Improved Double-Nicking Strategies for COL7A1-Editing by Homologous Recombination

Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and prec...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 18; pp. 496 - 507
Main Authors Kocher, Thomas, Wagner, Roland N., Klausegger, Alfred, Guttmann-Gruber, Christina, Hainzl, Stefan, Bauer, Johann W., Reichelt, Julia, Koller, Ulrich
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.12.2019
Elsevier Limited
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2162-2531
2162-2531
DOI10.1016/j.omtn.2019.09.011

Cover

Abstract Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.
AbstractList Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.
Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.
Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.
Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB. Keywords: epidermolysis bullosa, CRISPR/Cas9, double-nicking, homologous recombination, type VII collagen, D10A SpCas9, gene-editing
Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1 -editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1 , which lies at the heart of a future curative therapy of RDEB.
Author Koller, Ulrich
Klausegger, Alfred
Hainzl, Stefan
Kocher, Thomas
Guttmann-Gruber, Christina
Wagner, Roland N.
Reichelt, Julia
Bauer, Johann W.
AuthorAffiliation 1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
2 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
AuthorAffiliation_xml – name: 1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– name: 2 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
Author_xml – sequence: 1
  givenname: Thomas
  surname: Kocher
  fullname: Kocher, Thomas
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 2
  givenname: Roland N.
  surname: Wagner
  fullname: Wagner, Roland N.
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 3
  givenname: Alfred
  surname: Klausegger
  fullname: Klausegger, Alfred
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 4
  givenname: Christina
  surname: Guttmann-Gruber
  fullname: Guttmann-Gruber, Christina
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 5
  givenname: Stefan
  surname: Hainzl
  fullname: Hainzl, Stefan
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 6
  givenname: Johann W.
  surname: Bauer
  fullname: Bauer, Johann W.
  organization: Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 7
  givenname: Julia
  surname: Reichelt
  fullname: Reichelt, Julia
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
– sequence: 8
  givenname: Ulrich
  surname: Koller
  fullname: Koller, Ulrich
  email: u.koller@salk.at
  organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31670199$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQNSWlSdP8gR6KoZdevNXItmxBKYRt2iwsDf06C0keu9ra0la2F_LvO5tNQ5JDxICE5r0nzZt5mRz54DFJXgNbAAPxfrMIw-QXnIFcMAqAZ8kJB8EzXuZwdO98nJyN44bREgy44C-S4xxERUR5knxbDdsYdtikn8Jsesy-OvvH-S79MUU9YedwTNsQ0-XVujqH7KJx0z5rrtPLMIQ-dGEe0-9ow2Cc15ML_lXyvNX9iGe3-2ny6_PFz-Vltr76slqerzNbFnLKiqIseWV4pXNhZM0bkxtRNLZsLeON5SWThbbSVFIKLWUlwXKjUdoS6ArK_DRZHXSboDdqG92g47UK2qmbixA7pePkbI_KoIWaKFWTVwWrC90YcqPllZD0gGCk9fGgtZ3NgI1FT9X3D0QfZrz7rbqwU6LO67IQJPDuViCGvzOOkxrcaLHvtUdySPEcWEWGAyfo20fQTZijJ6sIxaGsZS321b25_6O7r_zvHAH4AWBjGMeI7R0EmNpPiCIPaELUfkIUowAgUv2IZN100zWqyvVPUz8cqEg93TmMarQOvcXGRbQTme6eov8D3KrUlA
CitedBy_id crossref_primary_10_1007_s13353_024_00839_2
crossref_primary_10_3390_ijms25042243
crossref_primary_10_1080_10799893_2021_1895220
crossref_primary_10_5812_gct_134461
crossref_primary_10_3389_fgene_2021_658295
crossref_primary_10_1111_ddg_14187
crossref_primary_10_1016_j_xjidi_2024_100343
crossref_primary_10_3390_ijms24065197
crossref_primary_10_1007_s13555_021_00561_5
crossref_primary_10_1016_j_jid_2020_02_012
crossref_primary_10_1016_j_thromres_2024_04_031
crossref_primary_10_3390_cells9010112
crossref_primary_10_3390_ijms24032298
crossref_primary_10_1016_j_ymthe_2021_02_019
crossref_primary_10_1007_s00105_019_04529_7
crossref_primary_10_1016_j_omtn_2021_05_015
crossref_primary_10_1093_nar_gkad165
crossref_primary_10_1016_j_omtn_2025_102472
crossref_primary_10_1177_1073274820934805
crossref_primary_10_3390_ijms23010573
crossref_primary_10_1080_14728214_2020_1839049
crossref_primary_10_3389_fphar_2021_746664
crossref_primary_10_1146_annurev_genom_083117_021702
crossref_primary_10_1080_14712598_2022_2049229
crossref_primary_10_1111_exd_14314
crossref_primary_10_3390_cells11142186
crossref_primary_10_1016_j_ymthe_2022_04_020
crossref_primary_10_1002_btm2_10640
crossref_primary_10_3389_fmed_2022_976604
crossref_primary_10_1016_j_ddmod_2020_10_001
crossref_primary_10_1111_ddg_14187_g
crossref_primary_10_1016_j_jid_2024_04_013
crossref_primary_10_1016_j_ymthe_2024_03_006
crossref_primary_10_1016_j_omtm_2022_09_005
crossref_primary_10_1080_09546634_2024_2391452
crossref_primary_10_1016_j_omtm_2023_101134
crossref_primary_10_1111_1346_8138_17621
crossref_primary_10_1002_bit_28393
crossref_primary_10_1134_S0026893322060085
Cites_doi 10.1038/npjregenmed.2016.14
10.1016/j.ymthe.2017.07.005
10.1016/j.jid.2019.02.015
10.1038/nprot.2013.143
10.1016/j.ymthe.2019.03.007
10.1038/s41467-017-00687-1
10.1038/mt.2010.91
10.1016/j.jbiotec.2015.04.024
10.1186/s13023-016-0489-9
10.1111/bjd.12599
10.1038/s41586-018-0500-9
10.1093/nar/gkw398
10.1093/bioinformatics/btu048
10.1126/science.1231143
10.1038/s41586-018-0686-x
10.1111/bjd.13945
10.1093/nar/gkx669
10.1038/nm1504
10.1016/j.cell.2013.06.044
10.1016/j.omtn.2018.01.009
10.1016/j.jbiotec.2016.11.011
10.1038/s41591-018-0137-0
10.1016/j.molcel.2018.11.031
10.1038/s41587-019-0032-3
10.1038/mt.2009.144
10.1038/gt.2016.57
10.1016/j.jaad.2013.08.014
10.1016/j.cell.2015.09.038
10.1038/nbt.2675
10.1016/j.ymthe.2017.08.015
10.1093/nar/gku410
10.1126/science.1232033
10.1038/nbt.4317
10.1073/pnas.1614775114
10.1073/pnas.1512028113
10.1016/j.jid.2016.10.038
10.1038/mtna.2016.19
10.1001/jama.2016.15588
10.1093/nar/gku402
10.1016/j.addr.2017.12.003
10.1038/mtna.2016.3
10.1172/JCI92707
10.1038/nature24487
10.1016/j.jaad.2014.01.903
10.1016/j.omtn.2018.06.008
10.1016/j.cell.2013.08.021
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019. The Author(s)
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019. The Author(s)
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1016/j.omtn.2019.09.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 507
ExternalDocumentID oai_doaj_org_article_bec181537d374084adb000f27699b760
PMC6838546
31670199
10_1016_j_omtn_2019_09_011
S2162253119302586
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID 0R~
53G
5VS
6I.
7X7
88I
8FE
8FH
8FI
8FJ
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ABUWG
ACGFS
ADBBV
ADVLN
AEXQZ
AFKRA
AFTJW
AITUG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
DWQXO
EBS
EJD
FDB
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M41
M48
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
UKHRP
AAYXX
ADRAZ
APXCP
CITATION
IPNFZ
RIG
AACTN
NPM
3V.
7XB
88A
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c549t-445527b27a36b982db3b64dc5fc02dc25094ac9b7996a99791c2bae9c51799153
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:23:30 EDT 2025
Thu Aug 21 14:11:38 EDT 2025
Fri Sep 05 08:40:18 EDT 2025
Fri Jul 25 11:09:51 EDT 2025
Thu Apr 03 07:11:05 EDT 2025
Thu Jul 03 08:35:01 EDT 2025
Thu Apr 24 22:56:01 EDT 2025
Tue Jul 29 20:30:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords D10A SpCas9
CRISPR/Cas9
homologous recombination
epidermolysis bullosa
type VII collagen
double-nicking
gene-editing
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-445527b27a36b982db3b64dc5fc02dc25094ac9b7996a99791c2bae9c51799153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2019.09.011
PMID 31670199
PQID 2321589865
PQPubID 2041944
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bec181537d374084adb000f27699b760
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6838546
proquest_miscellaneous_2310719912
proquest_journals_2321589865
pubmed_primary_31670199
crossref_primary_10_1016_j_omtn_2019_09_011
crossref_citationtrail_10_1016_j_omtn_2019_09_011
elsevier_sciencedirect_doi_10_1016_j_omtn_2019_09_011
PublicationCentury 2000
PublicationDate 2019-12-06
PublicationDateYYYYMMDD 2019-12-06
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Milwaukee
PublicationTitle Molecular therapy. Nucleic acids
PublicationTitleAlternate Mol Ther Nucleic Acids
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Chakrabarti, Henser-Brownhill, Monserrat, Poetsch, Luscombe, Scaffidi (bib38) 2019; 73
Allen, Crepaldi, Alsinet, Strong, Kleshchevnikov, De Angeli, Páleníková, Khodak, Kiselev, Kosicki (bib37) 2018; 37
Lin, Cradick, Brown, Deshmukh, Ranjan, Sarode, Wile, Vertino, Stewart, Bao (bib27) 2014; 42
Vakulskas, Dever, Rettig, Turk, Jacobi, Collingwood, Bode, McNeill, Yan, Camarena (bib12) 2018; 24
Labun, Montague, Gagnon, Thyme, Valen (bib26) 2016; 44
Bonafont, Mencía, García, Torres, Rodríguez, Carretero, Chacón-Solano, Modamio-Høybjør, Marinas, León (bib19) 2019; 27
Titeux, Pendaries, Zanta-Boussif, Décha, Pironon, Tonasso, Mejia, Brice, Danos, Hovnanian (bib7) 2010; 18
Fine, Bruckner-Tuderman, Eady, Bauer, Bauer, Has, Heagerty, Hintner, Hovnanian, Jonkman (bib1) 2014; 70
Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev (bib10) 2015; 163
Gilbert, Larson, Morsut, Liu, Brar, Torres, Stern-Ginossar, Brandman, Whitehead, Doudna (bib11) 2013; 154
Peking, Koller, Duarte, Murillas, Wolf, Maetzig, Rothe, Kocher, García, Brachtl (bib46) 2017; 45
Bauer, Koller, Murauer, De Rosa, Enzo, Carulli, Bondanza, Recchia, Muss, Diem (bib33) 2017; 137
Liang, Potter, Kumar, Ravinder, Chesnut (bib44) 2017; 241
Mencía, Chamorro, Bonafont, Duarte, Holguin, Illera, Llames, Escámez, Hausser, Del Río (bib18) 2018; 11
Shinkuma, Guo, Christiano (bib36) 2016; 113
Anglani, Picci, Camporese, Zacchello (bib28) 1990; 47
Chamorro, Mencía, Almarza, Duarte, Büning, Sallach, Hausser, Del Río, Larcher, Murillas (bib35) 2016; 5
Bae, Park, Kim (bib30) 2014; 30
Woodley, Cogan, Hou, Lyu, Marinkovich, Keene, Chen (bib6) 2017; 127
Hainzl, Peking, Kocher, Murauer, Larcher, Del Rio, Duarte, Steiner, Klausegger, Bauer (bib16) 2017; 25
Venugopal, Yan, Frew, Cohn, Rhodes, Tran, Melbourne, Nelson, Sturm, Fogarty (bib5) 2013; 69
Akcakaya, Bobbin, Guo, Malagon-Lopez, Clement, Garcia, Fellows, Porritt, Firth, Carreras (bib14) 2018; 561
Ran, Hsu, Lin, Gootenberg, Konermann, Trevino, Scott, Inoue, Matoba, Zhang, Zhang (bib22) 2013; 154
Clement, Rees, Canver, Gehrke, Farouni, Hsu, Cole, Liu, Joung, Bauer, Pinello (bib48) 2019; 37
Shen, Arbab, Hsu, Worstell, Culbertson, Krabbe, Cassa, Liu, Gifford, Sherwood (bib39) 2018; 563
Izmiryan, Ganier, Bovolenta, Schmitt, Mavilio, Hovnanian (bib17) 2018; 12
Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Norville, Church (bib9) 2013; 339
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bib8) 2013; 339
Webber, Osborn, McElroy, Twaroski, Lonetree, DeFeo, Xia, Eide, Lees, McElmurry (bib15) 2016; 1
Peking, Koller, Hainzl, Kitzmueller, Kocher, Mayr, Nyström, Lener, Reichelt, Bauer, Murauer (bib45) 2016; 5
Hirsch, Rothoeft, Teig, Bauer, Pellegrini, De Rosa, Scaglione, Reichelt, Klausegger, Kneisz (bib34) 2017; 551
Gardella, Belletti, Zoppi, Marini, Barlati, Colombi (bib24) 1996; 59
Peking, Koller, Murauer (bib31) 2018; 129
Chen, Janssen, Liu, Maggio, t Jong, Mikkers, Gonçalves (bib29) 2017; 8
Mavilio, Pellegrini, Ferrari, Di Nunzio, Di Iorio, Recchia, Maruggi, Ferrari, Provasi, Bonini (bib32) 2006; 12
Tockner, Kocher, Hainzl, Reichelt, Bauer, Koller, Murauer (bib47) 2016; 23
Kern, Loeckermann, Fritsch, Hausser, Roth, Magin, Mack, Müller, Paul, Ruther, Bruckner-Tuderman (bib40) 2009; 17
Montaudié, Chiaverini, Sbidian, Charlesworth, Lacour (bib2) 2016; 11
Kocher, Peking, Klausegger, Murauer, Hofbauer, Wally, Lettner, Hainzl, Ablinger, Bauer (bib23) 2017; 25
Schwieger-Briel, Weibel, Chmel, Leppert, Kernland-Lang, Grüninger, Has (bib41) 2015; 173
Siprashvili, Nguyen, Gorell, Loutit, Khuu, Furukawa, Lorenz, Leung, Keene, Rieger (bib4) 2016; 316
Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib13) 2013; 8
Takashima, Shinkuma, Fujita, Nomura, Ujiie, Natsuga, Iwata, Nakamura, Vorobyev, Abe, Shimizu (bib20) 2019; 139
Liang, Potter, Kumar, Zou, Quintanilla, Sridharan, Carte, Chen, Roark, Ranganathan (bib43) 2015; 208
Wu, Lu, Li, Wang, Qian, Duan, Zhang, Wang, Chen (bib42) 2017; 114
Petrof, Martinez-Queipo, Mellerio, Kemp, McGrath (bib3) 2013; 169
Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri, Yang, Church (bib21) 2013; 31
Montague, Cruz, Gagnon, Church, Valen (bib25) 2014; 42
Peking (10.1016/j.omtn.2019.09.011_bib46) 2017; 45
Mali (10.1016/j.omtn.2019.09.011_bib9) 2013; 339
Montaudié (10.1016/j.omtn.2019.09.011_bib2) 2016; 11
Bonafont (10.1016/j.omtn.2019.09.011_bib19) 2019; 27
Gardella (10.1016/j.omtn.2019.09.011_bib24) 1996; 59
Gilbert (10.1016/j.omtn.2019.09.011_bib11) 2013; 154
Petrof (10.1016/j.omtn.2019.09.011_bib3) 2013; 169
Siprashvili (10.1016/j.omtn.2019.09.011_bib4) 2016; 316
Tockner (10.1016/j.omtn.2019.09.011_bib47) 2016; 23
Vakulskas (10.1016/j.omtn.2019.09.011_bib12) 2018; 24
Kocher (10.1016/j.omtn.2019.09.011_bib23) 2017; 25
Kern (10.1016/j.omtn.2019.09.011_bib40) 2009; 17
Mencía (10.1016/j.omtn.2019.09.011_bib18) 2018; 11
Allen (10.1016/j.omtn.2019.09.011_bib37) 2018; 37
Peking (10.1016/j.omtn.2019.09.011_bib45) 2016; 5
Zetsche (10.1016/j.omtn.2019.09.011_bib10) 2015; 163
Schwieger-Briel (10.1016/j.omtn.2019.09.011_bib41) 2015; 173
Titeux (10.1016/j.omtn.2019.09.011_bib7) 2010; 18
Chen (10.1016/j.omtn.2019.09.011_bib29) 2017; 8
Shen (10.1016/j.omtn.2019.09.011_bib39) 2018; 563
Bauer (10.1016/j.omtn.2019.09.011_bib33) 2017; 137
Hirsch (10.1016/j.omtn.2019.09.011_bib34) 2017; 551
Izmiryan (10.1016/j.omtn.2019.09.011_bib17) 2018; 12
Bae (10.1016/j.omtn.2019.09.011_bib30) 2014; 30
Woodley (10.1016/j.omtn.2019.09.011_bib6) 2017; 127
Mali (10.1016/j.omtn.2019.09.011_bib21) 2013; 31
Shinkuma (10.1016/j.omtn.2019.09.011_bib36) 2016; 113
Anglani (10.1016/j.omtn.2019.09.011_bib28) 1990; 47
Mavilio (10.1016/j.omtn.2019.09.011_bib32) 2006; 12
Fine (10.1016/j.omtn.2019.09.011_bib1) 2014; 70
Cong (10.1016/j.omtn.2019.09.011_bib8) 2013; 339
Chakrabarti (10.1016/j.omtn.2019.09.011_bib38) 2019; 73
Liang (10.1016/j.omtn.2019.09.011_bib43) 2015; 208
Takashima (10.1016/j.omtn.2019.09.011_bib20) 2019; 139
Wu (10.1016/j.omtn.2019.09.011_bib42) 2017; 114
Venugopal (10.1016/j.omtn.2019.09.011_bib5) 2013; 69
Peking (10.1016/j.omtn.2019.09.011_bib31) 2018; 129
Clement (10.1016/j.omtn.2019.09.011_bib48) 2019; 37
Hainzl (10.1016/j.omtn.2019.09.011_bib16) 2017; 25
Liang (10.1016/j.omtn.2019.09.011_bib44) 2017; 241
Chamorro (10.1016/j.omtn.2019.09.011_bib35) 2016; 5
Montague (10.1016/j.omtn.2019.09.011_bib25) 2014; 42
Lin (10.1016/j.omtn.2019.09.011_bib27) 2014; 42
Ran (10.1016/j.omtn.2019.09.011_bib13) 2013; 8
Ran (10.1016/j.omtn.2019.09.011_bib22) 2013; 154
Akcakaya (10.1016/j.omtn.2019.09.011_bib14) 2018; 561
Labun (10.1016/j.omtn.2019.09.011_bib26) 2016; 44
Webber (10.1016/j.omtn.2019.09.011_bib15) 2016; 1
References_xml – volume: 18
  start-page: 1509
  year: 2010
  end-page: 1518
  ident: bib7
  article-title: SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa
  publication-title: Mol. Ther.
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  ident: bib21
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
– volume: 113
  start-page: 5676
  year: 2016
  end-page: 5681
  ident: bib36
  article-title: Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 2573
  year: 2017
  end-page: 2584
  ident: bib16
  article-title: COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa
  publication-title: Mol. Ther.
– volume: 12
  start-page: 554
  year: 2018
  end-page: 567
  ident: bib17
  article-title: Ex Vivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair
  publication-title: Mol. Ther. Nucleic Acids
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bib9
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 139
  start-page: 1711
  year: 2019
  end-page: 1721.e4
  ident: bib20
  article-title: Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9
  publication-title: J. Invest. Dermatol.
– volume: 42
  start-page: W401
  year: 2014
  end-page: W407
  ident: bib25
  article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
  publication-title: Nucleic Acids Res.
– volume: 129
  start-page: 330
  year: 2018
  end-page: 343
  ident: bib31
  article-title: Functional therapies for cutaneous wound repair in epidermolysis bullosa
  publication-title: Adv. Drug Deliv. Rev.
– volume: 316
  start-page: 1808
  year: 2016
  end-page: 1817
  ident: bib4
  article-title: Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa
  publication-title: JAMA
– volume: 30
  start-page: 1473
  year: 2014
  end-page: 1475
  ident: bib30
  article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
  publication-title: Bioinformatics
– volume: 241
  start-page: 136
  year: 2017
  end-page: 146
  ident: bib44
  article-title: Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA
  publication-title: J. Biotechnol.
– volume: 24
  start-page: 1216
  year: 2018
  end-page: 1224
  ident: bib12
  article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells
  publication-title: Nat. Med.
– volume: 44
  start-page: W272
  year: 2016
  end-page: W276
  ident: bib26
  article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
  publication-title: Nucleic Acids Res.
– volume: 208
  start-page: 44
  year: 2015
  end-page: 53
  ident: bib43
  article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
  publication-title: J. Biotechnol.
– volume: 69
  start-page: 898
  year: 2013
  end-page: 908.e897
  ident: bib5
  article-title: A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa
  publication-title: J. Am. Acad. Dermatol.
– volume: 173
  start-page: 1308
  year: 2015
  end-page: 1311
  ident: bib41
  article-title: A COL7A1 variant leading to in-frame skipping of exon 15 attenuates disease severity in recessive dystrophic epidermolysis bullosa
  publication-title: Br. J. Dermatol.
– volume: 169
  start-page: 1025
  year: 2013
  end-page: 1033
  ident: bib3
  article-title: Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial
  publication-title: Br. J. Dermatol.
– volume: 37
  start-page: 224
  year: 2019
  end-page: 226
  ident: bib48
  article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 1605
  year: 2009
  end-page: 1615
  ident: bib40
  article-title: Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity
  publication-title: Mol. Ther.
– volume: 137
  start-page: 778
  year: 2017
  end-page: 781
  ident: bib33
  article-title: Closure of a Large Chronic Wound through Transplantation of Gene-Corrected Epidermal Stem Cells
  publication-title: J. Invest. Dermatol.
– volume: 127
  start-page: 3028
  year: 2017
  end-page: 3038
  ident: bib6
  article-title: Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients
  publication-title: J. Clin. Invest.
– volume: 70
  start-page: 1103
  year: 2014
  end-page: 1126
  ident: bib1
  article-title: Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification
  publication-title: J. Am. Acad. Dermatol.
– volume: 42
  start-page: 7473
  year: 2014
  end-page: 7485
  ident: bib27
  article-title: CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
  publication-title: Nucleic Acids Res.
– volume: 561
  start-page: 416
  year: 2018
  end-page: 419
  ident: bib14
  article-title: In vivo CRISPR editing with no detectable genome-wide off-target mutations
  publication-title: Nature
– volume: 37
  start-page: 64
  year: 2018
  end-page: 72
  ident: bib37
  article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks
  publication-title: Nat Biotechnol.
– volume: 563
  start-page: 646
  year: 2018
  end-page: 651
  ident: bib39
  article-title: Predictable and precise template-free CRISPR editing of pathogenic variants
  publication-title: Nature
– volume: 45
  start-page: 10259
  year: 2017
  end-page: 10269
  ident: bib46
  article-title: An RNA-targeted therapy for dystrophic epidermolysis bullosa
  publication-title: Nucleic Acids Res.
– volume: 154
  start-page: 442
  year: 2013
  end-page: 451
  ident: bib11
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
– volume: 551
  start-page: 327
  year: 2017
  end-page: 332
  ident: bib34
  article-title: Regeneration of the entire human epidermis using transgenic stem cells
  publication-title: Nature
– volume: 59
  start-page: 292
  year: 1996
  end-page: 300
  ident: bib24
  article-title: Identification of two splicing mutations in the collagen type VII gene (COL7A1) of a patient affected by the localisata variant of recessive dystrophic epidermolysis bullosa
  publication-title: Am. J. Hum. Genet.
– volume: 23
  start-page: 775
  year: 2016
  end-page: 784
  ident: bib47
  article-title: Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations
  publication-title: Gene Ther.
– volume: 8
  start-page: 657
  year: 2017
  ident: bib29
  article-title: In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1397
  year: 2006
  end-page: 1402
  ident: bib32
  article-title: Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells
  publication-title: Nat. Med.
– volume: 73
  start-page: 699
  year: 2019
  end-page: 713.e6
  ident: bib38
  article-title: Target-Specific Precision of CRISPR-Mediated Genome Editing
  publication-title: Mol. Cell
– volume: 27
  start-page: 986
  year: 2019
  end-page: 998
  ident: bib19
  article-title: Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing
  publication-title: Mol. Ther.
– volume: 11
  start-page: 68
  year: 2018
  end-page: 78
  ident: bib18
  article-title: Deletion of a Pathogenic Mutation-Containing Exon of COL7A1 Allows Clonal Gene Editing Correction of RDEB Patient Epidermal Stem Cells
  publication-title: Mol. Ther. Nucleic Acids
– volume: 5
  start-page: e307
  year: 2016
  ident: bib35
  article-title: Gene Editing for the Efficient Correction of a Recurrent COL7A1 Mutation in Recessive Dystrophic Epidermolysis Bullosa Keratinocytes
  publication-title: Mol. Ther. Nucleic Acids
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib8
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 25
  start-page: 2585
  year: 2017
  end-page: 2598
  ident: bib23
  article-title: Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases
  publication-title: Mol. Ther.
– volume: 154
  start-page: 1380
  year: 2013
  end-page: 1389
  ident: bib22
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
– volume: 5
  start-page: e287
  year: 2016
  ident: bib45
  article-title: A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair
  publication-title: Mol. Ther. Nucleic Acids
– volume: 1
  start-page: 16014
  year: 2016
  ident: bib15
  article-title: CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa
  publication-title: NPJ Regen. Med.
– volume: 163
  start-page: 759
  year: 2015
  end-page: 771
  ident: bib10
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: bib13
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 114
  start-page: 1660
  year: 2017
  end-page: 1665
  ident: bib42
  article-title: Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 117
  year: 2016
  ident: bib2
  article-title: Inherited epidermolysis bullosa and squamous cell carcinoma: a systematic review of 117 cases
  publication-title: Orphanet J. Rare Dis.
– volume: 47
  start-page: 169
  year: 1990
  end-page: 170
  ident: bib28
  article-title: Heteroduplex formation in polymerase chain reaction
  publication-title: Am. J. Hum. Genet.
– volume: 47
  start-page: 169
  year: 1990
  ident: 10.1016/j.omtn.2019.09.011_bib28
  article-title: Heteroduplex formation in polymerase chain reaction
  publication-title: Am. J. Hum. Genet.
– volume: 1
  start-page: 16014
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib15
  article-title: CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa
  publication-title: NPJ Regen. Med.
  doi: 10.1038/npjregenmed.2016.14
– volume: 25
  start-page: 2573
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib16
  article-title: COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.07.005
– volume: 139
  start-page: 1711
  year: 2019
  ident: 10.1016/j.omtn.2019.09.011_bib20
  article-title: Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2019.02.015
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib13
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 27
  start-page: 986
  year: 2019
  ident: 10.1016/j.omtn.2019.09.011_bib19
  article-title: Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2019.03.007
– volume: 8
  start-page: 657
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib29
  article-title: In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00687-1
– volume: 18
  start-page: 1509
  year: 2010
  ident: 10.1016/j.omtn.2019.09.011_bib7
  article-title: SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.91
– volume: 208
  start-page: 44
  year: 2015
  ident: 10.1016/j.omtn.2019.09.011_bib43
  article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.04.024
– volume: 11
  start-page: 117
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib2
  article-title: Inherited epidermolysis bullosa and squamous cell carcinoma: a systematic review of 117 cases
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-016-0489-9
– volume: 169
  start-page: 1025
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib3
  article-title: Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.12599
– volume: 561
  start-page: 416
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib14
  article-title: In vivo CRISPR editing with no detectable genome-wide off-target mutations
  publication-title: Nature
  doi: 10.1038/s41586-018-0500-9
– volume: 44
  start-page: W272
  issue: W1
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib26
  article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw398
– volume: 30
  start-page: 1473
  year: 2014
  ident: 10.1016/j.omtn.2019.09.011_bib30
  article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu048
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib8
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 563
  start-page: 646
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib39
  article-title: Predictable and precise template-free CRISPR editing of pathogenic variants
  publication-title: Nature
  doi: 10.1038/s41586-018-0686-x
– volume: 173
  start-page: 1308
  year: 2015
  ident: 10.1016/j.omtn.2019.09.011_bib41
  article-title: A COL7A1 variant leading to in-frame skipping of exon 15 attenuates disease severity in recessive dystrophic epidermolysis bullosa
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.13945
– volume: 45
  start-page: 10259
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib46
  article-title: An RNA-targeted therapy for dystrophic epidermolysis bullosa
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx669
– volume: 12
  start-page: 1397
  year: 2006
  ident: 10.1016/j.omtn.2019.09.011_bib32
  article-title: Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm1504
– volume: 154
  start-page: 442
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib11
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
– volume: 11
  start-page: 68
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib18
  article-title: Deletion of a Pathogenic Mutation-Containing Exon of COL7A1 Allows Clonal Gene Editing Correction of RDEB Patient Epidermal Stem Cells
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.01.009
– volume: 241
  start-page: 136
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib44
  article-title: Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2016.11.011
– volume: 24
  start-page: 1216
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib12
  article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0137-0
– volume: 73
  start-page: 699
  year: 2019
  ident: 10.1016/j.omtn.2019.09.011_bib38
  article-title: Target-Specific Precision of CRISPR-Mediated Genome Editing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.11.031
– volume: 37
  start-page: 224
  year: 2019
  ident: 10.1016/j.omtn.2019.09.011_bib48
  article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0032-3
– volume: 17
  start-page: 1605
  year: 2009
  ident: 10.1016/j.omtn.2019.09.011_bib40
  article-title: Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.144
– volume: 23
  start-page: 775
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib47
  article-title: Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations
  publication-title: Gene Ther.
  doi: 10.1038/gt.2016.57
– volume: 69
  start-page: 898
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib5
  article-title: A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2013.08.014
– volume: 163
  start-page: 759
  year: 2015
  ident: 10.1016/j.omtn.2019.09.011_bib10
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 31
  start-page: 833
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib21
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 25
  start-page: 2585
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib23
  article-title: Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.08.015
– volume: 42
  start-page: W401
  year: 2014
  ident: 10.1016/j.omtn.2019.09.011_bib25
  article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku410
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib9
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 37
  start-page: 64
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib37
  article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.4317
– volume: 114
  start-page: 1660
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib42
  article-title: Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1614775114
– volume: 113
  start-page: 5676
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib36
  article-title: Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1512028113
– volume: 137
  start-page: 778
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib33
  article-title: Closure of a Large Chronic Wound through Transplantation of Gene-Corrected Epidermal Stem Cells
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2016.10.038
– volume: 5
  start-page: e307
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib35
  article-title: Gene Editing for the Efficient Correction of a Recurrent COL7A1 Mutation in Recessive Dystrophic Epidermolysis Bullosa Keratinocytes
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.19
– volume: 316
  start-page: 1808
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib4
  article-title: Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa
  publication-title: JAMA
  doi: 10.1001/jama.2016.15588
– volume: 42
  start-page: 7473
  year: 2014
  ident: 10.1016/j.omtn.2019.09.011_bib27
  article-title: CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku402
– volume: 129
  start-page: 330
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib31
  article-title: Functional therapies for cutaneous wound repair in epidermolysis bullosa
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.12.003
– volume: 5
  start-page: e287
  year: 2016
  ident: 10.1016/j.omtn.2019.09.011_bib45
  article-title: A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.3
– volume: 127
  start-page: 3028
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib6
  article-title: Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI92707
– volume: 551
  start-page: 327
  year: 2017
  ident: 10.1016/j.omtn.2019.09.011_bib34
  article-title: Regeneration of the entire human epidermis using transgenic stem cells
  publication-title: Nature
  doi: 10.1038/nature24487
– volume: 70
  start-page: 1103
  year: 2014
  ident: 10.1016/j.omtn.2019.09.011_bib1
  article-title: Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2014.01.903
– volume: 12
  start-page: 554
  year: 2018
  ident: 10.1016/j.omtn.2019.09.011_bib17
  article-title: Ex Vivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.06.008
– volume: 154
  start-page: 1380
  year: 2013
  ident: 10.1016/j.omtn.2019.09.011_bib22
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 59
  start-page: 292
  year: 1996
  ident: 10.1016/j.omtn.2019.09.011_bib24
  article-title: Identification of two splicing mutations in the collagen type VII gene (COL7A1) of a patient affected by the localisata variant of recessive dystrophic epidermolysis bullosa
  publication-title: Am. J. Hum. Genet.
SSID ssj0000601262
Score 2.3620296
Snippet Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 496
SubjectTerms Binding sites
Collagen
Collagen (type VII)
CRISPR
CRISPR/Cas9
D10A SpCas9
Deoxyribonucleic acid
DNA
double-nicking
Dystrophic epidermolysis bullosa
Epidermolysis bullosa
gene-editing
Genome editing
Genomes
Homologous recombination
Keratinocytes
Mutation
Nicking endonuclease
Non-homologous end joining
RNA editing
Secretion
Skin diseases
type VII collagen
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_WVSKIFwl20nl0juOyyyA-EFzYW-g8Gkd2esSZPey_tyrpHqYV1ovQl-68SKqS-ipd-ULI61ZZMAJCs8b3gUkVOYP3xKxveEqyNzzgeedPn_XyQn64VJcHV31hTFihBy4D9w7aACOkGhMbI-tWdhHtVi-MttYbnb312tYHzlRZg2HhzbeJCq4FE6Bp44mZEty1We-Q_JTbTHLK-cwqZfL-mXH6G3z-GUN5YJTO75N7I5qki9KLB-ROGh6S48UAnvT6hr6hOb4zb5wfk69l_yBFCqDZXyUGSoD75HQiqE1bCgiWnn75aBacncUVRkRTf0OXmzXWsbneUvRW1-BMZ3k-IhfnZ99Ol2y8UIEFcAN3TErkW_PCdI32thXRN17LGFQfahGDQDK9LsCwghPUWWssD8J3yQbk8bIghMfkaNgM6SmhfeolGMBorahlUJ1XEne0TLS1T4DJKsKnAXVhZBvHSy-u3BRW9sOhEBwKwdXwcCjzdl_mZ-HauDX3e5TTPifyZOcPoD1u1B73L-2piJqk7EbIUaAEVLW6tfGTSSXcOOm3DsApV61ttarIq30yTFf8B9MNCcTkEE4bDDcTFXlSNGjfAyQlgCZsRcxMt2ZdnKcMq--ZEly3TaukfvY_xuQ5uYs9zTE7-oQc7X5dpxeAvHb-ZZ5kvwHnSydL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe-GCgPIIFGQkxAVFxI4f8QGhbbXVCsGCKir1ZsWPwKJuUrrbQ_89M3lBQFppL9k8nRnPfDMZf0PI60IacAJcpbmrfCpkYClsx9S4nMUoKs08rnf-vFSLc_HxQl7skeWwFgbLKgeb2Brq0HjMkb8Dz89kYQolP1z9SrFrFH5dHVpolH1rhfC-pRi7Qw7AJBeg9wfH8-XXszHrguwjXPF-9UxX6NWst0iEykxLeMrYxEO1RP4TR_U_EP23nvIvB3V6n9zrkSWddarwgOzF-iE5nNUQVa9v6Rva1nq2SfRDctblEmKgAKDdZUxBITBnTgey2rihgGbpyZdPesZoOg8rLI-m7pYumjVepLnZUAxd1xBZt8J9RM5P599OFmnfXSH1EBNuUyGQfM1xXebKmYIHlzslgpeVz3jwHJn1Sm-choioNEYb5rkro_FI6mXAUD4m-3VTx6eEVrES4A2DMTwTXpZOCkxv6WAyFwGgJYQNb9T6nnocO2Bc2qHG7KdFKViUgs3gx-Cct-M5Vx3xxs6jj1FQ45FImt3-0Vx_t_0ctKCugGdkrkOuRVaIMiAEqrhWBoapsoTIQcy2xx8droBLrXbe_GjQCdtbgI39o68JeTXuhrmLH2TKOoKYLGJrjbVnPCFPOhUaR4AMBXALkxA9Ua7JEKd76tWPlh9cFXkhhXq2-7Gek7s4hrY0Rx2R_e31TXwBAGvrXvaz5jcnsyTL
  priority: 102
  providerName: ProQuest
Title Improved Double-Nicking Strategies for COL7A1-Editing by Homologous Recombination
URI https://dx.doi.org/10.1016/j.omtn.2019.09.011
https://www.ncbi.nlm.nih.gov/pubmed/31670199
https://www.proquest.com/docview/2321589865
https://www.proquest.com/docview/2310719912
https://pubmed.ncbi.nlm.nih.gov/PMC6838546
https://doaj.org/article/bec181537d374084adb000f27699b760
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9sILAsZHYVRGQrygoMTxR_yAUDd1qhAbH6JS36zYcUZRm2xtJ9H_njsnKQSmCSkv-bLl3Nn3u8v5d4S8yoQGI8BklNrSRVwUSQTnPtI2TbznpUoc7nc-O5eTKf8wE7M90pU7aj_g-kbXDutJTVeLtz-vtu9hwr_7natVLzfIZZrowFmKW30PwDJJdMbOWrjfrMywHIcaoyyRLGKgf-0-mpub6dmqQOnfM1n_QtK_Myv_MFWn98m9FmPSUaMUD8ierx6Sw1EF_vVyS1_TkPUZwumH5EsTVfAFBShtFz4C1cDoOe1oa_2aAq6lJ58-qlESjYs55klTu6WTeolt1Ndrij7sElzsIOVHZHo6_nYyidoyC5ED53ATcY4sbJapPJVWZ6ywqZW8cKJ0MSscQ4q93GmrwDXKtVY6cczmXjtk99KwYj4m-1Vd-aeElr7kYBYLrVnMncit4BjnUoWOrQekNiBJ90GNaznIsRTGwnTJZj8MCsGgEEwMRwLvvNm9c9kwcNz69DHKafcksmeHC_XqwrST0YDeArARqSpSxeOM5wVioZIpqWGYMh4Q0UnZtECkARjQ1PzWzo86lTCdJhuArInIdCbFgLzc3YZJjH9m8sqDmAyCbIVJaGxAnjQatBsBUhVAF3pAVE-3ekPs36nm3wNRuMzSTHD57D_6fU7u4kBCoo48Ivub1bV_AXBrY4fkjpqpITk4Hp9__joMQYthmFe_AOFXKV0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuCCiPQIFFAi7Iwrte73oPFUpLqpSmAVWt1NvifRiCGrs0qVD-HL-NGT8CASm3Sr7Ez6xndueb8cw3hLzKUg1GgMsosYWLROpZBL9DpG3CQhCFYg7rnY_HcngmPp6n5xvkV1cLg2mV3ZpYL9S-chgjfweWn6WZzmT6_vJHhF2j8Otq10Ijb1sr-N2aYqwt7DgKi5_gws12Dz-AvF9zfjA43R9GbZeByIFvNI-EQBIyy1WeSKsz7m1ipfAuLVzMvePIMJc7bRV4BrnWSjPHbR60Q3IrzbBrBJiALYEVrptka28w_nyyjPIg2wmXvK3WaRLLqukciVeZrglWGVuxiHXjgBXD-D_w_Td_8y-DeHCX3GmRLO03qnePbITyPtnul-DFTxf0Da1zS-ug_TY5aWIXwVMA7PYiRKCAGKOnHTlumFFAz3T_00j1GY0GfoLp2NQu6LCa4k2q6xlFV3kKnnytTA_I2Y2854dks6zK8JjQIhQCrK_XmsfCpblNBYbTlNexDQAIe4R1b9S4luocO25cmC6n7btBKRiUgolhY3DN2-U1lw3Rx9qz91BQyzORpLveUV19Ne2cNzA9AD-lifKJEnEmco-Qq-BKahimjHsk7cRsWrzT4Bi41WTtw3c6nTDtijMzf-ZHj7xcHoa1Aj8A5WUAMRnE8gpz3XiPPGpUaDkCZESAR-geUSvKtTLE1SPl5FvNRy6zJEuFfLL-b70gt4anxyMzOhwfPSW3cTx1WpDcIZvzq-vwDMDd3D5vZxAlX2560v4GNr9gmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Double-Nicking+Strategies+for+COL7A1-Editing+by+Homologous+Recombination&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Kocher%2C+Thomas&rft.au=Wagner%2C+Roland+N&rft.au=Klausegger%2C+Alfred&rft.au=Guttmann-Gruber%2C+Christina&rft.date=2019-12-06&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=18&rft.spage=496&rft_id=info:doi/10.1016%2Fj.omtn.2019.09.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon