Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk

Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposi...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Obesity Vol. 42; no. 4; pp. 850 - 857
Main Authors Vasan, S K, Osmond, C, Canoy, D, Christodoulides, C, Neville, M J, Di Gravio, C, Fall, C H D, Karpe, F
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0307-0565
1476-5497
1476-5497
DOI10.1038/ijo.2017.289

Cover

Abstract Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Subjects/Methods: Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29–55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z -score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Results: Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07–1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Conclusions: Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.
AbstractList Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Subjects/Methods: Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Results: Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Conclusions: Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. International Journal of Obesity (2018) 42, 850-857; doi: 10.1038/ijo.2017.289; published online 6 February 2018
Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Subjects/Methods: Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29–55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z -score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Results: Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07–1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Conclusions: Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.
Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.
Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.BACKGROUND/OBJECTIVESFat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).SUBJECTS/METHODSWaist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.RESULTSFollowing adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.CONCLUSIONSCompared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.
Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.
Background/Objectives:Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.Subjects/Methods:Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).Results:Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.Conclusions:Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.
Audience Academic
Author Osmond, C
Di Gravio, C
Canoy, D
Neville, M J
Karpe, F
Christodoulides, C
Fall, C H D
Vasan, S K
Author_xml – sequence: 1
  givenname: S K
  surname: Vasan
  fullname: Vasan, S K
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford
– sequence: 2
  givenname: C
  surname: Osmond
  fullname: Osmond, C
  organization: MRC Life-course Epidemiology Unit, University of Southampton
– sequence: 3
  givenname: D
  orcidid: 0000-0003-4493-9901
  surname: Canoy
  fullname: Canoy, D
  organization: Nuffield Department of Population Health, University of Oxford
– sequence: 4
  givenname: C
  surname: Christodoulides
  fullname: Christodoulides, C
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford
– sequence: 5
  givenname: M J
  surname: Neville
  fullname: Neville, M J
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, NIHR Oxford Biomedical Centre, Oxford University Hospital Trust and University of Oxford
– sequence: 6
  givenname: C
  surname: Di Gravio
  fullname: Di Gravio, C
  organization: MRC Life-course Epidemiology Unit, University of Southampton
– sequence: 7
  givenname: C H D
  surname: Fall
  fullname: Fall, C H D
  organization: MRC Life-course Epidemiology Unit, University of Southampton
– sequence: 8
  givenname: F
  surname: Karpe
  fullname: Karpe, F
  email: Fredrik.Karpe@ocdem.ox.ac.uk
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, NIHR Oxford Biomedical Centre, Oxford University Hospital Trust and University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29151596$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuP0zAUhSM0iHnAjjWyhIRYkGI7cR4bpFHFSxqJzSzYWTfJTeNOYgfb6ag_jX-HQwttR4NQFlFyv3tyco4vozNtNEbRS0YXjCbFe7U2C05ZvuBF-SS6YGmexSIt87PogiY0j6nIxHl06dyaUioE5c-ic14ywUSZXUQ_l2YYwSpnNDEtsbhSRkNPWvBkQHCTxQG1d6TakmaCPkaNdrUl32MLWwKVM3b0ygzobXjUDamN3oSFnQpo31kzHo19h8oScM7UCmaK3CvfkQHsHVo3W2gUVOjR7dTANspswNVTDzbMXPCEJPi9ex49baF3-GJ_v4puP328XX6Jb759_rq8volrkRY-rpK6CP_aYlqkjCeUYSIoTTLgZV6ktCoq3tS8rSkrgWLSZiVr87RIeMubBpPkKop3spMeYXsPfS9Hq4LfrWRUzg3I0ICcG5ChgcB_2PHjVA3Y1CELC4cdA0qeTrTq5MpsZKhDZJkIAm_3Atb8mNB5OShXY9-DRjM5ycosS1OWsBl9_QBdm8mG4F3wk7KMFnnBD9QKepRKtyZ8t55F5bVIyoyJXMxai0eocDU4qFAqtiq8P1l4c7TQIfS-c6af5lLdKfjqOJG_Ufw5hAHgO6C2xjmLrayV_304ggXV_yvndw-W_lPLvkYXML1Ce4jqUf4XLjoQww
CitedBy_id crossref_primary_10_1093_advances_nmz050
crossref_primary_10_1111_petr_14130
crossref_primary_10_3389_fnut_2022_869351
crossref_primary_10_1186_s12944_024_02100_5
crossref_primary_10_1016_j_jocd_2023_03_004
crossref_primary_10_1007_s40471_018_0160_1
crossref_primary_10_1038_s41598_022_19937_4
crossref_primary_10_1194_jlr_R086975
crossref_primary_10_1016_S2468_2667_21_00134_1
crossref_primary_10_1152_physrev_00032_2020
crossref_primary_10_1186_s13293_020_00317_4
crossref_primary_10_1186_s12933_024_02208_z
crossref_primary_10_1186_s12891_023_06844_6
crossref_primary_10_3390_metabo11050317
crossref_primary_10_1002_cam4_3076
crossref_primary_10_1152_ajpcell_00726_2023
crossref_primary_10_1038_s41430_023_01381_w
crossref_primary_10_1016_j_jocd_2022_01_006
crossref_primary_10_1136_bmjophth_2023_001505
crossref_primary_10_1016_j_numecd_2024_06_019
crossref_primary_10_1016_j_obpill_2021_100007
crossref_primary_10_1093_milmed_usy302
crossref_primary_10_1002_jbmr_4298
crossref_primary_10_1016_j_pcad_2018_06_004
crossref_primary_10_1007_s10067_019_04701_3
crossref_primary_10_1590_0102_311x00033320
crossref_primary_10_1136_jech_2020_213930
crossref_primary_10_1371_journal_pone_0220077
crossref_primary_10_3390_nu13010110
crossref_primary_10_1016_j_exger_2024_112462
crossref_primary_10_1186_s12891_023_06934_5
crossref_primary_10_1371_journal_pone_0243850
crossref_primary_10_33880_ejfm_2023120104
crossref_primary_10_1016_j_cmet_2021_07_001
crossref_primary_10_1016_j_maturitas_2021_06_011
crossref_primary_10_1590_0102_311x00346520
crossref_primary_10_1186_s12880_023_01063_w
crossref_primary_10_1038_s41366_023_01454_7
crossref_primary_10_1186_s12940_022_00890_8
crossref_primary_10_1007_s11657_024_01435_x
crossref_primary_10_1186_s12986_024_00842_8
crossref_primary_10_1038_s41366_021_00923_1
crossref_primary_10_3390_antiox9080728
crossref_primary_10_3390_ijerph18115858
crossref_primary_10_1093_eurheartj_ehz391
crossref_primary_10_1186_s12864_025_11380_9
crossref_primary_10_1002_oby_23151
crossref_primary_10_1007_s00296_024_05622_4
crossref_primary_10_1038_s41366_021_00899_y
crossref_primary_10_1002_osp4_517
crossref_primary_10_1016_j_jcte_2021_100257
crossref_primary_10_3390_jimaging7070104
crossref_primary_10_1126_scitranslmed_aay4145
crossref_primary_10_1080_08952841_2021_1877098
crossref_primary_10_3390_ijerph17165656
crossref_primary_10_1016_j_nut_2021_111434
crossref_primary_10_1161_ATVBAHA_119_313154
crossref_primary_10_1002_oby_22509
crossref_primary_10_1002_dmrr_3707
crossref_primary_10_1002_osp4_467
crossref_primary_10_1016_j_numecd_2023_09_020
crossref_primary_10_2147_JAA_S474667
crossref_primary_10_1007_s00726_022_03229_2
crossref_primary_10_1002_alz_12888
crossref_primary_10_1111_obr_13429
crossref_primary_10_1098_rsos_231478
crossref_primary_10_1371_journal_pone_0209529
crossref_primary_10_1093_ajcn_nqz251
crossref_primary_10_1016_j_lanwpc_2023_100710
crossref_primary_10_1016_j_jocd_2018_06_001
crossref_primary_10_3389_fendo_2022_1032323
crossref_primary_10_1017_S1368980019004099
crossref_primary_10_1016_j_metabol_2023_155563
crossref_primary_10_3389_fmolb_2023_1166333
crossref_primary_10_1038_s41467_022_35563_0
crossref_primary_10_1007_s00592_024_02332_y
crossref_primary_10_1038_s41366_021_00898_z
crossref_primary_10_1038_s41514_020_0043_9
crossref_primary_10_3389_fpubh_2024_1373544
crossref_primary_10_3389_fcvm_2023_1055223
crossref_primary_10_1017_S0029665124000053
crossref_primary_10_1097_GME_0000000000001721
crossref_primary_10_1161_JAHA_122_029111
crossref_primary_10_1016_j_diabet_2021_101304
crossref_primary_10_3389_fendo_2021_803189
crossref_primary_10_1002_jcsm_12712
crossref_primary_10_1038_s41436_020_01024_6
crossref_primary_10_1016_j_maturitas_2023_107898
crossref_primary_10_1002_dmrr_3161
crossref_primary_10_1097_MCO_0000000000000485
crossref_primary_10_1038_s41366_024_01517_3
crossref_primary_10_3390_nu13082494
crossref_primary_10_1016_j_metabol_2020_154456
crossref_primary_10_1002_ehf2_14872
crossref_primary_10_1097_GME_0000000000001930
crossref_primary_10_1016_j_amjmed_2022_11_017
crossref_primary_10_1038_s41366_022_01137_9
crossref_primary_10_1007_s00296_023_05514_z
crossref_primary_10_3390_ijms24076310
crossref_primary_10_1016_j_clinthera_2020_09_005
crossref_primary_10_1016_j_csbj_2020_09_026
crossref_primary_10_1016_S2213_8587_24_00195_5
crossref_primary_10_1016_j_nutos_2022_01_001
crossref_primary_10_1136_bmjdrc_2023_003927
crossref_primary_10_3389_fendo_2022_1068917
crossref_primary_10_1007_s11102_024_01494_w
crossref_primary_10_1016_j_euf_2021_03_010
crossref_primary_10_1186_s13643_019_1197_z
crossref_primary_10_1210_clinem_dgae192
crossref_primary_10_1016_j_nut_2022_111651
crossref_primary_10_1136_bmjdrc_2023_003412
crossref_primary_10_1016_j_amjms_2023_11_021
crossref_primary_10_1038_s41430_020_0596_5
Cites_doi 10.1038/ijo.2010.102
10.1093/ajcn/57.5.605
10.1161/CIRCULATIONAHA.116.026560
10.1038/sj.ijo.0802567
10.1093/ajcn/77.5.1192
10.1152/ajpendo.00467.2001
10.1038/ejcn.2010.190
10.1038/oby.2001.85
10.1038/ejcn.2014.213
10.1016/S0899-9007(03)00061-3
10.1093/ije/dyx132
10.1093/ajcn/64.1.12
10.1001/jama.280.21.1843
10.1016/j.atherosclerosis.2005.12.027
10.1093/oxfordjournals.aje.a009158
10.1080/00365510701649524
10.2337/dc13-1353
10.1161/CIRCULATIONAHA.106.673756
10.1002/9780470773666
10.1210/jc.2008-0804
10.1371/journal.pone.0027694
10.1038/nrendo.2014.185
10.1038/ncb2922
10.1210/jc.2010-1378
10.2337/diab.34.10.1055
10.2337/diacare.27.2.372
10.4093/dmj.2017.41.1.51
10.1111/j.1365-2796.2004.01432.x
10.1038/oby.2010.248
10.1038/nutd.2013.5
10.1007/s00125-005-0044-z
10.1210/jc.2011-0615
10.1093/ajcn/74.3.315
10.1038/oby.2011.393
10.2337/dc08-2280
10.1301/nr.2007.jun.S7-S12
10.1002/oby.20028
10.1007/BF00280883
10.1161/CIRCULATIONAHA.106.675355
10.1002/oby.20135
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Apr 2018
Copyright © 2018 The Author(s) 2018 The Author(s)
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 2018
– notice: Copyright © 2018 The Author(s) 2018 The Author(s)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T2
7TK
7TS
7X2
7X7
7XB
88E
88G
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/ijo.2017.289
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Physical Education Index
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Public Health Database (ProQuest)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Diet & Clinical Nutrition
Recreation & Sports
DocumentTitleAlternate Regional adiposity and metabolic risk
EISSN 1476-5497
EndPage 857
ExternalDocumentID 10.1038/ijo.2017.289
PMC5965665
A539615755
29151596
10_1038_ijo_2017_289
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_12011/3
– fundername: Medical Research Council
  grantid: G0400519
– fundername: British Heart Foundation
  grantid: CS/15/4/31493
– fundername: British Heart Foundation
  grantid: RG/17/1/32663
– fundername: British Heart Foundation
  grantid: FS/16/45/32359
GroupedDBID .55
.GJ
29J
36B
39C
5RE
7X2
7X7
8R4
8R5
A8Z
ABDBF
ABOCM
ABUWG
ACUHS
ADBBV
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
B0M
BAWUL
BENPR
BHPHI
BPHCQ
C6C
DIK
DWQXO
EAD
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
ESX
F5P
FYUFA
GNUQQ
HCIFZ
IAO
IHR
ITC
J5H
M0K
M1P
M2M
MVM
NAO
OK1
Q2X
RNT
RNTTT
SV3
TUS
VH1
WH7
X7M
ZGI
ZXP
~8M
AAYXX
CITATION
---
-Q-
..I
.L3
.XZ
0R~
1CY
2FS
2WC
4.4
406
53G
5GY
70F
88E
8AO
8C1
8FE
8FH
8FI
8FJ
AACDK
AAHBH
AANZL
AASML
AATNV
AAWTL
AAYZH
ABAKF
ABAWZ
ABBRH
ABCQX
ABDBE
ABFSG
ABIVO
ABJNI
ABLJU
ABRTQ
ABZZP
ACAOD
ACGFS
ACKTT
ACPRK
ACRQY
ACSTC
ACZOJ
ADHUB
ADXHL
AEFQL
AEJRE
AEMSY
AENEX
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AHWEU
AIGIU
AILAN
AIXLP
AJRNO
ALFFA
ALIPV
AMYLF
APEBS
ATHPR
AXYYD
AYFIA
BBNVY
BKKNO
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DNIVK
DPUIP
DU5
E3Z
EBLON
ECM
EE.
EIF
EIOEI
EJD
FDQFY
FERAY
FIGPU
FIZPM
FSGXE
HMCUK
HZ~
IHW
INH
INR
IPY
IWAJR
JSO
JZLTJ
KQ8
L7B
M7P
NPM
NQJWS
O9-
OVD
P2P
P6G
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
RNS
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
UKHRP
~KM
3V.
7T2
7TK
7TS
7XB
8FK
C1K
K9.
LK8
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADTOC
ESTFP
UNPAY
ID FETCH-LOGICAL-c548t-b3c8515fe48412301e350036a297840b8b2dc2fc019a0e3f691f74832f2dde33
IEDL.DBID C6C
ISSN 0307-0565
1476-5497
IngestDate Wed Oct 29 12:00:31 EDT 2025
Thu Aug 21 14:35:57 EDT 2025
Fri Sep 05 06:15:51 EDT 2025
Mon Oct 06 18:08:19 EDT 2025
Mon Oct 20 22:15:44 EDT 2025
Mon Oct 20 15:59:46 EDT 2025
Thu May 22 21:24:46 EDT 2025
Mon Jul 21 06:04:08 EDT 2025
Wed Oct 01 03:43:12 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Fri Feb 21 02:39:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-b3c8515fe48412301e350036a297840b8b2dc2fc019a0e3f691f74832f2dde33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4493-9901
OpenAccessLink https://doi.org/10.1038%2Fijo.2017.289
PMID 29151596
PQID 2041608782
PQPubID 38864
PageCount 8
ParticipantIDs unpaywall_primary_10_1038_ijo_2017_289
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5965665
proquest_miscellaneous_1966441315
proquest_journals_2041608782
gale_infotracmisc_A539615755
gale_infotracacademiconefile_A539615755
gale_healthsolutions_A539615755
pubmed_primary_29151596
crossref_citationtrail_10_1038_ijo_2017_289
crossref_primary_10_1038_ijo_2017_289
springer_journals_10_1038_ijo_2017_289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle International Journal of Obesity
PublicationTitleAbbrev Int J Obes
PublicationTitleAlternate Int J Obes (Lond)
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chau, Bandiera, Serrels, Martinez-Estrada, Qing, Lee (CR28) 2014; 16
Dale, Fatemifar, Palmer, White, Prieto-Merino, Zabaneh (CR16) 2017; 135
Marinou, Hodson, Vasan, Fielding, Banerjee, Brismar (CR30) 2014; 37
Sakai, Ito, Egami, Ohoto, Hijii, Yanagawa (CR37) 2005; 257
Camhi, Bray, Bouchard, Greenway, Johnson, Newton (CR17) 2011; 19
Lissner, Bjorkelund, Heitmann, Seidell, Bengtsson (CR9) 2001; 9
Aasen, Fagertun, Halse (CR11) 2008; 68
Seidell, Perusse, Despres, Bouchard (CR7) 2001; 74
Van Pelt, Evans, Schechtman, Ehsani, Kohrt (CR15) 2002; 282
Karpe, Vasan, Humphreys, Miller, Cheeseman, Dennis, Neville (CR21) 2017; 47
Liu, Fox, Hickson, May, Hairston, Carr (CR34) 2010; 95
Choi, Chung, Lim, Lee, Shin, Chung (CR14) 2017; 41
Neeland, Ayers, Rohatgi, Turer, Berry, Das (CR33) 2013; 21
Karpe, Pinnick (CR39) 2015; 11
Snijder, Dekker, Visser, Bouter, Stehouwer, Kostense (CR31) 2003; 77
Kang, Yoon, Ahn, Kim, Lee, Shin (CR13) 2011; 6
Snijder, Dekker, Visser, Bouter, Stehouwer, Yudkin (CR5) 2004; 27
Wiklund, Toss, Jansson, Eliasson, Hallmans, Nordstrom (CR12) 2010; 34
Ohlson, Larsson, Svardsudd, Welin, Eriksson, Wilhelmsen (CR1) 1985; 34
Mellis, Oldroyd, Hind (CR24) 2014; 68
Hind, Oldroyd, Truscott (CR23) 2011; 65
Kyle, Schutz, Dupertuis, Pichard (CR26) 2003; 19
Rexrode, Carey, Hennekens, Walters, Colditz, Stampfer (CR4) 1998; 280
Fox, Massaro, Hoffmann, Pou, Maurovich-Horvat, Liu (CR29) 2007; 116
Zhang, Hu, Wu, Malik, Sun (CR38) 2013; 21
Canoy, Boekholdt, Wareham, Luben, Welch, Bingham (CR3) 2007; 116
Armitage, Berry (CR27) 2002
Carey, Walters, Colditz, Solomon, Willett, Rosner (CR2) 1997; 145
Kaul, Rothney, Peters, Wacker, Davis, Shapiro (CR19) 2012; 20
Wiklund, Toss, Weinehall, Hallmans, Franks, Nordstrom (CR10) 2008; 93
Canoy, Wareham, Luben, Welch, Bingham, Day (CR8) 2006; 189
Matthews, Hosker, Rudenski, Naylor, Treacher, Turner (CR22) 1985; 28
Porter, Massaro, Hoffmann, Vasan, O'Donnel, Fox (CR36) 2009; 32
Snijder, Zimmet, Visser, Dekker, Seidell, Shaw (CR6) 2004; 28
Gray, Vidal-Puig (CR40) 2007; 65
Caprio, Hyman, McCarthy, Lange, Bronson, Tamborlane (CR32) 1996; 64
Svendsen, Haarbo, Hassager, Christiansen (CR18) 1993; 57
Tan, Neville, Liverani, Humphreys, Currie, Dennis (CR20) 2006; 49
McLaughlin, Lamendola, Liu, Abbasi (CR35) 2011; 96
Stults-Kolehmainen, Stanforth, Bartholomew, Lu, Abolt, Sinha (CR25) 2013; 3
K Hind (BFijo2017289_CR23) 2011; 65
CS Fox (BFijo2017289_CR29) 2007; 116
Y Sakai (BFijo2017289_CR37) 2005; 257
JC Seidell (BFijo2017289_CR7) 2001; 74
MB Snijder (BFijo2017289_CR31) 2003; 77
IJ Neeland (BFijo2017289_CR33) 2013; 21
GD Tan (BFijo2017289_CR20) 2006; 49
S Caprio (BFijo2017289_CR32) 1996; 64
MB Snijder (BFijo2017289_CR6) 2004; 28
UG Kyle (BFijo2017289_CR26) 2003; 19
OL Svendsen (BFijo2017289_CR18) 1993; 57
LO Ohlson (BFijo2017289_CR1) 1985; 34
SA Porter (BFijo2017289_CR36) 2009; 32
SM Kang (BFijo2017289_CR13) 2011; 6
S Kaul (BFijo2017289_CR19) 2012; 20
DR Matthews (BFijo2017289_CR22) 1985; 28
MG Mellis (BFijo2017289_CR24) 2014; 68
F Karpe (BFijo2017289_CR39) 2015; 11
MA Stults-Kolehmainen (BFijo2017289_CR25) 2013; 3
MB Snijder (BFijo2017289_CR5) 2004; 27
D Canoy (BFijo2017289_CR8) 2006; 189
P Wiklund (BFijo2017289_CR10) 2008; 93
L Lissner (BFijo2017289_CR9) 2001; 9
X Zhang (BFijo2017289_CR38) 2013; 21
VJ Carey (BFijo2017289_CR2) 1997; 145
Fredrik Karpe (BFijo2017289_CR21) 2017; 47
RE Van Pelt (BFijo2017289_CR15) 2002; 282
D Canoy (BFijo2017289_CR3) 2007; 116
YY Chau (BFijo2017289_CR28) 2014; 16
P Wiklund (BFijo2017289_CR12) 2010; 34
CE Dale (BFijo2017289_CR16) 2017; 135
P Armitage (BFijo2017289_CR27) 2002
SM Camhi (BFijo2017289_CR17) 2011; 19
K Marinou (BFijo2017289_CR30) 2014; 37
T McLaughlin (BFijo2017289_CR35) 2011; 96
KM Rexrode (BFijo2017289_CR4) 1998; 280
SI Choi (BFijo2017289_CR14) 2017; 41
SL Gray (BFijo2017289_CR40) 2007; 65
J Liu (BFijo2017289_CR34) 2010; 95
G Aasen (BFijo2017289_CR11) 2008; 68
References_xml – volume: 34
  start-page: 1752
  year: 2010
  end-page: 1758
  ident: CR12
  article-title: Abdominal and gynoid adipose distribution and incident myocardial infarction in women and men
  publication-title: Int J Obes
  doi: 10.1038/ijo.2010.102
– volume: 57
  start-page: 605
  year: 1993
  end-page: 608
  ident: CR18
  article-title: Accuracy of measurements of body composition by dual-energy x-ray absorptiometry
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/57.5.605
– volume: 135
  start-page: 2373
  year: 2017
  end-page: 2388
  ident: CR16
  article-title: Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a mendelian randomization analysis
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.026560
– volume: 28
  start-page: 402
  year: 2004
  end-page: 409
  ident: CR6
  article-title: Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab Study
  publication-title: Int J Obes Relat Metab Disord
  doi: 10.1038/sj.ijo.0802567
– volume: 77
  start-page: 1192
  year: 2003
  end-page: 1197
  ident: CR31
  article-title: Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/77.5.1192
– volume: 282
  start-page: E1023
  year: 2002
  end-page: E1028
  ident: CR15
  article-title: Contributions of total and regional fat mass to risk for cardiovascular disease in older women
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00467.2001
– volume: 65
  start-page: 140
  year: 2011
  end-page: 142
  ident: CR23
  article-title: precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2010.190
– volume: 9
  start-page: 644
  year: 2001
  end-page: 646
  ident: CR9
  article-title: Larger hip circumference independently predicts health and longevity in a Swedish female cohort
  publication-title: Obes Res
  doi: 10.1038/oby.2001.85
– volume: 68
  start-page: 1365
  year: 2014
  end-page: 1367
  ident: CR24
  article-title: precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: the influence of body mass index
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2014.213
– volume: 19
  start-page: 597
  year: 2003
  end-page: 604
  ident: CR26
  article-title: Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(03)00061-3
– volume: 47
  start-page: 21
  issue: 1
  year: 2017
  end-page: 21g
  ident: CR21
  article-title: Cohort Profile: The Oxford Biobank
  publication-title: International Journal of Epidemiology
  doi: 10.1093/ije/dyx132
– volume: 64
  start-page: 12
  year: 1996
  end-page: 17
  ident: CR32
  article-title: Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/64.1.12
– volume: 280
  start-page: 1843
  year: 1998
  end-page: 1848
  ident: CR4
  article-title: Abdominal adiposity and coronary heart disease in women
  publication-title: JAMA
  doi: 10.1001/jama.280.21.1843
– volume: 189
  start-page: 420
  year: 2006
  end-page: 427
  ident: CR8
  article-title: Serum lipid concentration in relation to anthropometric indices of central and peripheral fat distribution in 20,021 British men and women: results from the EPIC-Norfolk population-based cohort study
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2005.12.027
– volume: 145
  start-page: 614
  year: 1997
  end-page: 619
  ident: CR2
  article-title: Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a009158
– volume: 68
  start-page: 204
  year: 2008
  end-page: 211
  ident: CR11
  article-title: Regional fat mass by DXA: high leg fat mass attenuates the relative risk of insulin resistance and dyslipidaemia in obese but not in overweight postmenopausal women
  publication-title: Scand J Clin Lab Invest
  doi: 10.1080/00365510701649524
– volume: 21
  start-page: E439
  year: 2013
  end-page: E447
  ident: CR33
  article-title: Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults
  publication-title: Obesity
– volume: 37
  start-page: 821
  year: 2014
  end-page: 829
  ident: CR30
  article-title: Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men
  publication-title: Diabetes Care
  doi: 10.2337/dc13-1353
– volume: 116
  start-page: 2933
  year: 2007
  end-page: 2943
  ident: CR3
  article-title: Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.673756
– year: 2002
  ident: CR27
  publication-title: Statistical Methods in Medical Research
  doi: 10.1002/9780470773666
– volume: 93
  start-page: 4360
  year: 2008
  end-page: 4366
  ident: CR10
  article-title: Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2008-0804
– volume: 6
  start-page: e27694
  year: 2011
  ident: CR13
  article-title: Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027694
– volume: 11
  start-page: 90
  year: 2015
  end-page: 100
  ident: CR39
  article-title: Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2014.185
– volume: 16
  start-page: 367
  year: 2014
  end-page: 375
  ident: CR28
  article-title: Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2922
– volume: 95
  start-page: 5419
  year: 2010
  end-page: 5426
  ident: CR34
  article-title: Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-1378
– volume: 34
  start-page: 1055
  year: 1985
  end-page: 1058
  ident: CR1
  article-title: The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913
  publication-title: Diabetes
  doi: 10.2337/diab.34.10.1055
– volume: 27
  start-page: 372
  year: 2004
  end-page: 377
  ident: CR5
  article-title: Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.2.372
– volume: 41
  start-page: 51
  year: 2017
  end-page: 59
  ident: CR14
  article-title: Relationship between regional body fat distribution and diabetes mellitus: 2008 to 2010 korean national health and nutrition examination surveys
  publication-title: Diabetes Metab J
  doi: 10.4093/dmj.2017.41.1.51
– volume: 257
  start-page: 194
  year: 2005
  end-page: 200
  ident: CR37
  article-title: Favourable association of leg fat with cardiovascular risk factors
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2004.01432.x
– volume: 19
  start-page: 402
  year: 2011
  end-page: 408
  ident: CR17
  article-title: The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences
  publication-title: Obesity
  doi: 10.1038/oby.2010.248
– volume: 3
  start-page: e64
  year: 2013
  ident: CR25
  article-title: DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men
  publication-title: Nutr Diabetes
  doi: 10.1038/nutd.2013.5
– volume: 49
  start-page: 158
  year: 2006
  end-page: 168
  ident: CR20
  article-title: The effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-0044-z
– volume: 96
  start-page: E1756
  year: 2011
  end-page: E1760
  ident: CR35
  article-title: Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-0615
– volume: 74
  start-page: 315
  year: 2001
  end-page: 321
  ident: CR7
  article-title: Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/74.3.315
– volume: 20
  start-page: 1313
  year: 2012
  end-page: 1318
  ident: CR19
  article-title: Dual-energy X-ray absorptiometry for quantification of visceral fat
  publication-title: Obesity
  doi: 10.1038/oby.2011.393
– volume: 32
  start-page: 1068
  year: 2009
  end-page: 1075
  ident: CR36
  article-title: Abdominal subcutaneous adipose tissue: a protective fat depot?
  publication-title: Diabetes Care
  doi: 10.2337/dc08-2280
– volume: 65
  start-page: S7
  year: 2007
  end-page: 12
  ident: CR40
  article-title: Adipose tissue expandability in the maintenance of metabolic homeostasis
  publication-title: Nutr Rev
  doi: 10.1301/nr.2007.jun.S7-S12
– volume: 21
  start-page: 824
  year: 2013
  end-page: 830
  ident: CR38
  article-title: Associations of leg fat accumulation with adiposity-related biological factors and risk of metabolic syndrome
  publication-title: Obesity
  doi: 10.1002/oby.20028
– volume: 28
  start-page: 412
  year: 1985
  end-page: 419
  ident: CR22
  article-title: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man
  publication-title: Diabetologia
  doi: 10.1007/BF00280883
– volume: 116
  start-page: 39
  year: 2007
  end-page: 48
  ident: CR29
  article-title: Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.675355
– volume: 19
  start-page: 597
  year: 2003
  ident: BFijo2017289_CR26
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(03)00061-3
– volume: 11
  start-page: 90
  year: 2015
  ident: BFijo2017289_CR39
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2014.185
– volume: 34
  start-page: 1055
  year: 1985
  ident: BFijo2017289_CR1
  publication-title: Diabetes
  doi: 10.2337/diab.34.10.1055
– volume: 96
  start-page: E1756
  year: 2011
  ident: BFijo2017289_CR35
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-0615
– volume: 282
  start-page: E1023
  year: 2002
  ident: BFijo2017289_CR15
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00467.2001
– volume: 68
  start-page: 1365
  year: 2014
  ident: BFijo2017289_CR24
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2014.213
– volume: 21
  start-page: E439
  year: 2013
  ident: BFijo2017289_CR33
  publication-title: Obesity
  doi: 10.1002/oby.20135
– volume: 27
  start-page: 372
  year: 2004
  ident: BFijo2017289_CR5
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.2.372
– volume: 64
  start-page: 12
  year: 1996
  ident: BFijo2017289_CR32
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/64.1.12
– volume: 21
  start-page: 824
  year: 2013
  ident: BFijo2017289_CR38
  publication-title: Obesity
  doi: 10.1002/oby.20028
– volume: 37
  start-page: 821
  year: 2014
  ident: BFijo2017289_CR30
  publication-title: Diabetes Care
  doi: 10.2337/dc13-1353
– volume: 116
  start-page: 39
  year: 2007
  ident: BFijo2017289_CR29
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.675355
– volume: 74
  start-page: 315
  year: 2001
  ident: BFijo2017289_CR7
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/74.3.315
– volume-title: Statistical Methods in Medical Research
  year: 2002
  ident: BFijo2017289_CR27
  doi: 10.1002/9780470773666
– volume: 47
  start-page: 21
  issue: 1
  year: 2017
  ident: BFijo2017289_CR21
  publication-title: International Journal of Epidemiology
  doi: 10.1093/ije/dyx132
– volume: 19
  start-page: 402
  year: 2011
  ident: BFijo2017289_CR17
  publication-title: Obesity
  doi: 10.1038/oby.2010.248
– volume: 135
  start-page: 2373
  year: 2017
  ident: BFijo2017289_CR16
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.026560
– volume: 65
  start-page: S7
  year: 2007
  ident: BFijo2017289_CR40
  publication-title: Nutr Rev
  doi: 10.1301/nr.2007.jun.S7-S12
– volume: 16
  start-page: 367
  year: 2014
  ident: BFijo2017289_CR28
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2922
– volume: 189
  start-page: 420
  year: 2006
  ident: BFijo2017289_CR8
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2005.12.027
– volume: 28
  start-page: 412
  year: 1985
  ident: BFijo2017289_CR22
  publication-title: Diabetologia
  doi: 10.1007/BF00280883
– volume: 145
  start-page: 614
  year: 1997
  ident: BFijo2017289_CR2
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a009158
– volume: 280
  start-page: 1843
  year: 1998
  ident: BFijo2017289_CR4
  publication-title: JAMA
  doi: 10.1001/jama.280.21.1843
– volume: 93
  start-page: 4360
  year: 2008
  ident: BFijo2017289_CR10
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2008-0804
– volume: 34
  start-page: 1752
  year: 2010
  ident: BFijo2017289_CR12
  publication-title: Int J Obes
  doi: 10.1038/ijo.2010.102
– volume: 95
  start-page: 5419
  year: 2010
  ident: BFijo2017289_CR34
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-1378
– volume: 57
  start-page: 605
  year: 1993
  ident: BFijo2017289_CR18
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/57.5.605
– volume: 116
  start-page: 2933
  year: 2007
  ident: BFijo2017289_CR3
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.673756
– volume: 49
  start-page: 158
  year: 2006
  ident: BFijo2017289_CR20
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-0044-z
– volume: 77
  start-page: 1192
  year: 2003
  ident: BFijo2017289_CR31
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/77.5.1192
– volume: 28
  start-page: 402
  year: 2004
  ident: BFijo2017289_CR6
  publication-title: Int J Obes Relat Metab Disord
  doi: 10.1038/sj.ijo.0802567
– volume: 68
  start-page: 204
  year: 2008
  ident: BFijo2017289_CR11
  publication-title: Scand J Clin Lab Invest
  doi: 10.1080/00365510701649524
– volume: 65
  start-page: 140
  year: 2011
  ident: BFijo2017289_CR23
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2010.190
– volume: 3
  start-page: e64
  year: 2013
  ident: BFijo2017289_CR25
  publication-title: Nutr Diabetes
  doi: 10.1038/nutd.2013.5
– volume: 6
  start-page: e27694
  year: 2011
  ident: BFijo2017289_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027694
– volume: 9
  start-page: 644
  year: 2001
  ident: BFijo2017289_CR9
  publication-title: Obes Res
  doi: 10.1038/oby.2001.85
– volume: 20
  start-page: 1313
  year: 2012
  ident: BFijo2017289_CR19
  publication-title: Obesity
  doi: 10.1038/oby.2011.393
– volume: 32
  start-page: 1068
  year: 2009
  ident: BFijo2017289_CR36
  publication-title: Diabetes Care
  doi: 10.2337/dc08-2280
– volume: 41
  start-page: 51
  year: 2017
  ident: BFijo2017289_CR14
  publication-title: Diabetes Metab J
  doi: 10.4093/dmj.2017.41.1.51
– volume: 257
  start-page: 194
  year: 2005
  ident: BFijo2017289_CR37
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2004.01432.x
SSID ssj0005502
ssj0033214
Score 2.578746
Snippet Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually...
Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional...
Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually...
Background/Objectives:Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 850
SubjectTerms 692/163/2743/137
692/163/2743/393
692/308/174
692/499
692/700/1421/1770
Absorptiometry, Photon
Adipose tissue
Adipose Tissue - diagnostic imaging
Adult
Anthropometry
Body fat
Body measurements
Body Size - physiology
Bone densitometry
Cardiovascular disease
Cardiovascular diseases
Cardiovascular Diseases - epidemiology
Comparative analysis
Confidence intervals
Cross-Sectional Studies
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - epidemiology
Diagnosis
Dual energy X-ray absorptiometry
Energy measurement
Epidemiology
Fats
Female
Health Promotion and Disease Prevention
Health risk assessment
Health risks
Hip
Humans
Hypertension
Hypertriglyceridemia
Insulin
Insulin resistance
Internal Medicine
Male
Markers
Medicine
Medicine & Public Health
Men
Metabolic Diseases
Middle Aged
Original
original-article
Public Health
Risk
Risk Factors
Type 2 diabetes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZGJ8F4QFBgFAYYCcrDFEjiOEkfEBpj04S0CqEh9S2yHVsUtUlpUqH-afx33CVO0kywx9YX13HPn8--Hx8hr40W0hMscHQcBk7gSd-RShpHuMZnPDDxpCKbuJyGF9-DLzM-2yPTJhcGwyobTKyAOs0V3pHDIR1MBzeGDe3j6peDrFHoXW0oNISlVkg_VCXGbpF9HytjDcj-p7Pp129d0Ad32-pSDDl6mjqJYAdwGxfvsvj9_CcmBnrROx_533d2rOu4vbNxXQ-qbD2rd8mdTbYS299isdjZvM7vk3vW6qQntZo8IHs6G5LR57ku6Zja0qALOm0q8w_J7Uvrcx-SYWdZgnDFil48JH9OWwJDmhuK_A5o01MjSrrs7h0LKrcU070cXSUZ0pmzFlsqZJGvEayWulzDxyylu-Hv8EVN39A1Vw4NKjploniDTJcYXbQucAjNLXLdWy_Mllo3FMVA-kfk6vzs6vTCsTQQjoLjVOlIpsAs5EYHcQD7rOtpxrGMjvDhBBy4MpZ-qnyjwFgVrmYmnHgmCgCpjA_YzdhjMsjyTD8hVHgqYimLPMkN-oMlj13ppXEoUhVKNxyR4-afTpQtkY5MHYukctWzOAG9SFAvEtCLEXnTSq_q0iD_kXuJSpPUia0toiQnnE3Anow4H5G3lQRiCvyeEjY1AkaN1bl6kkc9ScAC1W9uFDOxWFQk3coZkVdtMz6J8XWZzjdFAjiMhjHzoIvDWo_bd_InldELsxP1NLwVwArl_ZZs_qOqVA5PwXEB-hw3a6Eb1r-natyulBvn9OnNL_qMHIBkXEdYHZFBud7o52A8lvKFRYS_vmdwcQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagK_E48CivwAJGgnJAKUmch3usFlYrpC0cdqVyimzHFoU2rZpUqPwz_h0ziZM2FaC9tfXEtR17_I3n8wwhr40W0hcsdDWPQzf0ZeBKJY0rPBOwKDR8VCWbOJ_EZ5fhp2k0tYZiYWmVdUjLSk037LD3s-_LAM0VPhquMnOdHMURYO8eObqcfBl_baIdwm4eVdeJktgFwyexTHePcawAiVzJMMCM7nt70KEm3tuKDmmSra_0Nrm5yVdi-1PM53vb0eld8rnpSM1C-THclHKofh3EeLx6T--ROxaZ0nEtcZ9c03mfOB9muqQDasOHzumkid7fJzfOrV--T_o79AnCVeb04gH5fdImOaRLQzEHBOJ-akRJF7uzyYLKLcUrYa6uLiLSqbsWWypksVyjQlvocg1f84zuU-ThhzrFw664cnpQsZtwFE-Z6QIZSOsCm9CcNNe1dai41LqqKJLtH5KL048XJ2euTRXhKjC5SlcyBdAxMjrkIezFnq9ZhKF2RABWcuhJLoNMBUYBoBWeZiYe-SYJQZuZAPQ7Y49IL1_m-gmhwlcJy1jiy8igz1hG3JN-xmORqVh6sUPeNXMnVTaMOmbzmKeVO5_xFF5gim8whVfokDet9KoOH_IPuZc4DdP68murddJxxEaAOZMocsjbSgL1DvyfEvb6BLQaI3h1JI87kqAvVLe4meqp1VcFtAOAuccBLjrkVVuMTyIHL9fLTZGCrkbwzHyo4nG9Mto-BaMKGMPoJJ010wpgFPNuST77VkUzh6fApIA6B83q2jXr70M1aNfef8f06VUFn5Fb8JHXfKxj0ivXG_0coGYpX1j98gc8Q4Hm
  priority: 102
  providerName: Unpaywall
Title Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk
URI https://link.springer.com/article/10.1038/ijo.2017.289
https://www.ncbi.nlm.nih.gov/pubmed/29151596
https://www.proquest.com/docview/2041608782
https://www.proquest.com/docview/1966441315
https://pubmed.ncbi.nlm.nih.gov/PMC5965665
https://www.nature.com/articles/ijo2017289.pdf
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1476-5497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 1476-5497
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1476-5497
  dateEnd: 20201028
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 1476-5497
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-5497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005502
  issn: 1476-5497
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwED-xTeIhhKC8CqMYCcoHFEjiPNyPpds0QKsmtEnlU2Qntihq06lJhfqn8d9xl2czAeJL1MaXq-uczz_7XgCvjZbKkdyztAg8y3OUa6lYGUvaxuW-Z8SoKDZxNg1OL73PM39WOchSLEzHfl-k7p7_oBg9J3yPW4M9OBAoklSpYBJMWlcO325yRnGqvFNnP8TV3a-83ZHZh11WnXXoujbeWY6uu0o29tI7cGuTXsntT7lY7CxJJ_fhXoUl2bh8-Q_ghk570D-a65wNWZXwc8Gmdb79Htw8qyzpPbhbntexMgypB70WP-LDRe3z7CH8mjRlCtnKMKriQMidGZmzZXu6mDG1ZRTUZekilJDNrLXcMqmy1ZpU0lLna_yaJmzXyR1vlEUa2ubCbMFkKzKMzonZknyI1hl1oT4rLrl1nGlZZWxi5C7_CC5Oji8mp1ZV7MGKcdOUW4rHCP58oz3h4WpqO5r7lCxHurjP9WwllJvErokRkkpbcxOMHBN6qI-Mixqa88ewn65S_RSYdOKQJzx0lG_I6qt8YSsnEYFM4kDZQR_e1W8-iqtE6FSPYxEVBnkuIpSTiOQkQjnpw5uG-qpMAPIXupckRFEZvtrojWjs8xGixtD3-_C2oCDNgb8XyyoAAntNObg6lIcdSpzxcbe5FtSo0jgZ9gOhtS0Q8PXhVdNMT5IXXapXmyxCbUvwlzvI4kkp181_ckcFtMXRCTsS3xBQHvJuSzr_XuQjx6dwU4A8h_XcaLv156EaNjPnn2P67H85Pofb-FGUHlWHsJ-vN_oFgsVcDWAvnIV4FRNnAAcfj6fnXweF9sDr0acveO9yej7-9ht5yWxo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlE4IAivQKFGouGAtuza-8oBoSqlSmmTU5Bys-xdWwQlm5DdqMqP4gfw75jZZ7aC3nrMeux4vZ8_jz3jGULeGy2VI7lr6dB3LddRzFKRMpa0DeOea8J-nmxiNPaH391vU2-6R35Xd2HQrbLixJyo42WEZ-SwSQfVwQ5hQfuy-mVh1ii0rlYpNApYXOrtNWzZ0s8XZ_B9jxk7_zoZDK0yq4AVgXaeWYpHoGV4RruhC7RtO5p7GJVFMthQubYKFYsjZiLQfaStufH7jglcAL5hQAV4_gmMf8_lLEAeCAc7HiWeXYeu4pgAqArCCEqGVzrd2zz8NPuJtw6d4IRhcvmd5fDmorCzKt702KzNtg_JwSZZye21nM93Vsbzx-RRqdLS0wKDT8ieTjqkezbTGe3RMu7onI6rsP8dcn9UGvQ7pNOorSCcp1xPn5I_gzo7Il0aiskjcMNAjczoojnUTKnaUrxLZun8BiOdWmu5pVKlyzUy4UJna_iZxHTXtx4eFLkhmuLcWkJlg1SKx9N0ga5L6xS7UB1RF621fHhpaeOi6KX_jEzuAg3PyX6yTPRLQqUTBTzmgaM8g8Zm5YW2cuLQl3HkK9vvko_VlxZRGX8d04DMRe4HwEMBuBCICwG46JLjWnpVxB35j9wRgkYUt2ZruhKnHu-Dshp4Xpd8yCWQsOD_Ilneu4BeY-ivluRhSxKIJmoXV8AUJdGlopmWXfKuLsaa6LyX6OUmFUDyqHVzB5p4UeC4fifWzzVqGJ2ghfBaAMOft0uS2Y88DDrUgr0ItNmr5kLTrX8PVa-eKbeO6avbX_SIHAwnoytxdTG-fE0eQK2wcOU6JPvZeqPfgJaaqbc5N1Ai7piL_gJR86Ra
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQ14QFC-CoMZiZUHFJbEcZI-IDStVBtjFQ9D6ptlJ7YoapPSpJr6p-2_4y6fzQR722Pjs-s455_Pvp_vCHlvtFSOZJ6lQ9-zPEe5loqUsaRtXMY9Ew6LZBMXE__0p_dtyqc75Lq-C4O0yhoTC6CO0wjPyGGTDqaDHcKCdmQqWsSP0fjL8o-FGaTQ01qn0yhV5FxvrmD7ln0-G8G3PnTd8dfLk1OryjBgRWCp55ZiEVgc3Ggv9ADCbUczjhFapAubK89WoXLjyDUR2EHS1sz4Q8cEHkwC4wIs4FkooP-9gLEhsgmDadCyS7jdhLFimAyoDsgIBgevCPg2C49mv_EGohN8cjHR_NbSeHOB2Fohb7I3GxfuQ3J_nSzl5krO51ur5PgxeVSZt_S41McnZEcnPdIfzXROB7SKQTqnkzoFQI_sXVTO_R7ptSYsCBfp17On5PqkyZRIU0MxkQRuHqiROV20B5wZVRuK98osXdxmpFNrJTdUqixdISoudL6Cn0lMt3n28KDME9EWF54TKlutpXhUTRdIY1pl2IX6uLpsrcPnpZW_iyJj_xm5vAtteE52kzTRLwmVThSwmAWO4gYdz4qHtnLi0Jdx5Cvb75OP9ZcWURWLHVOCzEXBCWChAL0QqBcC9KJPDhvpZRmD5D9yB6g0orxB20CXOOZsCIZrwHmffCgkELzg_yJZ3cGAXmMYsI7kfkcSQCfqFteKKSrQy0Q7RfvkXVOMNZHIl-h0nQkAfLTAmQNNvCj1uHknd1hY1zA6QUfDGwEMhd4tSWa_ipDoUAv2JdDmoJ4Lbbf-PVSDZqbcOqavbn_RA7IHKCS-n03OX5MHUCksWV37ZDdfrfUbMFhz9baABkrEHUPRX7jeqMk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagK_E48CivwAJGgnJAKUmch3usFlYrpC0cdqVyimzHFoU2rZpUqPwz_h0ziZM2FaC9tfXEtR17_I3n8wwhr40W0hcsdDWPQzf0ZeBKJY0rPBOwKDR8VCWbOJ_EZ5fhp2k0tYZiYWmVdUjLSk037LD3s-_LAM0VPhquMnOdHMURYO8eObqcfBl_baIdwm4eVdeJktgFwyexTHePcawAiVzJMMCM7nt70KEm3tuKDmmSra_0Nrm5yVdi-1PM53vb0eld8rnpSM1C-THclHKofh3EeLx6T--ROxaZ0nEtcZ9c03mfOB9muqQDasOHzumkid7fJzfOrV--T_o79AnCVeb04gH5fdImOaRLQzEHBOJ-akRJF7uzyYLKLcUrYa6uLiLSqbsWWypksVyjQlvocg1f84zuU-ThhzrFw664cnpQsZtwFE-Z6QIZSOsCm9CcNNe1dai41LqqKJLtH5KL048XJ2euTRXhKjC5SlcyBdAxMjrkIezFnq9ZhKF2RABWcuhJLoNMBUYBoBWeZiYe-SYJQZuZAPQ7Y49IL1_m-gmhwlcJy1jiy8igz1hG3JN-xmORqVh6sUPeNXMnVTaMOmbzmKeVO5_xFF5gim8whVfokDet9KoOH_IPuZc4DdP68murddJxxEaAOZMocsjbSgL1DvyfEvb6BLQaI3h1JI87kqAvVLe4meqp1VcFtAOAuccBLjrkVVuMTyIHL9fLTZGCrkbwzHyo4nG9Mto-BaMKGMPoJJ010wpgFPNuST77VkUzh6fApIA6B83q2jXr70M1aNfef8f06VUFn5Fb8JHXfKxj0ivXG_0coGYpX1j98gc8Q4Hm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+regional+fat+measurements+by+dual-energy+X-ray+absorptiometry+and+conventional+anthropometry+and+their+association+with+markers+of+diabetes+and+cardiovascular+disease+risk&rft.jtitle=International+journal+of+obesity+%282005%29&rft.au=Vasan%2C+S+K&rft.au=Osmond%2C+C&rft.au=Canoy%2C+D&rft.au=Christodoulides%2C+C&rft.date=2018-04-01&rft.issn=1476-5497&rft.eissn=1476-5497&rft.volume=42&rft.issue=4&rft.spage=850&rft_id=info:doi/10.1038%2Fijo.2017.289&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-0565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-0565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-0565&client=summon