chance at survival: gene expression noise and phenotypic diversification strategies

Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 71; no. 6; pp. 1333 - 1340
Main Authors Fraser, Dawn, Kærn, Mads
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.03.2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text
ISSN0950-382X
1365-2958
1365-2958
DOI10.1111/j.1365-2958.2009.06605.x

Cover

Abstract Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of the regulatory networks encoding microorganismal stress response and survival strategies might also have been significantly influenced by gene expression noise. This likelihood has inspired numerous investigations to characterize the sources of phenotypic diversity within isogenic populations, and to explore their direct and potential biological implications. Here, we discuss different scenarios where gene expression noise might bestow a selective advantage under stress, highlighting a potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies.
AbstractList Summary Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of the regulatory networks encoding microorganismal stress response and survival strategies might also have been significantly influenced by gene expression noise. This likelihood has inspired numerous investigations to characterize the sources of phenotypic diversity within isogenic populations, and to explore their direct and potential biological implications. Here, we discuss different scenarios where gene expression noise might bestow a selective advantage under stress, highlighting a potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies.
Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of the regulatory networks encoding microorganismal stress response and survival strategies might also have been significantly influenced by gene expression noise. This likelihood has inspired numerous investigations to characterize the sources of phenotypic diversity within isogenic populations, and to explore their direct and potential biological implications. Here, we discuss different scenarios where gene expression noise might bestow a selective advantage under stress, highlighting a potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies.Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of the regulatory networks encoding microorganismal stress response and survival strategies might also have been significantly influenced by gene expression noise. This likelihood has inspired numerous investigations to characterize the sources of phenotypic diversity within isogenic populations, and to explore their direct and potential biological implications. Here, we discuss different scenarios where gene expression noise might bestow a selective advantage under stress, highlighting a potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies.
SummaryPhenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of the regulatory networks encoding microorganismal stress response and survival strategies might also have been significantly influenced by gene expression noise. This likelihood has inspired numerous investigations to characterize the sources of phenotypic diversity within isogenic populations, and to explore their direct and potential biological implications. Here, we discuss different scenarios where gene expression noise might bestow a selective advantage under stress, highlighting a potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies.
Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of random molecular events on the shaping of life is well accepted in the context of chance mutations and genetic drift; however, the evolution of the regulatory networks encoding microorganismal stress response and survival strategies might also have been significantly influenced by gene expression noise. This likelihood has inspired numerous investigations to characterize the sources of phenotypic diversity within isogenic populations, and to explore their direct and potential biological implications. Here, we discuss different scenarios where gene expression noise might bestow a selective advantage under stress, highlighting a potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies.
Author Fraser, Dawn
Kærn, Mads
Author_xml – sequence: 1
  fullname: Fraser, Dawn
– sequence: 2
  fullname: Kærn, Mads
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21217738$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19220745$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9P2zAYxq2JaRS2r7DlMm7J_Cd24kmbNKHBkEAcGNJuluO8Lq5SJ7PT0n77ObTrgQv4Ykv-PY_8Po9P0JHvPSCUEVyQtL4sCsIEz6nkdUExlgUWAvNi8wbNDhdHaIYlxzmr6Z9jdBLjAmPCsGDv0DGRlOKq5DN0Zx60N5DpMYursHZr3X3N5uAhg80QIEbX-8z3LibEt9nwAL4ft4MzWevWEKKzzuhxguIY9AhzB_E9emt1F-HDfj9F9xc_f5__yq9vL6_Of1znhpeS502rwbbYYFNZIBqIZVZUTAK3tKlbTUvL0gBElMboRpei5jzR0rKKNS0p2Sk62_kOof-7gjiqpYsGuk576FdRiQpXaV72IlgKimvxCkeKOS-ZlAn8uAdXzRJaNQS31GGr_gebgM97QEejOxtSyi4eOEooqSpWJ-77jjOhjzGAVcaNT4GmOF2nCFZT42qhpmLVVKyaGldPjatNMqifGRze8rL020766DrYvlqnbm6uplPSf9rpre6Vnoc03_0dnT4ZEbisCWP_AP-0zFE
CitedBy_id crossref_primary_10_1162_POSC_a_00241
crossref_primary_10_7554_eLife_74153
crossref_primary_10_1103_PhysRevLett_128_048101
crossref_primary_10_1126_sciadv_aaz6699
crossref_primary_10_1007_s12038_015_9506_8
crossref_primary_10_1098_rsif_2018_0042
crossref_primary_10_1371_journal_pcbi_1007769
crossref_primary_10_30699_ijmm_13_3_194
crossref_primary_10_1093_jac_dkr214
crossref_primary_10_1103_PhysRevE_89_052708
crossref_primary_10_1002_wrna_1209
crossref_primary_10_1038_s41598_019_56587_5
crossref_primary_10_1103_PhysRevE_91_012704
crossref_primary_10_1103_PhysRevLett_107_218101
crossref_primary_10_1111_mmi_13336
crossref_primary_10_3389_fgene_2022_974472
crossref_primary_10_1042_BST20150169
crossref_primary_10_1093_narcan_zcab027
crossref_primary_10_1098_rspb_2011_2629
crossref_primary_10_1016_j_cels_2020_12_005
crossref_primary_10_1016_j_molcel_2013_01_026
crossref_primary_10_3934_mbe_2022098
crossref_primary_10_1146_annurev_ecolsys_120213_091705
crossref_primary_10_1186_1752_0509_5_18
crossref_primary_10_1021_sb400028c
crossref_primary_10_1088_1478_3975_12_4_046004
crossref_primary_10_1534_genetics_110_118190
crossref_primary_10_1139_p2012_091
crossref_primary_10_3233_ISB_180470
crossref_primary_10_4161_mabs_2_1_10788
crossref_primary_10_1128_MMBR_05028_11
crossref_primary_10_1186_s12859_020_03778_x
crossref_primary_10_1007_s10144_009_0187_8
crossref_primary_10_1371_journal_pbio_3000433
crossref_primary_10_1016_j_chembiol_2024_05_018
crossref_primary_10_1038_s41598_020_65750_2
crossref_primary_10_1088_0034_4885_77_2_026601
crossref_primary_10_1371_journal_pcbi_1009417
crossref_primary_10_1002_ece3_4249
crossref_primary_10_1094_MPMI_05_11_0105
crossref_primary_10_4208_cicp_280110_070510a
crossref_primary_10_1002_etc_280
crossref_primary_10_1016_j_jtbi_2019_110125
crossref_primary_10_3389_fmolb_2020_00067
crossref_primary_10_1126_sciadv_adh5138
crossref_primary_10_4208_cicp_130612_121012a
crossref_primary_10_1021_acsomega_2c06113
crossref_primary_10_1017_S0956792518000517
crossref_primary_10_1371_journal_pcbi_1002416
crossref_primary_10_1038_srep19538
crossref_primary_10_1093_nar_gkz556
crossref_primary_10_1371_journal_pcbi_1009214
crossref_primary_10_1103_PhysRevE_109_064414
crossref_primary_10_1111_php_13808
crossref_primary_10_1038_s41467_019_10330_w
crossref_primary_10_1093_nar_gkae432
crossref_primary_10_1038_s41467_023_39651_7
crossref_primary_10_1371_journal_pbio_1001325
crossref_primary_10_1016_j_jmb_2019_05_020
crossref_primary_10_1371_journal_pgen_1004779
crossref_primary_10_1371_journal_pone_0052105
crossref_primary_10_1016_j_jtbi_2016_04_006
crossref_primary_10_1016_j_jtbi_2020_110541
crossref_primary_10_1093_jxb_erp265
crossref_primary_10_3389_fmicb_2019_02814
crossref_primary_10_1093_nar_gkt184
crossref_primary_10_1021_jp403231f
crossref_primary_10_1103_PhysRevLett_105_018101
crossref_primary_10_1111_j_1740_9713_2012_00586_x
crossref_primary_10_1088_1478_3975_ac8c17
crossref_primary_10_1103_PhysRevE_82_052902
crossref_primary_10_1186_1471_2180_11_174
crossref_primary_10_1371_journal_pcbi_1004793
crossref_primary_10_3389_fmicb_2018_02158
crossref_primary_10_1103_PhysRevE_82_021901
crossref_primary_10_1128_IAI_02510_14
crossref_primary_10_1140_epje_i2012_12011_4
crossref_primary_10_1007_s00216_011_5084_2
crossref_primary_10_1049_enb_2019_0009
crossref_primary_10_3390_cells10040769
crossref_primary_10_3390_cancers13092197
crossref_primary_10_3389_fbioe_2020_583415
crossref_primary_10_1103_PhysRevLett_104_228104
crossref_primary_10_1021_sb500235p
crossref_primary_10_15252_msb_20167033
crossref_primary_10_3390_v14051057
crossref_primary_10_1016_j_jtbi_2019_01_003
crossref_primary_10_1111_j_1574_6976_2010_00241_x
crossref_primary_10_1016_j_csbj_2014_10_003
crossref_primary_10_1093_femsre_fux028
crossref_primary_10_1016_j_bpj_2021_12_027
crossref_primary_10_1016_j_jtbi_2021_110977
crossref_primary_10_1007_s11693_010_9055_2
crossref_primary_10_1128_mBio_00831_21
crossref_primary_10_1016_j_bpj_2014_11_048
crossref_primary_10_1146_annurev_ecolsys_110316_022722
crossref_primary_10_3390_life11111131
crossref_primary_10_1146_annurev_cellbio_092910_154129
crossref_primary_10_1093_femsre_fuaf001
crossref_primary_10_1186_s12918_015_0157_z
crossref_primary_10_3389_fgene_2019_00475
crossref_primary_10_1007_s00285_018_1248_4
crossref_primary_10_1016_j_cjph_2016_12_006
crossref_primary_10_1098_rsif_2018_0530
crossref_primary_10_1128_AEM_02814_18
crossref_primary_10_3389_fmicb_2015_01042
crossref_primary_10_1016_j_bpj_2013_12_011
crossref_primary_10_1073_pnas_1008965107
crossref_primary_10_1093_jxb_erw397
crossref_primary_10_1371_journal_pgen_1003148
crossref_primary_10_1039_C4MB00404C
crossref_primary_10_1371_journal_pgen_1002295
crossref_primary_10_1560_IJC_49_3_4_333
crossref_primary_10_1093_gbe_evv047
crossref_primary_10_4236_ns_2015_75029
crossref_primary_10_1063_1_5039817
crossref_primary_10_1002_bies_201000127
crossref_primary_10_6061_clinics_2018_e536s
crossref_primary_10_1111_j_1365_2958_2011_07652_x
crossref_primary_10_1038_ncomms12959
crossref_primary_10_1088_1478_3975_8_5_055007
crossref_primary_10_1128_aac_01307_22
crossref_primary_10_1007_s00284_016_1122_9
crossref_primary_10_1002_bies_201600093
crossref_primary_10_1103_PhysRevE_92_022713
crossref_primary_10_1038_s41598_017_09357_0
crossref_primary_10_1186_1752_0509_6_47
crossref_primary_10_1038_s41598_019_46926_x
crossref_primary_10_3390_cancers13174328
crossref_primary_10_1103_PhysRevE_85_061915
crossref_primary_10_15248_proc_1_33
crossref_primary_10_1098_rsif_2015_1051
crossref_primary_10_1371_journal_pone_0023111
crossref_primary_10_2142_biophys_61_171
crossref_primary_10_7554_eLife_19599
crossref_primary_10_1016_j_jtbi_2017_07_006
crossref_primary_10_1098_rsif_2024_0246
crossref_primary_10_1016_j_mib_2015_04_008
crossref_primary_10_1093_femsle_fnae050
crossref_primary_10_1093_gbe_evu226
crossref_primary_10_1098_rspa_2015_0050
crossref_primary_10_3389_fgene_2020_586726
crossref_primary_10_1038_ncomms15157
crossref_primary_10_1038_nchembio_441
crossref_primary_10_1142_S1793048013500069
crossref_primary_10_1371_journal_pcbi_1002209
crossref_primary_10_1002_bies_202200048
crossref_primary_10_1016_j_bpj_2010_02_045
crossref_primary_10_1155_2013_910321
crossref_primary_10_1098_rsif_2018_0199
crossref_primary_10_1002_ece3_2283
crossref_primary_10_1038_ncomms5574
crossref_primary_10_1155_2014_461941
crossref_primary_10_7554_eLife_37272
crossref_primary_10_1111_1462_2920_14717
crossref_primary_10_1128_mBio_01172_15
crossref_primary_10_1039_C8EN00325D
crossref_primary_10_1016_j_crmicr_2023_100204
Cites_doi 10.1111/j.1365-2958.2005.04488.x
10.1099/mic.0.26003-0
10.1890/06-1495
10.1038/nature03524
10.1371/journal.pbio.0020137
10.1126/science.1098641
10.1038/nrmicro1557
10.1126/science.1114383
10.1111/j.1365-2958.2007.05628.x
10.1038/ng.110
10.1016/j.tpb.2007.08.006
10.1111/j.1365-2958.2006.05504.x
10.1093/genetics/149.4.1633
10.1038/nrmicro1381
10.1126/science.1140818
10.1073/pnas.162041399
10.1126/science.1137455
10.1086/283230
10.1146/annurev.biophys.36.040306.132705
10.1126/science.1099390
10.1038/35014651
10.1038/nrmicro1460
10.1146/annurev.ento.44.1.535
10.1016/0169-5347(89)90138-9
10.1111/j.1365-2958.2005.04592.x
10.1126/science.1105891
10.1534/genetics.104.035352
10.1038/nature02298
10.1016/j.molcel.2006.11.003
10.1038/ng2071
10.1038/nature01546
10.1038/msb4100081
10.1146/annurev.micro.62.081307.163002
10.1038/ng1807
10.1126/science.1109090
10.1126/science.1070919
10.1371/journal.pone.0000049
10.1007/s11538-008-9294-5
10.1111/j.1365-2958.2006.05249.x
10.1126/science.1147888
10.1038/nature04785
10.1371/journal.pgen.1000049
10.1371/journal.pone.0001771
10.1038/ng869
10.1086/498282
10.1534/genetics.167.1.523
10.1038/msb.2008.11
10.1038/nrg2398
10.1126/science.1106914
10.1038/nature04281
10.1038/nature07067
10.1016/S0168-1605(02)00239-8
10.1038/msb4100147
10.1093/emboj/20.10.2528
10.1038/ng.116
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
– notice: 2009 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T7
8FD
C1K
FR3
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1365-2958.2009.06605.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Genetics Abstracts
CrossRef
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1340
ExternalDocumentID 19220745
21217738
10_1111_j_1365_2958_2009_06605_x
MMI6605
US201301604813
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XFK
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T7
8FD
C1K
FR3
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5495-bdaefd0c0c7fe1ae1f3f6739e5f2b8da24f3950164ccaba468550c09f373bd143
IEDL.DBID DR2
ISSN 0950-382X
1365-2958
IngestDate Thu Jul 10 18:52:37 EDT 2025
Fri Jul 11 13:06:52 EDT 2025
Fri Jul 11 13:37:23 EDT 2025
Mon Jul 21 05:30:44 EDT 2025
Mon Jul 21 09:17:23 EDT 2025
Tue Jul 01 03:38:06 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Wed Jan 22 16:32:39 EST 2025
Wed Dec 27 19:07:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Microbiology
Gene expression
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5495-bdaefd0c0c7fe1ae1f3f6739e5f2b8da24f3950164ccaba468550c09f373bd143
Notes http://dx.doi.org/10.1111/j.1365-2958.2009.06605.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 19220745
PQID 20554399
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67070633
proquest_miscellaneous_46208614
proquest_miscellaneous_20554399
pubmed_primary_19220745
pascalfrancis_primary_21217738
crossref_citationtrail_10_1111_j_1365_2958_2009_06605_x
crossref_primary_10_1111_j_1365_2958_2009_06605_x
wiley_primary_10_1111_j_1365_2958_2009_06605_x_MMI6605
fao_agris_US201301604813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2009
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: March 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References 2007; 39
2004; 167
2006; 38
2002; 99
2008; 9
1999; 44
2007; 72
2004; 2
2008; 3
2008; 4
2008; 70
2007; 36
2006; 61
2006; 24
2000; 405
2005; 307
2005; 309
2007; 5
2007; 63
2007; 3
2008; 62
2006; 441
1989; 4
2006; 439
2002; 297
2002; 31
2002; 78
2005; 435
2008; 10
2006; 4
2006; 1
2006; 2
2008; 320
2004; 427
2004; 305
2004; 304
2001; 20
2007; 317
2003; 149
2007; 315
2005; 169
2005; 4
2005; 6
2008; 454
1998; 149
1977; 111
2008; 40
2003; 422
2007; 88
2005; 56
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Weinberger L.S. (e_1_2_6_58_1) 2008; 40
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Kaern M. (e_1_2_6_26_1) 2005; 6
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Arkin A. (e_1_2_6_6_1) 1998; 149
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_40_1
Donaldson‐Matasci M.C. (e_1_2_6_17_1) 2008; 10
Malik T. (e_1_2_6_39_1) 2008; 70
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Evans M.E.K. (e_1_2_6_21_1) 2005; 4
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 63
  start-page: 507
  year: 2007
  end-page: 520
  article-title: Phenotypic heterogeneity can enhance rare‐cell survival in ‘stress‐sensitive’ yeast populations
  publication-title: Mol Microbiol
– volume: 169
  start-page: 1807
  year: 2005
  end-page: 1814
  article-title: Bacterial persistence: a model of survival in changing environments
  publication-title: Genetics
– volume: 3
  start-page: 106
  year: 2007
  article-title: Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge
  publication-title: Mol Sys Biol
– volume: 435
  start-page: 228
  year: 2005
  end-page: 232
  article-title: Enhancement of cellular memory by reducing stochastic transitions
  publication-title: Nature
– volume: 40
  start-page: 471
  year: 2008
  end-page: 475
  article-title: Stochastic switching as a survival strategy in fluctuating environments
  publication-title: Nat Genet
– volume: 70
  start-page: 1140
  year: 2008
  end-page: 1162
  article-title: Does dormancy increase fitness in bacterial populations in time‐varying environments?
  publication-title: B Math Biol
– volume: 441
  start-page: 840
  year: 2006
  end-page: 846
  article-title: Single‐cell proteomic analysis of reveals the architecture of biological noise
  publication-title: Nature
– volume: 10
  start-page: 493
  year: 2008
  end-page: 515
  article-title: Phenotypic diversity as an adaptation to environmental uncertainty
  publication-title: Ev Ecol Res
– volume: 4
  start-page: e1000049
  year: 2008
  article-title: Cell‐to‐cell stochastic variation in gene expression is a complex genetic trait
  publication-title: PLoS Genet
– volume: 297
  start-page: 1183
  year: 2002
  end-page: 1186
  article-title: Stochastic gene expression in a single cell
  publication-title: Science
– volume: 72
  start-page: 560
  year: 2007
  end-page: 575
  article-title: The evolution of bet‐hedging adaptations to rare scenarios
  publication-title: Theor Popul Biol
– volume: 3
  start-page: e1771
  year: 2008
  article-title: Positive feedback and noise activate the stringent response regulator Rel in mycobacteria
  publication-title: PLoS ONE
– volume: 36
  start-page: 413
  year: 2007
  end-page: 434
  article-title: Living with noisy genes: how cells function reliably with inherent variability in gene expression
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 4
  start-page: 259
  year: 2006
  end-page: 271
  article-title: Phenotypic variation in bacteria: the role of feedback regulation
  publication-title: Nat Rev Microbiol
– volume: 149
  start-page: 9
  year: 2003
  end-page: 17
  article-title: Controlling competence in : shared use of regulators
  publication-title: Microbiology
– volume: 309
  start-page: 2010
  year: 2005
  end-page: 2013
  article-title: Noise in gene expression: origins, consequences, and control
  publication-title: Science
– volume: 20
  start-page: 2528
  year: 2001
  end-page: 2535
  article-title: Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion
  publication-title: EMBO J
– volume: 1
  start-page: e49
  year: 2006
  article-title: Adaptive response of a gene network to environmental changes by fitness‐induced attractor selection
  publication-title: PLoS ONE
– volume: 40
  start-page: 464
  year: 2008
  end-page: 470
  article-title: Transient‐mediated fate determination in a transcriptional circuit of HIV
  publication-title: Nat Genet
– volume: 61
  start-page: 564
  year: 2006
  end-page: 572
  article-title: Bistability in bacteria
  publication-title: Mol Microbiol
– volume: 9
  start-page: 583
  year: 2008
  end-page: 593
  article-title: Tuning gene expression to changing environments: from rapid response to evolutionary adaptation
  publication-title: Nat Rev Genet
– volume: 24
  start-page: 853
  year: 2006
  end-page: 865
  article-title: Phenotypic consequences of promoter‐mediated transcriptional noise
  publication-title: Mol Cell
– volume: 38
  start-page: 636
  year: 2006
  end-page: 643
  article-title: Noise in protein expression scales with natural protein abundance
  publication-title: Nat Genet
– volume: 2
  start-page: 0834
  year: 2004
  end-page: 0838
  article-title: Noise minimization in eukaryotic gene expression
  publication-title: Plos Biol
– volume: 39
  start-page: 945
  year: 2007
  end-page: 949
  article-title: Evolution of chromosome organization driven by selection for reduced gene expression noise
  publication-title: Nat Genet
– volume: 149
  start-page: 1633
  year: 1998
  end-page: 1648
  article-title: Stochastic kinetic analysis of developmental pathway bifurcation in phage 1‐infected cells
  publication-title: Genetics
– volume: 2
  start-page: 41
  year: 2006
  article-title: Noise in transcription negative feedback loops: simulation and experimental analysis
  publication-title: Mol Syst Biol
– volume: 320
  start-page: 65
  year: 2008
  end-page: 68
  article-title: Stochasticity and cell fate
  publication-title: Science
– volume: 427
  start-page: 737
  year: 2004
  end-page: 740
  article-title: Multistability in the lactose utilization network of
  publication-title: Nature
– volume: 78
  start-page: 19
  year: 2002
  end-page: 30
  article-title: Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress
  publication-title: Int J Food Microbiol
– volume: 5
  start-page: 48
  year: 2007
  end-page: 56
  article-title: Persister cells, dormancy and infectious disease
  publication-title: Nat Rev Microbiol
– volume: 88
  start-page: 1086
  year: 2007
  end-page: 1090
  article-title: Bet hedging in a guild of desert annuals
  publication-title: Ecology
– volume: 307
  start-page: 1965
  year: 2005
  end-page: 1969
  article-title: Noise propagation in gene networks
  publication-title: Science
– volume: 167
  start-page: 523
  year: 2004
  end-page: 530
  article-title: Stochastic gene expression in fluctuating environments
  publication-title: Genetics
– volume: 4
  start-page: 431
  year: 2005
  end-page: 451
  article-title: Germ banking: bet‐hedging and variable release from egg and seed dormancy
  publication-title: Q Rev Biol
– volume: 44
  start-page: 535
  year: 1999
  end-page: 560
  article-title: Risk‐spreading and bet‐hedging in insect population biology
  publication-title: Annu Rev Entomol
– volume: 454
  start-page: 987
  year: 2008
  end-page: 990
  article-title: Self‐destructive cooperation mediated by phenotypic noise
  publication-title: Nature
– volume: 4
  start-page: 170
  year: 2008
  article-title: Selection to minimize noise in living systems and its implications for the evolution of gene expression
  publication-title: Mol Sys Biol
– volume: 63
  start-page: 1806
  year: 2007
  end-page: 1816
  article-title: Basal expression rate of comK sets a ‘switching‐window’ into the K‐state of
  publication-title: Mol Microbiol
– volume: 307
  start-page: 1962
  year: 2005
  end-page: 1965
  article-title: Gene regulation at the single‐cell level
  publication-title: Science
– volume: 304
  start-page: 1811
  year: 2004
  end-page: 1814
  article-title: Control of stochasticity in eukaryotic gene expression
  publication-title: Science
– volume: 305
  start-page: 1622
  year: 2004
  end-page: 1625
  article-title: Bacterial persistence as a phenotypic switch
  publication-title: Science
– volume: 99
  start-page: 12795
  year: 2002
  end-page: 12800
  article-title: Intrinsic and extrinsic contributions to stochasticity in gene expression
  publication-title: Proc Natl Acad Sci USA
– volume: 439
  start-page: 861
  year: 2006
  end-page: 864
  article-title: Origins of extrinsic variability in eukaryotic gene expression
  publication-title: Nature
– volume: 111
  start-page: 1010
  year: 1977
  end-page: 1014
  article-title: Natural selection for variances in offspring number: a new evolutionary principle
  publication-title: Am Nat
– volume: 31
  start-page: 69
  year: 2002
  end-page: 73
  article-title: Regulation of noise in the expression of a single gene
  publication-title: Nature Genet
– volume: 422
  start-page: 633
  year: 2003
  end-page: 637
  article-title: Noise in eukaryotic gene expression
  publication-title: Nature
– volume: 4
  start-page: 577
  year: 2006
  end-page: 587
  article-title: Microbial cell individuality and the underlying sources of heterogeneity
  publication-title: Nat Rev Microbiol
– volume: 309
  start-page: 2075
  year: 2005
  end-page: 2078
  article-title: Phenotypic diversity, population growth, and information in fluctuating environments
  publication-title: Science
– volume: 315
  start-page: 1716
  year: 2007
  end-page: 1719
  article-title: Tunability and noise dependence in differentiation dynamics
  publication-title: Science
– volume: 56
  start-page: 604
  year: 2005
  end-page: 614
  article-title: Stripping : ComK auto‐stimulation is responsible for the bistable response in competence development
  publication-title: Mol Microbiol
– volume: 56
  start-page: 615
  year: 2005
  end-page: 624
  article-title: Bistability in the K‐state (competence) system requires a positive feedback loop
  publication-title: Mol Microbiol
– volume: 62
  start-page: 193
  year: 2008
  end-page: 210
  article-title: Bistability, epigenetics, and bet‐hedging in bacteria
  publication-title: Annu Rev Microbiol
– volume: 6
  start-page: 451
  year: 2005
  end-page: 464
  article-title: Stochasticity in gene expression: from theories to phenotypes
  publication-title: Nature
– volume: 4
  start-page: 41
  year: 1989
  end-page: 44
  article-title: Hedging one's evolutionary bets, revisited
  publication-title: Trends Ecol Evol
– volume: 405
  start-page: 590
  year: 2000
  end-page: 593
  article-title: Engineering stability in gene networks by autoregulation
  publication-title: Nature
– volume: 317
  start-page: 526
  year: 2007
  end-page: 529
  article-title: Noise in gene expression determines cell fate in
  publication-title: Science
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1365-2958.2005.04488.x
– ident: e_1_2_6_24_1
  doi: 10.1099/mic.0.26003-0
– ident: e_1_2_6_56_1
  doi: 10.1890/06-1495
– ident: e_1_2_6_2_1
  doi: 10.1038/nature03524
– ident: e_1_2_6_22_1
  doi: 10.1371/journal.pbio.0020137
– ident: e_1_2_6_45_1
  doi: 10.1126/science.1098641
– ident: e_1_2_6_33_1
  doi: 10.1038/nrmicro1557
– ident: e_1_2_6_29_1
  doi: 10.1126/science.1114383
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1365-2958.2007.05628.x
– ident: e_1_2_6_3_1
  doi: 10.1038/ng.110
– ident: e_1_2_6_28_1
  doi: 10.1016/j.tpb.2007.08.006
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1365-2958.2006.05504.x
– volume: 149
  start-page: 1633
  year: 1998
  ident: e_1_2_6_6_1
  article-title: Stochastic kinetic analysis of developmental pathway bifurcation in phage 1‐infected Escherichia coli cells
  publication-title: Genetics
  doi: 10.1093/genetics/149.4.1633
– ident: e_1_2_6_49_1
  doi: 10.1038/nrmicro1381
– ident: e_1_2_6_37_1
  doi: 10.1126/science.1140818
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.162041399
– ident: e_1_2_6_51_1
  doi: 10.1126/science.1137455
– ident: e_1_2_6_23_1
  doi: 10.1086/283230
– volume: 10
  start-page: 493
  year: 2008
  ident: e_1_2_6_17_1
  article-title: Phenotypic diversity as an adaptation to environmental uncertainty
  publication-title: Ev Ecol Res
– ident: e_1_2_6_38_1
  doi: 10.1146/annurev.biophys.36.040306.132705
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1099390
– ident: e_1_2_6_12_1
  doi: 10.1038/35014651
– ident: e_1_2_6_7_1
  doi: 10.1038/nrmicro1460
– ident: e_1_2_6_25_1
  doi: 10.1146/annurev.ento.44.1.535
– ident: e_1_2_6_44_1
  doi: 10.1016/0169-5347(89)90138-9
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2958.2005.04592.x
– ident: e_1_2_6_46_1
  doi: 10.1126/science.1105891
– ident: e_1_2_6_30_1
  doi: 10.1534/genetics.104.035352
– ident: e_1_2_6_42_1
  doi: 10.1038/nature02298
– ident: e_1_2_6_15_1
  doi: 10.1016/j.molcel.2006.11.003
– ident: e_1_2_6_10_1
  doi: 10.1038/ng2071
– ident: e_1_2_6_14_1
  doi: 10.1038/nature01546
– ident: e_1_2_6_18_1
  doi: 10.1038/msb4100081
– ident: e_1_2_6_55_1
  doi: 10.1146/annurev.micro.62.081307.163002
– ident: e_1_2_6_9_1
  doi: 10.1038/ng1807
– ident: e_1_2_6_43_1
  doi: 10.1126/science.1109090
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1070919
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0000049
– volume: 70
  start-page: 1140
  year: 2008
  ident: e_1_2_6_39_1
  article-title: Does dormancy increase fitness in bacterial populations in time‐varying environments?
  publication-title: B Math Biol
  doi: 10.1007/s11538-008-9294-5
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1365-2958.2006.05249.x
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1147888
– ident: e_1_2_6_40_1
  doi: 10.1038/nature04785
– ident: e_1_2_6_5_1
  doi: 10.1371/journal.pgen.1000049
– ident: e_1_2_6_52_1
  doi: 10.1371/journal.pone.0001771
– volume: 6
  start-page: 451
  year: 2005
  ident: e_1_2_6_26_1
  article-title: Stochasticity in gene expression: from theories to phenotypes
  publication-title: Nature
– ident: e_1_2_6_41_1
  doi: 10.1038/ng869
– volume: 4
  start-page: 431
  year: 2005
  ident: e_1_2_6_21_1
  article-title: Germ banking: bet‐hedging and variable release from egg and seed dormancy
  publication-title: Q Rev Biol
  doi: 10.1086/498282
– ident: e_1_2_6_54_1
  doi: 10.1534/genetics.167.1.523
– ident: e_1_2_6_31_1
  doi: 10.1038/msb.2008.11
– ident: e_1_2_6_34_1
  doi: 10.1038/nrg2398
– ident: e_1_2_6_47_1
  doi: 10.1126/science.1106914
– ident: e_1_2_6_57_1
  doi: 10.1038/nature04281
– ident: e_1_2_6_4_1
  doi: 10.1038/nature07067
– ident: e_1_2_6_16_1
  doi: 10.1016/S0168-1605(02)00239-8
– ident: e_1_2_6_50_1
  doi: 10.1038/msb4100147
– ident: e_1_2_6_11_1
  doi: 10.1093/emboj/20.10.2528
– volume: 40
  start-page: 464
  year: 2008
  ident: e_1_2_6_58_1
  article-title: Transient‐mediated fate determination in a transcriptional circuit of HIV
  publication-title: Nat Genet
  doi: 10.1038/ng.116
SSID ssj0013063
Score 2.382625
SecondaryResourceType review_article
Snippet Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound impact of...
Summary Phenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound...
SummaryPhenotypic diversification plays a central role in evolution and provides species with a capacity to survive environmental adversity. The profound...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1333
SubjectTerms Adaptation, Physiological - genetics
Biological and medical sciences
Ecosystem
Environment
Evolution, Molecular
Fundamental and applied biological sciences. Psychology
Gene Expression
Genetics, Population
Microbiology
Mutation
Phenotype
Stochastic Processes
Stress, Physiological
Title chance at survival: gene expression noise and phenotypic diversification strategies
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2009.06605.x
https://www.ncbi.nlm.nih.gov/pubmed/19220745
https://www.proquest.com/docview/20554399
https://www.proquest.com/docview/46208614
https://www.proquest.com/docview/67070633
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKUqVeKP2AXdpSH3rdVWInTtwbokW00vZQWGlvlj8RAiWIZCXor2cmzi5NBRJCvUWK7cT2G-dNPH5DyBfgGMFokUyMLDk4KHAlSwsTor2RQYc88XhQePZLHM-zn4t80cc_4VmYqA-x_uGGltGt12jg2jRDI-8itGRe9rKTAqj5FPkk3EAZ_W-_2f2GQp9UTeYoJ8sWw6CeBxsafKk2gq4xblI3MHQh5rx4iJQOOW73kTp6TS5W3YuxKRfTZWum9s8_yo__p__bZKvnsvQggu8NeeGrt-RlzG55-47MDygeK7ae6pY2S1iTANVfKSDWU3_TB-BWtKrPGyhSOYrhZnV7e3VuqYvhIqH_o0ibdiVp8Z7Mj76fHh5P-iwOEwu-Zz4xTvvgEpvYIvhU-zTwIAoufR6YKZ1mWeAwK-C2AZiMzgRKrNlEBl5w44DO7ZDNqq78iFDn0lTIEjUKHTSdmcAATd7AmpKVTpZjUqxmTNle4hwzbVyqv1wdGDSFg4YJOKXqBk3djEm6rnkVZT6eUGcEoFD6DFZjNT9hCLJUoP4OH5P9AVLWbQJRSIuCw5t-XkFHgT3jJo2ufL1s4AlA8IA1Pl4iEwz80DR7vIQoYCEXHF5jN6Lyvk-SMSCN-ZiIDltP7qyazX7g1d5zK34gr-JGHIbvfSSb7fXSfwI-15r9zlLvAByEOXQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaqqq9lL7Z0oIPve4qsRMn7g1VoKVlObSstDfLzwoVJajJSsCvZybOLg0CCVW95WA78fibyTf2eIaQz8AxgtEiGRtZcnBQ4EmWFhZEeyODDnni8aLw7FhM59m3Rb7oywHhXZiYH2K94Yaa0dlrVHDckB5qeReiJfOyzzspgJtPgFA-6Y7rkCH9YDdHCn1ZNZljQlm2GIb13DnS4F_1OOgaIyd1A8ILserFXbR0yHK739TBJjlbTTBGp_yeLFszsVe3cj_-Jwm8JC96Okv3Iv5ekUe-ek2exgKXl2_IfI_izWLrqW5pswSzBMD-QgG0nvqLPga3olV92kCTylGMOKvby_NTS12MGAn9piJt2lVWi7dkfrB_8nU67gs5jC24n_nYOO2DS2xii-BT7dPAgyi49HlgpnSaZYHDsoDnBngyOhOYZc0mMvCCGweM7h3ZqOrKbxHqXJoKWWKaQgdDZyYwAJQ3YFay0slyRIrVkinbZznHYhtn6i9vB4SmUGhYg1OqTmjqYkTSdc_zmOnjAX22ABVK_wKDrOY_GaIsFZiCh4_IzgAq6zGBK6RFweFLd1fYUaDSeE6jK18vG3gDcDwgjve3yAQDVzTN7m8hCrDlgsNnvI-wvJmTZAx4Yz4iogPXgyerZrNDfPrwrx13ybPpyexIHR0ef98mz-O5HEbzfSQb7Z-l_wT0rjU7ndpeA7whPZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCMSF8u5SaH3guqvETpyYW0W7aoGtELDS3iw_UVWUrEhWavn1zMTZLUGtVCFuOdhOPP5m_E08niHkLXCMYLRIxkaWHBwUeJKlhQXR3sigQ554vCg8OxXH8-zDIl_08U94Fybmh9j8cEPN6Ow1KvjShaGSdxFaMi_7tJMCqPkE-OS9TMCuiQTpC7s6Ueirqskc88myxTCq59qRBlvV3aBrDJzUDcguxKIX17HSIcntdqnpNjlfzy8Gp5xPVq2Z2F9_pX78PwJ4TB71ZJYeRPQ9IXd89ZTcj-UtL5-R-QHFe8XWU93SZgVGCWD9jgJkPfUXfQRuRav6rIEmlaMYb1a3l8szS12MFwn9L0XatOucFs_JfHr07f3xuC_jMLbgfOZj47QPLrGJLYJPtU8DD6Lg0ueBmdJplgUOqwJ-G6DJ6ExgjjWbyMALbhzwuRdkq6orv0Ooc2kqZIlJCh0MnZnAAE7egFHJSifLESnWK6Zsn-McS238UH_4OiA0hULDCpxSdUJTFyOSbnouY56PW_TZAVAo_R3MsZp_ZQiyVGACHj4iewOkbMYEppAWBYcv3V9DR4FC4ymNrny9auANwPCANt7cIhMMHNE0u7mFKMCSCw6f8TKi8mpOkjFgjfmIiA5bt56sms1O8OnVv3bcJw8-H07Vp5PTj7vkYTyUw1C-12Sr_bnyb4DbtWavU9rfut48QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+chance+at+survival%3A+gene+expression+noise+and+phenotypic+diversification+strategies&rft.jtitle=Molecular+microbiology&rft.au=Fraser%2C+Dawn&rft.au=K%C3%A6rn%2C+Mads&rft.date=2009-03-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=71&rft.issue=6&rft.spage=1333&rft.epage=1340&rft_id=info:doi/10.1111%2Fj.1365-2958.2009.06605.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2958_2009_06605_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon