In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging
Purpose: To assess the optimalb-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. Methods: DW-MRI data of 15 subjects were acquired with eightb-values in th...
Saved in:
Published in | Medical physics (Lancaster) Vol. 39; no. 8; pp. 4832 - 4839 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Physicists in Medicine
01.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 0094-2405 |
DOI | 10.1118/1.4736516 |
Cover
Abstract | Purpose:
To assess the optimalb-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods.
Methods:
DW-MRI data of 15 subjects were acquired with eightb-values in the range of 5–800 s/mm2. The reference-standard, a perfusion insensitive, ADC value (ADCIVIM), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0–1200 s/mm2. Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC2); (2) least squares three-point (ADC3) estimator and; (3) Rician noise model estimator (ADCR). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADCIVIM and the monoexponential ADC values for each estimation method and organ.
Results:
Lowb-value = 300 s/mm2 and high b-value = 1200 s/mm2 minimized the RRMS between the estimated ADC and the reference-standard ADCIVIM to less than 5% using the ADC3 estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s/mm2 and high b-value of 800 s/mm2 minimized the RRMS between the estimated ADC and the reference-standard ADCIVIM to <7% using the ADC3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78–0.83], p ≤ 0.003).
Conclusions:
The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice ofb-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation. |
---|---|
AbstractList | Purpose:
To assess the optimalb‐values range for perfusion‐insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short‐duration DW‐MRI acquisitions with currently available ADC estimation methods.
Methods:
DW‐MRI data of 15 subjects were acquired with eightb‐values in the range of 5–800 s/mm2. The reference‐standard, a perfusion insensitive, ADC value (ADCIVIM), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion‐weighted images. Simulated DW‐MRI data was generated using an IVIM model with b‐values in the range of 0–1200 s/mm2. Monoexponential ADC estimates were calculated using: (1) Two‐point estimator (ADC2); (2) least squares three‐point (ADC3) estimator and; (3) Rician noise model estimator (ADCR). The authors found the optimal b‐values for perfusion‐insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADCIVIM and the monoexponential ADC values for each estimation method and organ.
Results:
Lowb‐value = 300 s/mm2 and high b‐value = 1200 s/mm2 minimized the RRMS between the estimated ADC and the reference‐standard ADCIVIM to less than 5% using the ADC3 estimator. By considering only the in vivo DW‐MRI data, the combination of low b‐value = 270 s/mm2 and high b‐value of 800 s/mm2 minimized the RRMS between the estimated ADC and the reference‐standard ADCIVIM to <7% using the ADC3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion‐fraction parameter of the IVIM model (r = [0.78–0.83], p ≤ 0.003).
Conclusions:
The perfusion compartment in DW‐MRI signal decay correlates strongly with the RRMS in ADC estimates from short‐duration DW‐MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice ofb‐values and estimation method utilized. Likewise, perfusion‐related errors can be reduced to <7% by carefully selecting the b‐values used for ADC calculations and method of estimation. Purpose: To assess the optimal b -values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. Methods: DW-MRI data of 15 subjects were acquired with eight b -values in the range of 5–800 s/mm 2 . The reference-standard, a perfusion insensitive, ADC value (ADC IVIM ), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b -values in the range of 0–1200 s/mm 2 . Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC 2 ); (2) least squares three-point (ADC 3 ) estimator and; (3) Rician noise model estimator (ADC R ). The authors found the optimal b -values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC IVIM and the monoexponential ADC values for each estimation method and organ. Results: Low b -value = 300 s/mm 2 and high b -value = 1200 s/mm 2 minimized the RRMS between the estimated ADC and the reference-standard ADC IVIM to less than 5% using the ADC 3 estimator. By considering only the in vivo DW-MRI data, the combination of low b -value = 270 s/mm 2 and high b -value of 800 s/mm 2 minimized the RRMS between the estimated ADC and the reference-standard ADC IVIM to <7% using the ADC 3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78–0.83], p ≤ 0.003). Conclusions: The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b -values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b -values used for ADC calculations and method of estimation. To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. DW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ. Low b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003). The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation. To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods.PURPOSETo assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods.DW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ.METHODSDW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ.Low b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003).RESULTSLow b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003).The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.CONCLUSIONSThe perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation. |
Author | Mulkern, Robert V. Callahan, Michael J. Warfield, Simon K. Freiman, Moti Voss, Stephan D. Perez-Rossello, Jeannette M. |
Author_xml | – sequence: 1 givenname: Moti surname: Freiman fullname: Freiman, Moti email: moti.freiman@childrens.harvard.edu organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115 – sequence: 2 givenname: Stephan D. surname: Voss fullname: Voss, Stephan D. organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115 – sequence: 3 givenname: Robert V. surname: Mulkern fullname: Mulkern, Robert V. organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115 – sequence: 4 givenname: Jeannette M. surname: Perez-Rossello fullname: Perez-Rossello, Jeannette M. organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115 – sequence: 5 givenname: Michael J. surname: Callahan fullname: Callahan, Michael J. organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115 – sequence: 6 givenname: Simon K. surname: Warfield fullname: Warfield, Simon K. organization: Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22894409$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLcLB_4A8hGQ0o5jOx8XJFTxUakIDnC27GS8GGXtYCdB_fd4lW1VEOXkkeeZd169c0ZOfPBIyHMG54yx5oKdi5pXklWPyKbMZSFKaE_IBqAVRSlAnpKzlH4AQMUlPCGnZdm0QkC7IcOVp4tbAtUpYUp79BMNloZxcns9UFMsepiRRu13SG2IdMRo5-SCL5xP6JOb3IJUj6OOh9ne2bVNu4DWus4dfrPWzvndU_LY6iHhs-O7Jd_ev_t6-bG4_vzh6vLtddFJ0VYFF6Zr26ZmTGJVIfAaa2vqUoiyAakZGAEgqxJZL6WxxkjDuRFMdn1teij5lrxZdcfZ7LHvsoWoBzXG7CPeqKCd-rPj3Xe1C4viIu9s6izw8igQw88Z06T2LnU4DNpjmJNiwHPE0OQ8t-TF_V13S24jzsCrFehiSCmivUMYqMP5FFPH82X24i-2c5OecpzZphv-OVGsE7_cgDcPS6tPX47865VPt8r_tfMgvIR4T3zsLf8NUMvHNA |
CODEN | MPHYA6 |
CitedBy_id | crossref_primary_10_1002_jmri_24403 crossref_primary_10_1080_0284186X_2021_1994645 crossref_primary_10_1097_MD_0000000000006866 crossref_primary_10_1186_s40644_019_0282_9 crossref_primary_10_2214_AJR_13_12165 crossref_primary_10_1002_jmri_24386 crossref_primary_10_1186_s12885_015_1221_1 crossref_primary_10_3390_jcm10163451 crossref_primary_10_3348_kjr_2019_0232 crossref_primary_10_1002_nbm_4059 crossref_primary_10_1097_RCT_0000000000000349 crossref_primary_10_1177_0284185113502017 crossref_primary_10_2214_AJR_18_20743 crossref_primary_10_1002_mrm_28989 crossref_primary_10_1016_j_jceh_2021_02_008 crossref_primary_10_1016_j_media_2016_03_009 crossref_primary_10_1038_s41598_018_22268_y crossref_primary_10_1007_s00062_017_0606_8 crossref_primary_10_1002_jmri_25721 crossref_primary_10_1007_s00330_016_4318_2 crossref_primary_10_1007_s00330_015_4087_3 crossref_primary_10_1016_j_nicl_2016_05_022 crossref_primary_10_1016_j_mri_2016_04_007 crossref_primary_10_1016_j_crad_2017_04_017 crossref_primary_10_1016_j_neuroimage_2019_116228 crossref_primary_10_1097_RCT_0000000000000377 crossref_primary_10_1016_j_nbd_2014_07_005 crossref_primary_10_1002_mrm_25484 crossref_primary_10_1097_RLI_0000000000000095 crossref_primary_10_1002_mrm_25765 crossref_primary_10_3174_ajnr_A4852 crossref_primary_10_1371_journal_pone_0258442 crossref_primary_10_1016_j_mric_2019_01_010 crossref_primary_10_1007_s12194_014_0301_2 crossref_primary_10_1088_0031_9155_60_20_7877 crossref_primary_10_1007_s00261_014_0247_1 crossref_primary_10_1016_j_neuroimage_2017_04_071 crossref_primary_10_1002_nbm_3718 |
Cites_doi | 10.1007/s00330‐009‐1469‐4 10.1002/jmri.21461 10.1148/radiol.09090891 10.1063/1.1695690 10.1016/S0730‐725X(01)00383‐6 10.1002/jmri.22435 10.1002/jmri.21358 10.1007/s00330-011-2180-9 10.2214/AJR.06.1403 10.1002/jmri.22152 10.1007/978‐3‐642‐23629‐7_10 10.1002/jmri.21725 10.1080/02841860903099972 10.1097/MCG.0b013e318223bd2c 10.1148/radiology.168.2.3393671 10.1002/mrm.22565 10.1109/TMI.2008.920615 10.1002/mrm.1910350319 10.1148/radiol.11102066 10.1016/j.mri.2011.02.031 10.1016/j.neuroimage.2008.05.053 10.1148/radiol.10100853 10.1016/j.ejrad.2008.10.023 10.1007/s11263‐006‐7934‐5 10.1148/radiology.210.3.r99fe17617 10.2214/AJR.10.5515 10.1148/radiol.09090021 10.1593/neo.81328 10.1016/j.neuroimage.2006.01.015 10.1016/j.mri.2011.03.004 10.1093/imanum/drm047 10.3109/0284186X.2010.500305 10.1002/mrm.22014 |
ContentType | Journal Article |
Copyright | American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine |
Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2012 American Association of Physicists in Medicine – notice: Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1118/1.4736516 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 0094-2405 |
EndPage | 4839 |
ExternalDocumentID | PMC3411587 22894409 10_1118_1_4736516 MP6516 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: R01 LM010033 – fundername: NIH grantid: R03 EB008680 – fundername: NIH grantid: R01 EB008015 – fundername: NIH grantid: R01 RR021885 – fundername: NIH funderid: R01 LM010033 – fundername: NIH funderid: R03 EB008680 – fundername: NIH funderid: R01 EB008015 – fundername: NIH funderid: R01 RR021885 – fundername: NLM NIH HHS grantid: R01 LM010033 – fundername: NIBIB NIH HHS grantid: R01 EB008015 – fundername: NIBIB NIH HHS grantid: R03 EB008680 – fundername: NCRR NIH HHS grantid: R01 RR021885 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE AFWVQ AITYG ALVPJ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 LH4 5PM |
ID | FETCH-LOGICAL-c5496-34bc9987115e66e037e7fb72442805a10b400562e1d55bfbb5b33b415cd7bd023 |
ISSN | 0094-2405 |
IngestDate | Thu Aug 21 18:01:34 EDT 2025 Thu Sep 04 23:54:07 EDT 2025 Mon Jul 21 05:43:00 EDT 2025 Tue Jul 01 00:18:22 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Wed Jan 22 16:22:51 EST 2025 Sun Jul 14 10:05:20 EDT 2019 Fri Jun 21 00:28:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | apparent diffusion coefficient b-value optimization diffusion-weighted imaging intravoxel incoherent motion |
Language | English |
License | 0094-2405/2012/39(8)/4832/8/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5496-34bc9987115e66e037e7fb72442805a10b400562e1d55bfbb5b33b415cd7bd023 |
Notes | Telephone: +1‐617‐255‐3755; Fax: +1 617‐730‐4644. moti.freiman@childrens.harvard.edu Author to whom correspondence should be addressed. Electronic mail ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author to whom correspondence should be addressed. Electronic mail: moti.freiman@childrens.harvard.edu; Telephone: +1-617-255-3755; Fax: +1 617-730-4644. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4736516 |
PMID | 22894409 |
PQID | 1034200806 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1034200806 wiley_primary_10_1118_1_4736516_MP6516 scitation_primary_10_1118_1_4736516 pubmed_primary_22894409 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3411587 crossref_primary_10_1118_1_4736516 crossref_citationtrail_10_1118_1_4736516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2012 |
Publisher | American Association of Physicists in Medicine |
Publisher_xml | – name: American Association of Physicists in Medicine |
References | Andersson (c24) 2008; 42 Zhang, Sigmund, Chandarana, Rusinek, Chen, Vivier, Taouli, Lee (c31) 2010; 254 Fujimoto, Tonan, Azuma, Kage, Nakashima, Johkoh, Hayabuchi, Okuda, Kawaguchi, Sata, Qayyum (c9) 2011; 258 Kiryu, Dodanuki, Takao, Watanabe, Inoue, Takazoe, Sahara, Unuma, Ohtomo (c10) 2009; 29 Freiman, Voss, Mulkern, Perez-Rossello, Warfield (c28) 2011; 14 Papanikolaou, Gourtsoyianni, Yarmenitis, Maris, Gourtsoyiannis (c21) 2010; 73 Bihan, Breton, Lallemand, Aubin, Vignaud, Laval-Jeantet (c17) 1988; 168 Taouli, Koh (c7) 2010; 254 Stejskal, Tanner (c1) 1965; 42 Koh, Collins, Orton (c16) 2011; 196 Taylor, Biswal (c23) 2011; 29 Oto, Kayhan, Williams, Fan, Yun, Arkani, Rubin (c11) 2011; 33 Yamada, Aung, Himeno, Nakagawa, Shibuya (c19) 1999; 210 Peters, Vincken, van den Bosch, Luijten, Mali, Bartels (c13) 2010; 31 Padhani, Liu, Koh, Chenevert, Thoeny, Takahara, Dzik-Jurasz, Ross, Van Cauteren, Collins, Hammoud, Rustin, Taouli, Choyke (c20) 2009; 11 Gumustas, Inan, Sarisoy, Anik, Arslan, Ciftci, Akansel, Demirci (c2) 2011; 21 Koh, Collins (c32) 2007; 188 Boykov, Funka-Lea (c30) 2006; 70 Lemke, Laun, Simon, Stieltjes, Schad (c15) 2010; 64 Powell (c33) 2008; 28 Vargas, Akin, Franiel, Mazaheri, Zheng, Moskowitz, Udo, Eastham, Hricak (c3) 2011; 259 Koh, Blackledge, Collins, Padhani, Wallace, Wilton, Taylor, Stirling, Sinha, Walicke, Leach, Judson, Nathan (c6) 2009; 19 Bonekamp, Torbenson, Kamel (c8) 2011; 45 Mulkern, Vajapeyam, Robertson, Caruso, Rivkin, Maier (c27) 2001; 19 Kallehauge, Tanderup, Haack, Nielsen, Muren, Fokdal, Lindegaard, Pedersen (c12) 2010; 49 Conturo, McKinstry, Akbudak, Robinson (c26) 1996; 35 Clarke, Scifo, Rizzo, Dell’Acqua, Scotti, Fazio (c22) 2008; 27 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (c29) 2006; 31 Eccles, Haider, Haider, Fung, Lockwood, Dawson (c5) 2009; 48 Girometti, Furlan, Esposito, Bazzocchi, Como, Soldano, Isola, Toniutto, Zuiani (c14) 2008; 28 Dudeck, Zeile, Pink, Pech, Tunn, Reichardt, Ludwig, Hamm (c4) 2008; 27 Lemke, Stieltjes, Schad, Laun (c18) 2011; 29 Walker-Samuel, Orton, McPhail, Robinson (c25) 2009; 62 2011; 259 2006; 70 2011; 258 2010; 31 2009; 62 2006; 31 2007; 188 1988; 168 2011; 33 2011; 14 2011; 196 1996; 35 2009; 48 2009; 29 2009; 11 1965; 42 2010; 64 2010; 49 2008; 27 2008; 28 2001; 19 2010; 254 2011; 21 2011; 45 1999; 210 2008; 42 2009; 19 2011; 29 2010; 73 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 20032142 - Radiology. 2010 Jan;254(1):47-66 21436085 - Radiology. 2011 Jun;259(3):775-84 18666139 - J Magn Reson Imaging. 2008 Aug;28(2):411-9 19634060 - Acta Oncol. 2009;48(7):1034-43 21563245 - J Magn Reson Imaging. 2011 Mar;33(3):615-24 19306416 - J Magn Reson Imaging. 2009 Apr;29(4):880-6 19353661 - Magn Reson Med. 2009 Aug;62(2):420-9 20089719 - Radiology. 2010 Mar;254(3):783-92 10207458 - Radiology. 1999 Mar;210(3):617-23 18753042 - IEEE Trans Med Imaging. 2008 Sep;27(9):1242-51 16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28 21550747 - Magn Reson Imaging. 2011 Jul;29(6):777-88 11672624 - Magn Reson Imaging. 2001 Jun;19(5):659-68 20432344 - J Magn Reson Imaging. 2010 May;31(5):1100-5 21698463 - Eur Radiol. 2011 Nov;21(11):2255-60 20665824 - Magn Reson Med. 2010 Dec;64(6):1580-5 21995015 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):74-81 18602480 - Neuroimage. 2008 Oct 1;42(4):1340-56 19186405 - Neoplasia. 2009 Feb;11(2):102-25 20831490 - Acta Oncol. 2010 Oct;49(7):1017-22 21549538 - Magn Reson Imaging. 2011 Jul;29(6):766-76 21248235 - Radiology. 2011 Mar;258(3):739-48 8699953 - Magn Reson Med. 1996 Mar;35(3):399-412 17515386 - AJR Am J Roentgenol. 2007 Jun;188(6):1622-35 19547986 - Eur Radiol. 2009 Nov;19(11):2728-38 21716125 - J Clin Gastroenterol. 2011 Nov-Dec;45(10):885-92 3393671 - Radiology. 1988 Aug;168(2):497-505 18425832 - J Magn Reson Imaging. 2008 May;27(5):1109-13 21606299 - AJR Am J Roentgenol. 2011 Jun;196(6):1351-61 19091503 - Eur J Radiol. 2010 Feb;73(2):305-9 |
References_xml | – volume: 254 start-page: 47 year: 2010 ident: c7 article-title: Diffusion-weighted MR imaging of the liver publication-title: Radiology – volume: 19 start-page: 2728 year: 2009 ident: c6 article-title: Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial publication-title: Eur. Radiol. – volume: 11 start-page: 102 year: 2009 ident: c20 article-title: Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations publication-title: Neoplasia – volume: 31 start-page: 1100 year: 2010 ident: c13 article-title: Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of -values publication-title: J. Magn. Reson. Imaging – volume: 254 start-page: 783 year: 2010 ident: c31 article-title: Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification publication-title: Radiology – volume: 45 start-page: 885 year: 2011 ident: c8 article-title: Diffusion-weighted magnetic resonance imaging for the staging of liver fibrosis publication-title: J. Clin. Gastroenterol. – volume: 27 start-page: 1242 year: 2008 ident: c22 article-title: Noise correction on Rician distributed data for fibre orientation estimators publication-title: IEEE Trans. Med. Imaging – volume: 62 start-page: 420 year: 2009 ident: c25 article-title: Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors publication-title: Magn. Reson. Med. – volume: 188 start-page: 1622 year: 2007 ident: c32 article-title: Diffusion-weighted MRI in the body: Applications and challenges in oncology publication-title: AJR, Am. J. Roentgenol. – volume: 258 start-page: 739 year: 2011 ident: c9 article-title: Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade publication-title: Radiology – volume: 29 start-page: 880 year: 2009 ident: c10 article-title: Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn's disease publication-title: J. Magn. Reson. Imaging – volume: 29 start-page: 766 year: 2011 ident: c18 article-title: Toward an optimal distribution of -values for intravoxel incoherent motion imaging publication-title: Magn. Reson. Imaging – volume: 259 start-page: 775 year: 2011 ident: c3 article-title: Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: Tumor detection and assessment of aggressiveness publication-title: Radiology – volume: 21 start-page: 2255 year: 2011 ident: c2 article-title: Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging publication-title: Eur Radiol. – volume: 29 start-page: 777 year: 2011 ident: c23 article-title: Geometric analysis of the b-dependent effects of Rician signal noise on diffusion tensor imaging estimates and determining an optimal -value publication-title: Magn. Reson. Imaging – volume: 48 start-page: 1034 year: 2009 ident: c5 article-title: Change in diffusion weighted MRI during liver cancer radiotherapy: Preliminary observations publication-title: Acta Oncol. – volume: 42 start-page: 288 year: 1965 ident: c1 article-title: Spin diffusion measurements: spin-echo in the presence of a time dependent field gradient publication-title: J. Chem. Phys. – volume: 168 start-page: 497 year: 1988 ident: c17 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 210 start-page: 617 year: 1999 ident: c19 article-title: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging publication-title: Radiology – volume: 64 start-page: 1580 year: 2010 ident: c15 article-title: An verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen publication-title: Magn. Reson. Med. – volume: 19 start-page: 659 year: 2001 ident: c27 article-title: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain publication-title: Magn. Reson. Imaging – volume: 14 start-page: 73 year: 2011 ident: c28 article-title: Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 70 start-page: 109 year: 2006 ident: c30 article-title: Graph cuts and efficient N-D image segmentation publication-title: Int. J. Comput. Vis. – volume: 31 start-page: 1116 year: 2006 ident: c29 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 196 start-page: 1351 year: 2011 ident: c16 article-title: Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges publication-title: AJR, Am. J. Roentgenol. – volume: 42 start-page: 1340 year: 2008 ident: c24 article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but publication-title: Neuroimage – volume: 28 start-page: 411 year: 2008 ident: c14 article-title: Relevance of -values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences publication-title: J. Magn. Reson. Imaging – volume: 27 start-page: 1109 year: 2008 ident: c4 article-title: Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas publication-title: J. Magn. Reson. Imaging – volume: 73 start-page: 305 year: 2010 ident: c21 article-title: Comparison between two-point and four-point methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen publication-title: Eur. J. Radiol. – volume: 35 start-page: 399 year: 1996 ident: c26 article-title: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results publication-title: Magn. Reson. Med. – volume: 28 start-page: 649 year: 2008 ident: c33 article-title: Developments of NEWUOA for minimization without derivatives publication-title: IMA J. Numer. Anal. – volume: 33 start-page: 615 year: 2011 ident: c11 article-title: Active Crohn's Disease in the small bowel: Evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging publication-title: J. Magn. Reson. Imaging – volume: 49 start-page: 1017 year: 2010 ident: c12 article-title: Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: Dependence on -values used publication-title: Acta Oncol. – volume: 168 start-page: 497 year: 1988 end-page: 505 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 28 start-page: 411 year: 2008 end-page: 419 article-title: Relevance of ‐values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single‐shot spin‐echo echo‐planar diffusion‐weighted sequences publication-title: J. Magn. Reson. Imaging – volume: 196 start-page: 1351 year: 2011 end-page: 1361 article-title: Intravoxel incoherent motion in body diffusion‐weighted MRI: reality and challenges publication-title: AJR, Am. J. Roentgenol. – volume: 19 start-page: 659 year: 2001 end-page: 668 article-title: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain publication-title: Magn. Reson. Imaging – volume: 259 start-page: 775 year: 2011 end-page: 784 article-title: Diffusion‐weighted endorectal MR imaging at 3 T for prostate cancer: Tumor detection and assessment of aggressiveness publication-title: Radiology – volume: 70 start-page: 109 year: 2006 end-page: 131 article-title: Graph cuts and efficient N‐D image segmentation publication-title: Int. J. Comput. Vis. – volume: 64 start-page: 1580 year: 2010 end-page: 1585 article-title: An verification of the intravoxel incoherent motion effect in diffusion‐weighted imaging of the abdomen publication-title: Magn. Reson. Med. – volume: 28 start-page: 649 year: 2008 end-page: 664 article-title: Developments of NEWUOA for minimization without derivatives publication-title: IMA J. Numer. Anal. – volume: 29 start-page: 880 year: 2009 end-page: 886 article-title: Free‐breathing diffusion‐weighted imaging for the assessment of inflammatory activity in Crohn's disease publication-title: J. Magn. Reson. Imaging – volume: 29 start-page: 766 year: 2011 end-page: 776 article-title: Toward an optimal distribution of ‐values for intravoxel incoherent motion imaging publication-title: Magn. Reson. Imaging – volume: 27 start-page: 1242 year: 2008 end-page: 1251 article-title: Noise correction on Rician distributed data for fibre orientation estimators publication-title: IEEE Trans. Med. Imaging – volume: 45 start-page: 885 year: 2011 end-page: 892 article-title: Diffusion‐weighted magnetic resonance imaging for the staging of liver fibrosis publication-title: J. Clin. Gastroenterol. – volume: 62 start-page: 420 year: 2009 end-page: 429 article-title: Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors publication-title: Magn. Reson. Med. – volume: 49 start-page: 1017 year: 2010 end-page: 1022 article-title: Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: Dependence on ‐values used publication-title: Acta Oncol. – volume: 29 start-page: 777 year: 2011 end-page: 788 article-title: Geometric analysis of the b‐dependent effects of Rician signal noise on diffusion tensor imaging estimates and determining an optimal ‐value publication-title: Magn. Reson. Imaging – volume: 14 start-page: 73 year: 2011 end-page: 80 article-title: Quantitative body DW‐MRI biomarkers uncertainty estimation using unscented wild‐bootstrap publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 73 start-page: 305 year: 2010 end-page: 309 article-title: Comparison between two‐point and four‐point methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen publication-title: Eur. J. Radiol. – volume: 35 start-page: 399 year: 1996 end-page: 412 article-title: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results publication-title: Magn. Reson. Med. – volume: 19 start-page: 2728 year: 2009 end-page: 2738 article-title: Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two‐centre phase I clinical trial publication-title: Eur. Radiol. – volume: 258 start-page: 739 year: 2011 end-page: 748 article-title: Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade publication-title: Radiology – volume: 21 start-page: 2255 year: 2011 end-page: 2260 article-title: Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging publication-title: Eur Radiol. – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 42 start-page: 288 year: 1965 end-page: 292 article-title: Spin diffusion measurements: spin‐echo in the presence of a time dependent field gradient publication-title: J. Chem. Phys. – volume: 48 start-page: 1034 year: 2009 end-page: 1043 article-title: Change in diffusion weighted MRI during liver cancer radiotherapy: Preliminary observations publication-title: Acta Oncol. – volume: 254 start-page: 783 year: 2010 end-page: 792 article-title: Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification publication-title: Radiology – volume: 188 start-page: 1622 year: 2007 end-page: 1635 article-title: Diffusion‐weighted MRI in the body: Applications and challenges in oncology publication-title: AJR, Am. J. Roentgenol. – volume: 27 start-page: 1109 year: 2008 end-page: 1113 article-title: Diffusion‐weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft‐tissue sarcomas publication-title: J. Magn. Reson. Imaging – volume: 33 start-page: 615 year: 2011 end-page: 624 article-title: Active Crohn's Disease in the small bowel: Evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging publication-title: J. Magn. Reson. Imaging – volume: 31 start-page: 1100 year: 2010 end-page: 1105 article-title: Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of ‐values publication-title: J. Magn. Reson. Imaging – volume: 42 start-page: 1340 year: 2008 end-page: 1356 article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but publication-title: Neuroimage – volume: 210 start-page: 617 year: 1999 end-page: 623 article-title: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo‐planar MR imaging publication-title: Radiology – volume: 11 start-page: 102 year: 2009 end-page: 125 article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations publication-title: Neoplasia – volume: 254 start-page: 47 year: 2010 end-page: 66 article-title: Diffusion‐weighted MR imaging of the liver publication-title: Radiology – ident: e_1_2_6_7_1 doi: 10.1007/s00330‐009‐1469‐4 – ident: e_1_2_6_15_1 doi: 10.1002/jmri.21461 – ident: e_1_2_6_32_1 doi: 10.1148/radiol.09090891 – ident: e_1_2_6_2_1 doi: 10.1063/1.1695690 – ident: e_1_2_6_28_1 doi: 10.1016/S0730‐725X(01)00383‐6 – ident: e_1_2_6_12_1 doi: 10.1002/jmri.22435 – ident: e_1_2_6_5_1 doi: 10.1002/jmri.21358 – ident: e_1_2_6_3_1 doi: 10.1007/s00330-011-2180-9 – ident: e_1_2_6_33_1 doi: 10.2214/AJR.06.1403 – ident: e_1_2_6_14_1 doi: 10.1002/jmri.22152 – ident: e_1_2_6_29_1 doi: 10.1007/978‐3‐642‐23629‐7_10 – ident: e_1_2_6_11_1 doi: 10.1002/jmri.21725 – ident: e_1_2_6_6_1 doi: 10.1080/02841860903099972 – ident: e_1_2_6_9_1 doi: 10.1097/MCG.0b013e318223bd2c – ident: e_1_2_6_18_1 doi: 10.1148/radiology.168.2.3393671 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.22565 – ident: e_1_2_6_23_1 doi: 10.1109/TMI.2008.920615 – ident: e_1_2_6_27_1 doi: 10.1002/mrm.1910350319 – ident: e_1_2_6_4_1 doi: 10.1148/radiol.11102066 – ident: e_1_2_6_24_1 doi: 10.1016/j.mri.2011.02.031 – ident: e_1_2_6_25_1 doi: 10.1016/j.neuroimage.2008.05.053 – ident: e_1_2_6_10_1 doi: 10.1148/radiol.10100853 – ident: e_1_2_6_22_1 doi: 10.1016/j.ejrad.2008.10.023 – ident: e_1_2_6_31_1 doi: 10.1007/s11263‐006‐7934‐5 – ident: e_1_2_6_20_1 doi: 10.1148/radiology.210.3.r99fe17617 – ident: e_1_2_6_17_1 doi: 10.2214/AJR.10.5515 – ident: e_1_2_6_8_1 doi: 10.1148/radiol.09090021 – ident: e_1_2_6_21_1 doi: 10.1593/neo.81328 – ident: e_1_2_6_30_1 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_6_19_1 doi: 10.1016/j.mri.2011.03.004 – ident: e_1_2_6_34_1 doi: 10.1093/imanum/drm047 – ident: e_1_2_6_13_1 doi: 10.3109/0284186X.2010.500305 – ident: e_1_2_6_26_1 doi: 10.1002/mrm.22014 – reference: 18753042 - IEEE Trans Med Imaging. 2008 Sep;27(9):1242-51 – reference: 20831490 - Acta Oncol. 2010 Oct;49(7):1017-22 – reference: 21716125 - J Clin Gastroenterol. 2011 Nov-Dec;45(10):885-92 – reference: 3393671 - Radiology. 1988 Aug;168(2):497-505 – reference: 21995015 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):74-81 – reference: 20432344 - J Magn Reson Imaging. 2010 May;31(5):1100-5 – reference: 16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28 – reference: 21248235 - Radiology. 2011 Mar;258(3):739-48 – reference: 21550747 - Magn Reson Imaging. 2011 Jul;29(6):777-88 – reference: 20665824 - Magn Reson Med. 2010 Dec;64(6):1580-5 – reference: 21549538 - Magn Reson Imaging. 2011 Jul;29(6):766-76 – reference: 8699953 - Magn Reson Med. 1996 Mar;35(3):399-412 – reference: 21606299 - AJR Am J Roentgenol. 2011 Jun;196(6):1351-61 – reference: 19091503 - Eur J Radiol. 2010 Feb;73(2):305-9 – reference: 18666139 - J Magn Reson Imaging. 2008 Aug;28(2):411-9 – reference: 19353661 - Magn Reson Med. 2009 Aug;62(2):420-9 – reference: 18425832 - J Magn Reson Imaging. 2008 May;27(5):1109-13 – reference: 11672624 - Magn Reson Imaging. 2001 Jun;19(5):659-68 – reference: 19186405 - Neoplasia. 2009 Feb;11(2):102-25 – reference: 20089719 - Radiology. 2010 Mar;254(3):783-92 – reference: 19306416 - J Magn Reson Imaging. 2009 Apr;29(4):880-6 – reference: 21698463 - Eur Radiol. 2011 Nov;21(11):2255-60 – reference: 21563245 - J Magn Reson Imaging. 2011 Mar;33(3):615-24 – reference: 17515386 - AJR Am J Roentgenol. 2007 Jun;188(6):1622-35 – reference: 19634060 - Acta Oncol. 2009;48(7):1034-43 – reference: 19547986 - Eur Radiol. 2009 Nov;19(11):2728-38 – reference: 18602480 - Neuroimage. 2008 Oct 1;42(4):1340-56 – reference: 21436085 - Radiology. 2011 Jun;259(3):775-84 – reference: 10207458 - Radiology. 1999 Mar;210(3):617-23 – reference: 20032142 - Radiology. 2010 Jan;254(1):47-66 |
SSID | ssj0006350 |
Score | 2.2638614 |
Snippet | Purpose:
To assess the optimalb-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration... Purpose: To assess the optimalb‐values range for perfusion‐insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short‐duration... To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI... Purpose: To assess the optimal b -values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration... |
SourceID | pubmedcentral proquest pubmed crossref wiley scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4832 |
SubjectTerms | Abdomen - pathology Adolescent Adult Algorithms Analysis of motion Anatomy apparent diffusion coefficient biodiffusion biomedical MRI b‐value optimization Child Computer Simulation Diagnostic Imaging - methods Diffusion Diffusion Magnetic Resonance Imaging - methods diffusion‐weighted imaging Digital computing or data processing equipment or methods, specially adapted for specific applications Female Fluid mechanics and rheology General statistical methods haemorheology Humans Image analysis Image data processing or generation, in general image motion analysis Image Processing, Computer-Assisted intravoxel incoherent motion Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging Kidneys least squares approximations Least-Squares Analysis Likelihood Functions Liver Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Physics Male mean square error methods Medical image artifacts Medical image noise Medical image quality Medical imaging Models, Statistical Numerical approximation and analysis Pathology Perfusion Reproducibility of Results |
Title | In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging |
URI | http://dx.doi.org/10.1118/1.4736516 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4736516 https://www.ncbi.nlm.nih.gov/pubmed/22894409 https://www.proquest.com/docview/1034200806 https://pubmed.ncbi.nlm.nih.gov/PMC3411587 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FVBwvCAqFcGk5hJAiBx-7Ph4rStUighC0Vd8sr72GiGJHuR76xE_gN_JHYGZ3vXHUBBVerGQ9Gjk7X8Yzs9_OEvKClyE4PS4dEfs5NtUunczPmSO5lCwvw1yok-eGH8KDY_bulJ92Or9brKX5TAzy87X7Sv7HqjAGdsVdsv9gWasUBuAz2BeuYGG4XsrGh1V_MVrU_cy218TYrwYv8B1mXlgiA3b0lv0J7iNQtMKxnJRzLJNZiRGWmKeaR5SNkZUOuvDwFCWGHURUqwkcBd1fmvddcxSUWe3RZRJVx8W91Zk-9cOWGvYncmQKrsN6NmqGT8zB7YpwBu5mb7BEwdk3qdnGmgHePxksfflEntvn_wQ67DKSzHCv0Qwc1qBd1EB2SLxCEGlWq1oYVZxAXe2ZzhRXeNhmHxj_njBcL9Lr5FKN-SwKHOa7Sdvn6wZKBttxy4Gz2JRbZfM12fCiwc0T3gCUh9xb08zbCvGNYiqKGH7EG1fIlh9B8NclW7t7w_efbTAB8aDeRWV-mGmOBZpfW62rIdWFPOki3fc6RFea6LGakqmY6ugWuWmSIbqrkX2bdGS1Ta41E75NrmpLTO-Q8WFFEep0CXVal9RAnYpfP34qkFMFcgogpxbkcK8Fb9rAm1p40xa8qYH3XXK8__bozYFjDgtxcs6S0AmYyJME0n-PyzCUbhDJqBQRRK9-7PLMcwXDtre-9ArORSkEF0EgIHzNi0gUELnukG5VV_I-oVjhc72cSVEUrCy8LEpCEUGew3lZyMDtkVfNfKfNROKBLmepzqjj1EuNaXrkmRUd6_Yx64SeNkZLwbnjil1WyXo-BdGAIUHJBZl72ohWje_HCWNu0iPRinmtADaOX71Tjb6qBvIQuXo8jnrkuQXC355ujdSiniwl0nFR9shLBaTNelKN9AeXFXxIbiw9wyPSnU3m8jEkADPxxPxJ_gDr_AYO |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+assessment+of+optimal+b%E2%80%90value+range+for+perfusion%E2%80%90insensitive+apparent+diffusion+coefficient+imaging&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Freiman%2C+Moti&rft.au=Voss%2C+Stephan+D.&rft.au=Mulkern%2C+Robert+V.&rft.au=Perez%E2%80%90Rossello%2C+Jeannette+M.&rft.date=2012-08-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=39&rft.issue=8&rft.spage=4832&rft.epage=4839&rft_id=info:doi/10.1118%2F1.4736516&rft.externalDBID=10.1118%252F1.4736516&rft.externalDocID=MP6516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |