An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy
It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled re...
Saved in:
Published in | Journal of controlled release Vol. 300; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
28.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-3659 1873-4995 1873-4995 |
DOI | 10.1016/j.jconrel.2019.02.033 |
Cover
Abstract | It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine–glycine–aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects.
[Display omitted]
•Activated-platelet-sensitive nanoliposomes with encapsulation of tPA was developed.•The nanoliposomes had a highly specific binding to activated platelets.•Efficient tPA release was induced by activated platelets through membrane fusion.•The nanoliposomes enabled a selective and efficient lysis of fibrin and blood clots. |
---|---|
AbstractList | It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine–glycine–aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects. It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine-glycine-aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects.It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine-glycine-aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects. It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine–glycine–aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects. [Display omitted] •Activated-platelet-sensitive nanoliposomes with encapsulation of tPA was developed.•The nanoliposomes had a highly specific binding to activated platelets.•Efficient tPA release was induced by activated platelets through membrane fusion.•The nanoliposomes enabled a selective and efficient lysis of fibrin and blood clots. |
Author | Ren, Jie Chen, Rongjun Huang, Yu Gu, Boram Yu, Li Longstaff, Colin Xu, Xiao Yun Hughes, Alun D. Thom, Simon A. |
Author_xml | – sequence: 1 givenname: Yu surname: Huang fullname: Huang, Yu organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 2 givenname: Li surname: Yu fullname: Yu, Li organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 3 givenname: Jie surname: Ren fullname: Ren, Jie organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 4 givenname: Boram surname: Gu fullname: Gu, Boram organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 5 givenname: Colin surname: Longstaff fullname: Longstaff, Colin organization: Biotherapeutics Section, National Institute for Biological Standards and Control, South Mimms, Herts, United Kingdom – sequence: 6 givenname: Alun D. surname: Hughes fullname: Hughes, Alun D. organization: Institute of Cardiovascular Science, University College London, London, United Kingdom – sequence: 7 givenname: Simon A. surname: Thom fullname: Thom, Simon A. organization: National Heart & Lung Institute, Imperial College London, Hammersmith Campus, London, United Kingdom – sequence: 8 givenname: Xiao Yun orcidid: 0000-0002-8267-621X surname: Xu fullname: Xu, Xiao Yun organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom – sequence: 9 givenname: Rongjun orcidid: 0000-0002-8133-5472 surname: Chen fullname: Chen, Rongjun email: rongjun.chen@imperial.ac.uk organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30807804$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNPCI4BmyWYG_86MxQJVFS1IldjA2vLY18WRYwfbqZQ34LFxSOiCTSRbV7bOdxb3u0IXMUVA6C3BA8Fk_LAe1ibFDGGgmMgB0wEz9gKtyDyxnkspLtCqcXPPRiEv0VUpa4yxYHx6hS4ZnvE0Y75Cv29ip031T7qC7behjQC1LxCLb7_QRR2T0Tl7yB1EvQQoXdX5ERrfWQiNyfsuua76UnbQNUXZ-Jge4VmccufaBefA_HXWnzltlhT21Zv2gKy3-9fopdOhwJvTvEY_7j5_v_3SP3y7_3p789AbwefaO3BcOum0sVZirZlmi1yMwdTyUS_OtjNqx2c62UngkS4j5xOXMybCzePIrtH7o3eb068dlKo2vhgIQUdIu6IoZZOgkxT0PEqakAhJDui7E7pbNmDVNvuNznv1b9ENEEfA5FRKBveMEKwOhaq1OhWqDoUqTFUrtOU-_pczvurqU6xZ-3A2_emYhrbRp1ahKsZDNGB9bl0om_wZwx9JFcQa |
CitedBy_id | crossref_primary_10_1515_ntrev_2023_0158 crossref_primary_10_3389_fphys_2021_763085 crossref_primary_10_1016_j_carbpol_2022_120225 crossref_primary_10_1021_acs_molpharmaceut_2c00626 crossref_primary_10_1080_10717544_2024_2425156 crossref_primary_10_3389_fbioe_2022_945531 crossref_primary_10_1007_s11095_021_03161_2 crossref_primary_10_1016_j_pep_2020_105680 crossref_primary_10_1002_adhm_202202578 crossref_primary_10_1016_j_ajps_2025_101035 crossref_primary_10_1007_s11239_021_02614_0 crossref_primary_10_1016_j_cej_2025_160862 crossref_primary_10_1039_D0BM00781A crossref_primary_10_1002_smll_202200291 crossref_primary_10_3390_pharmaceutics14020361 crossref_primary_10_1016_j_cclet_2021_05_070 crossref_primary_10_1186_s12951_024_02716_w crossref_primary_10_1016_j_jconrel_2023_05_009 crossref_primary_10_1016_j_ijbiomac_2024_131742 crossref_primary_10_1016_j_ijbiomac_2024_133286 crossref_primary_10_1016_j_bbagen_2024_130704 crossref_primary_10_1016_j_biomaterials_2020_120297 crossref_primary_10_1021_acsami_1c19288 crossref_primary_10_1016_j_actbio_2021_07_072 crossref_primary_10_1016_j_cej_2024_157406 crossref_primary_10_1111_jth_14637 crossref_primary_10_3389_fbioe_2019_00369 crossref_primary_10_1016_j_jconrel_2019_12_029 crossref_primary_10_3389_fncel_2023_1266660 crossref_primary_10_2147_IJN_S382964 crossref_primary_10_1016_j_jconrel_2022_03_044 crossref_primary_10_1016_j_jddst_2024_105612 crossref_primary_10_1021_acsanm_4c05408 crossref_primary_10_3390_pharmaceutics15071935 crossref_primary_10_1016_j_carbpol_2024_122505 crossref_primary_10_1016_j_nano_2022_102520 