Improved Double-Nicking Strategies for COL7A1-Editing by Homologous Recombination
Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and prec...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 18; pp. 496 - 507 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.12.2019
Elsevier Limited American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2162-2531 2162-2531 |
DOI | 10.1016/j.omtn.2019.09.011 |
Cover
Abstract | Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB. |
---|---|
AbstractList | Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB. Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB. Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB. Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB. Keywords: epidermolysis bullosa, CRISPR/Cas9, double-nicking, homologous recombination, type VII collagen, D10A SpCas9, gene-editing Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1 -editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1 , which lies at the heart of a future curative therapy of RDEB. |
Author | Koller, Ulrich Klausegger, Alfred Hainzl, Stefan Kocher, Thomas Guttmann-Gruber, Christina Wagner, Roland N. Reichelt, Julia Bauer, Johann W. |
AuthorAffiliation | 1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria 2 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria |
AuthorAffiliation_xml | – name: 1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – name: 2 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria |
Author_xml | – sequence: 1 givenname: Thomas surname: Kocher fullname: Kocher, Thomas organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 2 givenname: Roland N. surname: Wagner fullname: Wagner, Roland N. organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 3 givenname: Alfred surname: Klausegger fullname: Klausegger, Alfred organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 4 givenname: Christina surname: Guttmann-Gruber fullname: Guttmann-Gruber, Christina organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 5 givenname: Stefan surname: Hainzl fullname: Hainzl, Stefan organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 6 givenname: Johann W. surname: Bauer fullname: Bauer, Johann W. organization: Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 7 givenname: Julia surname: Reichelt fullname: Reichelt, Julia organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria – sequence: 8 givenname: Ulrich surname: Koller fullname: Koller, Ulrich email: u.koller@salk.at organization: EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31670199$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQNSWlSdP8gR6KoZdevNXItmxBKYRt2iwsDf06C0keu9ra0la2F_LvO5tNQ5JDxICE5r0nzZt5mRz54DFJXgNbAAPxfrMIw-QXnIFcMAqAZ8kJB8EzXuZwdO98nJyN44bREgy44C-S4xxERUR5knxbDdsYdtikn8Jsesy-OvvH-S79MUU9YedwTNsQ0-XVujqH7KJx0z5rrtPLMIQ-dGEe0-9ow2Cc15ML_lXyvNX9iGe3-2ny6_PFz-Vltr76slqerzNbFnLKiqIseWV4pXNhZM0bkxtRNLZsLeON5SWThbbSVFIKLWUlwXKjUdoS6ArK_DRZHXSboDdqG92g47UK2qmbixA7pePkbI_KoIWaKFWTVwWrC90YcqPllZD0gGCk9fGgtZ3NgI1FT9X3D0QfZrz7rbqwU6LO67IQJPDuViCGvzOOkxrcaLHvtUdySPEcWEWGAyfo20fQTZijJ6sIxaGsZS321b25_6O7r_zvHAH4AWBjGMeI7R0EmNpPiCIPaELUfkIUowAgUv2IZN100zWqyvVPUz8cqEg93TmMarQOvcXGRbQTme6eov8D3KrUlA |
CitedBy_id | crossref_primary_10_1007_s13353_024_00839_2 crossref_primary_10_3390_ijms25042243 crossref_primary_10_1080_10799893_2021_1895220 crossref_primary_10_5812_gct_134461 crossref_primary_10_3389_fgene_2021_658295 crossref_primary_10_1111_ddg_14187 crossref_primary_10_1016_j_xjidi_2024_100343 crossref_primary_10_3390_ijms24065197 crossref_primary_10_1007_s13555_021_00561_5 crossref_primary_10_1016_j_jid_2020_02_012 crossref_primary_10_1016_j_thromres_2024_04_031 crossref_primary_10_3390_cells9010112 crossref_primary_10_3390_ijms24032298 crossref_primary_10_1016_j_ymthe_2021_02_019 crossref_primary_10_1007_s00105_019_04529_7 crossref_primary_10_1016_j_omtn_2021_05_015 crossref_primary_10_1093_nar_gkad165 crossref_primary_10_1016_j_omtn_2025_102472 crossref_primary_10_1177_1073274820934805 crossref_primary_10_3390_ijms23010573 crossref_primary_10_1080_14728214_2020_1839049 crossref_primary_10_3389_fphar_2021_746664 crossref_primary_10_1146_annurev_genom_083117_021702 crossref_primary_10_1080_14712598_2022_2049229 crossref_primary_10_1111_exd_14314 crossref_primary_10_3390_cells11142186 crossref_primary_10_1016_j_ymthe_2022_04_020 crossref_primary_10_1002_btm2_10640 crossref_primary_10_3389_fmed_2022_976604 crossref_primary_10_1016_j_ddmod_2020_10_001 crossref_primary_10_1111_ddg_14187_g crossref_primary_10_1016_j_jid_2024_04_013 crossref_primary_10_1016_j_ymthe_2024_03_006 crossref_primary_10_1016_j_omtm_2022_09_005 crossref_primary_10_1080_09546634_2024_2391452 crossref_primary_10_1016_j_omtm_2023_101134 crossref_primary_10_1111_1346_8138_17621 crossref_primary_10_1002_bit_28393 crossref_primary_10_1134_S0026893322060085 |
Cites_doi | 10.1038/npjregenmed.2016.14 10.1016/j.ymthe.2017.07.005 10.1016/j.jid.2019.02.015 10.1038/nprot.2013.143 10.1016/j.ymthe.2019.03.007 10.1038/s41467-017-00687-1 10.1038/mt.2010.91 10.1016/j.jbiotec.2015.04.024 10.1186/s13023-016-0489-9 10.1111/bjd.12599 10.1038/s41586-018-0500-9 10.1093/nar/gkw398 10.1093/bioinformatics/btu048 10.1126/science.1231143 10.1038/s41586-018-0686-x 10.1111/bjd.13945 10.1093/nar/gkx669 10.1038/nm1504 10.1016/j.cell.2013.06.044 10.1016/j.omtn.2018.01.009 10.1016/j.jbiotec.2016.11.011 10.1038/s41591-018-0137-0 10.1016/j.molcel.2018.11.031 10.1038/s41587-019-0032-3 10.1038/mt.2009.144 10.1038/gt.2016.57 10.1016/j.jaad.2013.08.014 10.1016/j.cell.2015.09.038 10.1038/nbt.2675 10.1016/j.ymthe.2017.08.015 10.1093/nar/gku410 10.1126/science.1232033 10.1038/nbt.4317 10.1073/pnas.1614775114 10.1073/pnas.1512028113 10.1016/j.jid.2016.10.038 10.1038/mtna.2016.19 10.1001/jama.2016.15588 10.1093/nar/gku402 10.1016/j.addr.2017.12.003 10.1038/mtna.2016.3 10.1172/JCI92707 10.1038/nature24487 10.1016/j.jaad.2014.01.903 10.1016/j.omtn.2018.06.008 10.1016/j.cell.2013.08.021 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019. The Author(s) 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019. The Author(s) – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2019.09.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
EndPage | 507 |
ExternalDocumentID | oai_doaj_org_article_bec181537d374084adb000f27699b760 PMC6838546 31670199 10_1016_j_omtn_2019_09_011 S2162253119302586 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GroupedDBID | 0R~ 53G 5VS 6I. 7X7 88I 8FE 8FH 8FI 8FJ AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ABUWG ACGFS ADBBV ADVLN AEXQZ AFKRA AFTJW AITUG ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK DWQXO EBS EJD FDB FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M2P M41 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNTTT ROL RPM SSZ UKHRP AAYXX ADRAZ APXCP CITATION IPNFZ RIG AACTN NPM 3V. 7XB 88A 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c549t-445527b27a36b982db3b64dc5fc02dc25094ac9b7996a99791c2bae9c51799153 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:23:30 EDT 2025 Thu Aug 21 14:11:38 EDT 2025 Fri Sep 05 08:40:18 EDT 2025 Fri Jul 25 11:09:51 EDT 2025 Thu Apr 03 07:11:05 EDT 2025 Thu Jul 03 08:35:01 EDT 2025 Thu Apr 24 22:56:01 EDT 2025 Tue Jul 29 20:30:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | D10A SpCas9 CRISPR/Cas9 homologous recombination epidermolysis bullosa type VII collagen double-nicking gene-editing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-445527b27a36b982db3b64dc5fc02dc25094ac9b7996a99791c2bae9c51799153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2019.09.011 |
PMID | 31670199 |
PQID | 2321589865 |
PQPubID | 2041944 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bec181537d374084adb000f27699b760 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6838546 proquest_miscellaneous_2310719912 proquest_journals_2321589865 pubmed_primary_31670199 crossref_primary_10_1016_j_omtn_2019_09_011 crossref_citationtrail_10_1016_j_omtn_2019_09_011 elsevier_sciencedirect_doi_10_1016_j_omtn_2019_09_011 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-06 |
PublicationDateYYYYMMDD | 2019-12-06 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Milwaukee |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationTitleAlternate | Mol Ther Nucleic Acids |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Chakrabarti, Henser-Brownhill, Monserrat, Poetsch, Luscombe, Scaffidi (bib38) 2019; 73 Allen, Crepaldi, Alsinet, Strong, Kleshchevnikov, De Angeli, Páleníková, Khodak, Kiselev, Kosicki (bib37) 2018; 37 Lin, Cradick, Brown, Deshmukh, Ranjan, Sarode, Wile, Vertino, Stewart, Bao (bib27) 2014; 42 Vakulskas, Dever, Rettig, Turk, Jacobi, Collingwood, Bode, McNeill, Yan, Camarena (bib12) 2018; 24 Labun, Montague, Gagnon, Thyme, Valen (bib26) 2016; 44 Bonafont, Mencía, García, Torres, Rodríguez, Carretero, Chacón-Solano, Modamio-Høybjør, Marinas, León (bib19) 2019; 27 Titeux, Pendaries, Zanta-Boussif, Décha, Pironon, Tonasso, Mejia, Brice, Danos, Hovnanian (bib7) 2010; 18 Fine, Bruckner-Tuderman, Eady, Bauer, Bauer, Has, Heagerty, Hintner, Hovnanian, Jonkman (bib1) 2014; 70 Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev (bib10) 2015; 163 Gilbert, Larson, Morsut, Liu, Brar, Torres, Stern-Ginossar, Brandman, Whitehead, Doudna (bib11) 2013; 154 Peking, Koller, Duarte, Murillas, Wolf, Maetzig, Rothe, Kocher, García, Brachtl (bib46) 2017; 45 Bauer, Koller, Murauer, De Rosa, Enzo, Carulli, Bondanza, Recchia, Muss, Diem (bib33) 2017; 137 Liang, Potter, Kumar, Ravinder, Chesnut (bib44) 2017; 241 Mencía, Chamorro, Bonafont, Duarte, Holguin, Illera, Llames, Escámez, Hausser, Del Río (bib18) 2018; 11 Shinkuma, Guo, Christiano (bib36) 2016; 113 Anglani, Picci, Camporese, Zacchello (bib28) 1990; 47 Chamorro, Mencía, Almarza, Duarte, Büning, Sallach, Hausser, Del Río, Larcher, Murillas (bib35) 2016; 5 Bae, Park, Kim (bib30) 2014; 30 Woodley, Cogan, Hou, Lyu, Marinkovich, Keene, Chen (bib6) 2017; 127 Hainzl, Peking, Kocher, Murauer, Larcher, Del Rio, Duarte, Steiner, Klausegger, Bauer (bib16) 2017; 25 Venugopal, Yan, Frew, Cohn, Rhodes, Tran, Melbourne, Nelson, Sturm, Fogarty (bib5) 2013; 69 Akcakaya, Bobbin, Guo, Malagon-Lopez, Clement, Garcia, Fellows, Porritt, Firth, Carreras (bib14) 2018; 561 Ran, Hsu, Lin, Gootenberg, Konermann, Trevino, Scott, Inoue, Matoba, Zhang, Zhang (bib22) 2013; 154 Clement, Rees, Canver, Gehrke, Farouni, Hsu, Cole, Liu, Joung, Bauer, Pinello (bib48) 2019; 37 Shen, Arbab, Hsu, Worstell, Culbertson, Krabbe, Cassa, Liu, Gifford, Sherwood (bib39) 2018; 563 Izmiryan, Ganier, Bovolenta, Schmitt, Mavilio, Hovnanian (bib17) 2018; 12 Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Norville, Church (bib9) 2013; 339 Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bib8) 2013; 339 Webber, Osborn, McElroy, Twaroski, Lonetree, DeFeo, Xia, Eide, Lees, McElmurry (bib15) 2016; 1 Peking, Koller, Hainzl, Kitzmueller, Kocher, Mayr, Nyström, Lener, Reichelt, Bauer, Murauer (bib45) 2016; 5 Hirsch, Rothoeft, Teig, Bauer, Pellegrini, De Rosa, Scaglione, Reichelt, Klausegger, Kneisz (bib34) 2017; 551 Gardella, Belletti, Zoppi, Marini, Barlati, Colombi (bib24) 1996; 59 Peking, Koller, Murauer (bib31) 2018; 129 Chen, Janssen, Liu, Maggio, t Jong, Mikkers, Gonçalves (bib29) 2017; 8 Mavilio, Pellegrini, Ferrari, Di Nunzio, Di Iorio, Recchia, Maruggi, Ferrari, Provasi, Bonini (bib32) 2006; 12 Tockner, Kocher, Hainzl, Reichelt, Bauer, Koller, Murauer (bib47) 2016; 23 Kern, Loeckermann, Fritsch, Hausser, Roth, Magin, Mack, Müller, Paul, Ruther, Bruckner-Tuderman (bib40) 2009; 17 Montaudié, Chiaverini, Sbidian, Charlesworth, Lacour (bib2) 2016; 11 Kocher, Peking, Klausegger, Murauer, Hofbauer, Wally, Lettner, Hainzl, Ablinger, Bauer (bib23) 2017; 25 Schwieger-Briel, Weibel, Chmel, Leppert, Kernland-Lang, Grüninger, Has (bib41) 2015; 173 Siprashvili, Nguyen, Gorell, Loutit, Khuu, Furukawa, Lorenz, Leung, Keene, Rieger (bib4) 2016; 316 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib13) 2013; 8 Takashima, Shinkuma, Fujita, Nomura, Ujiie, Natsuga, Iwata, Nakamura, Vorobyev, Abe, Shimizu (bib20) 2019; 139 Liang, Potter, Kumar, Zou, Quintanilla, Sridharan, Carte, Chen, Roark, Ranganathan (bib43) 2015; 208 Wu, Lu, Li, Wang, Qian, Duan, Zhang, Wang, Chen (bib42) 2017; 114 Petrof, Martinez-Queipo, Mellerio, Kemp, McGrath (bib3) 2013; 169 Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri, Yang, Church (bib21) 2013; 31 Montague, Cruz, Gagnon, Church, Valen (bib25) 2014; 42 Peking (10.1016/j.omtn.2019.09.011_bib46) 2017; 45 Mali (10.1016/j.omtn.2019.09.011_bib9) 2013; 339 Montaudié (10.1016/j.omtn.2019.09.011_bib2) 2016; 11 Bonafont (10.1016/j.omtn.2019.09.011_bib19) 2019; 27 Gardella (10.1016/j.omtn.2019.09.011_bib24) 1996; 59 Gilbert (10.1016/j.omtn.2019.09.011_bib11) 2013; 154 Petrof (10.1016/j.omtn.2019.09.011_bib3) 2013; 169 Siprashvili (10.1016/j.omtn.2019.09.011_bib4) 2016; 316 Tockner (10.1016/j.omtn.2019.09.011_bib47) 2016; 23 Vakulskas (10.1016/j.omtn.2019.09.011_bib12) 2018; 24 Kocher (10.1016/j.omtn.2019.09.011_bib23) 2017; 25 Kern (10.1016/j.omtn.2019.09.011_bib40) 2009; 17 Mencía (10.1016/j.omtn.2019.09.011_bib18) 2018; 11 Allen (10.1016/j.omtn.2019.09.011_bib37) 2018; 37 Peking (10.1016/j.omtn.2019.09.011_bib45) 2016; 5 Zetsche (10.1016/j.omtn.2019.09.011_bib10) 2015; 163 Schwieger-Briel (10.1016/j.omtn.2019.09.011_bib41) 2015; 173 Titeux (10.1016/j.omtn.2019.09.011_bib7) 2010; 18 Chen (10.1016/j.omtn.2019.09.011_bib29) 2017; 8 Shen (10.1016/j.omtn.2019.09.011_bib39) 2018; 563 Bauer (10.1016/j.omtn.2019.09.011_bib33) 2017; 137 Hirsch (10.1016/j.omtn.2019.09.011_bib34) 2017; 551 Izmiryan (10.1016/j.omtn.2019.09.011_bib17) 2018; 12 Bae (10.1016/j.omtn.2019.09.011_bib30) 2014; 30 Woodley (10.1016/j.omtn.2019.09.011_bib6) 2017; 127 Mali (10.1016/j.omtn.2019.09.011_bib21) 2013; 31 Shinkuma (10.1016/j.omtn.2019.09.011_bib36) 2016; 113 Anglani (10.1016/j.omtn.2019.09.011_bib28) 1990; 47 Mavilio (10.1016/j.omtn.2019.09.011_bib32) 2006; 12 Fine (10.1016/j.omtn.2019.09.011_bib1) 2014; 70 Cong (10.1016/j.omtn.2019.09.011_bib8) 2013; 339 Chakrabarti (10.1016/j.omtn.2019.09.011_bib38) 2019; 73 Liang (10.1016/j.omtn.2019.09.011_bib43) 2015; 208 Takashima (10.1016/j.omtn.2019.09.011_bib20) 2019; 139 Wu (10.1016/j.omtn.2019.09.011_bib42) 2017; 114 Venugopal (10.1016/j.omtn.2019.09.011_bib5) 2013; 69 Peking (10.1016/j.omtn.2019.09.011_bib31) 2018; 129 Clement (10.1016/j.omtn.2019.09.011_bib48) 2019; 37 Hainzl (10.1016/j.omtn.2019.09.011_bib16) 2017; 25 Liang (10.1016/j.omtn.2019.09.011_bib44) 2017; 241 Chamorro (10.1016/j.omtn.2019.09.011_bib35) 2016; 5 Montague (10.1016/j.omtn.2019.09.011_bib25) 2014; 42 Lin (10.1016/j.omtn.2019.09.011_bib27) 2014; 42 Ran (10.1016/j.omtn.2019.09.011_bib13) 2013; 8 Ran (10.1016/j.omtn.2019.09.011_bib22) 2013; 154 Akcakaya (10.1016/j.omtn.2019.09.011_bib14) 2018; 561 Labun (10.1016/j.omtn.2019.09.011_bib26) 2016; 44 Webber (10.1016/j.omtn.2019.09.011_bib15) 2016; 1 |
References_xml | – volume: 18 start-page: 1509 year: 2010 end-page: 1518 ident: bib7 article-title: SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa publication-title: Mol. Ther. – volume: 31 start-page: 833 year: 2013 end-page: 838 ident: bib21 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. – volume: 113 start-page: 5676 year: 2016 end-page: 5681 ident: bib36 article-title: Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 2573 year: 2017 end-page: 2584 ident: bib16 article-title: COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa publication-title: Mol. Ther. – volume: 12 start-page: 554 year: 2018 end-page: 567 ident: bib17 article-title: Ex Vivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair publication-title: Mol. Ther. Nucleic Acids – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: bib9 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science – volume: 139 start-page: 1711 year: 2019 end-page: 1721.e4 ident: bib20 article-title: Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9 publication-title: J. Invest. Dermatol. – volume: 42 start-page: W401 year: 2014 end-page: W407 ident: bib25 article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing publication-title: Nucleic Acids Res. – volume: 129 start-page: 330 year: 2018 end-page: 343 ident: bib31 article-title: Functional therapies for cutaneous wound repair in epidermolysis bullosa publication-title: Adv. Drug Deliv. Rev. – volume: 316 start-page: 1808 year: 2016 end-page: 1817 ident: bib4 article-title: Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa publication-title: JAMA – volume: 30 start-page: 1473 year: 2014 end-page: 1475 ident: bib30 article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases publication-title: Bioinformatics – volume: 241 start-page: 136 year: 2017 end-page: 146 ident: bib44 article-title: Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA publication-title: J. Biotechnol. – volume: 24 start-page: 1216 year: 2018 end-page: 1224 ident: bib12 article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells publication-title: Nat. Med. – volume: 44 start-page: W272 year: 2016 end-page: W276 ident: bib26 article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering publication-title: Nucleic Acids Res. – volume: 208 start-page: 44 year: 2015 end-page: 53 ident: bib43 article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection publication-title: J. Biotechnol. – volume: 69 start-page: 898 year: 2013 end-page: 908.e897 ident: bib5 article-title: A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa publication-title: J. Am. Acad. Dermatol. – volume: 173 start-page: 1308 year: 2015 end-page: 1311 ident: bib41 article-title: A COL7A1 variant leading to in-frame skipping of exon 15 attenuates disease severity in recessive dystrophic epidermolysis bullosa publication-title: Br. J. Dermatol. – volume: 169 start-page: 1025 year: 2013 end-page: 1033 ident: bib3 article-title: Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial publication-title: Br. J. Dermatol. – volume: 37 start-page: 224 year: 2019 end-page: 226 ident: bib48 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. – volume: 17 start-page: 1605 year: 2009 end-page: 1615 ident: bib40 article-title: Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity publication-title: Mol. Ther. – volume: 137 start-page: 778 year: 2017 end-page: 781 ident: bib33 article-title: Closure of a Large Chronic Wound through Transplantation of Gene-Corrected Epidermal Stem Cells publication-title: J. Invest. Dermatol. – volume: 127 start-page: 3028 year: 2017 end-page: 3038 ident: bib6 article-title: Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients publication-title: J. Clin. Invest. – volume: 70 start-page: 1103 year: 2014 end-page: 1126 ident: bib1 article-title: Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification publication-title: J. Am. Acad. Dermatol. – volume: 42 start-page: 7473 year: 2014 end-page: 7485 ident: bib27 article-title: CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences publication-title: Nucleic Acids Res. – volume: 561 start-page: 416 year: 2018 end-page: 419 ident: bib14 article-title: In vivo CRISPR editing with no detectable genome-wide off-target mutations publication-title: Nature – volume: 37 start-page: 64 year: 2018 end-page: 72 ident: bib37 article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks publication-title: Nat Biotechnol. – volume: 563 start-page: 646 year: 2018 end-page: 651 ident: bib39 article-title: Predictable and precise template-free CRISPR editing of pathogenic variants publication-title: Nature – volume: 45 start-page: 10259 year: 2017 end-page: 10269 ident: bib46 article-title: An RNA-targeted therapy for dystrophic epidermolysis bullosa publication-title: Nucleic Acids Res. – volume: 154 start-page: 442 year: 2013 end-page: 451 ident: bib11 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell – volume: 551 start-page: 327 year: 2017 end-page: 332 ident: bib34 article-title: Regeneration of the entire human epidermis using transgenic stem cells publication-title: Nature – volume: 59 start-page: 292 year: 1996 end-page: 300 ident: bib24 article-title: Identification of two splicing mutations in the collagen type VII gene (COL7A1) of a patient affected by the localisata variant of recessive dystrophic epidermolysis bullosa publication-title: Am. J. Hum. Genet. – volume: 23 start-page: 775 year: 2016 end-page: 784 ident: bib47 article-title: Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations publication-title: Gene Ther. – volume: 8 start-page: 657 year: 2017 ident: bib29 article-title: In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting publication-title: Nat. Commun. – volume: 12 start-page: 1397 year: 2006 end-page: 1402 ident: bib32 article-title: Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells publication-title: Nat. Med. – volume: 73 start-page: 699 year: 2019 end-page: 713.e6 ident: bib38 article-title: Target-Specific Precision of CRISPR-Mediated Genome Editing publication-title: Mol. Cell – volume: 27 start-page: 986 year: 2019 end-page: 998 ident: bib19 article-title: Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing publication-title: Mol. Ther. – volume: 11 start-page: 68 year: 2018 end-page: 78 ident: bib18 article-title: Deletion of a Pathogenic Mutation-Containing Exon of COL7A1 Allows Clonal Gene Editing Correction of RDEB Patient Epidermal Stem Cells publication-title: Mol. Ther. Nucleic Acids – volume: 5 start-page: e307 year: 2016 ident: bib35 article-title: Gene Editing for the Efficient Correction of a Recurrent COL7A1 Mutation in Recessive Dystrophic Epidermolysis Bullosa Keratinocytes publication-title: Mol. Ther. Nucleic Acids – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bib8 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 25 start-page: 2585 year: 2017 end-page: 2598 ident: bib23 article-title: Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases publication-title: Mol. Ther. – volume: 154 start-page: 1380 year: 2013 end-page: 1389 ident: bib22 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell – volume: 5 start-page: e287 year: 2016 ident: bib45 article-title: A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair publication-title: Mol. Ther. Nucleic Acids – volume: 1 start-page: 16014 year: 2016 ident: bib15 article-title: CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa publication-title: NPJ Regen. Med. – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: bib10 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bib13 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 114 start-page: 1660 year: 2017 end-page: 1665 ident: bib42 article-title: Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 117 year: 2016 ident: bib2 article-title: Inherited epidermolysis bullosa and squamous cell carcinoma: a systematic review of 117 cases publication-title: Orphanet J. Rare Dis. – volume: 47 start-page: 169 year: 1990 end-page: 170 ident: bib28 article-title: Heteroduplex formation in polymerase chain reaction publication-title: Am. J. Hum. Genet. – volume: 47 start-page: 169 year: 1990 ident: 10.1016/j.omtn.2019.09.011_bib28 article-title: Heteroduplex formation in polymerase chain reaction publication-title: Am. J. Hum. Genet. – volume: 1 start-page: 16014 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib15 article-title: CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa publication-title: NPJ Regen. Med. doi: 10.1038/npjregenmed.2016.14 – volume: 25 start-page: 2573 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib16 article-title: COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.07.005 – volume: 139 start-page: 1711 year: 2019 ident: 10.1016/j.omtn.2019.09.011_bib20 article-title: Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9 publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2019.02.015 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib13 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 27 start-page: 986 year: 2019 ident: 10.1016/j.omtn.2019.09.011_bib19 article-title: Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.03.007 – volume: 8 start-page: 657 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib29 article-title: In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting publication-title: Nat. Commun. doi: 10.1038/s41467-017-00687-1 – volume: 18 start-page: 1509 year: 2010 ident: 10.1016/j.omtn.2019.09.011_bib7 article-title: SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa publication-title: Mol. Ther. doi: 10.1038/mt.2010.91 – volume: 208 start-page: 44 year: 2015 ident: 10.1016/j.omtn.2019.09.011_bib43 article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.04.024 – volume: 11 start-page: 117 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib2 article-title: Inherited epidermolysis bullosa and squamous cell carcinoma: a systematic review of 117 cases publication-title: Orphanet J. Rare Dis. doi: 10.1186/s13023-016-0489-9 – volume: 169 start-page: 1025 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib3 article-title: Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial publication-title: Br. J. Dermatol. doi: 10.1111/bjd.12599 – volume: 561 start-page: 416 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib14 article-title: In vivo CRISPR editing with no detectable genome-wide off-target mutations publication-title: Nature doi: 10.1038/s41586-018-0500-9 – volume: 44 start-page: W272 issue: W1 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib26 article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw398 – volume: 30 start-page: 1473 year: 2014 ident: 10.1016/j.omtn.2019.09.011_bib30 article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu048 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib8 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 563 start-page: 646 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib39 article-title: Predictable and precise template-free CRISPR editing of pathogenic variants publication-title: Nature doi: 10.1038/s41586-018-0686-x – volume: 173 start-page: 1308 year: 2015 ident: 10.1016/j.omtn.2019.09.011_bib41 article-title: A COL7A1 variant leading to in-frame skipping of exon 15 attenuates disease severity in recessive dystrophic epidermolysis bullosa publication-title: Br. J. Dermatol. doi: 10.1111/bjd.13945 – volume: 45 start-page: 10259 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib46 article-title: An RNA-targeted therapy for dystrophic epidermolysis bullosa publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx669 – volume: 12 start-page: 1397 year: 2006 ident: 10.1016/j.omtn.2019.09.011_bib32 article-title: Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells publication-title: Nat. Med. doi: 10.1038/nm1504 – volume: 154 start-page: 442 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib11 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell doi: 10.1016/j.cell.2013.06.044 – volume: 11 start-page: 68 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib18 article-title: Deletion of a Pathogenic Mutation-Containing Exon of COL7A1 Allows Clonal Gene Editing Correction of RDEB Patient Epidermal Stem Cells publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.01.009 – volume: 241 start-page: 136 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib44 article-title: Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2016.11.011 – volume: 24 start-page: 1216 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib12 article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells publication-title: Nat. Med. doi: 10.1038/s41591-018-0137-0 – volume: 73 start-page: 699 year: 2019 ident: 10.1016/j.omtn.2019.09.011_bib38 article-title: Target-Specific Precision of CRISPR-Mediated Genome Editing publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.031 – volume: 37 start-page: 224 year: 2019 ident: 10.1016/j.omtn.2019.09.011_bib48 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0032-3 – volume: 17 start-page: 1605 year: 2009 ident: 10.1016/j.omtn.2019.09.011_bib40 article-title: Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity publication-title: Mol. Ther. doi: 10.1038/mt.2009.144 – volume: 23 start-page: 775 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib47 article-title: Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations publication-title: Gene Ther. doi: 10.1038/gt.2016.57 – volume: 69 start-page: 898 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib5 article-title: A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2013.08.014 – volume: 163 start-page: 759 year: 2015 ident: 10.1016/j.omtn.2019.09.011_bib10 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 31 start-page: 833 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib21 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – volume: 25 start-page: 2585 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib23 article-title: Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.08.015 – volume: 42 start-page: W401 year: 2014 ident: 10.1016/j.omtn.2019.09.011_bib25 article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku410 – volume: 339 start-page: 823 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib9 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 37 start-page: 64 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib37 article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks publication-title: Nat Biotechnol. doi: 10.1038/nbt.4317 – volume: 114 start-page: 1660 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib42 article-title: Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1614775114 – volume: 113 start-page: 5676 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib36 article-title: Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1512028113 – volume: 137 start-page: 778 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib33 article-title: Closure of a Large Chronic Wound through Transplantation of Gene-Corrected Epidermal Stem Cells publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2016.10.038 – volume: 5 start-page: e307 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib35 article-title: Gene Editing for the Efficient Correction of a Recurrent COL7A1 Mutation in Recessive Dystrophic Epidermolysis Bullosa Keratinocytes publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.19 – volume: 316 start-page: 1808 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib4 article-title: Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa publication-title: JAMA doi: 10.1001/jama.2016.15588 – volume: 42 start-page: 7473 year: 2014 ident: 10.1016/j.omtn.2019.09.011_bib27 article-title: CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku402 – volume: 129 start-page: 330 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib31 article-title: Functional therapies for cutaneous wound repair in epidermolysis bullosa publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.12.003 – volume: 5 start-page: e287 year: 2016 ident: 10.1016/j.omtn.2019.09.011_bib45 article-title: A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.3 – volume: 127 start-page: 3028 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib6 article-title: Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients publication-title: J. Clin. Invest. doi: 10.1172/JCI92707 – volume: 551 start-page: 327 year: 2017 ident: 10.1016/j.omtn.2019.09.011_bib34 article-title: Regeneration of the entire human epidermis using transgenic stem cells publication-title: Nature doi: 10.1038/nature24487 – volume: 70 start-page: 1103 year: 2014 ident: 10.1016/j.omtn.2019.09.011_bib1 article-title: Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2014.01.903 – volume: 12 start-page: 554 year: 2018 ident: 10.1016/j.omtn.2019.09.011_bib17 article-title: Ex Vivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.06.008 – volume: 154 start-page: 1380 year: 2013 ident: 10.1016/j.omtn.2019.09.011_bib22 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 59 start-page: 292 year: 1996 ident: 10.1016/j.omtn.2019.09.011_bib24 article-title: Identification of two splicing mutations in the collagen type VII gene (COL7A1) of a patient affected by the localisata variant of recessive dystrophic epidermolysis bullosa publication-title: Am. J. Hum. Genet. |
SSID | ssj0000601262 |
Score | 2.3620296 |
Snippet | Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 496 |
SubjectTerms | Binding sites Collagen Collagen (type VII) CRISPR CRISPR/Cas9 D10A SpCas9 Deoxyribonucleic acid DNA double-nicking Dystrophic epidermolysis bullosa Epidermolysis bullosa gene-editing Genome editing Genomes Homologous recombination Keratinocytes Mutation Nicking endonuclease Non-homologous end joining RNA editing Secretion Skin diseases type VII collagen |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_WVSKIFwl20nl0juOyyyA-EFzYW-g8Gkd2esSZPey_tyrpHqYV1ovQl-68SKqS-ipd-ULI61ZZMAJCs8b3gUkVOYP3xKxveEqyNzzgeedPn_XyQn64VJcHV31hTFihBy4D9w7aACOkGhMbI-tWdhHtVi-MttYbnb312tYHzlRZg2HhzbeJCq4FE6Bp44mZEty1We-Q_JTbTHLK-cwqZfL-mXH6G3z-GUN5YJTO75N7I5qki9KLB-ROGh6S48UAnvT6hr6hOb4zb5wfk69l_yBFCqDZXyUGSoD75HQiqE1bCgiWnn75aBacncUVRkRTf0OXmzXWsbneUvRW1-BMZ3k-IhfnZ99Ol2y8UIEFcAN3TErkW_PCdI32thXRN17LGFQfahGDQDK9LsCwghPUWWssD8J3yQbk8bIghMfkaNgM6SmhfeolGMBorahlUJ1XEne0TLS1T4DJKsKnAXVhZBvHSy-u3BRW9sOhEBwKwdXwcCjzdl_mZ-HauDX3e5TTPifyZOcPoD1u1B73L-2piJqk7EbIUaAEVLW6tfGTSSXcOOm3DsApV61ttarIq30yTFf8B9MNCcTkEE4bDDcTFXlSNGjfAyQlgCZsRcxMt2ZdnKcMq--ZEly3TaukfvY_xuQ5uYs9zTE7-oQc7X5dpxeAvHb-ZZ5kvwHnSydL priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe-GCgPIIFGQkxAVFxI4f8QGhbbXVCsGCKir1ZsWPwKJuUrrbQ_89M3lBQFppL9k8nRnPfDMZf0PI60IacAJcpbmrfCpkYClsx9S4nMUoKs08rnf-vFSLc_HxQl7skeWwFgbLKgeb2Brq0HjMkb8Dz89kYQolP1z9SrFrFH5dHVpolH1rhfC-pRi7Qw7AJBeg9wfH8-XXszHrguwjXPF-9UxX6NWst0iEykxLeMrYxEO1RP4TR_U_EP23nvIvB3V6n9zrkSWddarwgOzF-iE5nNUQVa9v6Rva1nq2SfRDctblEmKgAKDdZUxBITBnTgey2rihgGbpyZdPesZoOg8rLI-m7pYumjVepLnZUAxd1xBZt8J9RM5P599OFmnfXSH1EBNuUyGQfM1xXebKmYIHlzslgpeVz3jwHJn1Sm-choioNEYb5rkro_FI6mXAUD4m-3VTx6eEVrES4A2DMTwTXpZOCkxv6WAyFwGgJYQNb9T6nnocO2Bc2qHG7KdFKViUgs3gx-Cct-M5Vx3xxs6jj1FQ45FImt3-0Vx_t_0ctKCugGdkrkOuRVaIMiAEqrhWBoapsoTIQcy2xx8droBLrXbe_GjQCdtbgI39o68JeTXuhrmLH2TKOoKYLGJrjbVnPCFPOhUaR4AMBXALkxA9Ua7JEKd76tWPlh9cFXkhhXq2-7Gek7s4hrY0Rx2R_e31TXwBAGvrXvaz5jcnsyTL priority: 102 providerName: ProQuest |
Title | Improved Double-Nicking Strategies for COL7A1-Editing by Homologous Recombination |
URI | https://dx.doi.org/10.1016/j.omtn.2019.09.011 https://www.ncbi.nlm.nih.gov/pubmed/31670199 https://www.proquest.com/docview/2321589865 https://www.proquest.com/docview/2310719912 https://pubmed.ncbi.nlm.nih.gov/PMC6838546 https://doaj.org/article/bec181537d374084adb000f27699b760 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9sILAsZHYVRGQrygoMTxR_yAUDd1qhAbH6JS36zYcUZRm2xtJ9H_njsnKQSmCSkv-bLl3Nn3u8v5d4S8yoQGI8BklNrSRVwUSQTnPtI2TbznpUoc7nc-O5eTKf8wE7M90pU7aj_g-kbXDutJTVeLtz-vtu9hwr_7natVLzfIZZrowFmKW30PwDJJdMbOWrjfrMywHIcaoyyRLGKgf-0-mpub6dmqQOnfM1n_QtK_Myv_MFWn98m9FmPSUaMUD8ierx6Sw1EF_vVyS1_TkPUZwumH5EsTVfAFBShtFz4C1cDoOe1oa_2aAq6lJ58-qlESjYs55klTu6WTeolt1Ndrij7sElzsIOVHZHo6_nYyidoyC5ED53ATcY4sbJapPJVWZ6ywqZW8cKJ0MSscQ4q93GmrwDXKtVY6cczmXjtk99KwYj4m-1Vd-aeElr7kYBYLrVnMncit4BjnUoWOrQekNiBJ90GNaznIsRTGwnTJZj8MCsGgEEwMRwLvvNm9c9kwcNz69DHKafcksmeHC_XqwrST0YDeArARqSpSxeOM5wVioZIpqWGYMh4Q0UnZtECkARjQ1PzWzo86lTCdJhuArInIdCbFgLzc3YZJjH9m8sqDmAyCbIVJaGxAnjQatBsBUhVAF3pAVE-3ekPs36nm3wNRuMzSTHD57D_6fU7u4kBCoo48Ivub1bV_AXBrY4fkjpqpITk4Hp9__joMQYthmFe_AOFXKV0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuCCiPQIFFAi7Iwrte73oPFUpLqpSmAVWt1NvifRiCGrs0qVD-HL-NGT8CASm3Sr7Ez6xndueb8cw3hLzKUg1GgMsosYWLROpZBL9DpG3CQhCFYg7rnY_HcngmPp6n5xvkV1cLg2mV3ZpYL9S-chgjfweWn6WZzmT6_vJHhF2j8Otq10Ijb1sr-N2aYqwt7DgKi5_gws12Dz-AvF9zfjA43R9GbZeByIFvNI-EQBIyy1WeSKsz7m1ipfAuLVzMvePIMJc7bRV4BrnWSjPHbR60Q3IrzbBrBJiALYEVrptka28w_nyyjPIg2wmXvK3WaRLLqukciVeZrglWGVuxiHXjgBXD-D_w_Td_8y-DeHCX3GmRLO03qnePbITyPtnul-DFTxf0Da1zS-ug_TY5aWIXwVMA7PYiRKCAGKOnHTlumFFAz3T_00j1GY0GfoLp2NQu6LCa4k2q6xlFV3kKnnytTA_I2Y2854dks6zK8JjQIhQCrK_XmsfCpblNBYbTlNexDQAIe4R1b9S4luocO25cmC6n7btBKRiUgolhY3DN2-U1lw3Rx9qz91BQyzORpLveUV19Ne2cNzA9AD-lifKJEnEmco-Qq-BKahimjHsk7cRsWrzT4Bi41WTtw3c6nTDtijMzf-ZHj7xcHoa1Aj8A5WUAMRnE8gpz3XiPPGpUaDkCZESAR-geUSvKtTLE1SPl5FvNRy6zJEuFfLL-b70gt4anxyMzOhwfPSW3cTx1WpDcIZvzq-vwDMDd3D5vZxAlX2560v4GNr9gmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Double-Nicking+Strategies+for+COL7A1-Editing+by+Homologous+Recombination&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Kocher%2C+Thomas&rft.au=Wagner%2C+Roland+N&rft.au=Klausegger%2C+Alfred&rft.au=Guttmann-Gruber%2C+Christina&rft.date=2019-12-06&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=18&rft.spage=496&rft_id=info:doi/10.1016%2Fj.omtn.2019.09.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |