ref_39) 2020; 34
ref_28
ref_27
Gulshan (ref_17) 2016; 316
ref_26
Dieleman (ref_5) 2020; 323
Santos (ref_53) 2023; 11
Chan (ref_2) 2021; 396
Rizzieri (ref_35) 2024; 15
Tariq (ref_13) 2013; 26
Ong (ref_6) 2023; 402
Polo (ref_55) 2020; 19
ref_36
ref_34
ref_33
ref_32
Li (ref_40) 2020; Volume 33
ref_30
Zhang (ref_24) 2014; 33
Antonetti (ref_7) 2012; 366
Li (ref_31) 2019; 501
ref_37
Wong (ref_10) 2023; 64
Yun (ref_19) 2008; 178
Yau (ref_8) 2012; 35
Imani (ref_20) 2015; 43
ref_47
ref_46
Akut (ref_48) 2019; 9
ref_45
ref_44
ref_43
ref_42
ref_41
ref_1
ref_49
Terven (ref_38) 2023; 5
ref_4
References_xml – ident: ref_32
  doi: 10.3390/s22176441
– volume: Volume 33
  start-page: 21002
  year: 2020
  ident: ref_40
  article-title: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– ident: ref_30
  doi: 10.1038/s41598-020-62022-x
– ident: ref_42
  doi: 10.3390/s23167190
– volume: 19
  start-page: e20200186
  year: 2020
  ident: ref_55
  article-title: Use of ROC Curves in Clinical and Experimental Studies
  publication-title: J. Vasc. Bras.
  doi: 10.1590/1677-5449.200186
– ident: ref_22
  doi: 10.1016/j.compbiomed.2021.105000
– ident: ref_26
– volume: 501
  start-page: 511
  year: 2019
  ident: ref_31
  article-title: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.06.011
– ident: ref_43
  doi: 10.1109/CVPR.2018.00913
– volume: 262
  start-page: 1
  year: 2023
  ident: ref_54
  article-title: An Advanced Deep Learning Method to Detect and Classify Diabetic Retinopathy Based on Color Fundus Images
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol.
– ident: ref_1
– volume: 316
  start-page: 2402
  year: 2016
  ident: ref_17
  article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 402
  start-page: 203
  year: 2023
  ident: ref_6
  article-title: Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021
  publication-title: Lancet
  doi: 10.1016/S0140-6736(23)01301-6
– volume: 33
  start-page: 231
  year: 2014
  ident: ref_24
  article-title: Feedback on a publicly distributed image database: The messidor database
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.1155
– volume: 15
  start-page: 1
  year: 2024
  ident: ref_35
  article-title: AVA Spring Meeting 2024 Loughborough University
  publication-title: i-Perception
– ident: ref_4
– volume: 3
  start-page: 100228
  year: 2022
  ident: ref_15
  article-title: Artificial Intelligence Detection of Diabetic Retinopathy
  publication-title: Ophthalmol. Sci.
  doi: 10.1016/j.xops.2022.100228
– volume: 396
  start-page: 1204
  year: 2020
  ident: ref_3
  article-title: Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30925-9
– ident: ref_18
  doi: 10.1109/CVPR.2016.308
– ident: ref_51
  doi: 10.3390/app14125103
– volume: 34
  start-page: 12993
  year: 2020
  ident: ref_39
  article-title: Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 43
  start-page: 78
  year: 2015
  ident: ref_20
  article-title: Fully Automated Diabetic Retinopathy Screening Using Morphological Component Analysis
  publication-title: Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc.
  doi: 10.1016/j.compmedimag.2015.03.004
– ident: ref_41
– volume: 67
  start-page: 1004
  year: 2019
  ident: ref_16
  article-title: Artificial Intelligence in Diabetic Retinopathy: A Natural Step to the Future
  publication-title: Indian J. Ophthalmol.
  doi: 10.4103/ijo.IJO_1989_18
– volume: 323
  start-page: 863
  year: 2020
  ident: ref_5
  article-title: US Health Care Spending by Payer and Health Condition, 1996–2016
  publication-title: JAMA
  doi: 10.1001/jama.2020.0734
– volume: 35
  start-page: 556
  year: 2012
  ident: ref_8
  article-title: Global Prevalence and Major Risk Factors of Diabetic Retinopathy
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1909
– ident: ref_14
  doi: 10.1016/S0161-6420(13)38014-2
– volume: 26
  start-page: 803
  year: 2013
  ident: ref_13
  article-title: Automated Detection and Grading of Diabetic Maculopathy in Digital Retinal Images
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-012-9549-4
– ident: ref_45
– volume: 16
  start-page: 2023
  year: 2023
  ident: ref_50
  article-title: Optic Disc Localization in Retinal Fundus Images Based on You Only Look Once Network (YOLO)
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 64
  start-page: 47
  year: 2023
  ident: ref_10
  article-title: The Diabetic Retinopathy “Pandemic” and Evolving Global Strategies: The 2023 Friedenwald Lecture
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.64.15.47
– volume: 128
  start-page: 1580
  year: 2021
  ident: ref_9
  article-title: Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.027
– ident: ref_28
– volume: 178
  start-page: 106
  year: 2008
  ident: ref_19
  article-title: Identification of Different Stages of Diabetic Retinopathy Using Retinal Optical Images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2007.07.020
– ident: ref_34
– ident: ref_47
– volume: 11
  start-page: 43603
  year: 2023
  ident: ref_53
  article-title: A New Approach for Fundus Lesions Instance Segmentation Based on Mask R-CNN X101-FPN Pre-Trained Architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3271895
– volume: 1
  start-page: e232
  year: 2019
  ident: ref_23
  article-title: Automated Deep Learning Design for Medical Image Classification by Health-Care Professionals with No Coding Experience: A Feasibility Study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(19)30108-6
– ident: ref_27
  doi: 10.1109/CVPR.2016.91
– ident: ref_37
– ident: ref_44
– ident: ref_49
  doi: 10.3390/s21113704
– volume: 366
  start-page: 1227
  year: 2012
  ident: ref_7
  article-title: Diabetic Retinopathy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1005073
– ident: ref_29
  doi: 10.3390/bioengineering10121405
– ident: ref_25
– ident: ref_33
– ident: ref_46
– volume: 110
  start-page: 1677
  year: 2003
  ident: ref_11
  article-title: Proposed International Clinical Diabetic Retinopathy and Diabetic Macular Edema Disease Severity Scales
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 9
  start-page: 497
  year: 2019
  ident: ref_48
  article-title: FILM: Finding the Location of Microaneurysms on the Retina
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-019-00136-6
– ident: ref_12
  doi: 10.3389/fendo.2022.1079217
– volume: 396
  start-page: 2019
  year: 2021
  ident: ref_2
  article-title: The Lancet Commission on Diabetes: Using Data to Transform Diabetes Care and Patient Lives
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32374-6
– ident: ref_36
– volume: 5
  start-page: 1680
  year: 2023
  ident: ref_38
  article-title: A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make5040083
– ident: ref_21
  doi: 10.1038/s41598-021-97649-x
– ident: ref_52
  doi: 10.1109/IJCNN52387.2021.9534354
– ident: ref_56
  doi: 10.1016/j.compbiomed.2019.103537
SSID ssj0002048906
Score 2.3210366
Snippet Computer vision is a powerful tool in medical image analysis, supporting the early detection and classification of eye diseases. Diabetic retinopathy (DR), a...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 48
SubjectTerms Algorithms
Artificial intelligence
Blood vessels
Computer vision
Datasets
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Disease
Early experience
Edema
Exudates
Eye diseases
Hemorrhage
Image processing
Lesions
Localization
Machine vision
Mathematical functions
Neural networks
retinal fundus
Retinopathy
Segmentation
YOLOv8
YOLOv9
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9RAEN_gkagvRsGPKpo1MfhiQ7u7bXcfjDkIhBg5DIrBp2a7H0hytOdxp7n_3pl-QTXydulOL53O7HxsZ35DyJtEcx8lxmDkxkLhlQslUyCQmDnFNSRFDhucjybp4an4eJacrZFJ1wuDZZWdTawNta0MnpHvcPBTqRKQIHyY_QxxahR-Xe1GaOh2tIJ9X0OM3SHrDJGxRmR9d3_y-aQ_dUGYWhWlDdgmh3x_p2nhlhEiT8mBc6ox_P-11Ddc1d9llPeW5Uyvfuvp9IaPOnhIHrTBJR032vCIrLlyg2yOS0isL1d0m9blnvU5-ga5e9R-Vd8k86Ys5sLQE2yArnBK8YpicLiEZJx-ceeXbYdSSfHctlou6F6FTo9eIyXXK7QbEkG_1QxTHLU2vaLfjz8d_5JUl7b5qR6T04P9r3uHYTuLITSQQS5CxZg0XDjFpJZFUmRMWiYKa1nsvfMGRO19JLTiEOLYRKQ6TXWcOq8yb11i-RMyKqvSPSPUKieMUJkWOOskYVrGHoLIhFuTpRkTAXnXCSE3LVA5zsuY5pCwoMzygcwCst2TzxqEjv8R7qJEeyIE1q4vVPPzvN2nuZHMgxUU3BcGVMVprmOWKWWVKTIfpQF5i_qQ4_aHhzK67WIA1hBIKx_LGGNOiLwCsjWghG1rhsudRuWt2bjKr5U8IK_7ZbwTS-FKVy2RJsKgNkvigDxtFLBniSv4Bx7DU8qBag54Hq6UFz9qUHHIi2PEkgQGey2-_X0-v52DF-Q-gwCwqcfbIqPFfOleQgC3KF61u_IPt5BG4g
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTgJe-Nj4CAxkJDReyJrYTmJLSKhMTBNiGwKKtgcUOY49Krqk6pqh8tdzl4-yDIEQb1V9qXLO5e537t3vCHkWae6CyBhEbswXTllfMgUPJGRWcQ1JkcUG54PDeH8s3h5Hx2vkZdcLg2WVkIpPaicN0SX0IeAGQznkQyGHs9y9umjPkSDyQiiHCAsOeD2OAIkPyPr48P3oBOfJdVc2tJocMvth06wtA-SYkr0wVLP1_-6TLwWlqwWT16tippff9XR6KRrt3SJfOj2aIpRvO9Ui2zE_rlA8_q-it8nNFqbSUWNXd8iaLTbI5qiAFP1sSbdpXThan8hvkGsH7f_zm2TeFNhMDP2ArdQlzjteUoSZFaT19KM9PWt7nQqKJ8BltaC7JYZP-otzuV6h3bgJ-rneUIpD26bn9OTo3dGFpLrIm4_qLhnvvfm0u--3Ux18A7nowleMScOFVUxqmUVZwmTORJbnLHTOOgNG41wgtOIAlvJIxDqOdRhbpxKX2yjn98igKAv7gNBcWWGESrTAqSkR0zJ0AEcjnpskhl3zyIvuIaempTzHyRvTFFIftIm0ZxMe2V6Jzxqujz8JvkaLWQkhRXf9RTk_Tds3PjWSOfCngrvMCKms5jpkiVK5Mlnigtgjz9HeUnQkcFNGt_0QoBpScqUjGSJ6BQznka2eJDgA01_uLDZtHdB5ygHWxUpAPu2Rp6tlvBKL6gpbVigTIDxOotAj9xsDX6nEFfwCD-EuZc_0ezr3V4rJ15qeHDLsEFkpQcHVW_L3_Xz4z5KPyA0GqLIp8tsig8W8so8BFS6yJ-3L_xP-EV4X
  priority: 102
  providerName: Unpaywall
Title Diabetic Retinopathy Features Segmentation without Coding Experience with Computer Vision Models YOLOv8 and YOLOv9
URI https://www.ncbi.nlm.nih.gov/pubmed/39311316
https://www.proquest.com/docview/3110694828
https://www.proquest.com/docview/3108392751
https://pubmed.ncbi.nlm.nih.gov/PMC11417923
https://www.mdpi.com/2411-5150/8/3/48/pdf?version=1724410632
https://doaj.org/article/c82f07043fbc489ea3a12799d9cb7f06
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2411-5150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048906
  issn: 2411-5150
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2411-5150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048906
  issn: 2411-5150
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2411-5150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048906
  issn: 2411-5150
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2411-5150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048906
  issn: 2411-5150
  databaseCode: BENPR
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQkIAXBBsfgTEZCY0XqiW2k9iP3bRpQqybBkXbU-T4Ywx1ybQ1oP733MVpaEDAC29Nfa18vnP8u-Tud4S8STX3cWoMIjc2El65kWQKDJIwp7iGoMhhgfPRJDucivdn6dlKqy_MCQv0wGHhdoxkHtxScF8aIZXTXCcsV8oqU-Y-kG3HUq0EU1_b12sgG2eBVJNDXL8TSrVljAxTcnAItVz9v9-RV46kX9Ml7zfVtV5817PZyll08Ig87EAkHYfJPyZ3XLVONsYVBNBXC7pN27TO9nn5Orl31L093yA3If3l0tBTLHSusRvxgiIIbCDoph_dxVVXiVRRfD5bN3O6V-PhRn8yIrcjdNkMgn5uFabYUm12S8-PPxx_k1RXNnxUT8j0YP_T3uGo67kwMhApzkeKMWm4cIpJLcu0zJm0TJTWssR75w2Y1PtYaMUBythUZDrLdJI5r3JvXWr5U7JW1ZV7TqhVThihci2wp0nKtEw8gMWUW5NnORMRebc0QmE6QnLsizErIDBBmxUDm0Vkuxe_DkwcfxLcRYv2Qkig3X4BblV0blX8y60i8hb9ocBtDpMyuqtWANWQMKsYywSxJSCsiGwOJGF7muHw0qOK7vZwW3AAXZkSEO1G5HU_jL_ElLfK1Q3KxAhe8zSJyLPggL1KXME_8ARmKQeuOdB5OFJdfmnJwyH-TZAzEhTsvfjv6_nif6znS_KAARwM2XmbZG1-07hXAOfm5Ra5u7s_OTndancwXE0nJ-PzH685TFc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJOKLUfBSRR0TxRcb2pnpZR6IWRCyyC4YBINPdTqdQZKlXfci2T_nb_OctluoRt542-zMNj17Ts9les73EfImUNx6gdaYuTFXWGncmElQiM-M5AqKIoMDzv2DsHsiPp0Gpwvk93wWBtsq5z6xdNRZofGMfINDnAqlgALhw_Cni6xR-HZ1TqGhamqFbLOEGKsHO_bN7BJKuPHm3kfQ91vGdneOt7tuzTLgaqiNJq5kLNZcGMliFadBGrE4YyLNMuZba6wGIaz1hJIcgncWiFCFofJDY2VkMxNkHK57hywJLiQUf0tbOwefj5pTHoTFlV5YgXtyLr2NamQ89hDpKm4Fw5Iz4N_IcC00_t22uTzNh2p2qQaDazFx9wG5XyeztFNZ30OyYPIVstrJoZC_mNF1WraXluf2K-Ruv36Lv0pGVRvOuaZHOHBdICvyjGIyOoXin34xZxf1RFRO8Zy4mE7odoFBll4hM5crdE5KQb-WAlOkdhuM6bfD3uGvmKo8qz7KR-TkVrTymCzmRW6eEppJIzQoRwnkVgmYin0LSWvAMx2FERMOeT9XQqJrYHTk5xgkUCChzpKWzhyy3mwfVogg_9u4hRptNiGQd_lFMTpLar-Q6JhZ8LqC21SDqRjFlc8iKTOp08h6oUPeoT0k6G7gprSqpyZANATuSjqxjzkuZHoOWWvtBDeh28tzi0pqNzVOrh4qh7xulvGX2HqXm2KKezxMoqPAd8iTygAbkbiEK3Af7jJumWZL5vZKfv6jBDGHOtxH7EoQsLHim__PZzdL8Iosd4_7vaS3d7D_nNxjkHxWvYBrZHEympoXkDxO0pf1E0rJ99t2Cn8AhTuEog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKKxVeELQcgQJGgvJCtImdw36o0PZYtfRUoVV5Co5jl0rbZNmDav8iv4qZHNsGRN_6FsWzUWZnMoc98w0h70LFrRdqjZEbcwMrjSuYBIH4zEiuICky2OC8fxBtnwSfz8KzOfK76YXBssrGJpaGOis07pF3OPipSAaQIHRsXRZxtNn7NPjp4gQpPGltxmmoesxCtlbCjdVNHrtmegXp3GhtZxNk_56x3tbXjW23njjgasiTxq5kTGgeGMmEEmmYxkxkLEizjPnWGquBIWu9QEkOjjwLg0hFkfIjY2VsMxNmHJ57jyzg4RcYiYX1rYOj49mOD0LkSi-qgD45l16nah8XHqJeiZZjLOcH_OslbrjJv0s470_ygZpeqX7_hn_sPSIP68CWditNfEzmTL5Elrs5JPWXU7pKy1LTcg9_iSzu1yf6y2RYleRcaHqMzdcFTkieUgxMJ0Mzol_M-WXdHZVT3DMuJmO6UaDDpdcozeUKbQZU0NOSYYpj3voj-u1w7_CXoCrPqkv5hJzciVSekvm8yM1zQjNpAh3IWAU4ZyVkSvgWAtiQZzqOYhY45GMjhETXIOk4q6OfQLKEMktaMnPI6ox8UKGD_I9wHSU6I0JQ7_JGMTxPahuRaMEsWOCA21SDqhjFlc9iKTOp09h6kUM-oD4kaHrgpbSqOyiANQTxSrrCx3gXoj6HrLQowWTo9nKjUUltskbJ9QfmkLezZfwlluHlppggjYcBdRz6DnlWKeCMJS7hCdyHtxQt1Wzx3F7JL36UgOaQk_uIYwkMzrT49v_zxe0cvCGLYBySvZ2D3ZfkAYM4tCoLXCHz4-HEvII4cpy-rj9QSr7ftU34A4HmiNE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTgJe-Nj4CAxkJDReyJrYTmJLSKhMTBNiGwKKtgcUOY49Krqk6pqh8tdzl4-yDIEQb1V9qXLO5e537t3vCHkWae6CyBhEbswXTllfMgUPJGRWcQ1JkcUG54PDeH8s3h5Hx2vkZdcLg2WVkIpPaicN0SX0IeAGQznkQyGHs9y9umjPkSDyQiiHCAsOeD2OAIkPyPr48P3oBOfJdVc2tJocMvth06wtA-SYkr0wVLP1_-6TLwWlqwWT16tippff9XR6KRrt3SJfOj2aIpRvO9Ui2zE_rlA8_q-it8nNFqbSUWNXd8iaLTbI5qiAFP1sSbdpXThan8hvkGsH7f_zm2TeFNhMDP2ArdQlzjteUoSZFaT19KM9PWt7nQqKJ8BltaC7JYZP-otzuV6h3bgJ-rneUIpD26bn9OTo3dGFpLrIm4_qLhnvvfm0u--3Ux18A7nowleMScOFVUxqmUVZwmTORJbnLHTOOgNG41wgtOIAlvJIxDqOdRhbpxKX2yjn98igKAv7gNBcWWGESrTAqSkR0zJ0AEcjnpskhl3zyIvuIaempTzHyRvTFFIftIm0ZxMe2V6Jzxqujz8JvkaLWQkhRXf9RTk_Tds3PjWSOfCngrvMCKms5jpkiVK5Mlnigtgjz9HeUnQkcFNGt_0QoBpScqUjGSJ6BQznka2eJDgA01_uLDZtHdB5ygHWxUpAPu2Rp6tlvBKL6gpbVigTIDxOotAj9xsDX6nEFfwCD-EuZc_0ezr3V4rJ15qeHDLsEFkpQcHVW_L3_Xz4z5KPyA0GqLIp8tsig8W8so8BFS6yJ-3L_xP-EV4X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diabetic+Retinopathy+Features+Segmentation+without+Coding+Experience+with+Computer+Vision+Models+YOLOv8+and+YOLOv9&rft.jtitle=Vision+%28Basel%29&rft.au=Rizzieri%2C+Nicola&rft.au=Dall%E2%80%99Asta%2C+Luca&rft.au=Ozoli%C5%86%C5%A1%2C+Maris&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2411-5150&rft.eissn=2411-5150&rft.volume=8&rft.issue=3&rft_id=info:doi/10.3390%2Fvision8030048&rft.externalDocID=A811839007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-5150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-5150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-5150&client=summon