crossref_primary_10_1039_D0TB00262C crossref_primary_10_1126_sciadv_abf9033 crossref_primary_10_1002_smll_202106252 crossref_primary_10_1016_j_bcp_2024_116523 crossref_primary_10_1016_j_jconrel_2022_02_036 crossref_primary_10_1002_adhm_202200416 crossref_primary_10_1016_j_biomaterials_2020_120200 crossref_primary_10_1002_adtp_202100047 crossref_primary_10_2147_IJN_S328723 crossref_primary_10_3389_fphar_2022_983816 crossref_primary_10_3389_fncel_2022_885190 crossref_primary_10_1016_j_apsb_2021_05_012 crossref_primary_10_1002_adhm_202000726 crossref_primary_10_1002_adhm_202201265 crossref_primary_10_1002_adfm_202209019 crossref_primary_10_1016_j_actbio_2022_02_008 crossref_primary_10_34133_research_0614 crossref_primary_10_1016_j_jconrel_2020_08_030 crossref_primary_10_1038_s41565_022_01270_6 crossref_primary_10_1016_j_actbio_2021_12_009 crossref_primary_10_1016_j_ejphar_2021_174638 crossref_primary_10_1016_j_nantod_2020_100986 crossref_primary_10_1021_acsnano_1c06022 crossref_primary_10_5937_scriptamed55_47361 crossref_primary_10_1016_j_medidd_2021_100119 crossref_primary_10_1021_acsami_1c19820 crossref_primary_10_1021_acsami_4c12117 crossref_primary_10_1016_j_carbpol_2023_121703 crossref_primary_10_1016_j_matt_2023_09_013 crossref_primary_10_34133_research_0388 crossref_primary_10_1002_adfm_202303717 crossref_primary_10_1016_j_bioactmat_2024_09_016 crossref_primary_10_1016_j_jconrel_2021_07_024 crossref_primary_10_1021_acsbiomaterials_9b00946 |
Cites_doi | 10.1111/j.1365-2141.2005.05444.x 10.1016/j.thromres.2006.04.013 10.1002/jbm.a.32549 10.1021/am406008k 10.1002/adma.201502243 10.1111/j.1538-7836.2005.01599.x 10.1016/S0169-409X(99)00037-X 10.1126/science.1217815 10.1016/j.biomaterials.2007.12.015 10.1016/j.chembiol.2009.08.012 10.1007/BF00196594 10.1016/S0168-3659(01)00360-1 10.1039/C6MH00307A 10.1126/scitranslmed.aaa1065 10.1016/j.addr.2012.09.008 10.1016/j.ijpharm.2011.12.032 10.1021/acsami.7b00498 10.1056/NEJM199201303260506 10.1016/j.jconrel.2016.02.019 10.1002/smll.201700954 10.1016/j.biomaterials.2007.09.027 10.1111/j.1469-8749.2010.03798.x 10.1021/bi00517a023 10.1054/blre.2001.0161 10.1016/j.actbio.2011.01.026 10.1021/acs.chemrev.6b00369 10.1016/j.bbagen.2015.12.022 10.1016/j.addr.2008.03.004 10.1073/pnas.81.6.1715 10.2478/v10007-009-0020-0 10.1182/blood.V71.6.1641.1641 10.1016/j.biomaterials.2009.07.021 10.2217/17435889.2.4.533 10.1016/j.biomaterials.2017.11.047 10.1016/j.vph.2005.09.003 10.1021/nn5029955 10.1002/(SICI)1520-6017(200005)89:5<664::AID-JPS12>3.0.CO;2-9 10.3109/02656736.2014.991428 10.1160/TH07-11-0685 10.1016/j.thromres.2008.05.003 10.1038/nrcardio.2011.91 10.1021/nn402171v 10.1126/science.1439803 10.1002/adhm.201601200 10.1016/j.nano.2012.05.015 10.1111/j.1538-7836.2011.04339.x 10.1080/17425247.2018.1384464 10.1111/j.1538-7836.2004.00884.x 10.1016/S0002-9149(00)01502-2 10.1021/acsami.6b05041 10.1021/bi00401a072 10.1021/bi00367a023 10.7150/thno.11679 10.1161/01.CIR.96.3.761 10.1007/s11095-013-1011-x 10.1371/journal.pone.0122018 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2019.02.033 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 12 |
ExternalDocumentID | 30807804 10_1016_j_jconrel_2019_02_033 S0168365919301166 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Health – fundername: Medical Research Council grantid: MC_UU_12019/1 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SPT SSH WUQ CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c548t-fef49f9facdd90aa3a3b9bcc02d46abfdbfd6af4827d75062b6447498015f8663 |
IEDL.DBID | AIKHN |
ISSN | 0168-3659 1873-4995 |
IngestDate | Fri Sep 05 05:44:25 EDT 2025 Thu Sep 04 21:24:57 EDT 2025 Mon Jul 21 05:36:27 EDT 2025 Tue Jul 01 04:09:52 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Fri Feb 23 02:33:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Controlled release mechanism Activated platelet Tissue plasminogen activator Targeted delivery Liposome Thrombolysis GPIIb-IIIa integrin |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-fef49f9facdd90aa3a3b9bcc02d46abfdbfd6af4827d75062b6447498015f8663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8267-621X 0000-0002-8133-5472 |
OpenAccessLink | http://hdl.handle.net/10044/1/68221 |
PMID | 30807804 |
PQID | 2186615912 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2237527952 proquest_miscellaneous_2186615912 pubmed_primary_30807804 crossref_primary_10_1016_j_jconrel_2019_02_033 crossref_citationtrail_10_1016_j_jconrel_2019_02_033 elsevier_sciencedirect_doi_10_1016_j_jconrel_2019_02_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-28 |
PublicationDateYYYYMMDD | 2019-04-28 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Guo, Zhang, Wu, Ran, Wang (bb0165) 2014; 6 Damaschun, Damaschun, Gast, Gerlach, Misselwitz, Welfle, Zirwer (bb0020) 1992; 20 Zhang, Yu, Bomba, Zhu, Gu (bb0110) 2016; 116 Leach, Patterson, O'Rear (bb0045) 2004; 2 Wu, Chen, Li, Brash (bb0085) 2011; 7 Myerson, He, Lanza, Tollefsen, Wickline (bb0070) 2011; 9 Langer, Gawaz (bb0175) 2008; 99 Koudelka, Mikulik, Mašek, Raška, Knotigová, Miller, Turánek (bb0255) 2016; 227 Ho, Ting-Beall, Rouse, Huang (bb0265) 1988; 27 Aisina, Mukhametova, Varfolomevev (bb0290) 2016; 1860 Chen, Wang, Kopytynski, Bachelet, Chen (bb0210) 2017; 9 Kim, Ryu, Schellingerhout, Sun, Lee, Jeon, Kim, Kwon, Nahrendorf, Ahn, Kim, Kim (bb0135) 2015; 5 Pannell, Li, Gurewich (bb0285) 2015; 10 Tasci, Disharoon, Schoeman, Rana, Herson, Marr, Neeves (bb0115) 2017; 13 Duzgunes, Nir (bb0220) 1999; 40 Srinivasasn, Marchant, Gupta (bb0195) 2010; 93 Lippi, Mattiuzzi, Favaloro (bb0145) 2013; 39 Jin, Wang, Zhu, Wang, Zhao, Zhao, Liu, Wu, Gao, Peng (bb0090) 2013; 7 White (bb0225) 1992; 258 Marder (bb0015) 2001; 15 Xiang, Kang, Gao, Shang, Zhang, Zhang (bb0185) 2008; 123 Lippi, Franchini, Targher (bb0005) 2011; 8 Vaidya, Agrawal, Vyas (bb0095) 2012; 424 Baruah, Dash, Chaudhari, Kadam (bb0025) 2006; 44 Saxena, Johnson, Negussie, Sharma, Dreher, Wood (bb0055) 2015; 31 Park, Liang, Yang, Yang (bb0280) 2001; 75 Huang, Zhou, Srinivasan, Penn, Kottke-Marchant, Marchant, Gupta (bb0080) 2008; 29 Matsuo (bb0040) 2005; 3 Gunawan, Kempe, Bonnard, Cui, Alt, Law, Wang, Westein, Such, Peter, Hagemeyer, Caruso (bb0125) 2015; 27 Cesarman-Maus, Hajjar (bb0030) 2005; 129 Elias, Poloukhtine, Popik, Tsourkas (bb0260) 2013; 9 Fuster, Badimon, Badimon, Chesebro (bb0010) 1992; 326 Mayer, Bekeredjian (bb0050) 2008; 60 Li, Juenet, Aid-Launais, Maire, Ollivier, Letourneur, Chauvierre (bb0160) 2017; 6 Kim, Kim, Park, Byun, Kim (bb0065) 2009; 30 Gurbel, O'Connor, Dalesandro, Serebruany (bb0155) 2001; 87 Atyabi, Farkhondehfai, Esmaeili, Dinarvand (bb0245) 2009; 59 Ho, Rouse, Huang (bb0270) 1986; 25 Connor, Yatvin, Huang (bb0215) 1984; 81 Chen, Chen (bb0240) 2016; 8 Chung, Wang, Tsai (bb0075) 2008; 29 Berger, Pizzo (bb0060) 1988; 71 Du, Li, Luan, Liu, Yang, Yu, Li, Brash, Chen (bb0120) 2016; 3 Barre (bb0170) 2007; 119 Gref, Domb, Quellec, Blunk, Müller, Verbavatz, Langer (bb0250) 2012; 64 Liang, Song, Li, Yang (bb0275) 2000; 89 Shah, Goyal (bb0180) 2004; 36 Chandler, Alessi, Aillaud, Henderson, Vague, Juhan-Vague (bb0035) 1997; 96 Absar, Nahar, Kwon, Ahsan (bb0205) 2013; 30 Juenet, Aid-Launais, Li, Berger, Aerts, Ollivier, Nicoletti, Letourneur, Chauvierre (bb0150) 2018; 156 Korin, Kanapathipillai, Matthews, Crescente, Brill, Mammoto, Ghosh, Jurek, Bencherif, Bhatta (bb0100) 2012; 337 Marsh, Senpan, Hu, Scott, Gaffney, Wickline, Lanza (bb0130) 2007; 2 Cheng, Huang, Huang, Yang, Mao, Jin, ZhuGe, Zhao (bb0105) 2014; 8 Kleinman, Hillis, Jordan (bb0235) 2011; 53 Sánchez-Cortés, Mrksich (bb0190) 2009; 16 Struck, Hoekstra, Pagano (bb0230) 1981; 20 Fredman, Kamaly, Spolitu, Milton, Ghorpade, Chiasson, Kuriakose, Perretti, Farokzhad, Tabas (bb0140) 2015; 7 Liu, Feng, Jin, Li (bb0200) 2018; 15 Zhang (10.1016/j.jconrel.2019.02.033_bb0110) 2016; 116 Berger (10.1016/j.jconrel.2019.02.033_bb0060) 1988; 71 Fuster (10.1016/j.jconrel.2019.02.033_bb0010) 1992; 326 Tasci (10.1016/j.jconrel.2019.02.033_bb0115) 2017; 13 Marsh (10.1016/j.jconrel.2019.02.033_bb0130) 2007; 2 Kleinman (10.1016/j.jconrel.2019.02.033_bb0235) 2011; 53 Mayer (10.1016/j.jconrel.2019.02.033_bb0050) 2008; 60 Korin (10.1016/j.jconrel.2019.02.033_bb0100) 2012; 337 Fredman (10.1016/j.jconrel.2019.02.033_bb0140) 2015; 7 Barre (10.1016/j.jconrel.2019.02.033_bb0170) 2007; 119 Park (10.1016/j.jconrel.2019.02.033_bb0280) 2001; 75 Absar (10.1016/j.jconrel.2019.02.033_bb0205) 2013; 30 Damaschun (10.1016/j.jconrel.2019.02.033_bb0020) 1992; 20 Gunawan (10.1016/j.jconrel.2019.02.033_bb0125) 2015; 27 Chen (10.1016/j.jconrel.2019.02.033_bb0210) 2017; 9 Kim (10.1016/j.jconrel.2019.02.033_bb0065) 2009; 30 Matsuo (10.1016/j.jconrel.2019.02.033_bb0040) 2005; 3 Cheng (10.1016/j.jconrel.2019.02.033_bb0105) 2014; 8 Chen (10.1016/j.jconrel.2019.02.033_bb0240) 2016; 8 Duzgunes (10.1016/j.jconrel.2019.02.033_bb0220) 1999; 40 Marder (10.1016/j.jconrel.2019.02.033_bb0015) 2001; 15 Pannell (10.1016/j.jconrel.2019.02.033_bb0285) 2015; 10 Aisina (10.1016/j.jconrel.2019.02.033_bb0290) 2016; 1860 White (10.1016/j.jconrel.2019.02.033_bb0225) 1992; 258 Saxena (10.1016/j.jconrel.2019.02.033_bb0055) 2015; 31 Liang (10.1016/j.jconrel.2019.02.033_bb0275) 2000; 89 Du (10.1016/j.jconrel.2019.02.033_bb0120) 2016; 3 Ho (10.1016/j.jconrel.2019.02.033_bb0270) 1986; 25 Xiang (10.1016/j.jconrel.2019.02.033_bb0185) 2008; 123 Liu (10.1016/j.jconrel.2019.02.033_bb0200) 2018; 15 Leach (10.1016/j.jconrel.2019.02.033_bb0045) 2004; 2 Sánchez-Cortés (10.1016/j.jconrel.2019.02.033_bb0190) 2009; 16 Ho (10.1016/j.jconrel.2019.02.033_bb0265) 1988; 27 Chung (10.1016/j.jconrel.2019.02.033_bb0075) 2008; 29 Gurbel (10.1016/j.jconrel.2019.02.033_bb0155) 2001; 87 Zhou (10.1016/j.jconrel.2019.02.033_bb0165) 2014; 6 Shah (10.1016/j.jconrel.2019.02.033_bb0180) 2004; 36 Cesarman-Maus (10.1016/j.jconrel.2019.02.033_bb0030) 2005; 129 Langer (10.1016/j.jconrel.2019.02.033_bb0175) 2008; 99 Li (10.1016/j.jconrel.2019.02.033_bb0160) 2017; 6 Juenet (10.1016/j.jconrel.2019.02.033_bb0150) 2018; 156 Lippi (10.1016/j.jconrel.2019.02.033_bb0005) 2011; 8 Atyabi (10.1016/j.jconrel.2019.02.033_bb0245) 2009; 59 Jin (10.1016/j.jconrel.2019.02.033_bb0090) 2013; 7 Koudelka (10.1016/j.jconrel.2019.02.033_bb0255) 2016; 227 Gref (10.1016/j.jconrel.2019.02.033_bb0250) 2012; 64 Myerson (10.1016/j.jconrel.2019.02.033_bb0070) 2011; 9 Lippi (10.1016/j.jconrel.2019.02.033_bb0145) 2013; 39 Connor (10.1016/j.jconrel.2019.02.033_bb0215) 1984; 81 Struck (10.1016/j.jconrel.2019.02.033_bb0230) 1981; 20 Huang (10.1016/j.jconrel.2019.02.033_bb0080) 2008; 29 Kim (10.1016/j.jconrel.2019.02.033_bb0135) 2015; 5 Vaidya (10.1016/j.jconrel.2019.02.033_bb0095) 2012; 424 Wu (10.1016/j.jconrel.2019.02.033_bb0085) 2011; 7 Elias (10.1016/j.jconrel.2019.02.033_bb0260) 2013; 9 Srinivasasn (10.1016/j.jconrel.2019.02.033_bb0195) 2010; 93 Baruah (10.1016/j.jconrel.2019.02.033_bb0025) 2006; 44 Chandler (10.1016/j.jconrel.2019.02.033_bb0035) 1997; 96 |
References_xml | – volume: 2 start-page: 1548 year: 2004 end-page: 1555 ident: bb0045 article-title: Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators publication-title: J. Thromb. Haemost. – volume: 29 start-page: 228 year: 2008 end-page: 237 ident: bb0075 article-title: Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles publication-title: Biomaterials – volume: 15 start-page: 143 year: 2001 end-page: 157 ident: bb0015 article-title: Thrombolytic therapy publication-title: Blood Rev. – volume: 123 start-page: 35 year: 2008 end-page: 49 ident: bb0185 article-title: Strategies for antiplatelet targets and agents publication-title: Thromb. Res. – volume: 9 start-page: 1292 year: 2011 end-page: 1300 ident: bb0070 article-title: Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis publication-title: J. Thromb. Haemost. – volume: 30 start-page: 5751 year: 2009 end-page: 5756 ident: bb0065 article-title: The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator publication-title: Biomaterials – volume: 87 start-page: 774 year: 2001 end-page: 777 ident: bb0155 article-title: Relation of soluble and platelet P-selectin to early outcome in patients with acute myocardial infarction after thrombolytic therapy publication-title: Am. J. Cardiol. – volume: 337 start-page: 738 year: 2012 end-page: 742 ident: bb0100 article-title: Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels publication-title: Science – volume: 7 start-page: 1993 year: 2011 end-page: 1998 ident: bb0085 article-title: Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity publication-title: Acta Biomater. – volume: 119 start-page: 601 year: 2007 end-page: 607 ident: bb0170 article-title: Arginyl-glycyl-aspartyl (RGD) epitope of human apolipoprotein (a) inhibits platelet aggregation by antagonizing the IIb subunit of the fibrinogen (GPIIb/IIIa) receptor publication-title: Thromb. Res. – volume: 44 start-page: 1 year: 2006 end-page: 9 ident: bb0025 article-title: Plasminogen activators: a comparison publication-title: Vasc. Pharmacol. – volume: 93 start-page: 1004 year: 2010 end-page: 1015 ident: bb0195 article-title: In vitro and in vivo platelet targeting by cyclic rgd-modified liposomes publication-title: J. Biomed. Mater. Res. A – volume: 40 start-page: 3 year: 1999 end-page: 18 ident: bb0220 article-title: Mechanisms and kinetics of liposome cell interactions publication-title: Adv. Drug Deliv. Rev. – volume: 129 start-page: 307 year: 2005 end-page: 321 ident: bb0030 article-title: Molecular mechanisms of fibrinolysis publication-title: Br. J. Haematol. – volume: 1860 start-page: 629 year: 2016 end-page: 635 ident: bb0290 article-title: Synergistic fibrinolysis: the combined effects of tissue plasminogen activator and recombinant staphylokinase in vitro publication-title: Biochim. Biophys. Acta – volume: 96 start-page: 761 year: 1997 end-page: 768 ident: bb0035 article-title: Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels publication-title: Circulation – volume: 156 start-page: 204 year: 2018 end-page: 216 ident: bb0150 article-title: Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin publication-title: Biomaterials – volume: 81 start-page: 1715 year: 1984 end-page: 1718 ident: bb0215 article-title: pH-sensitive liposomes: acid-induced liposome fusion publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 556 year: 2016 end-page: 562 ident: bb0120 article-title: An antithrombotic hydrogel with thrombinresponsive fibrinolytic activity: breaking down the clot as it forms publication-title: Mater. Horiz. – volume: 8 start-page: 22457 year: 2016 end-page: 22467 ident: bb0240 article-title: A virus-mimicking, endosomolytic liposomal system for efficient, ph-triggered intracellular drug delivery publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 281 year: 2011 end-page: 284 ident: bb0235 article-title: ABC/2: estimating intracerebral haemorrhage volume and total brain volume and predicting outcome in children publication-title: Dev. Med. Child Neurol. – volume: 60 start-page: 1177 year: 2008 end-page: 1192 ident: bb0050 article-title: Ultrasonic gene and drug delivery to the cardiovascular system publication-title: Adv. Drug Deliv. Rev. – volume: 89 start-page: 664 year: 2000 end-page: 673 ident: bb0275 article-title: A novel heparin/protamine-based pro-drug type delivery system for protease drugs publication-title: J. Pharm. Sci. – volume: 30 start-page: 1663 year: 2013 end-page: 1676 ident: bb0205 article-title: Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy publication-title: Pharm. Res. – volume: 64 start-page: 316 year: 2012 end-page: 326 ident: bb0250 article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres publication-title: Adv. Drug Deliv. Rev. – volume: 7 start-page: 275ra20 year: 2015 ident: bb0140 article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice publication-title: Sci. Transl. Med. – volume: 59 start-page: 133 year: 2009 end-page: 144 ident: bb0245 article-title: Preparation of pegylated nano-liposomal formulation containing SN-38: in vitro characterization and in vivo biodistribution in mice publication-title: Acta Pharma. – volume: 20 start-page: 4093 year: 1981 end-page: 4099 ident: bb0230 article-title: Use of resonance energy transfer to monitor membrane fusion publication-title: Biochemistry – volume: 27 start-page: 5153 year: 2015 end-page: 5157 ident: bb0125 article-title: Multifunctional thrombin-activatable polymer capsules for specific targeting to activated platelets publication-title: Adv. Mater. – volume: 6 start-page: 1601200 year: 2017 ident: bb0160 article-title: Development of polymer microcapsules functionalized with fucoidan to target p-selectin overexpressed in cardiovascular diseases publication-title: Adv. Healthc. Mater. – volume: 36 start-page: 133 year: 2004 end-page: 139 ident: bb0180 article-title: Glycoprotein IIb/IIIa receptor and its inhibition: a platelet-directed therapeutic strategy publication-title: Ind. J. Pharmacol. – volume: 13 year: 2017 ident: bb0115 article-title: Enhanced fibrinolysis with magnetically powered colloidal microwheels publication-title: Small – volume: 15 start-page: 173 year: 2018 end-page: 184 ident: bb0200 article-title: Tissue plasminogen activator-based nanothrombolysis for ischemic stroke publication-title: Expert Opin. Drug Deliv. – volume: 71 start-page: 1641 year: 1988 end-page: 1647 ident: bb0060 article-title: Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species publication-title: Blood – volume: 424 start-page: 1 year: 2012 end-page: 11 ident: bb0095 article-title: Functionalized carriers for the improved delivery of plasminogen activators publication-title: Int. J. Pharm. – volume: 8 start-page: 7746 year: 2014 end-page: 7754 ident: bb0105 article-title: Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors publication-title: ACS Nano – volume: 20 start-page: 355 year: 1992 end-page: 361 ident: bb0020 article-title: Streptokinase is a flexible multi-domain protein publication-title: Eur. Biophys. J. – volume: 75 start-page: 37 year: 2001 end-page: 44 ident: bb0280 article-title: Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel publication-title: J. Control. Release – volume: 16 start-page: 990 year: 2009 end-page: 1000 ident: bb0190 article-title: The platelet integrin α publication-title: Chem. Biol. – volume: 7 start-page: 7664 year: 2013 end-page: 7673 ident: bb0090 article-title: Nanosized aspirin-arg-gly-asp-val: delivery of aspirin to thrombus by the target carrier arg-gly-asp-val tetrapeptide publication-title: ACS Nano – volume: 25 start-page: 5500 year: 1986 end-page: 5506 ident: bb0270 article-title: Target-sensitive immunoliposomes: preparation and characterization publication-title: Biochemistry – volume: 29 start-page: 1676 year: 2008 end-page: 1685 ident: bb0080 article-title: Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets publication-title: Biomaterials – volume: 9 start-page: 8021 year: 2017 end-page: 8029 ident: bb0210 article-title: Membrane-anchoring, comb-like pseudopeptides for efficient, pH-mediated membrane destabilization and intracellular delivery publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 194 year: 2013 end-page: 201 ident: bb0260 article-title: Effect of ligand density, receptor density, and nanoparticle size on cell targeting publication-title: Nanomedicine – volume: 2 start-page: 533 year: 2007 end-page: 543 ident: bb0130 article-title: Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis publication-title: Nanomedicine – volume: 8 start-page: 502 year: 2011 end-page: 512 ident: bb0005 article-title: Arterial thrombus formation in cardiovascular disease publication-title: Nat. Rev. Cardiol. – volume: 116 start-page: 12536 year: 2016 end-page: 12563 ident: bb0110 article-title: Mechanical force-triggered drug delivery publication-title: Chem. Rev. – volume: 5 start-page: 1098 year: 2015 end-page: 1114 ident: bb0135 article-title: Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles publication-title: Theranostics – volume: 326 start-page: 310 year: 1992 end-page: 318 ident: bb0010 article-title: The pathogenesis of coronary artery disease and the acute coronary syndromes publication-title: N. Engl. J. Med. – volume: 6 start-page: 5566 year: 2014 end-page: 5576 ident: bb0165 article-title: Construction and evaluation of Fe publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 2154 year: 2005 end-page: 2155 ident: bb0040 article-title: An ideal thrombolytic and antithrombotic agent publication-title: J. Thromb. Haemost. – volume: 31 start-page: 67 year: 2015 end-page: 73 ident: bb0055 article-title: Temperature-sensitive liposome-mediated delivery of thrombolytic agents publication-title: Int. J. Hyperth. – volume: 10 year: 2015 ident: bb0285 article-title: Highly effective fibrinolysis by a sequential synergistic combination of mini-dose tPA plus low-dose mutant proUK publication-title: PLoS ONE – volume: 27 start-page: 500 year: 1988 end-page: 506 ident: bb0265 article-title: Kinetic and ultrastructural studies of interactions of target-sensitive immunoliposomes with herpes simplex virus publication-title: Biochemistry – volume: 39 start-page: 048 year: 2013 end-page: 058 ident: bb0145 article-title: Novel and emerging therapies: thrombus-targeted fibrinolysis publication-title: Semin. Thromb. Hemost. – volume: 227 start-page: 45 year: 2016 end-page: 57 ident: bb0255 article-title: Liposomal nanocarriers for plasminogen activators publication-title: J. Control. Release – volume: 99 start-page: 480 year: 2008 end-page: 486 ident: bb0175 article-title: Platelet-vessel wall interactions in atherosclerotic disease publication-title: Thromb. Haemost. – volume: 258 start-page: 917 year: 1992 end-page: 924 ident: bb0225 article-title: Membrane fusion publication-title: Science – volume: 129 start-page: 307 year: 2005 ident: 10.1016/j.jconrel.2019.02.033_bb0030 article-title: Molecular mechanisms of fibrinolysis publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2005.05444.x – volume: 119 start-page: 601 year: 2007 ident: 10.1016/j.jconrel.2019.02.033_bb0170 article-title: Arginyl-glycyl-aspartyl (RGD) epitope of human apolipoprotein (a) inhibits platelet aggregation by antagonizing the IIb subunit of the fibrinogen (GPIIb/IIIa) receptor publication-title: Thromb. Res. doi: 10.1016/j.thromres.2006.04.013 – volume: 93 start-page: 1004 year: 2010 ident: 10.1016/j.jconrel.2019.02.033_bb0195 article-title: In vitro and in vivo platelet targeting by cyclic rgd-modified liposomes publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32549 – volume: 6 start-page: 5566 year: 2014 ident: 10.1016/j.jconrel.2019.02.033_bb0165 article-title: Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am406008k – volume: 27 start-page: 5153 year: 2015 ident: 10.1016/j.jconrel.2019.02.033_bb0125 article-title: Multifunctional thrombin-activatable polymer capsules for specific targeting to activated platelets publication-title: Adv. Mater. doi: 10.1002/adma.201502243 – volume: 3 start-page: 2154 year: 2005 ident: 10.1016/j.jconrel.2019.02.033_bb0040 article-title: An ideal thrombolytic and antithrombotic agent publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2005.01599.x – volume: 40 start-page: 3 year: 1999 ident: 10.1016/j.jconrel.2019.02.033_bb0220 article-title: Mechanisms and kinetics of liposome cell interactions publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(99)00037-X – volume: 337 start-page: 738 year: 2012 ident: 10.1016/j.jconrel.2019.02.033_bb0100 article-title: Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels publication-title: Science doi: 10.1126/science.1217815 – volume: 29 start-page: 1676 year: 2008 ident: 10.1016/j.jconrel.2019.02.033_bb0080 article-title: Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.015 – volume: 16 start-page: 990 year: 2009 ident: 10.1016/j.jconrel.2019.02.033_bb0190 article-title: The platelet integrin αIIbβ3 binds to the RGD and AGD motifs in fibrinogen publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2009.08.012 – volume: 20 start-page: 355 year: 1992 ident: 10.1016/j.jconrel.2019.02.033_bb0020 article-title: Streptokinase is a flexible multi-domain protein publication-title: Eur. Biophys. J. doi: 10.1007/BF00196594 – volume: 75 start-page: 37 year: 2001 ident: 10.1016/j.jconrel.2019.02.033_bb0280 article-title: Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel publication-title: J. Control. Release doi: 10.1016/S0168-3659(01)00360-1 – volume: 3 start-page: 556 year: 2016 ident: 10.1016/j.jconrel.2019.02.033_bb0120 article-title: An antithrombotic hydrogel with thrombinresponsive fibrinolytic activity: breaking down the clot as it forms publication-title: Mater. Horiz. doi: 10.1039/C6MH00307A – volume: 7 start-page: 275ra20 year: 2015 ident: 10.1016/j.jconrel.2019.02.033_bb0140 article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa1065 – volume: 64 start-page: 316 year: 2012 ident: 10.1016/j.jconrel.2019.02.033_bb0250 article-title: The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.008 – volume: 424 start-page: 1 year: 2012 ident: 10.1016/j.jconrel.2019.02.033_bb0095 article-title: Functionalized carriers for the improved delivery of plasminogen activators publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.12.032 – volume: 9 start-page: 8021 year: 2017 ident: 10.1016/j.jconrel.2019.02.033_bb0210 article-title: Membrane-anchoring, comb-like pseudopeptides for efficient, pH-mediated membrane destabilization and intracellular delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00498 – volume: 326 start-page: 310 year: 1992 ident: 10.1016/j.jconrel.2019.02.033_bb0010 article-title: The pathogenesis of coronary artery disease and the acute coronary syndromes publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199201303260506 – volume: 227 start-page: 45 year: 2016 ident: 10.1016/j.jconrel.2019.02.033_bb0255 article-title: Liposomal nanocarriers for plasminogen activators publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.02.019 – volume: 13 year: 2017 ident: 10.1016/j.jconrel.2019.02.033_bb0115 article-title: Enhanced fibrinolysis with magnetically powered colloidal microwheels publication-title: Small doi: 10.1002/smll.201700954 – volume: 29 start-page: 228 year: 2008 ident: 10.1016/j.jconrel.2019.02.033_bb0075 article-title: Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.09.027 – volume: 53 start-page: 281 year: 2011 ident: 10.1016/j.jconrel.2019.02.033_bb0235 article-title: ABC/2: estimating intracerebral haemorrhage volume and total brain volume and predicting outcome in children publication-title: Dev. Med. Child Neurol. doi: 10.1111/j.1469-8749.2010.03798.x – volume: 20 start-page: 4093 year: 1981 ident: 10.1016/j.jconrel.2019.02.033_bb0230 article-title: Use of resonance energy transfer to monitor membrane fusion publication-title: Biochemistry doi: 10.1021/bi00517a023 – volume: 15 start-page: 143 year: 2001 ident: 10.1016/j.jconrel.2019.02.033_bb0015 article-title: Thrombolytic therapy publication-title: Blood Rev. doi: 10.1054/blre.2001.0161 – volume: 7 start-page: 1993 year: 2011 ident: 10.1016/j.jconrel.2019.02.033_bb0085 article-title: Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.01.026 – volume: 116 start-page: 12536 year: 2016 ident: 10.1016/j.jconrel.2019.02.033_bb0110 article-title: Mechanical force-triggered drug delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00369 – volume: 1860 start-page: 629 year: 2016 ident: 10.1016/j.jconrel.2019.02.033_bb0290 article-title: Synergistic fibrinolysis: the combined effects of tissue plasminogen activator and recombinant staphylokinase in vitro publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2015.12.022 – volume: 60 start-page: 1177 year: 2008 ident: 10.1016/j.jconrel.2019.02.033_bb0050 article-title: Ultrasonic gene and drug delivery to the cardiovascular system publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.03.004 – volume: 81 start-page: 1715 year: 1984 ident: 10.1016/j.jconrel.2019.02.033_bb0215 article-title: pH-sensitive liposomes: acid-induced liposome fusion publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.81.6.1715 – volume: 59 start-page: 133 year: 2009 ident: 10.1016/j.jconrel.2019.02.033_bb0245 article-title: Preparation of pegylated nano-liposomal formulation containing SN-38: in vitro characterization and in vivo biodistribution in mice publication-title: Acta Pharma. doi: 10.2478/v10007-009-0020-0 – volume: 39 start-page: 048 year: 2013 ident: 10.1016/j.jconrel.2019.02.033_bb0145 article-title: Novel and emerging therapies: thrombus-targeted fibrinolysis publication-title: Semin. Thromb. Hemost. – volume: 71 start-page: 1641 year: 1988 ident: 10.1016/j.jconrel.2019.02.033_bb0060 article-title: Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species publication-title: Blood doi: 10.1182/blood.V71.6.1641.1641 – volume: 30 start-page: 5751 year: 2009 ident: 10.1016/j.jconrel.2019.02.033_bb0065 article-title: The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.021 – volume: 2 start-page: 533 year: 2007 ident: 10.1016/j.jconrel.2019.02.033_bb0130 article-title: Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis publication-title: Nanomedicine doi: 10.2217/17435889.2.4.533 – volume: 156 start-page: 204 year: 2018 ident: 10.1016/j.jconrel.2019.02.033_bb0150 article-title: Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.047 – volume: 44 start-page: 1 year: 2006 ident: 10.1016/j.jconrel.2019.02.033_bb0025 article-title: Plasminogen activators: a comparison publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2005.09.003 – volume: 8 start-page: 7746 year: 2014 ident: 10.1016/j.jconrel.2019.02.033_bb0105 article-title: Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors publication-title: ACS Nano doi: 10.1021/nn5029955 – volume: 89 start-page: 664 year: 2000 ident: 10.1016/j.jconrel.2019.02.033_bb0275 article-title: A novel heparin/protamine-based pro-drug type delivery system for protease drugs publication-title: J. Pharm. Sci. doi: 10.1002/(SICI)1520-6017(200005)89:5<664::AID-JPS12>3.0.CO;2-9 – volume: 31 start-page: 67 year: 2015 ident: 10.1016/j.jconrel.2019.02.033_bb0055 article-title: Temperature-sensitive liposome-mediated delivery of thrombolytic agents publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2014.991428 – volume: 99 start-page: 480 year: 2008 ident: 10.1016/j.jconrel.2019.02.033_bb0175 article-title: Platelet-vessel wall interactions in atherosclerotic disease publication-title: Thromb. Haemost. doi: 10.1160/TH07-11-0685 – volume: 123 start-page: 35 year: 2008 ident: 10.1016/j.jconrel.2019.02.033_bb0185 article-title: Strategies for antiplatelet targets and agents publication-title: Thromb. Res. doi: 10.1016/j.thromres.2008.05.003 – volume: 8 start-page: 502 year: 2011 ident: 10.1016/j.jconrel.2019.02.033_bb0005 article-title: Arterial thrombus formation in cardiovascular disease publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2011.91 – volume: 7 start-page: 7664 year: 2013 ident: 10.1016/j.jconrel.2019.02.033_bb0090 article-title: Nanosized aspirin-arg-gly-asp-val: delivery of aspirin to thrombus by the target carrier arg-gly-asp-val tetrapeptide publication-title: ACS Nano doi: 10.1021/nn402171v – volume: 258 start-page: 917 year: 1992 ident: 10.1016/j.jconrel.2019.02.033_bb0225 article-title: Membrane fusion publication-title: Science doi: 10.1126/science.1439803 – volume: 6 start-page: 1601200 year: 2017 ident: 10.1016/j.jconrel.2019.02.033_bb0160 article-title: Development of polymer microcapsules functionalized with fucoidan to target p-selectin overexpressed in cardiovascular diseases publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201601200 – volume: 36 start-page: 133 year: 2004 ident: 10.1016/j.jconrel.2019.02.033_bb0180 article-title: Glycoprotein IIb/IIIa receptor and its inhibition: a platelet-directed therapeutic strategy publication-title: Ind. J. Pharmacol. – volume: 9 start-page: 194 year: 2013 ident: 10.1016/j.jconrel.2019.02.033_bb0260 article-title: Effect of ligand density, receptor density, and nanoparticle size on cell targeting publication-title: Nanomedicine doi: 10.1016/j.nano.2012.05.015 – volume: 9 start-page: 1292 year: 2011 ident: 10.1016/j.jconrel.2019.02.033_bb0070 article-title: Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2011.04339.x – volume: 15 start-page: 173 year: 2018 ident: 10.1016/j.jconrel.2019.02.033_bb0200 article-title: Tissue plasminogen activator-based nanothrombolysis for ischemic stroke publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2018.1384464 – volume: 2 start-page: 1548 year: 2004 ident: 10.1016/j.jconrel.2019.02.033_bb0045 article-title: Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2004.00884.x – volume: 87 start-page: 774 year: 2001 ident: 10.1016/j.jconrel.2019.02.033_bb0155 article-title: Relation of soluble and platelet P-selectin to early outcome in patients with acute myocardial infarction after thrombolytic therapy publication-title: Am. J. Cardiol. doi: 10.1016/S0002-9149(00)01502-2 – volume: 8 start-page: 22457 year: 2016 ident: 10.1016/j.jconrel.2019.02.033_bb0240 article-title: A virus-mimicking, endosomolytic liposomal system for efficient, ph-triggered intracellular drug delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05041 – volume: 27 start-page: 500 year: 1988 ident: 10.1016/j.jconrel.2019.02.033_bb0265 article-title: Kinetic and ultrastructural studies of interactions of target-sensitive immunoliposomes with herpes simplex virus publication-title: Biochemistry doi: 10.1021/bi00401a072 – volume: 25 start-page: 5500 year: 1986 ident: 10.1016/j.jconrel.2019.02.033_bb0270 article-title: Target-sensitive immunoliposomes: preparation and characterization publication-title: Biochemistry doi: 10.1021/bi00367a023 – volume: 5 start-page: 1098 year: 2015 ident: 10.1016/j.jconrel.2019.02.033_bb0135 article-title: Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles publication-title: Theranostics doi: 10.7150/thno.11679 – volume: 96 start-page: 761 year: 1997 ident: 10.1016/j.jconrel.2019.02.033_bb0035 article-title: Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels publication-title: Circulation doi: 10.1161/01.CIR.96.3.761 – volume: 30 start-page: 1663 year: 2013 ident: 10.1016/j.jconrel.2019.02.033_bb0205 article-title: Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy publication-title: Pharm. Res. doi: 10.1007/s11095-013-1011-x – volume: 10 year: 2015 ident: 10.1016/j.jconrel.2019.02.033_bb0285 article-title: Highly effective fibrinolysis by a sequential synergistic combination of mini-dose tPA plus low-dose mutant proUK publication-title: PLoS ONE doi: 10.1371/journal.pone.0122018 |
SSID | ssj0005347 |
Score | 2.5557768 |
Snippet | It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Activated platelet adverse effects Animals blood coagulation Blood Platelets Controlled release mechanism drugs encapsulation fibrin Fibrinolytic Agents - administration & dosage GPIIb-IIIa integrin Liposome Liposomes membrane fusion nanocarriers Nanoparticles - administration & dosage Sheep t-plasminogen activator Targeted delivery Thrombolysis Thrombolytic Therapy - methods thrombosis Thrombosis - metabolism Tissue plasminogen activator Tissue Plasminogen Activator - administration & dosage |
Title | An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy |
URI | https://dx.doi.org/10.1016/j.jconrel.2019.02.033 https://www.ncbi.nlm.nih.gov/pubmed/30807804 https://www.proquest.com/docview/2186615912 https://www.proquest.com/docview/2237527952 |
Volume | 300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5tJL6btJ26BCySna9epl67iEhm1LQ6AJ5CZkS4JdNvay3hR86bk_uzN-ZOkhDRQMxkYjBs945hPzIuSTCTEDt8RZ9EYxqRVnuUo9c0alIXdchQwLnL9f6Pm1_HqjbvbI2VALg2mVve3vbHprrfs3k_5rTtaLxeQHgJVMaGUAgmA0Qe-TAw7ePhuRg9mXb_OLXaaHkF3VtM4YEuwKeSbL8RKOnZuAQYipabt3CvGQi3oIgrau6PwZedpjSDrr2HxO9kL5gpxcdk2om1N6taupqk_pCb3ctaduXpLfs5JiNcNPQJmerVdwA9mxGjPZ0fbR0pXg4DY4yo6GtrSqpl3CePDUhxVmcjS0inTbCo3CFvXtoqxAFYeNqw0FMEy7ZBHcE6cx3ObVqgGeaFfz1bwi1-efr87mrJ_HwAo412xZDFGaaKIrvDeJc8KJ3ORFkXAvtcujh0u7iI1FPQARzXMAW6k04ARVzADavCajsirDW0KzRIoiRB28ilLk2mQ6pCBJH8HegpocEjmIwBZ9s3KcmbGyQ1ba0vaSsyg5m3ALkjsk43uyddet4zGCbJCv_UvtLHiUx0g_Dvpg4ZfEOIsrQ3VXWxzzBUDRTPk_1nCRKp4aBWvedMp0z7FIcAhAIo_-n7l35Ak-YdiLZ-_JaLu5Cx8APW3zY7I__jU97v-RP6PJH6E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5S59BeSt9Jn1soOWVjZV_SHk1ocJrEBOpAbstKuws2jmRsp6B_0J_dGT1iekgDBYFA2lkGzWjmW-ZFyDcTYgZuibPojWJSK85ylXrmjEpD7rgKGRY4X070-Fr-uFE3O-Skr4XBtMrO9rc2vbHW3ZNh9zWHy9ls-BPASia0MgBBMJqgn5BdiUOtB2R3dHY-nmwzPYRsq6Z1xpBgW8gznB_N4di5ChiEODZN904hHnJRD0HQxhWdviDPOwxJRy2bL8lOKF-Rg6u2CXV9SKfbmqr1IT2gV9v21PVr8ntUUqxm-AUo07PlAm4gO7bGTHa0fbR0JTi4FY6yo6EprVrTNmE8eOrDAjM5alpFummERmGL9e2srEAV-42rFQUwTNtkEdwTpzHc5tWiBp5oW_NVvyHXp9-nJ2PWzWNgBZxrNiyGKE000RXem8Q54URu8qJIuJfa5dHDpV3ExqIegIjmOYCtVBpwgipmAG3ekkFZlWGP0CyRoghRB6-iFLk2mQ4pSNJHsLegJvtE9iKwRdesHGdmLGyflTa3neQsSs4m3ILk9snRPdmy7dbxGEHWy9f-pXYWPMpjpF97fbDwS2KcxZWhultbHPMFQNEc83-s4SJVPDUK1rxrlemeY5HgEIBEvv9_5r6Qp-Pp5YW9OJucfyDP8A2GwHj2kQw2q7vwCZDUJv_c_Sl_AGbKIYc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+activated-platelet-sensitive+nanocarrier+enables+targeted+delivery+of+tissue+plasminogen+activator+for+effective+thrombolytic+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Huang%2C+Yu&rft.au=Yu%2C+Li&rft.au=Ren%2C+Jie&rft.au=Gu%2C+Boram&rft.date=2019-04-28&rft.issn=1873-4995&rft.eissn=1873-4995&rft.volume=300&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jconrel.2019.02.033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |