In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging

Purpose: To assess the optimalb-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. Methods: DW-MRI data of 15 subjects were acquired with eightb-values in th...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 39; no. 8; pp. 4832 - 4839
Main Authors Freiman, Moti, Voss, Stephan D., Mulkern, Robert V., Perez-Rossello, Jeannette M., Callahan, Michael J., Warfield, Simon K.
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.08.2012
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
0094-2405
DOI10.1118/1.4736516

Cover

Abstract Purpose: To assess the optimalb-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. Methods: DW-MRI data of 15 subjects were acquired with eightb-values in the range of 5–800 s/mm2. The reference-standard, a perfusion insensitive, ADC value (ADCIVIM), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0–1200 s/mm2. Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC2); (2) least squares three-point (ADC3) estimator and; (3) Rician noise model estimator (ADCR). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADCIVIM and the monoexponential ADC values for each estimation method and organ. Results: Lowb-value = 300 s/mm2 and high b-value = 1200 s/mm2 minimized the RRMS between the estimated ADC and the reference-standard ADCIVIM to less than 5% using the ADC3 estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s/mm2 and high b-value of 800 s/mm2 minimized the RRMS between the estimated ADC and the reference-standard ADCIVIM to <7% using the ADC3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78–0.83], p ≤ 0.003). Conclusions: The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice ofb-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.
AbstractList Purpose: To assess the optimalb‐values range for perfusion‐insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short‐duration DW‐MRI acquisitions with currently available ADC estimation methods. Methods: DW‐MRI data of 15 subjects were acquired with eightb‐values in the range of 5–800 s/mm2. The reference‐standard, a perfusion insensitive, ADC value (ADCIVIM), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion‐weighted images. Simulated DW‐MRI data was generated using an IVIM model with b‐values in the range of 0–1200 s/mm2. Monoexponential ADC estimates were calculated using: (1) Two‐point estimator (ADC2); (2) least squares three‐point (ADC3) estimator and; (3) Rician noise model estimator (ADCR). The authors found the optimal b‐values for perfusion‐insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADCIVIM and the monoexponential ADC values for each estimation method and organ. Results: Lowb‐value = 300 s/mm2 and high b‐value = 1200 s/mm2 minimized the RRMS between the estimated ADC and the reference‐standard ADCIVIM to less than 5% using the ADC3 estimator. By considering only the in vivo DW‐MRI data, the combination of low b‐value = 270 s/mm2 and high b‐value of 800 s/mm2 minimized the RRMS between the estimated ADC and the reference‐standard ADCIVIM to <7% using the ADC3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion‐fraction parameter of the IVIM model (r = [0.78–0.83], p ≤ 0.003). Conclusions: The perfusion compartment in DW‐MRI signal decay correlates strongly with the RRMS in ADC estimates from short‐duration DW‐MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice ofb‐values and estimation method utilized. Likewise, perfusion‐related errors can be reduced to <7% by carefully selecting the b‐values used for ADC calculations and method of estimation.
Purpose: To assess the optimal b -values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. Methods: DW-MRI data of 15 subjects were acquired with eight b -values in the range of 5–800 s/mm 2 . The reference-standard, a perfusion insensitive, ADC value (ADC IVIM ), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b -values in the range of 0–1200 s/mm 2 . Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC 2 ); (2) least squares three-point (ADC 3 ) estimator and; (3) Rician noise model estimator (ADC R ). The authors found the optimal b -values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC IVIM and the monoexponential ADC values for each estimation method and organ. Results: Low b -value = 300 s/mm 2 and high b -value = 1200 s/mm 2 minimized the RRMS between the estimated ADC and the reference-standard ADC IVIM to less than 5% using the ADC 3 estimator. By considering only the in vivo DW-MRI data, the combination of low b -value = 270 s/mm 2 and high b -value of 800 s/mm 2 minimized the RRMS between the estimated ADC and the reference-standard ADC IVIM to <7% using the ADC 3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78–0.83], p ≤ 0.003). Conclusions: The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b -values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b -values used for ADC calculations and method of estimation.
To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. DW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ. Low b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003). The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.
To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods.PURPOSETo assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods.DW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ.METHODSDW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ.Low b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003).RESULTSLow b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003).The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.CONCLUSIONSThe perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.
Author Mulkern, Robert V.
Callahan, Michael J.
Warfield, Simon K.
Freiman, Moti
Voss, Stephan D.
Perez-Rossello, Jeannette M.
Author_xml – sequence: 1
  givenname: Moti
  surname: Freiman
  fullname: Freiman, Moti
  email: moti.freiman@childrens.harvard.edu
  organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115
– sequence: 2
  givenname: Stephan D.
  surname: Voss
  fullname: Voss, Stephan D.
  organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115
– sequence: 3
  givenname: Robert V.
  surname: Mulkern
  fullname: Mulkern, Robert V.
  organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115
– sequence: 4
  givenname: Jeannette M.
  surname: Perez-Rossello
  fullname: Perez-Rossello, Jeannette M.
  organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115
– sequence: 5
  givenname: Michael J.
  surname: Callahan
  fullname: Callahan, Michael J.
  organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115
– sequence: 6
  givenname: Simon K.
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22894409$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLcLB_4A8hGQ0o5jOx8XJFTxUakIDnC27GS8GGXtYCdB_fd4lW1VEOXkkeeZd169c0ZOfPBIyHMG54yx5oKdi5pXklWPyKbMZSFKaE_IBqAVRSlAnpKzlH4AQMUlPCGnZdm0QkC7IcOVp4tbAtUpYUp79BMNloZxcns9UFMsepiRRu13SG2IdMRo5-SCL5xP6JOb3IJUj6OOh9ne2bVNu4DWus4dfrPWzvndU_LY6iHhs-O7Jd_ev_t6-bG4_vzh6vLtddFJ0VYFF6Zr26ZmTGJVIfAaa2vqUoiyAakZGAEgqxJZL6WxxkjDuRFMdn1teij5lrxZdcfZ7LHvsoWoBzXG7CPeqKCd-rPj3Xe1C4viIu9s6izw8igQw88Z06T2LnU4DNpjmJNiwHPE0OQ8t-TF_V13S24jzsCrFehiSCmivUMYqMP5FFPH82X24i-2c5OecpzZphv-OVGsE7_cgDcPS6tPX47865VPt8r_tfMgvIR4T3zsLf8NUMvHNA
CODEN MPHYA6
CitedBy_id crossref_primary_10_1002_jmri_24403
crossref_primary_10_1080_0284186X_2021_1994645
crossref_primary_10_1097_MD_0000000000006866
crossref_primary_10_1186_s40644_019_0282_9
crossref_primary_10_2214_AJR_13_12165
crossref_primary_10_1002_jmri_24386
crossref_primary_10_1186_s12885_015_1221_1
crossref_primary_10_3390_jcm10163451
crossref_primary_10_3348_kjr_2019_0232
crossref_primary_10_1002_nbm_4059
crossref_primary_10_1097_RCT_0000000000000349
crossref_primary_10_1177_0284185113502017
crossref_primary_10_2214_AJR_18_20743
crossref_primary_10_1002_mrm_28989
crossref_primary_10_1016_j_jceh_2021_02_008
crossref_primary_10_1016_j_media_2016_03_009
crossref_primary_10_1038_s41598_018_22268_y
crossref_primary_10_1007_s00062_017_0606_8
crossref_primary_10_1002_jmri_25721
crossref_primary_10_1007_s00330_016_4318_2
crossref_primary_10_1007_s00330_015_4087_3
crossref_primary_10_1016_j_nicl_2016_05_022
crossref_primary_10_1016_j_mri_2016_04_007
crossref_primary_10_1016_j_crad_2017_04_017
crossref_primary_10_1016_j_neuroimage_2019_116228
crossref_primary_10_1097_RCT_0000000000000377
crossref_primary_10_1016_j_nbd_2014_07_005
crossref_primary_10_1002_mrm_25484
crossref_primary_10_1097_RLI_0000000000000095
crossref_primary_10_1002_mrm_25765
crossref_primary_10_3174_ajnr_A4852
crossref_primary_10_1371_journal_pone_0258442
crossref_primary_10_1016_j_mric_2019_01_010
crossref_primary_10_1007_s12194_014_0301_2
crossref_primary_10_1088_0031_9155_60_20_7877
crossref_primary_10_1007_s00261_014_0247_1
crossref_primary_10_1016_j_neuroimage_2017_04_071
crossref_primary_10_1002_nbm_3718
Cites_doi 10.1007/s00330‐009‐1469‐4
10.1002/jmri.21461
10.1148/radiol.09090891
10.1063/1.1695690
10.1016/S0730‐725X(01)00383‐6
10.1002/jmri.22435
10.1002/jmri.21358
10.1007/s00330-011-2180-9
10.2214/AJR.06.1403
10.1002/jmri.22152
10.1007/978‐3‐642‐23629‐7_10
10.1002/jmri.21725
10.1080/02841860903099972
10.1097/MCG.0b013e318223bd2c
10.1148/radiology.168.2.3393671
10.1002/mrm.22565
10.1109/TMI.2008.920615
10.1002/mrm.1910350319
10.1148/radiol.11102066
10.1016/j.mri.2011.02.031
10.1016/j.neuroimage.2008.05.053
10.1148/radiol.10100853
10.1016/j.ejrad.2008.10.023
10.1007/s11263‐006‐7934‐5
10.1148/radiology.210.3.r99fe17617
10.2214/AJR.10.5515
10.1148/radiol.09090021
10.1593/neo.81328
10.1016/j.neuroimage.2006.01.015
10.1016/j.mri.2011.03.004
10.1093/imanum/drm047
10.3109/0284186X.2010.500305
10.1002/mrm.22014
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2012 American Association of Physicists in Medicine
Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2012 American Association of Physicists in Medicine
– notice: Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4736516
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 4839
ExternalDocumentID PMC3411587
22894409
10_1118_1_4736516
MP6516
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01 LM010033
– fundername: NIH
  grantid: R03 EB008680
– fundername: NIH
  grantid: R01 EB008015
– fundername: NIH
  grantid: R01 RR021885
– fundername: NIH
  funderid: R01 LM010033
– fundername: NIH
  funderid: R03 EB008680
– fundername: NIH
  funderid: R01 EB008015
– fundername: NIH
  funderid: R01 RR021885
– fundername: NLM NIH HHS
  grantid: R01 LM010033
– fundername: NIBIB NIH HHS
  grantid: R01 EB008015
– fundername: NIBIB NIH HHS
  grantid: R03 EB008680
– fundername: NCRR NIH HHS
  grantid: R01 RR021885
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
LH4
5PM
ID FETCH-LOGICAL-c5496-34bc9987115e66e037e7fb72442805a10b400562e1d55bfbb5b33b415cd7bd023
ISSN 0094-2405
IngestDate Thu Aug 21 18:01:34 EDT 2025
Thu Sep 04 23:54:07 EDT 2025
Mon Jul 21 05:43:00 EDT 2025
Tue Jul 01 00:18:22 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Wed Jan 22 16:22:51 EST 2025
Sun Jul 14 10:05:20 EDT 2019
Fri Jun 21 00:28:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords apparent diffusion coefficient
b-value optimization
diffusion-weighted imaging
intravoxel incoherent motion
Language English
License 0094-2405/2012/39(8)/4832/8/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5496-34bc9987115e66e037e7fb72442805a10b400562e1d55bfbb5b33b415cd7bd023
Notes Telephone: +1‐617‐255‐3755; Fax: +1 617‐730‐4644.
moti.freiman@childrens.harvard.edu
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: moti.freiman@childrens.harvard.edu; Telephone: +1-617-255-3755; Fax: +1 617-730-4644.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4736516
PMID 22894409
PQID 1034200806
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1034200806
wiley_primary_10_1118_1_4736516_MP6516
scitation_primary_10_1118_1_4736516
pubmed_primary_22894409
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3411587
crossref_primary_10_1118_1_4736516
crossref_citationtrail_10_1118_1_4736516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2012
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Andersson (c24) 2008; 42
Zhang, Sigmund, Chandarana, Rusinek, Chen, Vivier, Taouli, Lee (c31) 2010; 254
Fujimoto, Tonan, Azuma, Kage, Nakashima, Johkoh, Hayabuchi, Okuda, Kawaguchi, Sata, Qayyum (c9) 2011; 258
Kiryu, Dodanuki, Takao, Watanabe, Inoue, Takazoe, Sahara, Unuma, Ohtomo (c10) 2009; 29
Freiman, Voss, Mulkern, Perez-Rossello, Warfield (c28) 2011; 14
Papanikolaou, Gourtsoyianni, Yarmenitis, Maris, Gourtsoyiannis (c21) 2010; 73
Bihan, Breton, Lallemand, Aubin, Vignaud, Laval-Jeantet (c17) 1988; 168
Taouli, Koh (c7) 2010; 254
Stejskal, Tanner (c1) 1965; 42
Koh, Collins, Orton (c16) 2011; 196
Taylor, Biswal (c23) 2011; 29
Oto, Kayhan, Williams, Fan, Yun, Arkani, Rubin (c11) 2011; 33
Yamada, Aung, Himeno, Nakagawa, Shibuya (c19) 1999; 210
Peters, Vincken, van den Bosch, Luijten, Mali, Bartels (c13) 2010; 31
Padhani, Liu, Koh, Chenevert, Thoeny, Takahara, Dzik-Jurasz, Ross, Van Cauteren, Collins, Hammoud, Rustin, Taouli, Choyke (c20) 2009; 11
Gumustas, Inan, Sarisoy, Anik, Arslan, Ciftci, Akansel, Demirci (c2) 2011; 21
Koh, Collins (c32) 2007; 188
Boykov, Funka-Lea (c30) 2006; 70
Lemke, Laun, Simon, Stieltjes, Schad (c15) 2010; 64
Powell (c33) 2008; 28
Vargas, Akin, Franiel, Mazaheri, Zheng, Moskowitz, Udo, Eastham, Hricak (c3) 2011; 259
Koh, Blackledge, Collins, Padhani, Wallace, Wilton, Taylor, Stirling, Sinha, Walicke, Leach, Judson, Nathan (c6) 2009; 19
Bonekamp, Torbenson, Kamel (c8) 2011; 45
Mulkern, Vajapeyam, Robertson, Caruso, Rivkin, Maier (c27) 2001; 19
Kallehauge, Tanderup, Haack, Nielsen, Muren, Fokdal, Lindegaard, Pedersen (c12) 2010; 49
Conturo, McKinstry, Akbudak, Robinson (c26) 1996; 35
Clarke, Scifo, Rizzo, Dell’Acqua, Scotti, Fazio (c22) 2008; 27
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (c29) 2006; 31
Eccles, Haider, Haider, Fung, Lockwood, Dawson (c5) 2009; 48
Girometti, Furlan, Esposito, Bazzocchi, Como, Soldano, Isola, Toniutto, Zuiani (c14) 2008; 28
Dudeck, Zeile, Pink, Pech, Tunn, Reichardt, Ludwig, Hamm (c4) 2008; 27
Lemke, Stieltjes, Schad, Laun (c18) 2011; 29
Walker-Samuel, Orton, McPhail, Robinson (c25) 2009; 62
2011; 259
2006; 70
2011; 258
2010; 31
2009; 62
2006; 31
2007; 188
1988; 168
2011; 33
2011; 14
2011; 196
1996; 35
2009; 48
2009; 29
2009; 11
1965; 42
2010; 64
2010; 49
2008; 27
2008; 28
2001; 19
2010; 254
2011; 21
2011; 45
1999; 210
2008; 42
2009; 19
2011; 29
2010; 73
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
20032142 - Radiology. 2010 Jan;254(1):47-66
21436085 - Radiology. 2011 Jun;259(3):775-84
18666139 - J Magn Reson Imaging. 2008 Aug;28(2):411-9
19634060 - Acta Oncol. 2009;48(7):1034-43
21563245 - J Magn Reson Imaging. 2011 Mar;33(3):615-24
19306416 - J Magn Reson Imaging. 2009 Apr;29(4):880-6
19353661 - Magn Reson Med. 2009 Aug;62(2):420-9
20089719 - Radiology. 2010 Mar;254(3):783-92
10207458 - Radiology. 1999 Mar;210(3):617-23
18753042 - IEEE Trans Med Imaging. 2008 Sep;27(9):1242-51
16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28
21550747 - Magn Reson Imaging. 2011 Jul;29(6):777-88
11672624 - Magn Reson Imaging. 2001 Jun;19(5):659-68
20432344 - J Magn Reson Imaging. 2010 May;31(5):1100-5
21698463 - Eur Radiol. 2011 Nov;21(11):2255-60
20665824 - Magn Reson Med. 2010 Dec;64(6):1580-5
21995015 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):74-81
18602480 - Neuroimage. 2008 Oct 1;42(4):1340-56
19186405 - Neoplasia. 2009 Feb;11(2):102-25
20831490 - Acta Oncol. 2010 Oct;49(7):1017-22
21549538 - Magn Reson Imaging. 2011 Jul;29(6):766-76
21248235 - Radiology. 2011 Mar;258(3):739-48
8699953 - Magn Reson Med. 1996 Mar;35(3):399-412
17515386 - AJR Am J Roentgenol. 2007 Jun;188(6):1622-35
19547986 - Eur Radiol. 2009 Nov;19(11):2728-38
21716125 - J Clin Gastroenterol. 2011 Nov-Dec;45(10):885-92
3393671 - Radiology. 1988 Aug;168(2):497-505
18425832 - J Magn Reson Imaging. 2008 May;27(5):1109-13
21606299 - AJR Am J Roentgenol. 2011 Jun;196(6):1351-61
19091503 - Eur J Radiol. 2010 Feb;73(2):305-9
References_xml – volume: 254
  start-page: 47
  year: 2010
  ident: c7
  article-title: Diffusion-weighted MR imaging of the liver
  publication-title: Radiology
– volume: 19
  start-page: 2728
  year: 2009
  ident: c6
  article-title: Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial
  publication-title: Eur. Radiol.
– volume: 11
  start-page: 102
  year: 2009
  ident: c20
  article-title: Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia
– volume: 31
  start-page: 1100
  year: 2010
  ident: c13
  article-title: Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of -values
  publication-title: J. Magn. Reson. Imaging
– volume: 254
  start-page: 783
  year: 2010
  ident: c31
  article-title: Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification
  publication-title: Radiology
– volume: 45
  start-page: 885
  year: 2011
  ident: c8
  article-title: Diffusion-weighted magnetic resonance imaging for the staging of liver fibrosis
  publication-title: J. Clin. Gastroenterol.
– volume: 27
  start-page: 1242
  year: 2008
  ident: c22
  article-title: Noise correction on Rician distributed data for fibre orientation estimators
  publication-title: IEEE Trans. Med. Imaging
– volume: 62
  start-page: 420
  year: 2009
  ident: c25
  article-title: Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors
  publication-title: Magn. Reson. Med.
– volume: 188
  start-page: 1622
  year: 2007
  ident: c32
  article-title: Diffusion-weighted MRI in the body: Applications and challenges in oncology
  publication-title: AJR, Am. J. Roentgenol.
– volume: 258
  start-page: 739
  year: 2011
  ident: c9
  article-title: Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade
  publication-title: Radiology
– volume: 29
  start-page: 880
  year: 2009
  ident: c10
  article-title: Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn's disease
  publication-title: J. Magn. Reson. Imaging
– volume: 29
  start-page: 766
  year: 2011
  ident: c18
  article-title: Toward an optimal distribution of -values for intravoxel incoherent motion imaging
  publication-title: Magn. Reson. Imaging
– volume: 259
  start-page: 775
  year: 2011
  ident: c3
  article-title: Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: Tumor detection and assessment of aggressiveness
  publication-title: Radiology
– volume: 21
  start-page: 2255
  year: 2011
  ident: c2
  article-title: Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging
  publication-title: Eur Radiol.
– volume: 29
  start-page: 777
  year: 2011
  ident: c23
  article-title: Geometric analysis of the b-dependent effects of Rician signal noise on diffusion tensor imaging estimates and determining an optimal -value
  publication-title: Magn. Reson. Imaging
– volume: 48
  start-page: 1034
  year: 2009
  ident: c5
  article-title: Change in diffusion weighted MRI during liver cancer radiotherapy: Preliminary observations
  publication-title: Acta Oncol.
– volume: 42
  start-page: 288
  year: 1965
  ident: c1
  article-title: Spin diffusion measurements: spin-echo in the presence of a time dependent field gradient
  publication-title: J. Chem. Phys.
– volume: 168
  start-page: 497
  year: 1988
  ident: c17
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 210
  start-page: 617
  year: 1999
  ident: c19
  article-title: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging
  publication-title: Radiology
– volume: 64
  start-page: 1580
  year: 2010
  ident: c15
  article-title: An verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 659
  year: 2001
  ident: c27
  article-title: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain
  publication-title: Magn. Reson. Imaging
– volume: 14
  start-page: 73
  year: 2011
  ident: c28
  article-title: Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 70
  start-page: 109
  year: 2006
  ident: c30
  article-title: Graph cuts and efficient N-D image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 31
  start-page: 1116
  year: 2006
  ident: c29
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 196
  start-page: 1351
  year: 2011
  ident: c16
  article-title: Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges
  publication-title: AJR, Am. J. Roentgenol.
– volume: 42
  start-page: 1340
  year: 2008
  ident: c24
  article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but
  publication-title: Neuroimage
– volume: 28
  start-page: 411
  year: 2008
  ident: c14
  article-title: Relevance of -values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences
  publication-title: J. Magn. Reson. Imaging
– volume: 27
  start-page: 1109
  year: 2008
  ident: c4
  article-title: Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas
  publication-title: J. Magn. Reson. Imaging
– volume: 73
  start-page: 305
  year: 2010
  ident: c21
  article-title: Comparison between two-point and four-point methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen
  publication-title: Eur. J. Radiol.
– volume: 35
  start-page: 399
  year: 1996
  ident: c26
  article-title: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results
  publication-title: Magn. Reson. Med.
– volume: 28
  start-page: 649
  year: 2008
  ident: c33
  article-title: Developments of NEWUOA for minimization without derivatives
  publication-title: IMA J. Numer. Anal.
– volume: 33
  start-page: 615
  year: 2011
  ident: c11
  article-title: Active Crohn's Disease in the small bowel: Evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging
  publication-title: J. Magn. Reson. Imaging
– volume: 49
  start-page: 1017
  year: 2010
  ident: c12
  article-title: Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: Dependence on -values used
  publication-title: Acta Oncol.
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 28
  start-page: 411
  year: 2008
  end-page: 419
  article-title: Relevance of ‐values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single‐shot spin‐echo echo‐planar diffusion‐weighted sequences
  publication-title: J. Magn. Reson. Imaging
– volume: 196
  start-page: 1351
  year: 2011
  end-page: 1361
  article-title: Intravoxel incoherent motion in body diffusion‐weighted MRI: reality and challenges
  publication-title: AJR, Am. J. Roentgenol.
– volume: 19
  start-page: 659
  year: 2001
  end-page: 668
  article-title: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain
  publication-title: Magn. Reson. Imaging
– volume: 259
  start-page: 775
  year: 2011
  end-page: 784
  article-title: Diffusion‐weighted endorectal MR imaging at 3 T for prostate cancer: Tumor detection and assessment of aggressiveness
  publication-title: Radiology
– volume: 70
  start-page: 109
  year: 2006
  end-page: 131
  article-title: Graph cuts and efficient N‐D image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 64
  start-page: 1580
  year: 2010
  end-page: 1585
  article-title: An verification of the intravoxel incoherent motion effect in diffusion‐weighted imaging of the abdomen
  publication-title: Magn. Reson. Med.
– volume: 28
  start-page: 649
  year: 2008
  end-page: 664
  article-title: Developments of NEWUOA for minimization without derivatives
  publication-title: IMA J. Numer. Anal.
– volume: 29
  start-page: 880
  year: 2009
  end-page: 886
  article-title: Free‐breathing diffusion‐weighted imaging for the assessment of inflammatory activity in Crohn's disease
  publication-title: J. Magn. Reson. Imaging
– volume: 29
  start-page: 766
  year: 2011
  end-page: 776
  article-title: Toward an optimal distribution of ‐values for intravoxel incoherent motion imaging
  publication-title: Magn. Reson. Imaging
– volume: 27
  start-page: 1242
  year: 2008
  end-page: 1251
  article-title: Noise correction on Rician distributed data for fibre orientation estimators
  publication-title: IEEE Trans. Med. Imaging
– volume: 45
  start-page: 885
  year: 2011
  end-page: 892
  article-title: Diffusion‐weighted magnetic resonance imaging for the staging of liver fibrosis
  publication-title: J. Clin. Gastroenterol.
– volume: 62
  start-page: 420
  year: 2009
  end-page: 429
  article-title: Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors
  publication-title: Magn. Reson. Med.
– volume: 49
  start-page: 1017
  year: 2010
  end-page: 1022
  article-title: Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: Dependence on ‐values used
  publication-title: Acta Oncol.
– volume: 29
  start-page: 777
  year: 2011
  end-page: 788
  article-title: Geometric analysis of the b‐dependent effects of Rician signal noise on diffusion tensor imaging estimates and determining an optimal ‐value
  publication-title: Magn. Reson. Imaging
– volume: 14
  start-page: 73
  year: 2011
  end-page: 80
  article-title: Quantitative body DW‐MRI biomarkers uncertainty estimation using unscented wild‐bootstrap
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 73
  start-page: 305
  year: 2010
  end-page: 309
  article-title: Comparison between two‐point and four‐point methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen
  publication-title: Eur. J. Radiol.
– volume: 35
  start-page: 399
  year: 1996
  end-page: 412
  article-title: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 2728
  year: 2009
  end-page: 2738
  article-title: Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two‐centre phase I clinical trial
  publication-title: Eur. Radiol.
– volume: 258
  start-page: 739
  year: 2011
  end-page: 748
  article-title: Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade
  publication-title: Radiology
– volume: 21
  start-page: 2255
  year: 2011
  end-page: 2260
  article-title: Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging
  publication-title: Eur Radiol.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 42
  start-page: 288
  year: 1965
  end-page: 292
  article-title: Spin diffusion measurements: spin‐echo in the presence of a time dependent field gradient
  publication-title: J. Chem. Phys.
– volume: 48
  start-page: 1034
  year: 2009
  end-page: 1043
  article-title: Change in diffusion weighted MRI during liver cancer radiotherapy: Preliminary observations
  publication-title: Acta Oncol.
– volume: 254
  start-page: 783
  year: 2010
  end-page: 792
  article-title: Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification
  publication-title: Radiology
– volume: 188
  start-page: 1622
  year: 2007
  end-page: 1635
  article-title: Diffusion‐weighted MRI in the body: Applications and challenges in oncology
  publication-title: AJR, Am. J. Roentgenol.
– volume: 27
  start-page: 1109
  year: 2008
  end-page: 1113
  article-title: Diffusion‐weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft‐tissue sarcomas
  publication-title: J. Magn. Reson. Imaging
– volume: 33
  start-page: 615
  year: 2011
  end-page: 624
  article-title: Active Crohn's Disease in the small bowel: Evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging
  publication-title: J. Magn. Reson. Imaging
– volume: 31
  start-page: 1100
  year: 2010
  end-page: 1105
  article-title: Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of ‐values
  publication-title: J. Magn. Reson. Imaging
– volume: 42
  start-page: 1340
  year: 2008
  end-page: 1356
  article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but
  publication-title: Neuroimage
– volume: 210
  start-page: 617
  year: 1999
  end-page: 623
  article-title: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo‐planar MR imaging
  publication-title: Radiology
– volume: 11
  start-page: 102
  year: 2009
  end-page: 125
  article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia
– volume: 254
  start-page: 47
  year: 2010
  end-page: 66
  article-title: Diffusion‐weighted MR imaging of the liver
  publication-title: Radiology
– ident: e_1_2_6_7_1
  doi: 10.1007/s00330‐009‐1469‐4
– ident: e_1_2_6_15_1
  doi: 10.1002/jmri.21461
– ident: e_1_2_6_32_1
  doi: 10.1148/radiol.09090891
– ident: e_1_2_6_2_1
  doi: 10.1063/1.1695690
– ident: e_1_2_6_28_1
  doi: 10.1016/S0730‐725X(01)00383‐6
– ident: e_1_2_6_12_1
  doi: 10.1002/jmri.22435
– ident: e_1_2_6_5_1
  doi: 10.1002/jmri.21358
– ident: e_1_2_6_3_1
  doi: 10.1007/s00330-011-2180-9
– ident: e_1_2_6_33_1
  doi: 10.2214/AJR.06.1403
– ident: e_1_2_6_14_1
  doi: 10.1002/jmri.22152
– ident: e_1_2_6_29_1
  doi: 10.1007/978‐3‐642‐23629‐7_10
– ident: e_1_2_6_11_1
  doi: 10.1002/jmri.21725
– ident: e_1_2_6_6_1
  doi: 10.1080/02841860903099972
– ident: e_1_2_6_9_1
  doi: 10.1097/MCG.0b013e318223bd2c
– ident: e_1_2_6_18_1
  doi: 10.1148/radiology.168.2.3393671
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.22565
– ident: e_1_2_6_23_1
  doi: 10.1109/TMI.2008.920615
– ident: e_1_2_6_27_1
  doi: 10.1002/mrm.1910350319
– ident: e_1_2_6_4_1
  doi: 10.1148/radiol.11102066
– ident: e_1_2_6_24_1
  doi: 10.1016/j.mri.2011.02.031
– ident: e_1_2_6_25_1
  doi: 10.1016/j.neuroimage.2008.05.053
– ident: e_1_2_6_10_1
  doi: 10.1148/radiol.10100853
– ident: e_1_2_6_22_1
  doi: 10.1016/j.ejrad.2008.10.023
– ident: e_1_2_6_31_1
  doi: 10.1007/s11263‐006‐7934‐5
– ident: e_1_2_6_20_1
  doi: 10.1148/radiology.210.3.r99fe17617
– ident: e_1_2_6_17_1
  doi: 10.2214/AJR.10.5515
– ident: e_1_2_6_8_1
  doi: 10.1148/radiol.09090021
– ident: e_1_2_6_21_1
  doi: 10.1593/neo.81328
– ident: e_1_2_6_30_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_6_19_1
  doi: 10.1016/j.mri.2011.03.004
– ident: e_1_2_6_34_1
  doi: 10.1093/imanum/drm047
– ident: e_1_2_6_13_1
  doi: 10.3109/0284186X.2010.500305
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.22014
– reference: 18753042 - IEEE Trans Med Imaging. 2008 Sep;27(9):1242-51
– reference: 20831490 - Acta Oncol. 2010 Oct;49(7):1017-22
– reference: 21716125 - J Clin Gastroenterol. 2011 Nov-Dec;45(10):885-92
– reference: 3393671 - Radiology. 1988 Aug;168(2):497-505
– reference: 21995015 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):74-81
– reference: 20432344 - J Magn Reson Imaging. 2010 May;31(5):1100-5
– reference: 16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28
– reference: 21248235 - Radiology. 2011 Mar;258(3):739-48
– reference: 21550747 - Magn Reson Imaging. 2011 Jul;29(6):777-88
– reference: 20665824 - Magn Reson Med. 2010 Dec;64(6):1580-5
– reference: 21549538 - Magn Reson Imaging. 2011 Jul;29(6):766-76
– reference: 8699953 - Magn Reson Med. 1996 Mar;35(3):399-412
– reference: 21606299 - AJR Am J Roentgenol. 2011 Jun;196(6):1351-61
– reference: 19091503 - Eur J Radiol. 2010 Feb;73(2):305-9
– reference: 18666139 - J Magn Reson Imaging. 2008 Aug;28(2):411-9
– reference: 19353661 - Magn Reson Med. 2009 Aug;62(2):420-9
– reference: 18425832 - J Magn Reson Imaging. 2008 May;27(5):1109-13
– reference: 11672624 - Magn Reson Imaging. 2001 Jun;19(5):659-68
– reference: 19186405 - Neoplasia. 2009 Feb;11(2):102-25
– reference: 20089719 - Radiology. 2010 Mar;254(3):783-92
– reference: 19306416 - J Magn Reson Imaging. 2009 Apr;29(4):880-6
– reference: 21698463 - Eur Radiol. 2011 Nov;21(11):2255-60
– reference: 21563245 - J Magn Reson Imaging. 2011 Mar;33(3):615-24
– reference: 17515386 - AJR Am J Roentgenol. 2007 Jun;188(6):1622-35
– reference: 19634060 - Acta Oncol. 2009;48(7):1034-43
– reference: 19547986 - Eur Radiol. 2009 Nov;19(11):2728-38
– reference: 18602480 - Neuroimage. 2008 Oct 1;42(4):1340-56
– reference: 21436085 - Radiology. 2011 Jun;259(3):775-84
– reference: 10207458 - Radiology. 1999 Mar;210(3):617-23
– reference: 20032142 - Radiology. 2010 Jan;254(1):47-66
SSID ssj0006350
Score 2.2638614
Snippet Purpose: To assess the optimalb-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration...
Purpose: To assess the optimalb‐values range for perfusion‐insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short‐duration...
To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI...
Purpose: To assess the optimal b -values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4832
SubjectTerms Abdomen - pathology
Adolescent
Adult
Algorithms
Analysis of motion
Anatomy
apparent diffusion coefficient
biodiffusion
biomedical MRI
b‐value optimization
Child
Computer Simulation
Diagnostic Imaging - methods
Diffusion
Diffusion Magnetic Resonance Imaging - methods
diffusion‐weighted imaging
Digital computing or data processing equipment or methods, specially adapted for specific applications
Female
Fluid mechanics and rheology
General statistical methods
haemorheology
Humans
Image analysis
Image data processing or generation, in general
image motion analysis
Image Processing, Computer-Assisted
intravoxel incoherent motion
Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
Kidneys
least squares approximations
Least-Squares Analysis
Likelihood Functions
Liver
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Physics
Male
mean square error methods
Medical image artifacts
Medical image noise
Medical image quality
Medical imaging
Models, Statistical
Numerical approximation and analysis
Pathology
Perfusion
Reproducibility of Results
Title In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging
URI http://dx.doi.org/10.1118/1.4736516
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4736516
https://www.ncbi.nlm.nih.gov/pubmed/22894409
https://www.proquest.com/docview/1034200806
https://pubmed.ncbi.nlm.nih.gov/PMC3411587
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FVBwvCAqFcGk5hJAiBx-7Ph4rStUighC0Vd8sr72GiGJHuR76xE_gN_JHYGZ3vXHUBBVerGQ9Gjk7X8Yzs9_OEvKClyE4PS4dEfs5NtUunczPmSO5lCwvw1yok-eGH8KDY_bulJ92Or9brKX5TAzy87X7Sv7HqjAGdsVdsv9gWasUBuAz2BeuYGG4XsrGh1V_MVrU_cy218TYrwYv8B1mXlgiA3b0lv0J7iNQtMKxnJRzLJNZiRGWmKeaR5SNkZUOuvDwFCWGHURUqwkcBd1fmvddcxSUWe3RZRJVx8W91Zk-9cOWGvYncmQKrsN6NmqGT8zB7YpwBu5mb7BEwdk3qdnGmgHePxksfflEntvn_wQ67DKSzHCv0Qwc1qBd1EB2SLxCEGlWq1oYVZxAXe2ZzhRXeNhmHxj_njBcL9Lr5FKN-SwKHOa7Sdvn6wZKBttxy4Gz2JRbZfM12fCiwc0T3gCUh9xb08zbCvGNYiqKGH7EG1fIlh9B8NclW7t7w_efbTAB8aDeRWV-mGmOBZpfW62rIdWFPOki3fc6RFea6LGakqmY6ugWuWmSIbqrkX2bdGS1Ta41E75NrmpLTO-Q8WFFEep0CXVal9RAnYpfP34qkFMFcgogpxbkcK8Fb9rAm1p40xa8qYH3XXK8__bozYFjDgtxcs6S0AmYyJME0n-PyzCUbhDJqBQRRK9-7PLMcwXDtre-9ArORSkEF0EgIHzNi0gUELnukG5VV_I-oVjhc72cSVEUrCy8LEpCEUGew3lZyMDtkVfNfKfNROKBLmepzqjj1EuNaXrkmRUd6_Yx64SeNkZLwbnjil1WyXo-BdGAIUHJBZl72ohWje_HCWNu0iPRinmtADaOX71Tjb6qBvIQuXo8jnrkuQXC355ujdSiniwl0nFR9shLBaTNelKN9AeXFXxIbiw9wyPSnU3m8jEkADPxxPxJ_gDr_AYO
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+assessment+of+optimal+b%E2%80%90value+range+for+perfusion%E2%80%90insensitive+apparent+diffusion+coefficient+imaging&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Freiman%2C+Moti&rft.au=Voss%2C+Stephan+D.&rft.au=Mulkern%2C+Robert+V.&rft.au=Perez%E2%80%90Rossello%2C+Jeannette+M.&rft.date=2012-08-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=39&rft.issue=8&rft.spage=4832&rft.epage=4839&rft_id=info:doi/10.1118%2F1.4736516&rft.externalDBID=10.1118%252F1.4736516&rft.externalDocID=MP6516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon