An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy

It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled re...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 300; pp. 1 - 12
Main Authors Huang, Yu, Yu, Li, Ren, Jie, Gu, Boram, Longstaff, Colin, Hughes, Alun D., Thom, Simon A., Xu, Xiao Yun, Chen, Rongjun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 28.04.2019
Subjects
Online AccessGet full text
ISSN0168-3659
1873-4995
1873-4995
DOI10.1016/j.jconrel.2019.02.033

Cover

Abstract It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine–glycine–aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects. [Display omitted] •Activated-platelet-sensitive nanoliposomes with encapsulation of tPA was developed.•The nanoliposomes had a highly specific binding to activated platelets.•Efficient tPA release was induced by activated platelets through membrane fusion.•The nanoliposomes enabled a selective and efficient lysis of fibrin and blood clots.
AbstractList It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine–glycine–aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects.
It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine-glycine-aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects.It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine-glycine-aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects.
It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine–glycine–aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects. [Display omitted] •Activated-platelet-sensitive nanoliposomes with encapsulation of tPA was developed.•The nanoliposomes had a highly specific binding to activated platelets.•Efficient tPA release was induced by activated platelets through membrane fusion.•The nanoliposomes enabled a selective and efficient lysis of fibrin and blood clots.
Author Ren, Jie
Chen, Rongjun
Huang, Yu
Gu, Boram
Yu, Li
Longstaff, Colin
Xu, Xiao Yun
Hughes, Alun D.
Thom, Simon A.
Author_xml – sequence: 1
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 2
  givenname: Li
  surname: Yu
  fullname: Yu, Li
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 3
  givenname: Jie
  surname: Ren
  fullname: Ren, Jie
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 4
  givenname: Boram
  surname: Gu
  fullname: Gu, Boram
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 5
  givenname: Colin
  surname: Longstaff
  fullname: Longstaff, Colin
  organization: Biotherapeutics Section, National Institute for Biological Standards and Control, South Mimms, Herts, United Kingdom
– sequence: 6
  givenname: Alun D.
  surname: Hughes
  fullname: Hughes, Alun D.
  organization: Institute of Cardiovascular Science, University College London, London, United Kingdom
– sequence: 7
  givenname: Simon A.
  surname: Thom
  fullname: Thom, Simon A.
  organization: National Heart & Lung Institute, Imperial College London, Hammersmith Campus, London, United Kingdom
– sequence: 8
  givenname: Xiao Yun
  orcidid: 0000-0002-8267-621X
  surname: Xu
  fullname: Xu, Xiao Yun
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
– sequence: 9
  givenname: Rongjun
  orcidid: 0000-0002-8133-5472
  surname: Chen
  fullname: Chen, Rongjun
  email: rongjun.chen@imperial.ac.uk
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30807804$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCI4BmyWYG_86MxQJVFS1IldjA2vLY18WRYwfbqZQ34LFxSOiCTSRbV7bOdxb3u0IXMUVA6C3BA8Fk_LAe1ibFDGGgmMgB0wEz9gKtyDyxnkspLtCqcXPPRiEv0VUpa4yxYHx6hS4ZnvE0Y75Cv29ip031T7qC7behjQC1LxCLb7_QRR2T0Tl7yB1EvQQoXdX5ERrfWQiNyfsuua76UnbQNUXZ-Jge4VmccufaBefA_HXWnzltlhT21Zv2gKy3-9fopdOhwJvTvEY_7j5_v_3SP3y7_3p789AbwefaO3BcOum0sVZirZlmi1yMwdTyUS_OtjNqx2c62UngkS4j5xOXMybCzePIrtH7o3eb068dlKo2vhgIQUdIu6IoZZOgkxT0PEqakAhJDui7E7pbNmDVNvuNznv1b9ENEEfA5FRKBveMEKwOhaq1OhWqDoUqTFUrtOU-_pczvurqU6xZ-3A2_emYhrbRp1ahKsZDNGB9bl0om_wZwx9JFcQa
CitedBy_id crossref_primary_10_1515_ntrev_2023_0158
crossref_primary_10_3389_fphys_2021_763085
crossref_primary_10_1016_j_carbpol_2022_120225
crossref_primary_10_1021_acs_molpharmaceut_2c00626
crossref_primary_10_1080_10717544_2024_2425156
crossref_primary_10_3389_fbioe_2022_945531
crossref_primary_10_1007_s11095_021_03161_2
crossref_primary_10_1016_j_pep_2020_105680
crossref_primary_10_1002_adhm_202202578
crossref_primary_10_1016_j_ajps_2025_101035
crossref_primary_10_1007_s11239_021_02614_0
crossref_primary_10_1016_j_cej_2025_160862
crossref_primary_10_1039_D0BM00781A
crossref_primary_10_1002_smll_202200291
crossref_primary_10_3390_pharmaceutics14020361
crossref_primary_10_1016_j_cclet_2021_05_070
crossref_primary_10_1186_s12951_024_02716_w
crossref_primary_10_1016_j_jconrel_2023_05_009
crossref_primary_10_1016_j_ijbiomac_2024_131742
crossref_primary_10_1016_j_ijbiomac_2024_133286
crossref_primary_10_1016_j_bbagen_2024_130704
crossref_primary_10_1016_j_biomaterials_2020_120297
crossref_primary_10_1021_acsami_1c19288
crossref_primary_10_1016_j_actbio_2021_07_072
crossref_primary_10_1016_j_cej_2024_157406
crossref_primary_10_1111_jth_14637
crossref_primary_10_3389_fbioe_2019_00369
crossref_primary_10_1016_j_jconrel_2019_12_029
crossref_primary_10_3389_fncel_2023_1266660
crossref_primary_10_2147_IJN_S382964
crossref_primary_10_1016_j_jconrel_2022_03_044
crossref_primary_10_1016_j_jddst_2024_105612
crossref_primary_10_1021_acsanm_4c05408
crossref_primary_10_3390_pharmaceutics15071935
crossref_primary_10_1016_j_carbpol_2024_122505
crossref_primary_10_1016_j_nano_2022_102520
crossref_primary_10_1039_D0TB00262C
crossref_primary_10_1126_sciadv_abf9033
crossref_primary_10_1002_smll_202106252
crossref_primary_10_1016_j_bcp_2024_116523
crossref_primary_10_1016_j_jconrel_2022_02_036
crossref_primary_10_1002_adhm_202200416
crossref_primary_10_1016_j_biomaterials_2020_120200
crossref_primary_10_1002_adtp_202100047
crossref_primary_10_2147_IJN_S328723
crossref_primary_10_3389_fphar_2022_983816
crossref_primary_10_3389_fncel_2022_885190
crossref_primary_10_1016_j_apsb_2021_05_012
crossref_primary_10_1002_adhm_202000726
crossref_primary_10_1002_adhm_202201265
crossref_primary_10_1002_adfm_202209019
crossref_primary_10_1016_j_actbio_2022_02_008
crossref_primary_10_34133_research_0614
crossref_primary_10_1016_j_jconrel_2020_08_030
crossref_primary_10_1038_s41565_022_01270_6
crossref_primary_10_1016_j_actbio_2021_12_009
crossref_primary_10_1016_j_ejphar_2021_174638
crossref_primary_10_1016_j_nantod_2020_100986
crossref_primary_10_1021_acsnano_1c06022
crossref_primary_10_5937_scriptamed55_47361
crossref_primary_10_1016_j_medidd_2021_100119
crossref_primary_10_1021_acsami_1c19820
crossref_primary_10_1021_acsami_4c12117
crossref_primary_10_1016_j_carbpol_2023_121703
crossref_primary_10_1016_j_matt_2023_09_013
crossref_primary_10_34133_research_0388
crossref_primary_10_1002_adfm_202303717
crossref_primary_10_1016_j_bioactmat_2024_09_016
crossref_primary_10_1016_j_jconrel_2021_07_024
crossref_primary_10_1021_acsbiomaterials_9b00946
Cites_doi 10.1111/j.1365-2141.2005.05444.x
10.1016/j.thromres.2006.04.013
10.1002/jbm.a.32549
10.1021/am406008k
10.1002/adma.201502243
10.1111/j.1538-7836.2005.01599.x
10.1016/S0169-409X(99)00037-X
10.1126/science.1217815
10.1016/j.biomaterials.2007.12.015
10.1016/j.chembiol.2009.08.012
10.1007/BF00196594
10.1016/S0168-3659(01)00360-1
10.1039/C6MH00307A
10.1126/scitranslmed.aaa1065
10.1016/j.addr.2012.09.008
10.1016/j.ijpharm.2011.12.032
10.1021/acsami.7b00498
10.1056/NEJM199201303260506
10.1016/j.jconrel.2016.02.019
10.1002/smll.201700954
10.1016/j.biomaterials.2007.09.027
10.1111/j.1469-8749.2010.03798.x
10.1021/bi00517a023
10.1054/blre.2001.0161
10.1016/j.actbio.2011.01.026
10.1021/acs.chemrev.6b00369
10.1016/j.bbagen.2015.12.022
10.1016/j.addr.2008.03.004
10.1073/pnas.81.6.1715
10.2478/v10007-009-0020-0
10.1182/blood.V71.6.1641.1641
10.1016/j.biomaterials.2009.07.021
10.2217/17435889.2.4.533
10.1016/j.biomaterials.2017.11.047
10.1016/j.vph.2005.09.003
10.1021/nn5029955
10.1002/(SICI)1520-6017(200005)89:5<664::AID-JPS12>3.0.CO;2-9
10.3109/02656736.2014.991428
10.1160/TH07-11-0685
10.1016/j.thromres.2008.05.003
10.1038/nrcardio.2011.91
10.1021/nn402171v
10.1126/science.1439803
10.1002/adhm.201601200
10.1016/j.nano.2012.05.015
10.1111/j.1538-7836.2011.04339.x
10.1080/17425247.2018.1384464
10.1111/j.1538-7836.2004.00884.x
10.1016/S0002-9149(00)01502-2
10.1021/acsami.6b05041
10.1021/bi00401a072
10.1021/bi00367a023
10.7150/thno.11679
10.1161/01.CIR.96.3.761
10.1007/s11095-013-1011-x
10.1371/journal.pone.0122018
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2019.02.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 12
ExternalDocumentID 30807804
10_1016_j_jconrel_2019_02_033
S0168365919301166
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health
– fundername: Medical Research Council
  grantid: MC_UU_12019/1
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SPT
SSH
WUQ
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c548t-fef49f9facdd90aa3a3b9bcc02d46abfdbfd6af4827d75062b6447498015f8663
IEDL.DBID AIKHN
ISSN 0168-3659
1873-4995
IngestDate Fri Sep 05 05:44:25 EDT 2025
Thu Sep 04 21:24:57 EDT 2025
Mon Jul 21 05:36:27 EDT 2025
Tue Jul 01 04:09:52 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri Feb 23 02:33:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Controlled release mechanism
Activated platelet
Tissue plasminogen activator
Targeted delivery
Liposome
Thrombolysis
GPIIb-IIIa integrin
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-fef49f9facdd90aa3a3b9bcc02d46abfdbfd6af4827d75062b6447498015f8663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8267-621X
0000-0002-8133-5472
OpenAccessLink http://hdl.handle.net/10044/1/68221
PMID 30807804
PQID 2186615912
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2237527952
proquest_miscellaneous_2186615912
pubmed_primary_30807804
crossref_primary_10_1016_j_jconrel_2019_02_033
crossref_citationtrail_10_1016_j_jconrel_2019_02_033
elsevier_sciencedirect_doi_10_1016_j_jconrel_2019_02_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-28
PublicationDateYYYYMMDD 2019-04-28
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-28
  day: 28
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Guo, Zhang, Wu, Ran, Wang (bb0165) 2014; 6
Damaschun, Damaschun, Gast, Gerlach, Misselwitz, Welfle, Zirwer (bb0020) 1992; 20
Zhang, Yu, Bomba, Zhu, Gu (bb0110) 2016; 116
Leach, Patterson, O'Rear (bb0045) 2004; 2
Wu, Chen, Li, Brash (bb0085) 2011; 7
Myerson, He, Lanza, Tollefsen, Wickline (bb0070) 2011; 9
Langer, Gawaz (bb0175) 2008; 99
Koudelka, Mikulik, Mašek, Raška, Knotigová, Miller, Turánek (bb0255) 2016; 227
Ho, Ting-Beall, Rouse, Huang (bb0265) 1988; 27
Aisina, Mukhametova, Varfolomevev (bb0290) 2016; 1860
Chen, Wang, Kopytynski, Bachelet, Chen (bb0210) 2017; 9
Kim, Ryu, Schellingerhout, Sun, Lee, Jeon, Kim, Kwon, Nahrendorf, Ahn, Kim, Kim (bb0135) 2015; 5
Pannell, Li, Gurewich (bb0285) 2015; 10
Tasci, Disharoon, Schoeman, Rana, Herson, Marr, Neeves (bb0115) 2017; 13
Duzgunes, Nir (bb0220) 1999; 40
Srinivasasn, Marchant, Gupta (bb0195) 2010; 93
Lippi, Mattiuzzi, Favaloro (bb0145) 2013; 39
Jin, Wang, Zhu, Wang, Zhao, Zhao, Liu, Wu, Gao, Peng (bb0090) 2013; 7
White (bb0225) 1992; 258
Marder (bb0015) 2001; 15
Xiang, Kang, Gao, Shang, Zhang, Zhang (bb0185) 2008; 123
Lippi, Franchini, Targher (bb0005) 2011; 8
Vaidya, Agrawal, Vyas (bb0095) 2012; 424
Baruah, Dash, Chaudhari, Kadam (bb0025) 2006; 44
Saxena, Johnson, Negussie, Sharma, Dreher, Wood (bb0055) 2015; 31
Park, Liang, Yang, Yang (bb0280) 2001; 75
Huang, Zhou, Srinivasan, Penn, Kottke-Marchant, Marchant, Gupta (bb0080) 2008; 29
Matsuo (bb0040) 2005; 3
Gunawan, Kempe, Bonnard, Cui, Alt, Law, Wang, Westein, Such, Peter, Hagemeyer, Caruso (bb0125) 2015; 27
Cesarman-Maus, Hajjar (bb0030) 2005; 129
Elias, Poloukhtine, Popik, Tsourkas (bb0260) 2013; 9
Fuster, Badimon, Badimon, Chesebro (bb0010) 1992; 326
Mayer, Bekeredjian (bb0050) 2008; 60
Li, Juenet, Aid-Launais, Maire, Ollivier, Letourneur, Chauvierre (bb0160) 2017; 6
Kim, Kim, Park, Byun, Kim (bb0065) 2009; 30
Gurbel, O'Connor, Dalesandro, Serebruany (bb0155) 2001; 87
Atyabi, Farkhondehfai, Esmaeili, Dinarvand (bb0245) 2009; 59
Ho, Rouse, Huang (bb0270) 1986; 25
Connor, Yatvin, Huang (bb0215) 1984; 81
Chen, Chen (bb0240) 2016; 8
Chung, Wang, Tsai (bb0075) 2008; 29
Berger, Pizzo (bb0060) 1988; 71
Du, Li, Luan, Liu, Yang, Yu, Li, Brash, Chen (bb0120) 2016; 3
Barre (bb0170) 2007; 119
Gref, Domb, Quellec, Blunk, Müller, Verbavatz, Langer (bb0250) 2012; 64
Liang, Song, Li, Yang (bb0275) 2000; 89
Shah, Goyal (bb0180) 2004; 36
Chandler, Alessi, Aillaud, Henderson, Vague, Juhan-Vague (bb0035) 1997; 96
Absar, Nahar, Kwon, Ahsan (bb0205) 2013; 30
Juenet, Aid-Launais, Li, Berger, Aerts, Ollivier, Nicoletti, Letourneur, Chauvierre (bb0150) 2018; 156
Korin, Kanapathipillai, Matthews, Crescente, Brill, Mammoto, Ghosh, Jurek, Bencherif, Bhatta (bb0100) 2012; 337
Marsh, Senpan, Hu, Scott, Gaffney, Wickline, Lanza (bb0130) 2007; 2
Cheng, Huang, Huang, Yang, Mao, Jin, ZhuGe, Zhao (bb0105) 2014; 8
Kleinman, Hillis, Jordan (bb0235) 2011; 53
Sánchez-Cortés, Mrksich (bb0190) 2009; 16
Struck, Hoekstra, Pagano (bb0230) 1981; 20
Fredman, Kamaly, Spolitu, Milton, Ghorpade, Chiasson, Kuriakose, Perretti, Farokzhad, Tabas (bb0140) 2015; 7
Liu, Feng, Jin, Li (bb0200) 2018; 15
Zhang (10.1016/j.jconrel.2019.02.033_bb0110) 2016; 116
Berger (10.1016/j.jconrel.2019.02.033_bb0060) 1988; 71
Fuster (10.1016/j.jconrel.2019.02.033_bb0010) 1992; 326
Tasci (10.1016/j.jconrel.2019.02.033_bb0115) 2017; 13
Marsh (10.1016/j.jconrel.2019.02.033_bb0130) 2007; 2
Kleinman (10.1016/j.jconrel.2019.02.033_bb0235) 2011; 53
Mayer (10.1016/j.jconrel.2019.02.033_bb0050) 2008; 60
Korin (10.1016/j.jconrel.2019.02.033_bb0100) 2012; 337
Fredman (10.1016/j.jconrel.2019.02.033_bb0140) 2015; 7
Barre (10.1016/j.jconrel.2019.02.033_bb0170) 2007; 119
Park (10.1016/j.jconrel.2019.02.033_bb0280) 2001; 75
Absar (10.1016/j.jconrel.2019.02.033_bb0205) 2013; 30
Damaschun (10.1016/j.jconrel.2019.02.033_bb0020) 1992; 20
Gunawan (10.1016/j.jconrel.2019.02.033_bb0125) 2015; 27
Chen (10.1016/j.jconrel.2019.02.033_bb0210) 2017; 9
Kim (10.1016/j.jconrel.2019.02.033_bb0065) 2009; 30
Matsuo (10.1016/j.jconrel.2019.02.033_bb0040) 2005; 3
Cheng (10.1016/j.jconrel.2019.02.033_bb0105) 2014; 8
Chen (10.1016/j.jconrel.2019.02.033_bb0240) 2016; 8
Duzgunes (10.1016/j.jconrel.2019.02.033_bb0220) 1999; 40
Marder (10.1016/j.jconrel.2019.02.033_bb0015) 2001; 15
Pannell (10.1016/j.jconrel.2019.02.033_bb0285) 2015; 10
Aisina (10.1016/j.jconrel.2019.02.033_bb0290) 2016; 1860
White (10.1016/j.jconrel.2019.02.033_bb0225) 1992; 258
Saxena (10.1016/j.jconrel.2019.02.033_bb0055) 2015; 31
Liang (10.1016/j.jconrel.2019.02.033_bb0275) 2000; 89
Du (10.1016/j.jconrel.2019.02.033_bb0120) 2016; 3
Ho (10.1016/j.jconrel.2019.02.033_bb0270) 1986; 25
Xiang (10.1016/j.jconrel.2019.02.033_bb0185) 2008; 123
Liu (10.1016/j.jconrel.2019.02.033_bb0200) 2018; 15
Leach (10.1016/j.jconrel.2019.02.033_bb0045) 2004; 2
Sánchez-Cortés (10.1016/j.jconrel.2019.02.033_bb0190) 2009; 16
Ho (10.1016/j.jconrel.2019.02.033_bb0265) 1988; 27
Chung (10.1016/j.jconrel.2019.02.033_bb0075) 2008; 29
Gurbel (10.1016/j.jconrel.2019.02.033_bb0155) 2001; 87
Zhou (10.1016/j.jconrel.2019.02.033_bb0165) 2014; 6
Shah (10.1016/j.jconrel.2019.02.033_bb0180) 2004; 36
Cesarman-Maus (10.1016/j.jconrel.2019.02.033_bb0030) 2005; 129
Langer (10.1016/j.jconrel.2019.02.033_bb0175) 2008; 99
Li (10.1016/j.jconrel.2019.02.033_bb0160) 2017; 6
Juenet (10.1016/j.jconrel.2019.02.033_bb0150) 2018; 156
Lippi (10.1016/j.jconrel.2019.02.033_bb0005) 2011; 8
Atyabi (10.1016/j.jconrel.2019.02.033_bb0245) 2009; 59
Jin (10.1016/j.jconrel.2019.02.033_bb0090) 2013; 7
Koudelka (10.1016/j.jconrel.2019.02.033_bb0255) 2016; 227
Gref (10.1016/j.jconrel.2019.02.033_bb0250) 2012; 64
Myerson (10.1016/j.jconrel.2019.02.033_bb0070) 2011; 9
Lippi (10.1016/j.jconrel.2019.02.033_bb0145) 2013; 39
Connor (10.1016/j.jconrel.2019.02.033_bb0215) 1984; 81
Struck (10.1016/j.jconrel.2019.02.033_bb0230) 1981; 20
Huang (10.1016/j.jconrel.2019.02.033_bb0080) 2008; 29
Kim (10.1016/j.jconrel.2019.02.033_bb0135) 2015; 5
Vaidya (10.1016/j.jconrel.2019.02.033_bb0095) 2012; 424
Wu (10.1016/j.jconrel.2019.02.033_bb0085) 2011; 7
Elias (10.1016/j.jconrel.2019.02.033_bb0260) 2013; 9
Srinivasasn (10.1016/j.jconrel.2019.02.033_bb0195) 2010; 93
Baruah (10.1016/j.jconrel.2019.02.033_bb0025) 2006; 44
Chandler (10.1016/j.jconrel.2019.02.033_bb0035) 1997; 96
References_xml – volume: 2
  start-page: 1548
  year: 2004
  end-page: 1555
  ident: bb0045
  article-title: Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators
  publication-title: J. Thromb. Haemost.
– volume: 29
  start-page: 228
  year: 2008
  end-page: 237
  ident: bb0075
  article-title: Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles
  publication-title: Biomaterials
– volume: 15
  start-page: 143
  year: 2001
  end-page: 157
  ident: bb0015
  article-title: Thrombolytic therapy
  publication-title: Blood Rev.
– volume: 123
  start-page: 35
  year: 2008
  end-page: 49
  ident: bb0185
  article-title: Strategies for antiplatelet targets and agents
  publication-title: Thromb. Res.
– volume: 9
  start-page: 1292
  year: 2011
  end-page: 1300
  ident: bb0070
  article-title: Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis
  publication-title: J. Thromb. Haemost.
– volume: 30
  start-page: 5751
  year: 2009
  end-page: 5756
  ident: bb0065
  article-title: The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator
  publication-title: Biomaterials
– volume: 87
  start-page: 774
  year: 2001
  end-page: 777
  ident: bb0155
  article-title: Relation of soluble and platelet P-selectin to early outcome in patients with acute myocardial infarction after thrombolytic therapy
  publication-title: Am. J. Cardiol.
– volume: 337
  start-page: 738
  year: 2012
  end-page: 742
  ident: bb0100
  article-title: Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels
  publication-title: Science
– volume: 7
  start-page: 1993
  year: 2011
  end-page: 1998
  ident: bb0085
  article-title: Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity
  publication-title: Acta Biomater.
– volume: 119
  start-page: 601
  year: 2007
  end-page: 607
  ident: bb0170
  article-title: Arginyl-glycyl-aspartyl (RGD) epitope of human apolipoprotein (a) inhibits platelet aggregation by antagonizing the IIb subunit of the fibrinogen (GPIIb/IIIa) receptor
  publication-title: Thromb. Res.
– volume: 44
  start-page: 1
  year: 2006
  end-page: 9
  ident: bb0025
  article-title: Plasminogen activators: a comparison
  publication-title: Vasc. Pharmacol.
– volume: 93
  start-page: 1004
  year: 2010
  end-page: 1015
  ident: bb0195
  article-title: In vitro and in vivo platelet targeting by cyclic rgd-modified liposomes
  publication-title: J. Biomed. Mater. Res. A
– volume: 40
  start-page: 3
  year: 1999
  end-page: 18
  ident: bb0220
  article-title: Mechanisms and kinetics of liposome cell interactions
  publication-title: Adv. Drug Deliv. Rev.
– volume: 129
  start-page: 307
  year: 2005
  end-page: 321
  ident: bb0030
  article-title: Molecular mechanisms of fibrinolysis
  publication-title: Br. J. Haematol.
– volume: 1860
  start-page: 629
  year: 2016
  end-page: 635
  ident: bb0290
  article-title: Synergistic fibrinolysis: the combined effects of tissue plasminogen activator and recombinant staphylokinase in vitro
  publication-title: Biochim. Biophys. Acta
– volume: 96
  start-page: 761
  year: 1997
  end-page: 768
  ident: bb0035
  article-title: Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels
  publication-title: Circulation
– volume: 156
  start-page: 204
  year: 2018
  end-page: 216
  ident: bb0150
  article-title: Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin
  publication-title: Biomaterials
– volume: 81
  start-page: 1715
  year: 1984
  end-page: 1718
  ident: bb0215
  article-title: pH-sensitive liposomes: acid-induced liposome fusion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 556
  year: 2016
  end-page: 562
  ident: bb0120
  article-title: An antithrombotic hydrogel with thrombinresponsive fibrinolytic activity: breaking down the clot as it forms
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 22457
  year: 2016
  end-page: 22467
  ident: bb0240
  article-title: A virus-mimicking, endosomolytic liposomal system for efficient, ph-triggered intracellular drug delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 281
  year: 2011
  end-page: 284
  ident: bb0235
  article-title: ABC/2: estimating intracerebral haemorrhage volume and total brain volume and predicting outcome in children
  publication-title: Dev. Med. Child Neurol.
– volume: 60
  start-page: 1177
  year: 2008
  end-page: 1192
  ident: bb0050
  article-title: Ultrasonic gene and drug delivery to the cardiovascular system
  publication-title: Adv. Drug Deliv. Rev.
– volume: 89
  start-page: 664
  year: 2000
  end-page: 673
  ident: bb0275
  article-title: A novel heparin/protamine-based pro-drug type delivery system for protease drugs
  publication-title: J. Pharm. Sci.
– volume: 30
  start-page: 1663
  year: 2013
  end-page: 1676
  ident: bb0205
  article-title: Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy
  publication-title: Pharm. Res.
– volume: 64
  start-page: 316
  year: 2012
  end-page: 326
  ident: bb0250
  article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  start-page: 275ra20
  year: 2015
  ident: bb0140
  article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice
  publication-title: Sci. Transl. Med.
– volume: 59
  start-page: 133
  year: 2009
  end-page: 144
  ident: bb0245
  article-title: Preparation of pegylated nano-liposomal formulation containing SN-38: in vitro characterization and in vivo biodistribution in mice
  publication-title: Acta Pharma.
– volume: 20
  start-page: 4093
  year: 1981
  end-page: 4099
  ident: bb0230
  article-title: Use of resonance energy transfer to monitor membrane fusion
  publication-title: Biochemistry
– volume: 27
  start-page: 5153
  year: 2015
  end-page: 5157
  ident: bb0125
  article-title: Multifunctional thrombin-activatable polymer capsules for specific targeting to activated platelets
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1601200
  year: 2017
  ident: bb0160
  article-title: Development of polymer microcapsules functionalized with fucoidan to target p-selectin overexpressed in cardiovascular diseases
  publication-title: Adv. Healthc. Mater.
– volume: 36
  start-page: 133
  year: 2004
  end-page: 139
  ident: bb0180
  article-title: Glycoprotein IIb/IIIa receptor and its inhibition: a platelet-directed therapeutic strategy
  publication-title: Ind. J. Pharmacol.
– volume: 13
  year: 2017
  ident: bb0115
  article-title: Enhanced fibrinolysis with magnetically powered colloidal microwheels
  publication-title: Small
– volume: 15
  start-page: 173
  year: 2018
  end-page: 184
  ident: bb0200
  article-title: Tissue plasminogen activator-based nanothrombolysis for ischemic stroke
  publication-title: Expert Opin. Drug Deliv.
– volume: 71
  start-page: 1641
  year: 1988
  end-page: 1647
  ident: bb0060
  article-title: Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species
  publication-title: Blood
– volume: 424
  start-page: 1
  year: 2012
  end-page: 11
  ident: bb0095
  article-title: Functionalized carriers for the improved delivery of plasminogen activators
  publication-title: Int. J. Pharm.
– volume: 8
  start-page: 7746
  year: 2014
  end-page: 7754
  ident: bb0105
  article-title: Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors
  publication-title: ACS Nano
– volume: 20
  start-page: 355
  year: 1992
  end-page: 361
  ident: bb0020
  article-title: Streptokinase is a flexible multi-domain protein
  publication-title: Eur. Biophys. J.
– volume: 75
  start-page: 37
  year: 2001
  end-page: 44
  ident: bb0280
  article-title: Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel
  publication-title: J. Control. Release
– volume: 16
  start-page: 990
  year: 2009
  end-page: 1000
  ident: bb0190
  article-title: The platelet integrin α
  publication-title: Chem. Biol.
– volume: 7
  start-page: 7664
  year: 2013
  end-page: 7673
  ident: bb0090
  article-title: Nanosized aspirin-arg-gly-asp-val: delivery of aspirin to thrombus by the target carrier arg-gly-asp-val tetrapeptide
  publication-title: ACS Nano
– volume: 25
  start-page: 5500
  year: 1986
  end-page: 5506
  ident: bb0270
  article-title: Target-sensitive immunoliposomes: preparation and characterization
  publication-title: Biochemistry
– volume: 29
  start-page: 1676
  year: 2008
  end-page: 1685
  ident: bb0080
  article-title: Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets
  publication-title: Biomaterials
– volume: 9
  start-page: 8021
  year: 2017
  end-page: 8029
  ident: bb0210
  article-title: Membrane-anchoring, comb-like pseudopeptides for efficient, pH-mediated membrane destabilization and intracellular delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 194
  year: 2013
  end-page: 201
  ident: bb0260
  article-title: Effect of ligand density, receptor density, and nanoparticle size on cell targeting
  publication-title: Nanomedicine
– volume: 2
  start-page: 533
  year: 2007
  end-page: 543
  ident: bb0130
  article-title: Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis
  publication-title: Nanomedicine
– volume: 8
  start-page: 502
  year: 2011
  end-page: 512
  ident: bb0005
  article-title: Arterial thrombus formation in cardiovascular disease
  publication-title: Nat. Rev. Cardiol.
– volume: 116
  start-page: 12536
  year: 2016
  end-page: 12563
  ident: bb0110
  article-title: Mechanical force-triggered drug delivery
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1098
  year: 2015
  end-page: 1114
  ident: bb0135
  article-title: Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles
  publication-title: Theranostics
– volume: 326
  start-page: 310
  year: 1992
  end-page: 318
  ident: bb0010
  article-title: The pathogenesis of coronary artery disease and the acute coronary syndromes
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 5566
  year: 2014
  end-page: 5576
  ident: bb0165
  article-title: Construction and evaluation of Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 2154
  year: 2005
  end-page: 2155
  ident: bb0040
  article-title: An ideal thrombolytic and antithrombotic agent
  publication-title: J. Thromb. Haemost.
– volume: 31
  start-page: 67
  year: 2015
  end-page: 73
  ident: bb0055
  article-title: Temperature-sensitive liposome-mediated delivery of thrombolytic agents
  publication-title: Int. J. Hyperth.
– volume: 10
  year: 2015
  ident: bb0285
  article-title: Highly effective fibrinolysis by a sequential synergistic combination of mini-dose tPA plus low-dose mutant proUK
  publication-title: PLoS ONE
– volume: 27
  start-page: 500
  year: 1988
  end-page: 506
  ident: bb0265
  article-title: Kinetic and ultrastructural studies of interactions of target-sensitive immunoliposomes with herpes simplex virus
  publication-title: Biochemistry
– volume: 39
  start-page: 048
  year: 2013
  end-page: 058
  ident: bb0145
  article-title: Novel and emerging therapies: thrombus-targeted fibrinolysis
  publication-title: Semin. Thromb. Hemost.
– volume: 227
  start-page: 45
  year: 2016
  end-page: 57
  ident: bb0255
  article-title: Liposomal nanocarriers for plasminogen activators
  publication-title: J. Control. Release
– volume: 99
  start-page: 480
  year: 2008
  end-page: 486
  ident: bb0175
  article-title: Platelet-vessel wall interactions in atherosclerotic disease
  publication-title: Thromb. Haemost.
– volume: 258
  start-page: 917
  year: 1992
  end-page: 924
  ident: bb0225
  article-title: Membrane fusion
  publication-title: Science
– volume: 129
  start-page: 307
  year: 2005
  ident: 10.1016/j.jconrel.2019.02.033_bb0030
  article-title: Molecular mechanisms of fibrinolysis
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2005.05444.x
– volume: 119
  start-page: 601
  year: 2007
  ident: 10.1016/j.jconrel.2019.02.033_bb0170
  article-title: Arginyl-glycyl-aspartyl (RGD) epitope of human apolipoprotein (a) inhibits platelet aggregation by antagonizing the IIb subunit of the fibrinogen (GPIIb/IIIa) receptor
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2006.04.013
– volume: 93
  start-page: 1004
  year: 2010
  ident: 10.1016/j.jconrel.2019.02.033_bb0195
  article-title: In vitro and in vivo platelet targeting by cyclic rgd-modified liposomes
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32549
– volume: 6
  start-page: 5566
  year: 2014
  ident: 10.1016/j.jconrel.2019.02.033_bb0165
  article-title: Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am406008k
– volume: 27
  start-page: 5153
  year: 2015
  ident: 10.1016/j.jconrel.2019.02.033_bb0125
  article-title: Multifunctional thrombin-activatable polymer capsules for specific targeting to activated platelets
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502243
– volume: 3
  start-page: 2154
  year: 2005
  ident: 10.1016/j.jconrel.2019.02.033_bb0040
  article-title: An ideal thrombolytic and antithrombotic agent
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2005.01599.x
– volume: 40
  start-page: 3
  year: 1999
  ident: 10.1016/j.jconrel.2019.02.033_bb0220
  article-title: Mechanisms and kinetics of liposome cell interactions
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(99)00037-X
– volume: 337
  start-page: 738
  year: 2012
  ident: 10.1016/j.jconrel.2019.02.033_bb0100
  article-title: Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels
  publication-title: Science
  doi: 10.1126/science.1217815
– volume: 29
  start-page: 1676
  year: 2008
  ident: 10.1016/j.jconrel.2019.02.033_bb0080
  article-title: Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.015
– volume: 16
  start-page: 990
  year: 2009
  ident: 10.1016/j.jconrel.2019.02.033_bb0190
  article-title: The platelet integrin αIIbβ3 binds to the RGD and AGD motifs in fibrinogen
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2009.08.012
– volume: 20
  start-page: 355
  year: 1992
  ident: 10.1016/j.jconrel.2019.02.033_bb0020
  article-title: Streptokinase is a flexible multi-domain protein
  publication-title: Eur. Biophys. J.
  doi: 10.1007/BF00196594
– volume: 75
  start-page: 37
  year: 2001
  ident: 10.1016/j.jconrel.2019.02.033_bb0280
  article-title: Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(01)00360-1
– volume: 3
  start-page: 556
  year: 2016
  ident: 10.1016/j.jconrel.2019.02.033_bb0120
  article-title: An antithrombotic hydrogel with thrombinresponsive fibrinolytic activity: breaking down the clot as it forms
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00307A
– volume: 7
  start-page: 275ra20
  year: 2015
  ident: 10.1016/j.jconrel.2019.02.033_bb0140
  article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa1065
– volume: 64
  start-page: 316
  year: 2012
  ident: 10.1016/j.jconrel.2019.02.033_bb0250
  article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.008
– volume: 424
  start-page: 1
  year: 2012
  ident: 10.1016/j.jconrel.2019.02.033_bb0095
  article-title: Functionalized carriers for the improved delivery of plasminogen activators
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.12.032
– volume: 9
  start-page: 8021
  year: 2017
  ident: 10.1016/j.jconrel.2019.02.033_bb0210
  article-title: Membrane-anchoring, comb-like pseudopeptides for efficient, pH-mediated membrane destabilization and intracellular delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00498
– volume: 326
  start-page: 310
  year: 1992
  ident: 10.1016/j.jconrel.2019.02.033_bb0010
  article-title: The pathogenesis of coronary artery disease and the acute coronary syndromes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199201303260506
– volume: 227
  start-page: 45
  year: 2016
  ident: 10.1016/j.jconrel.2019.02.033_bb0255
  article-title: Liposomal nanocarriers for plasminogen activators
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.02.019
– volume: 13
  year: 2017
  ident: 10.1016/j.jconrel.2019.02.033_bb0115
  article-title: Enhanced fibrinolysis with magnetically powered colloidal microwheels
  publication-title: Small
  doi: 10.1002/smll.201700954
– volume: 29
  start-page: 228
  year: 2008
  ident: 10.1016/j.jconrel.2019.02.033_bb0075
  article-title: Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.09.027
– volume: 53
  start-page: 281
  year: 2011
  ident: 10.1016/j.jconrel.2019.02.033_bb0235
  article-title: ABC/2: estimating intracerebral haemorrhage volume and total brain volume and predicting outcome in children
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/j.1469-8749.2010.03798.x
– volume: 20
  start-page: 4093
  year: 1981
  ident: 10.1016/j.jconrel.2019.02.033_bb0230
  article-title: Use of resonance energy transfer to monitor membrane fusion
  publication-title: Biochemistry
  doi: 10.1021/bi00517a023
– volume: 15
  start-page: 143
  year: 2001
  ident: 10.1016/j.jconrel.2019.02.033_bb0015
  article-title: Thrombolytic therapy
  publication-title: Blood Rev.
  doi: 10.1054/blre.2001.0161
– volume: 7
  start-page: 1993
  year: 2011
  ident: 10.1016/j.jconrel.2019.02.033_bb0085
  article-title: Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.01.026
– volume: 116
  start-page: 12536
  year: 2016
  ident: 10.1016/j.jconrel.2019.02.033_bb0110
  article-title: Mechanical force-triggered drug delivery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00369
– volume: 1860
  start-page: 629
  year: 2016
  ident: 10.1016/j.jconrel.2019.02.033_bb0290
  article-title: Synergistic fibrinolysis: the combined effects of tissue plasminogen activator and recombinant staphylokinase in vitro
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2015.12.022
– volume: 60
  start-page: 1177
  year: 2008
  ident: 10.1016/j.jconrel.2019.02.033_bb0050
  article-title: Ultrasonic gene and drug delivery to the cardiovascular system
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.03.004
– volume: 81
  start-page: 1715
  year: 1984
  ident: 10.1016/j.jconrel.2019.02.033_bb0215
  article-title: pH-sensitive liposomes: acid-induced liposome fusion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.81.6.1715
– volume: 59
  start-page: 133
  year: 2009
  ident: 10.1016/j.jconrel.2019.02.033_bb0245
  article-title: Preparation of pegylated nano-liposomal formulation containing SN-38: in vitro characterization and in vivo biodistribution in mice
  publication-title: Acta Pharma.
  doi: 10.2478/v10007-009-0020-0
– volume: 39
  start-page: 048
  year: 2013
  ident: 10.1016/j.jconrel.2019.02.033_bb0145
  article-title: Novel and emerging therapies: thrombus-targeted fibrinolysis
  publication-title: Semin. Thromb. Hemost.
– volume: 71
  start-page: 1641
  year: 1988
  ident: 10.1016/j.jconrel.2019.02.033_bb0060
  article-title: Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species
  publication-title: Blood
  doi: 10.1182/blood.V71.6.1641.1641
– volume: 30
  start-page: 5751
  year: 2009
  ident: 10.1016/j.jconrel.2019.02.033_bb0065
  article-title: The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.021
– volume: 2
  start-page: 533
  year: 2007
  ident: 10.1016/j.jconrel.2019.02.033_bb0130
  article-title: Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis
  publication-title: Nanomedicine
  doi: 10.2217/17435889.2.4.533
– volume: 156
  start-page: 204
  year: 2018
  ident: 10.1016/j.jconrel.2019.02.033_bb0150
  article-title: Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.047
– volume: 44
  start-page: 1
  year: 2006
  ident: 10.1016/j.jconrel.2019.02.033_bb0025
  article-title: Plasminogen activators: a comparison
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2005.09.003
– volume: 8
  start-page: 7746
  year: 2014
  ident: 10.1016/j.jconrel.2019.02.033_bb0105
  article-title: Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors
  publication-title: ACS Nano
  doi: 10.1021/nn5029955
– volume: 89
  start-page: 664
  year: 2000
  ident: 10.1016/j.jconrel.2019.02.033_bb0275
  article-title: A novel heparin/protamine-based pro-drug type delivery system for protease drugs
  publication-title: J. Pharm. Sci.
  doi: 10.1002/(SICI)1520-6017(200005)89:5<664::AID-JPS12>3.0.CO;2-9
– volume: 31
  start-page: 67
  year: 2015
  ident: 10.1016/j.jconrel.2019.02.033_bb0055
  article-title: Temperature-sensitive liposome-mediated delivery of thrombolytic agents
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2014.991428
– volume: 99
  start-page: 480
  year: 2008
  ident: 10.1016/j.jconrel.2019.02.033_bb0175
  article-title: Platelet-vessel wall interactions in atherosclerotic disease
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH07-11-0685
– volume: 123
  start-page: 35
  year: 2008
  ident: 10.1016/j.jconrel.2019.02.033_bb0185
  article-title: Strategies for antiplatelet targets and agents
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2008.05.003
– volume: 8
  start-page: 502
  year: 2011
  ident: 10.1016/j.jconrel.2019.02.033_bb0005
  article-title: Arterial thrombus formation in cardiovascular disease
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2011.91
– volume: 7
  start-page: 7664
  year: 2013
  ident: 10.1016/j.jconrel.2019.02.033_bb0090
  article-title: Nanosized aspirin-arg-gly-asp-val: delivery of aspirin to thrombus by the target carrier arg-gly-asp-val tetrapeptide
  publication-title: ACS Nano
  doi: 10.1021/nn402171v
– volume: 258
  start-page: 917
  year: 1992
  ident: 10.1016/j.jconrel.2019.02.033_bb0225
  article-title: Membrane fusion
  publication-title: Science
  doi: 10.1126/science.1439803
– volume: 6
  start-page: 1601200
  year: 2017
  ident: 10.1016/j.jconrel.2019.02.033_bb0160
  article-title: Development of polymer microcapsules functionalized with fucoidan to target p-selectin overexpressed in cardiovascular diseases
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201601200
– volume: 36
  start-page: 133
  year: 2004
  ident: 10.1016/j.jconrel.2019.02.033_bb0180
  article-title: Glycoprotein IIb/IIIa receptor and its inhibition: a platelet-directed therapeutic strategy
  publication-title: Ind. J. Pharmacol.
– volume: 9
  start-page: 194
  year: 2013
  ident: 10.1016/j.jconrel.2019.02.033_bb0260
  article-title: Effect of ligand density, receptor density, and nanoparticle size on cell targeting
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2012.05.015
– volume: 9
  start-page: 1292
  year: 2011
  ident: 10.1016/j.jconrel.2019.02.033_bb0070
  article-title: Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2011.04339.x
– volume: 15
  start-page: 173
  year: 2018
  ident: 10.1016/j.jconrel.2019.02.033_bb0200
  article-title: Tissue plasminogen activator-based nanothrombolysis for ischemic stroke
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2018.1384464
– volume: 2
  start-page: 1548
  year: 2004
  ident: 10.1016/j.jconrel.2019.02.033_bb0045
  article-title: Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2004.00884.x
– volume: 87
  start-page: 774
  year: 2001
  ident: 10.1016/j.jconrel.2019.02.033_bb0155
  article-title: Relation of soluble and platelet P-selectin to early outcome in patients with acute myocardial infarction after thrombolytic therapy
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(00)01502-2
– volume: 8
  start-page: 22457
  year: 2016
  ident: 10.1016/j.jconrel.2019.02.033_bb0240
  article-title: A virus-mimicking, endosomolytic liposomal system for efficient, ph-triggered intracellular drug delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05041
– volume: 27
  start-page: 500
  year: 1988
  ident: 10.1016/j.jconrel.2019.02.033_bb0265
  article-title: Kinetic and ultrastructural studies of interactions of target-sensitive immunoliposomes with herpes simplex virus
  publication-title: Biochemistry
  doi: 10.1021/bi00401a072
– volume: 25
  start-page: 5500
  year: 1986
  ident: 10.1016/j.jconrel.2019.02.033_bb0270
  article-title: Target-sensitive immunoliposomes: preparation and characterization
  publication-title: Biochemistry
  doi: 10.1021/bi00367a023
– volume: 5
  start-page: 1098
  year: 2015
  ident: 10.1016/j.jconrel.2019.02.033_bb0135
  article-title: Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles
  publication-title: Theranostics
  doi: 10.7150/thno.11679
– volume: 96
  start-page: 761
  year: 1997
  ident: 10.1016/j.jconrel.2019.02.033_bb0035
  article-title: Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.3.761
– volume: 30
  start-page: 1663
  year: 2013
  ident: 10.1016/j.jconrel.2019.02.033_bb0205
  article-title: Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-013-1011-x
– volume: 10
  year: 2015
  ident: 10.1016/j.jconrel.2019.02.033_bb0285
  article-title: Highly effective fibrinolysis by a sequential synergistic combination of mini-dose tPA plus low-dose mutant proUK
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122018
SSID ssj0005347
Score 2.5557768
Snippet It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Activated platelet
adverse effects
Animals
blood coagulation
Blood Platelets
Controlled release mechanism
drugs
encapsulation
fibrin
Fibrinolytic Agents - administration & dosage
GPIIb-IIIa integrin
Liposome
Liposomes
membrane fusion
nanocarriers
Nanoparticles - administration & dosage
Sheep
t-plasminogen activator
Targeted delivery
Thrombolysis
Thrombolytic Therapy - methods
thrombosis
Thrombosis - metabolism
Tissue plasminogen activator
Tissue Plasminogen Activator - administration & dosage
Title An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy
URI https://dx.doi.org/10.1016/j.jconrel.2019.02.033
https://www.ncbi.nlm.nih.gov/pubmed/30807804
https://www.proquest.com/docview/2186615912
https://www.proquest.com/docview/2237527952
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5tJL6btJ26BCySna9epl67iEhm1LQ6AJ5CZkS4JdNvay3hR86bk_uzN-ZOkhDRQMxkYjBs945hPzIuSTCTEDt8RZ9EYxqRVnuUo9c0alIXdchQwLnL9f6Pm1_HqjbvbI2VALg2mVve3vbHprrfs3k_5rTtaLxeQHgJVMaGUAgmA0Qe-TAw7ePhuRg9mXb_OLXaaHkF3VtM4YEuwKeSbL8RKOnZuAQYipabt3CvGQi3oIgrau6PwZedpjSDrr2HxO9kL5gpxcdk2om1N6taupqk_pCb3ctaduXpLfs5JiNcNPQJmerVdwA9mxGjPZ0fbR0pXg4DY4yo6GtrSqpl3CePDUhxVmcjS0inTbCo3CFvXtoqxAFYeNqw0FMEy7ZBHcE6cx3ObVqgGeaFfz1bwi1-efr87mrJ_HwAo412xZDFGaaKIrvDeJc8KJ3ORFkXAvtcujh0u7iI1FPQARzXMAW6k04ARVzADavCajsirDW0KzRIoiRB28ilLk2mQ6pCBJH8HegpocEjmIwBZ9s3KcmbGyQ1ba0vaSsyg5m3ALkjsk43uyddet4zGCbJCv_UvtLHiUx0g_Dvpg4ZfEOIsrQ3VXWxzzBUDRTPk_1nCRKp4aBWvedMp0z7FIcAhAIo_-n7l35Ak-YdiLZ-_JaLu5Cx8APW3zY7I__jU97v-RP6PJH6E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5S59BeSt9Jn1soOWVjZV_SHk1ocJrEBOpAbstKuws2jmRsp6B_0J_dGT1iekgDBYFA2lkGzWjmW-ZFyDcTYgZuibPojWJSK85ylXrmjEpD7rgKGRY4X070-Fr-uFE3O-Skr4XBtMrO9rc2vbHW3ZNh9zWHy9ls-BPASia0MgBBMJqgn5BdiUOtB2R3dHY-nmwzPYRsq6Z1xpBgW8gznB_N4di5ChiEODZN904hHnJRD0HQxhWdviDPOwxJRy2bL8lOKF-Rg6u2CXV9SKfbmqr1IT2gV9v21PVr8ntUUqxm-AUo07PlAm4gO7bGTHa0fbR0JTi4FY6yo6EprVrTNmE8eOrDAjM5alpFummERmGL9e2srEAV-42rFQUwTNtkEdwTpzHc5tWiBp5oW_NVvyHXp9-nJ2PWzWNgBZxrNiyGKE000RXem8Q54URu8qJIuJfa5dHDpV3ExqIegIjmOYCtVBpwgipmAG3ekkFZlWGP0CyRoghRB6-iFLk2mQ4pSNJHsLegJvtE9iKwRdesHGdmLGyflTa3neQsSs4m3ILk9snRPdmy7dbxGEHWy9f-pXYWPMpjpF97fbDwS2KcxZWhultbHPMFQNEc83-s4SJVPDUK1rxrlemeY5HgEIBEvv9_5r6Qp-Pp5YW9OJucfyDP8A2GwHj2kQw2q7vwCZDUJv_c_Sl_AGbKIYc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+activated-platelet-sensitive+nanocarrier+enables+targeted+delivery+of+tissue+plasminogen+activator+for+effective+thrombolytic+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Huang%2C+Yu&rft.au=Yu%2C+Li&rft.au=Ren%2C+Jie&rft.au=Gu%2C+Boram&rft.date=2019-04-28&rft.issn=1873-4995&rft.eissn=1873-4995&rft.volume=300&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jconrel.2019.02.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon