Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk
Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposi...
Saved in:
| Published in | International Journal of Obesity Vol. 42; no. 4; pp. 850 - 857 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.04.2018
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0307-0565 1476-5497 1476-5497 |
| DOI | 10.1038/ijo.2017.289 |
Cover
| Abstract | Background/Objectives:
Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.
Subjects/Methods:
Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29–55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all
z
-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).
Results:
Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07–1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.
Conclusions:
Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. |
|---|---|
| AbstractList | Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Subjects/Methods: Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Results: Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Conclusions: Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. International Journal of Obesity (2018) 42, 850-857; doi: 10.1038/ijo.2017.289; published online 6 February 2018 Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Subjects/Methods: Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29–55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z -score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Results: Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07–1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Conclusions: Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.BACKGROUND/OBJECTIVESFat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).SUBJECTS/METHODSWaist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.RESULTSFollowing adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass.CONCLUSIONSCompared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers. Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR). Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity. Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. Background/Objectives:Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional anthropometry in epidemiological studies. Dual-energy X-ray absorptiometry (DXA) can measure total and regional adiposity more accurately. Nonetheless, whether DXA provides more precise estimates of cardiovascular risk in relation to total and regional adiposity is not known. We determined the strength of the associations between DXA- and conventional anthropometry determined fat distribution and T2D and CVD risk markers.Subjects/Methods:Waist (WC) and hip circumference (HC) and DXA was used to measure total and regional adiposity in 4950 (2119 men) participants aged 29-55 years from the Oxford Biobank without pre-existing T2D or CVD. Cross-sectional associations were compared between WC and HC vs. DXA-determined regional adiposity (all z-score normalised) with impaired fasting glucose, hypertriglyceridemia, hypertension and insulin resistance (IR).Results:Following adjustment for total adiposity, upper body adiposity measurements showed consistently increased risk of T2D and CVD risk markers except for abdominal subcutaneous fat in both sexes, and arm fat in men, which showed protective associations. Among upper adiposity depots, visceral fat mass showed stronger odds ratios (OR) ranging from 1.69 to 3.64 compared with WC 1.07-1.83. Among lower adiposity depots, HC showed modest protection for IR in both sexes (men: OR 0.80 (95% confidence interval 0.67, 0.96); women: 0.69 (0.56, 0.86)), whereas gynoid fat and in particular leg fat showed consistent and strong protective effects for all outcomes in both men and women. The differential effect of body fat distribution on CVD and T2D were more pronounced at higher levels of total adiposity.Conclusions:Compared with DXA, conventional anthropometry underestimates the associations of regional adiposity with T2D and CVD risk markers. After correcting for overall adiposity, greater subcutaneous fat mass in particular in the lower body is protective relative to greater android or visceral adipose tissue mass. |
| Audience | Academic |
| Author | Osmond, C Di Gravio, C Canoy, D Neville, M J Karpe, F Christodoulides, C Fall, C H D Vasan, S K |
| Author_xml | – sequence: 1 givenname: S K surname: Vasan fullname: Vasan, S K organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford – sequence: 2 givenname: C surname: Osmond fullname: Osmond, C organization: MRC Life-course Epidemiology Unit, University of Southampton – sequence: 3 givenname: D orcidid: 0000-0003-4493-9901 surname: Canoy fullname: Canoy, D organization: Nuffield Department of Population Health, University of Oxford – sequence: 4 givenname: C surname: Christodoulides fullname: Christodoulides, C organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford – sequence: 5 givenname: M J surname: Neville fullname: Neville, M J organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, NIHR Oxford Biomedical Centre, Oxford University Hospital Trust and University of Oxford – sequence: 6 givenname: C surname: Di Gravio fullname: Di Gravio, C organization: MRC Life-course Epidemiology Unit, University of Southampton – sequence: 7 givenname: C H D surname: Fall fullname: Fall, C H D organization: MRC Life-course Epidemiology Unit, University of Southampton – sequence: 8 givenname: F surname: Karpe fullname: Karpe, F email: Fredrik.Karpe@ocdem.ox.ac.uk organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, NIHR Oxford Biomedical Centre, Oxford University Hospital Trust and University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29151596$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkkuP0zAUhSM0iHnAjjWyhIRYkGI7cR4bpFHFSxqJzSzYWTfJTeNOYgfb6ag_jX-HQwttR4NQFlFyv3tyco4vozNtNEbRS0YXjCbFe7U2C05ZvuBF-SS6YGmexSIt87PogiY0j6nIxHl06dyaUioE5c-ic14ywUSZXUQ_l2YYwSpnNDEtsbhSRkNPWvBkQHCTxQG1d6TakmaCPkaNdrUl32MLWwKVM3b0ygzobXjUDamN3oSFnQpo31kzHo19h8oScM7UCmaK3CvfkQHsHVo3W2gUVOjR7dTANspswNVTDzbMXPCEJPi9ex49baF3-GJ_v4puP328XX6Jb759_rq8volrkRY-rpK6CP_aYlqkjCeUYSIoTTLgZV6ktCoq3tS8rSkrgWLSZiVr87RIeMubBpPkKop3spMeYXsPfS9Hq4LfrWRUzg3I0ICcG5ChgcB_2PHjVA3Y1CELC4cdA0qeTrTq5MpsZKhDZJkIAm_3Atb8mNB5OShXY9-DRjM5ycosS1OWsBl9_QBdm8mG4F3wk7KMFnnBD9QKepRKtyZ8t55F5bVIyoyJXMxai0eocDU4qFAqtiq8P1l4c7TQIfS-c6af5lLdKfjqOJG_Ufw5hAHgO6C2xjmLrayV_304ggXV_yvndw-W_lPLvkYXML1Ce4jqUf4XLjoQww |
| CitedBy_id | crossref_primary_10_1093_advances_nmz050 crossref_primary_10_1111_petr_14130 crossref_primary_10_3389_fnut_2022_869351 crossref_primary_10_1186_s12944_024_02100_5 crossref_primary_10_1016_j_jocd_2023_03_004 crossref_primary_10_1007_s40471_018_0160_1 crossref_primary_10_1038_s41598_022_19937_4 crossref_primary_10_1194_jlr_R086975 crossref_primary_10_1016_S2468_2667_21_00134_1 crossref_primary_10_1152_physrev_00032_2020 crossref_primary_10_1186_s13293_020_00317_4 crossref_primary_10_1186_s12933_024_02208_z crossref_primary_10_1186_s12891_023_06844_6 crossref_primary_10_3390_metabo11050317 crossref_primary_10_1002_cam4_3076 crossref_primary_10_1152_ajpcell_00726_2023 crossref_primary_10_1038_s41430_023_01381_w crossref_primary_10_1016_j_jocd_2022_01_006 crossref_primary_10_1136_bmjophth_2023_001505 crossref_primary_10_1016_j_numecd_2024_06_019 crossref_primary_10_1016_j_obpill_2021_100007 crossref_primary_10_1093_milmed_usy302 crossref_primary_10_1002_jbmr_4298 crossref_primary_10_1016_j_pcad_2018_06_004 crossref_primary_10_1007_s10067_019_04701_3 crossref_primary_10_1590_0102_311x00033320 crossref_primary_10_1136_jech_2020_213930 crossref_primary_10_1371_journal_pone_0220077 crossref_primary_10_3390_nu13010110 crossref_primary_10_1016_j_exger_2024_112462 crossref_primary_10_1186_s12891_023_06934_5 crossref_primary_10_1371_journal_pone_0243850 crossref_primary_10_33880_ejfm_2023120104 crossref_primary_10_1016_j_cmet_2021_07_001 crossref_primary_10_1016_j_maturitas_2021_06_011 crossref_primary_10_1590_0102_311x00346520 crossref_primary_10_1186_s12880_023_01063_w crossref_primary_10_1038_s41366_023_01454_7 crossref_primary_10_1186_s12940_022_00890_8 crossref_primary_10_1007_s11657_024_01435_x crossref_primary_10_1186_s12986_024_00842_8 crossref_primary_10_1038_s41366_021_00923_1 crossref_primary_10_3390_antiox9080728 crossref_primary_10_3390_ijerph18115858 crossref_primary_10_1093_eurheartj_ehz391 crossref_primary_10_1186_s12864_025_11380_9 crossref_primary_10_1002_oby_23151 crossref_primary_10_1007_s00296_024_05622_4 crossref_primary_10_1038_s41366_021_00899_y crossref_primary_10_1002_osp4_517 crossref_primary_10_1016_j_jcte_2021_100257 crossref_primary_10_3390_jimaging7070104 crossref_primary_10_1126_scitranslmed_aay4145 crossref_primary_10_1080_08952841_2021_1877098 crossref_primary_10_3390_ijerph17165656 crossref_primary_10_1016_j_nut_2021_111434 crossref_primary_10_1161_ATVBAHA_119_313154 crossref_primary_10_1002_oby_22509 crossref_primary_10_1002_dmrr_3707 crossref_primary_10_1002_osp4_467 crossref_primary_10_1016_j_numecd_2023_09_020 crossref_primary_10_2147_JAA_S474667 crossref_primary_10_1007_s00726_022_03229_2 crossref_primary_10_1002_alz_12888 crossref_primary_10_1111_obr_13429 crossref_primary_10_1098_rsos_231478 crossref_primary_10_1371_journal_pone_0209529 crossref_primary_10_1093_ajcn_nqz251 crossref_primary_10_1016_j_lanwpc_2023_100710 crossref_primary_10_1016_j_jocd_2018_06_001 crossref_primary_10_3389_fendo_2022_1032323 crossref_primary_10_1017_S1368980019004099 crossref_primary_10_1016_j_metabol_2023_155563 crossref_primary_10_3389_fmolb_2023_1166333 crossref_primary_10_1038_s41467_022_35563_0 crossref_primary_10_1007_s00592_024_02332_y crossref_primary_10_1038_s41366_021_00898_z crossref_primary_10_1038_s41514_020_0043_9 crossref_primary_10_3389_fpubh_2024_1373544 crossref_primary_10_3389_fcvm_2023_1055223 crossref_primary_10_1017_S0029665124000053 crossref_primary_10_1097_GME_0000000000001721 crossref_primary_10_1161_JAHA_122_029111 crossref_primary_10_1016_j_diabet_2021_101304 crossref_primary_10_3389_fendo_2021_803189 crossref_primary_10_1002_jcsm_12712 crossref_primary_10_1038_s41436_020_01024_6 crossref_primary_10_1016_j_maturitas_2023_107898 crossref_primary_10_1002_dmrr_3161 crossref_primary_10_1097_MCO_0000000000000485 crossref_primary_10_1038_s41366_024_01517_3 crossref_primary_10_3390_nu13082494 crossref_primary_10_1016_j_metabol_2020_154456 crossref_primary_10_1002_ehf2_14872 crossref_primary_10_1097_GME_0000000000001930 crossref_primary_10_1016_j_amjmed_2022_11_017 crossref_primary_10_1038_s41366_022_01137_9 crossref_primary_10_1007_s00296_023_05514_z crossref_primary_10_3390_ijms24076310 crossref_primary_10_1016_j_clinthera_2020_09_005 crossref_primary_10_1016_j_csbj_2020_09_026 crossref_primary_10_1016_S2213_8587_24_00195_5 crossref_primary_10_1016_j_nutos_2022_01_001 crossref_primary_10_1136_bmjdrc_2023_003927 crossref_primary_10_3389_fendo_2022_1068917 crossref_primary_10_1007_s11102_024_01494_w crossref_primary_10_1016_j_euf_2021_03_010 crossref_primary_10_1186_s13643_019_1197_z crossref_primary_10_1210_clinem_dgae192 crossref_primary_10_1016_j_nut_2022_111651 crossref_primary_10_1136_bmjdrc_2023_003412 crossref_primary_10_1016_j_amjms_2023_11_021 crossref_primary_10_1038_s41430_020_0596_5 |
| Cites_doi | 10.1038/ijo.2010.102 10.1093/ajcn/57.5.605 10.1161/CIRCULATIONAHA.116.026560 10.1038/sj.ijo.0802567 10.1093/ajcn/77.5.1192 10.1152/ajpendo.00467.2001 10.1038/ejcn.2010.190 10.1038/oby.2001.85 10.1038/ejcn.2014.213 10.1016/S0899-9007(03)00061-3 10.1093/ije/dyx132 10.1093/ajcn/64.1.12 10.1001/jama.280.21.1843 10.1016/j.atherosclerosis.2005.12.027 10.1093/oxfordjournals.aje.a009158 10.1080/00365510701649524 10.2337/dc13-1353 10.1161/CIRCULATIONAHA.106.673756 10.1002/9780470773666 10.1210/jc.2008-0804 10.1371/journal.pone.0027694 10.1038/nrendo.2014.185 10.1038/ncb2922 10.1210/jc.2010-1378 10.2337/diab.34.10.1055 10.2337/diacare.27.2.372 10.4093/dmj.2017.41.1.51 10.1111/j.1365-2796.2004.01432.x 10.1038/oby.2010.248 10.1038/nutd.2013.5 10.1007/s00125-005-0044-z 10.1210/jc.2011-0615 10.1093/ajcn/74.3.315 10.1038/oby.2011.393 10.2337/dc08-2280 10.1301/nr.2007.jun.S7-S12 10.1002/oby.20028 10.1007/BF00280883 10.1161/CIRCULATIONAHA.106.675355 10.1002/oby.20135 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Apr 2018 Copyright © 2018 The Author(s) 2018 The Author(s) |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 2018 – notice: Copyright © 2018 The Author(s) 2018 The Author(s) |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T2 7TK 7TS 7X2 7X7 7XB 88E 88G 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/ijo.2017.289 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Physical Education Index Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Public Health Database (ProQuest) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health Diet & Clinical Nutrition Recreation & Sports |
| DocumentTitleAlternate | Regional adiposity and metabolic risk |
| EISSN | 1476-5497 |
| EndPage | 857 |
| ExternalDocumentID | 10.1038/ijo.2017.289 PMC5965665 A539615755 29151596 10_1038_ijo_2017_289 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_12011/3 – fundername: Medical Research Council grantid: G0400519 – fundername: British Heart Foundation grantid: CS/15/4/31493 – fundername: British Heart Foundation grantid: RG/17/1/32663 – fundername: British Heart Foundation grantid: FS/16/45/32359 |
| GroupedDBID | .55 .GJ 29J 36B 39C 5RE 7X2 7X7 8R4 8R5 A8Z ABDBF ABOCM ABUWG ACUHS ADBBV AFFNX AI. ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC B0M BAWUL BENPR BHPHI BPHCQ C6C DIK DWQXO EAD EAP EBC EBD EBS EMB EMK EMOBN EPL ESX F5P FYUFA GNUQQ HCIFZ IAO IHR ITC J5H M0K M1P M2M MVM NAO OK1 Q2X RNT RNTTT SV3 TUS VH1 WH7 X7M ZGI ZXP ~8M AAYXX CITATION --- -Q- ..I .L3 .XZ 0R~ 1CY 2FS 2WC 4.4 406 53G 5GY 70F 88E 8AO 8C1 8FE 8FH 8FI 8FJ AACDK AAHBH AANZL AASML AATNV AAWTL AAYZH ABAKF ABAWZ ABBRH ABCQX ABDBE ABFSG ABIVO ABJNI ABLJU ABRTQ ABZZP ACAOD ACGFS ACKTT ACPRK ACRQY ACSTC ACZOJ ADHUB ADXHL AEFQL AEJRE AEMSY AENEX AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AIGIU AILAN AIXLP AJRNO ALFFA ALIPV AMYLF APEBS ATHPR AXYYD AYFIA BBNVY BKKNO BVXVI CCPQU CGR CS3 CUY CVF DNIVK DPUIP DU5 E3Z EBLON ECM EE. EIF EIOEI EJD FDQFY FERAY FIGPU FIZPM FSGXE HMCUK HZ~ IHW INH INR IPY IWAJR JSO JZLTJ KQ8 L7B M7P NPM NQJWS O9- OVD P2P P6G PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ RNS ROL SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TEORI TR2 TSG UKHRP ~KM 3V. 7T2 7TK 7TS 7XB 8FK C1K K9. LK8 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADTOC ESTFP UNPAY |
| ID | FETCH-LOGICAL-c548t-b3c8515fe48412301e350036a297840b8b2dc2fc019a0e3f691f74832f2dde33 |
| IEDL.DBID | C6C |
| ISSN | 0307-0565 1476-5497 |
| IngestDate | Wed Oct 29 12:00:31 EDT 2025 Thu Aug 21 14:35:57 EDT 2025 Fri Sep 05 06:15:51 EDT 2025 Mon Oct 06 18:08:19 EDT 2025 Mon Oct 20 22:15:44 EDT 2025 Mon Oct 20 15:59:46 EDT 2025 Thu May 22 21:24:46 EDT 2025 Mon Jul 21 06:04:08 EDT 2025 Wed Oct 01 03:43:12 EDT 2025 Thu Apr 24 23:12:39 EDT 2025 Fri Feb 21 02:39:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c548t-b3c8515fe48412301e350036a297840b8b2dc2fc019a0e3f691f74832f2dde33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4493-9901 |
| OpenAccessLink | https://doi.org/10.1038%2Fijo.2017.289 |
| PMID | 29151596 |
| PQID | 2041608782 |
| PQPubID | 38864 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1038_ijo_2017_289 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5965665 proquest_miscellaneous_1966441315 proquest_journals_2041608782 gale_infotracmisc_A539615755 gale_infotracacademiconefile_A539615755 gale_healthsolutions_A539615755 pubmed_primary_29151596 crossref_citationtrail_10_1038_ijo_2017_289 crossref_primary_10_1038_ijo_2017_289 springer_journals_10_1038_ijo_2017_289 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | International Journal of Obesity |
| PublicationTitleAbbrev | Int J Obes |
| PublicationTitleAlternate | Int J Obes (Lond) |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Chau, Bandiera, Serrels, Martinez-Estrada, Qing, Lee (CR28) 2014; 16 Dale, Fatemifar, Palmer, White, Prieto-Merino, Zabaneh (CR16) 2017; 135 Marinou, Hodson, Vasan, Fielding, Banerjee, Brismar (CR30) 2014; 37 Sakai, Ito, Egami, Ohoto, Hijii, Yanagawa (CR37) 2005; 257 Camhi, Bray, Bouchard, Greenway, Johnson, Newton (CR17) 2011; 19 Lissner, Bjorkelund, Heitmann, Seidell, Bengtsson (CR9) 2001; 9 Aasen, Fagertun, Halse (CR11) 2008; 68 Seidell, Perusse, Despres, Bouchard (CR7) 2001; 74 Van Pelt, Evans, Schechtman, Ehsani, Kohrt (CR15) 2002; 282 Karpe, Vasan, Humphreys, Miller, Cheeseman, Dennis, Neville (CR21) 2017; 47 Liu, Fox, Hickson, May, Hairston, Carr (CR34) 2010; 95 Choi, Chung, Lim, Lee, Shin, Chung (CR14) 2017; 41 Neeland, Ayers, Rohatgi, Turer, Berry, Das (CR33) 2013; 21 Karpe, Pinnick (CR39) 2015; 11 Snijder, Dekker, Visser, Bouter, Stehouwer, Kostense (CR31) 2003; 77 Kang, Yoon, Ahn, Kim, Lee, Shin (CR13) 2011; 6 Snijder, Dekker, Visser, Bouter, Stehouwer, Yudkin (CR5) 2004; 27 Wiklund, Toss, Jansson, Eliasson, Hallmans, Nordstrom (CR12) 2010; 34 Ohlson, Larsson, Svardsudd, Welin, Eriksson, Wilhelmsen (CR1) 1985; 34 Mellis, Oldroyd, Hind (CR24) 2014; 68 Hind, Oldroyd, Truscott (CR23) 2011; 65 Kyle, Schutz, Dupertuis, Pichard (CR26) 2003; 19 Rexrode, Carey, Hennekens, Walters, Colditz, Stampfer (CR4) 1998; 280 Fox, Massaro, Hoffmann, Pou, Maurovich-Horvat, Liu (CR29) 2007; 116 Zhang, Hu, Wu, Malik, Sun (CR38) 2013; 21 Canoy, Boekholdt, Wareham, Luben, Welch, Bingham (CR3) 2007; 116 Armitage, Berry (CR27) 2002 Carey, Walters, Colditz, Solomon, Willett, Rosner (CR2) 1997; 145 Kaul, Rothney, Peters, Wacker, Davis, Shapiro (CR19) 2012; 20 Wiklund, Toss, Weinehall, Hallmans, Franks, Nordstrom (CR10) 2008; 93 Canoy, Wareham, Luben, Welch, Bingham, Day (CR8) 2006; 189 Matthews, Hosker, Rudenski, Naylor, Treacher, Turner (CR22) 1985; 28 Porter, Massaro, Hoffmann, Vasan, O'Donnel, Fox (CR36) 2009; 32 Snijder, Zimmet, Visser, Dekker, Seidell, Shaw (CR6) 2004; 28 Gray, Vidal-Puig (CR40) 2007; 65 Caprio, Hyman, McCarthy, Lange, Bronson, Tamborlane (CR32) 1996; 64 Svendsen, Haarbo, Hassager, Christiansen (CR18) 1993; 57 Tan, Neville, Liverani, Humphreys, Currie, Dennis (CR20) 2006; 49 McLaughlin, Lamendola, Liu, Abbasi (CR35) 2011; 96 Stults-Kolehmainen, Stanforth, Bartholomew, Lu, Abolt, Sinha (CR25) 2013; 3 K Hind (BFijo2017289_CR23) 2011; 65 CS Fox (BFijo2017289_CR29) 2007; 116 Y Sakai (BFijo2017289_CR37) 2005; 257 JC Seidell (BFijo2017289_CR7) 2001; 74 MB Snijder (BFijo2017289_CR31) 2003; 77 IJ Neeland (BFijo2017289_CR33) 2013; 21 GD Tan (BFijo2017289_CR20) 2006; 49 S Caprio (BFijo2017289_CR32) 1996; 64 MB Snijder (BFijo2017289_CR6) 2004; 28 UG Kyle (BFijo2017289_CR26) 2003; 19 OL Svendsen (BFijo2017289_CR18) 1993; 57 LO Ohlson (BFijo2017289_CR1) 1985; 34 SA Porter (BFijo2017289_CR36) 2009; 32 SM Kang (BFijo2017289_CR13) 2011; 6 S Kaul (BFijo2017289_CR19) 2012; 20 DR Matthews (BFijo2017289_CR22) 1985; 28 MG Mellis (BFijo2017289_CR24) 2014; 68 F Karpe (BFijo2017289_CR39) 2015; 11 MA Stults-Kolehmainen (BFijo2017289_CR25) 2013; 3 MB Snijder (BFijo2017289_CR5) 2004; 27 D Canoy (BFijo2017289_CR8) 2006; 189 P Wiklund (BFijo2017289_CR10) 2008; 93 L Lissner (BFijo2017289_CR9) 2001; 9 X Zhang (BFijo2017289_CR38) 2013; 21 VJ Carey (BFijo2017289_CR2) 1997; 145 Fredrik Karpe (BFijo2017289_CR21) 2017; 47 RE Van Pelt (BFijo2017289_CR15) 2002; 282 D Canoy (BFijo2017289_CR3) 2007; 116 YY Chau (BFijo2017289_CR28) 2014; 16 P Wiklund (BFijo2017289_CR12) 2010; 34 CE Dale (BFijo2017289_CR16) 2017; 135 P Armitage (BFijo2017289_CR27) 2002 SM Camhi (BFijo2017289_CR17) 2011; 19 K Marinou (BFijo2017289_CR30) 2014; 37 T McLaughlin (BFijo2017289_CR35) 2011; 96 KM Rexrode (BFijo2017289_CR4) 1998; 280 SI Choi (BFijo2017289_CR14) 2017; 41 SL Gray (BFijo2017289_CR40) 2007; 65 J Liu (BFijo2017289_CR34) 2010; 95 G Aasen (BFijo2017289_CR11) 2008; 68 |
| References_xml | – volume: 34 start-page: 1752 year: 2010 end-page: 1758 ident: CR12 article-title: Abdominal and gynoid adipose distribution and incident myocardial infarction in women and men publication-title: Int J Obes doi: 10.1038/ijo.2010.102 – volume: 57 start-page: 605 year: 1993 end-page: 608 ident: CR18 article-title: Accuracy of measurements of body composition by dual-energy x-ray absorptiometry publication-title: Am J Clin Nutr doi: 10.1093/ajcn/57.5.605 – volume: 135 start-page: 2373 year: 2017 end-page: 2388 ident: CR16 article-title: Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a mendelian randomization analysis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.026560 – volume: 28 start-page: 402 year: 2004 end-page: 409 ident: CR6 article-title: Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab Study publication-title: Int J Obes Relat Metab Disord doi: 10.1038/sj.ijo.0802567 – volume: 77 start-page: 1192 year: 2003 end-page: 1197 ident: CR31 article-title: Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study publication-title: Am J Clin Nutr doi: 10.1093/ajcn/77.5.1192 – volume: 282 start-page: E1023 year: 2002 end-page: E1028 ident: CR15 article-title: Contributions of total and regional fat mass to risk for cardiovascular disease in older women publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00467.2001 – volume: 65 start-page: 140 year: 2011 end-page: 142 ident: CR23 article-title: precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2010.190 – volume: 9 start-page: 644 year: 2001 end-page: 646 ident: CR9 article-title: Larger hip circumference independently predicts health and longevity in a Swedish female cohort publication-title: Obes Res doi: 10.1038/oby.2001.85 – volume: 68 start-page: 1365 year: 2014 end-page: 1367 ident: CR24 article-title: precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: the influence of body mass index publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2014.213 – volume: 19 start-page: 597 year: 2003 end-page: 604 ident: CR26 article-title: Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index publication-title: Nutrition doi: 10.1016/S0899-9007(03)00061-3 – volume: 47 start-page: 21 issue: 1 year: 2017 end-page: 21g ident: CR21 article-title: Cohort Profile: The Oxford Biobank publication-title: International Journal of Epidemiology doi: 10.1093/ije/dyx132 – volume: 64 start-page: 12 year: 1996 end-page: 17 ident: CR32 article-title: Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot publication-title: Am J Clin Nutr doi: 10.1093/ajcn/64.1.12 – volume: 280 start-page: 1843 year: 1998 end-page: 1848 ident: CR4 article-title: Abdominal adiposity and coronary heart disease in women publication-title: JAMA doi: 10.1001/jama.280.21.1843 – volume: 189 start-page: 420 year: 2006 end-page: 427 ident: CR8 article-title: Serum lipid concentration in relation to anthropometric indices of central and peripheral fat distribution in 20,021 British men and women: results from the EPIC-Norfolk population-based cohort study publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2005.12.027 – volume: 145 start-page: 614 year: 1997 end-page: 619 ident: CR2 article-title: Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a009158 – volume: 68 start-page: 204 year: 2008 end-page: 211 ident: CR11 article-title: Regional fat mass by DXA: high leg fat mass attenuates the relative risk of insulin resistance and dyslipidaemia in obese but not in overweight postmenopausal women publication-title: Scand J Clin Lab Invest doi: 10.1080/00365510701649524 – volume: 21 start-page: E439 year: 2013 end-page: E447 ident: CR33 article-title: Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults publication-title: Obesity – volume: 37 start-page: 821 year: 2014 end-page: 829 ident: CR30 article-title: Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men publication-title: Diabetes Care doi: 10.2337/dc13-1353 – volume: 116 start-page: 2933 year: 2007 end-page: 2943 ident: CR3 article-title: Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.673756 – year: 2002 ident: CR27 publication-title: Statistical Methods in Medical Research doi: 10.1002/9780470773666 – volume: 93 start-page: 4360 year: 2008 end-page: 4366 ident: CR10 article-title: Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2008-0804 – volume: 6 start-page: e27694 year: 2011 ident: CR13 article-title: Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people publication-title: PLoS One doi: 10.1371/journal.pone.0027694 – volume: 11 start-page: 90 year: 2015 end-page: 100 ident: CR39 article-title: Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2014.185 – volume: 16 start-page: 367 year: 2014 end-page: 375 ident: CR28 article-title: Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source publication-title: Nat Cell Biol doi: 10.1038/ncb2922 – volume: 95 start-page: 5419 year: 2010 end-page: 5426 ident: CR34 article-title: Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-1378 – volume: 34 start-page: 1055 year: 1985 end-page: 1058 ident: CR1 article-title: The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913 publication-title: Diabetes doi: 10.2337/diab.34.10.1055 – volume: 27 start-page: 372 year: 2004 end-page: 377 ident: CR5 article-title: Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study publication-title: Diabetes Care doi: 10.2337/diacare.27.2.372 – volume: 41 start-page: 51 year: 2017 end-page: 59 ident: CR14 article-title: Relationship between regional body fat distribution and diabetes mellitus: 2008 to 2010 korean national health and nutrition examination surveys publication-title: Diabetes Metab J doi: 10.4093/dmj.2017.41.1.51 – volume: 257 start-page: 194 year: 2005 end-page: 200 ident: CR37 article-title: Favourable association of leg fat with cardiovascular risk factors publication-title: J Intern Med doi: 10.1111/j.1365-2796.2004.01432.x – volume: 19 start-page: 402 year: 2011 end-page: 408 ident: CR17 article-title: The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences publication-title: Obesity doi: 10.1038/oby.2010.248 – volume: 3 start-page: e64 year: 2013 ident: CR25 article-title: DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men publication-title: Nutr Diabetes doi: 10.1038/nutd.2013.5 – volume: 49 start-page: 158 year: 2006 end-page: 168 ident: CR20 article-title: The effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank publication-title: Diabetologia doi: 10.1007/s00125-005-0044-z – volume: 96 start-page: E1756 year: 2011 end-page: E1760 ident: CR35 article-title: Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2011-0615 – volume: 74 start-page: 315 year: 2001 end-page: 321 ident: CR7 article-title: Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study publication-title: Am J Clin Nutr doi: 10.1093/ajcn/74.3.315 – volume: 20 start-page: 1313 year: 2012 end-page: 1318 ident: CR19 article-title: Dual-energy X-ray absorptiometry for quantification of visceral fat publication-title: Obesity doi: 10.1038/oby.2011.393 – volume: 32 start-page: 1068 year: 2009 end-page: 1075 ident: CR36 article-title: Abdominal subcutaneous adipose tissue: a protective fat depot? publication-title: Diabetes Care doi: 10.2337/dc08-2280 – volume: 65 start-page: S7 year: 2007 end-page: 12 ident: CR40 article-title: Adipose tissue expandability in the maintenance of metabolic homeostasis publication-title: Nutr Rev doi: 10.1301/nr.2007.jun.S7-S12 – volume: 21 start-page: 824 year: 2013 end-page: 830 ident: CR38 article-title: Associations of leg fat accumulation with adiposity-related biological factors and risk of metabolic syndrome publication-title: Obesity doi: 10.1002/oby.20028 – volume: 28 start-page: 412 year: 1985 end-page: 419 ident: CR22 article-title: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man publication-title: Diabetologia doi: 10.1007/BF00280883 – volume: 116 start-page: 39 year: 2007 end-page: 48 ident: CR29 article-title: Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.675355 – volume: 19 start-page: 597 year: 2003 ident: BFijo2017289_CR26 publication-title: Nutrition doi: 10.1016/S0899-9007(03)00061-3 – volume: 11 start-page: 90 year: 2015 ident: BFijo2017289_CR39 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2014.185 – volume: 34 start-page: 1055 year: 1985 ident: BFijo2017289_CR1 publication-title: Diabetes doi: 10.2337/diab.34.10.1055 – volume: 96 start-page: E1756 year: 2011 ident: BFijo2017289_CR35 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2011-0615 – volume: 282 start-page: E1023 year: 2002 ident: BFijo2017289_CR15 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00467.2001 – volume: 68 start-page: 1365 year: 2014 ident: BFijo2017289_CR24 publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2014.213 – volume: 21 start-page: E439 year: 2013 ident: BFijo2017289_CR33 publication-title: Obesity doi: 10.1002/oby.20135 – volume: 27 start-page: 372 year: 2004 ident: BFijo2017289_CR5 publication-title: Diabetes Care doi: 10.2337/diacare.27.2.372 – volume: 64 start-page: 12 year: 1996 ident: BFijo2017289_CR32 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/64.1.12 – volume: 21 start-page: 824 year: 2013 ident: BFijo2017289_CR38 publication-title: Obesity doi: 10.1002/oby.20028 – volume: 37 start-page: 821 year: 2014 ident: BFijo2017289_CR30 publication-title: Diabetes Care doi: 10.2337/dc13-1353 – volume: 116 start-page: 39 year: 2007 ident: BFijo2017289_CR29 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.675355 – volume: 74 start-page: 315 year: 2001 ident: BFijo2017289_CR7 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/74.3.315 – volume-title: Statistical Methods in Medical Research year: 2002 ident: BFijo2017289_CR27 doi: 10.1002/9780470773666 – volume: 47 start-page: 21 issue: 1 year: 2017 ident: BFijo2017289_CR21 publication-title: International Journal of Epidemiology doi: 10.1093/ije/dyx132 – volume: 19 start-page: 402 year: 2011 ident: BFijo2017289_CR17 publication-title: Obesity doi: 10.1038/oby.2010.248 – volume: 135 start-page: 2373 year: 2017 ident: BFijo2017289_CR16 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.026560 – volume: 65 start-page: S7 year: 2007 ident: BFijo2017289_CR40 publication-title: Nutr Rev doi: 10.1301/nr.2007.jun.S7-S12 – volume: 16 start-page: 367 year: 2014 ident: BFijo2017289_CR28 publication-title: Nat Cell Biol doi: 10.1038/ncb2922 – volume: 189 start-page: 420 year: 2006 ident: BFijo2017289_CR8 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2005.12.027 – volume: 28 start-page: 412 year: 1985 ident: BFijo2017289_CR22 publication-title: Diabetologia doi: 10.1007/BF00280883 – volume: 145 start-page: 614 year: 1997 ident: BFijo2017289_CR2 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a009158 – volume: 280 start-page: 1843 year: 1998 ident: BFijo2017289_CR4 publication-title: JAMA doi: 10.1001/jama.280.21.1843 – volume: 93 start-page: 4360 year: 2008 ident: BFijo2017289_CR10 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2008-0804 – volume: 34 start-page: 1752 year: 2010 ident: BFijo2017289_CR12 publication-title: Int J Obes doi: 10.1038/ijo.2010.102 – volume: 95 start-page: 5419 year: 2010 ident: BFijo2017289_CR34 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-1378 – volume: 57 start-page: 605 year: 1993 ident: BFijo2017289_CR18 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/57.5.605 – volume: 116 start-page: 2933 year: 2007 ident: BFijo2017289_CR3 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.673756 – volume: 49 start-page: 158 year: 2006 ident: BFijo2017289_CR20 publication-title: Diabetologia doi: 10.1007/s00125-005-0044-z – volume: 77 start-page: 1192 year: 2003 ident: BFijo2017289_CR31 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/77.5.1192 – volume: 28 start-page: 402 year: 2004 ident: BFijo2017289_CR6 publication-title: Int J Obes Relat Metab Disord doi: 10.1038/sj.ijo.0802567 – volume: 68 start-page: 204 year: 2008 ident: BFijo2017289_CR11 publication-title: Scand J Clin Lab Invest doi: 10.1080/00365510701649524 – volume: 65 start-page: 140 year: 2011 ident: BFijo2017289_CR23 publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2010.190 – volume: 3 start-page: e64 year: 2013 ident: BFijo2017289_CR25 publication-title: Nutr Diabetes doi: 10.1038/nutd.2013.5 – volume: 6 start-page: e27694 year: 2011 ident: BFijo2017289_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0027694 – volume: 9 start-page: 644 year: 2001 ident: BFijo2017289_CR9 publication-title: Obes Res doi: 10.1038/oby.2001.85 – volume: 20 start-page: 1313 year: 2012 ident: BFijo2017289_CR19 publication-title: Obesity doi: 10.1038/oby.2011.393 – volume: 32 start-page: 1068 year: 2009 ident: BFijo2017289_CR36 publication-title: Diabetes Care doi: 10.2337/dc08-2280 – volume: 41 start-page: 51 year: 2017 ident: BFijo2017289_CR14 publication-title: Diabetes Metab J doi: 10.4093/dmj.2017.41.1.51 – volume: 257 start-page: 194 year: 2005 ident: BFijo2017289_CR37 publication-title: J Intern Med doi: 10.1111/j.1365-2796.2004.01432.x |
| SSID | ssj0005502 ssj0033214 |
| Score | 2.578746 |
| Snippet | Background/Objectives:
Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually... Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually determined using conventional... Background/Objectives: Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually... Background/Objectives:Fat distribution is a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease (CVD) and is usually... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 850 |
| SubjectTerms | 692/163/2743/137 692/163/2743/393 692/308/174 692/499 692/700/1421/1770 Absorptiometry, Photon Adipose tissue Adipose Tissue - diagnostic imaging Adult Anthropometry Body fat Body measurements Body Size - physiology Bone densitometry Cardiovascular disease Cardiovascular diseases Cardiovascular Diseases - epidemiology Comparative analysis Confidence intervals Cross-Sectional Studies Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - epidemiology Diagnosis Dual energy X-ray absorptiometry Energy measurement Epidemiology Fats Female Health Promotion and Disease Prevention Health risk assessment Health risks Hip Humans Hypertension Hypertriglyceridemia Insulin Insulin resistance Internal Medicine Male Markers Medicine Medicine & Public Health Men Metabolic Diseases Middle Aged Original original-article Public Health Risk Risk Factors Type 2 diabetes |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZGJ8F4QFBgFAYYCcrDFEjiOEkfEBpj04S0CqEh9S2yHVsUtUlpUqH-afx33CVO0kywx9YX13HPn8--Hx8hr40W0hMscHQcBk7gSd-RShpHuMZnPDDxpCKbuJyGF9-DLzM-2yPTJhcGwyobTKyAOs0V3pHDIR1MBzeGDe3j6peDrFHoXW0oNISlVkg_VCXGbpF9HytjDcj-p7Pp129d0Ad32-pSDDl6mjqJYAdwGxfvsvj9_CcmBnrROx_533d2rOu4vbNxXQ-qbD2rd8mdTbYS299isdjZvM7vk3vW6qQntZo8IHs6G5LR57ku6Zja0qALOm0q8w_J7Uvrcx-SYWdZgnDFil48JH9OWwJDmhuK_A5o01MjSrrs7h0LKrcU070cXSUZ0pmzFlsqZJGvEayWulzDxyylu-Hv8EVN39A1Vw4NKjploniDTJcYXbQucAjNLXLdWy_Mllo3FMVA-kfk6vzs6vTCsTQQjoLjVOlIpsAs5EYHcQD7rOtpxrGMjvDhBBy4MpZ-qnyjwFgVrmYmnHgmCgCpjA_YzdhjMsjyTD8hVHgqYimLPMkN-oMlj13ppXEoUhVKNxyR4-afTpQtkY5MHYukctWzOAG9SFAvEtCLEXnTSq_q0iD_kXuJSpPUia0toiQnnE3Anow4H5G3lQRiCvyeEjY1AkaN1bl6kkc9ScAC1W9uFDOxWFQk3coZkVdtMz6J8XWZzjdFAjiMhjHzoIvDWo_bd_InldELsxP1NLwVwArl_ZZs_qOqVA5PwXEB-hw3a6Eb1r-natyulBvn9OnNL_qMHIBkXEdYHZFBud7o52A8lvKFRYS_vmdwcQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagK_E48CivwAJGgnJAKUmch3usFlYrpC0cdqVyimzHFoU2rZpUqPwz_h0ziZM2FaC9tfXEtR17_I3n8wwhr40W0hcsdDWPQzf0ZeBKJY0rPBOwKDR8VCWbOJ_EZ5fhp2k0tYZiYWmVdUjLSk037LD3s-_LAM0VPhquMnOdHMURYO8eObqcfBl_baIdwm4eVdeJktgFwyexTHePcawAiVzJMMCM7nt70KEm3tuKDmmSra_0Nrm5yVdi-1PM53vb0eld8rnpSM1C-THclHKofh3EeLx6T--ROxaZ0nEtcZ9c03mfOB9muqQDasOHzumkid7fJzfOrV--T_o79AnCVeb04gH5fdImOaRLQzEHBOJ-akRJF7uzyYLKLcUrYa6uLiLSqbsWWypksVyjQlvocg1f84zuU-ThhzrFw664cnpQsZtwFE-Z6QIZSOsCm9CcNNe1dai41LqqKJLtH5KL048XJ2euTRXhKjC5SlcyBdAxMjrkIezFnq9ZhKF2RABWcuhJLoNMBUYBoBWeZiYe-SYJQZuZAPQ7Y49IL1_m-gmhwlcJy1jiy8igz1hG3JN-xmORqVh6sUPeNXMnVTaMOmbzmKeVO5_xFF5gim8whVfokDet9KoOH_IPuZc4DdP68murddJxxEaAOZMocsjbSgL1DvyfEvb6BLQaI3h1JI87kqAvVLe4meqp1VcFtAOAuccBLjrkVVuMTyIHL9fLTZGCrkbwzHyo4nG9Mto-BaMKGMPoJJ010wpgFPNuST77VkUzh6fApIA6B83q2jXr70M1aNfef8f06VUFn5Fb8JHXfKxj0ivXG_0coGYpX1j98gc8Q4Hm priority: 102 providerName: Unpaywall |
| Title | Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk |
| URI | https://link.springer.com/article/10.1038/ijo.2017.289 https://www.ncbi.nlm.nih.gov/pubmed/29151596 https://www.proquest.com/docview/2041608782 https://www.proquest.com/docview/1966441315 https://pubmed.ncbi.nlm.nih.gov/PMC5965665 https://www.nature.com/articles/ijo2017289.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1476-5497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005502 issn: 1476-5497 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1476-5497 dateEnd: 20201028 omitProxy: true ssIdentifier: ssj0005502 issn: 1476-5497 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1476-5497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005502 issn: 1476-5497 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwED-xTeIhhKC8CqMYCcoHFEjiPNyPpds0QKsmtEnlU2Qntihq06lJhfqn8d9xl2czAeJL1MaXq-uczz_7XgCvjZbKkdyztAg8y3OUa6lYGUvaxuW-Z8SoKDZxNg1OL73PM39WOchSLEzHfl-k7p7_oBg9J3yPW4M9OBAoklSpYBJMWlcO325yRnGqvFNnP8TV3a-83ZHZh11WnXXoujbeWY6uu0o29tI7cGuTXsntT7lY7CxJJ_fhXoUl2bh8-Q_ghk570D-a65wNWZXwc8Gmdb79Htw8qyzpPbhbntexMgypB70WP-LDRe3z7CH8mjRlCtnKMKriQMidGZmzZXu6mDG1ZRTUZekilJDNrLXcMqmy1ZpU0lLna_yaJmzXyR1vlEUa2ubCbMFkKzKMzonZknyI1hl1oT4rLrl1nGlZZWxi5C7_CC5Oji8mp1ZV7MGKcdOUW4rHCP58oz3h4WpqO5r7lCxHurjP9WwllJvErokRkkpbcxOMHBN6qI-Mixqa88ewn65S_RSYdOKQJzx0lG_I6qt8YSsnEYFM4kDZQR_e1W8-iqtE6FSPYxEVBnkuIpSTiOQkQjnpw5uG-qpMAPIXupckRFEZvtrojWjs8xGixtD3-_C2oCDNgb8XyyoAAntNObg6lIcdSpzxcbe5FtSo0jgZ9gOhtS0Q8PXhVdNMT5IXXapXmyxCbUvwlzvI4kkp181_ckcFtMXRCTsS3xBQHvJuSzr_XuQjx6dwU4A8h_XcaLv156EaNjPnn2P67H85Pofb-FGUHlWHsJ-vN_oFgsVcDWAvnIV4FRNnAAcfj6fnXweF9sDr0acveO9yej7-9ht5yWxo |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlE4IAivQKFGouGAtuza-8oBoSqlSmmTU5Bys-xdWwQlm5DdqMqP4gfw75jZZ7aC3nrMeux4vZ8_jz3jGULeGy2VI7lr6dB3LddRzFKRMpa0DeOea8J-nmxiNPaH391vU2-6R35Xd2HQrbLixJyo42WEZ-SwSQfVwQ5hQfuy-mVh1ii0rlYpNApYXOrtNWzZ0s8XZ_B9jxk7_zoZDK0yq4AVgXaeWYpHoGV4RruhC7RtO5p7GJVFMthQubYKFYsjZiLQfaStufH7jglcAL5hQAV4_gmMf8_lLEAeCAc7HiWeXYeu4pgAqArCCEqGVzrd2zz8NPuJtw6d4IRhcvmd5fDmorCzKt702KzNtg_JwSZZye21nM93Vsbzx-RRqdLS0wKDT8ieTjqkezbTGe3RMu7onI6rsP8dcn9UGvQ7pNOorSCcp1xPn5I_gzo7Il0aiskjcMNAjczoojnUTKnaUrxLZun8BiOdWmu5pVKlyzUy4UJna_iZxHTXtx4eFLkhmuLcWkJlg1SKx9N0ga5L6xS7UB1RF621fHhpaeOi6KX_jEzuAg3PyX6yTPRLQqUTBTzmgaM8g8Zm5YW2cuLQl3HkK9vvko_VlxZRGX8d04DMRe4HwEMBuBCICwG46JLjWnpVxB35j9wRgkYUt2ZruhKnHu-Dshp4Xpd8yCWQsOD_Ilneu4BeY-ivluRhSxKIJmoXV8AUJdGlopmWXfKuLsaa6LyX6OUmFUDyqHVzB5p4UeC4fifWzzVqGJ2ghfBaAMOft0uS2Y88DDrUgr0ItNmr5kLTrX8PVa-eKbeO6avbX_SIHAwnoytxdTG-fE0eQK2wcOU6JPvZeqPfgJaaqbc5N1Ai7piL_gJR86Ra |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQ14QFC-CoMZiZUHFJbEcZI-IDStVBtjFQ9D6ptlJ7YoapPSpJr6p-2_4y6fzQR722Pjs-s455_Pvp_vCHlvtFSOZJ6lQ9-zPEe5loqUsaRtXMY9Ew6LZBMXE__0p_dtyqc75Lq-C4O0yhoTC6CO0wjPyGGTDqaDHcKCdmQqWsSP0fjL8o-FGaTQ01qn0yhV5FxvrmD7ln0-G8G3PnTd8dfLk1OryjBgRWCp55ZiEVgc3Ggv9ADCbUczjhFapAubK89WoXLjyDUR2EHS1sz4Q8cEHkwC4wIs4FkooP-9gLEhsgmDadCyS7jdhLFimAyoDsgIBgevCPg2C49mv_EGohN8cjHR_NbSeHOB2Fohb7I3GxfuQ3J_nSzl5krO51ur5PgxeVSZt_S41McnZEcnPdIfzXROB7SKQTqnkzoFQI_sXVTO_R7ptSYsCBfp17On5PqkyZRIU0MxkQRuHqiROV20B5wZVRuK98osXdxmpFNrJTdUqixdISoudL6Cn0lMt3n28KDME9EWF54TKlutpXhUTRdIY1pl2IX6uLpsrcPnpZW_iyJj_xm5vAtteE52kzTRLwmVThSwmAWO4gYdz4qHtnLi0Jdx5Cvb75OP9ZcWURWLHVOCzEXBCWChAL0QqBcC9KJPDhvpZRmD5D9yB6g0orxB20CXOOZsCIZrwHmffCgkELzg_yJZ3cGAXmMYsI7kfkcSQCfqFteKKSrQy0Q7RfvkXVOMNZHIl-h0nQkAfLTAmQNNvCj1uHknd1hY1zA6QUfDGwEMhd4tSWa_ipDoUAv2JdDmoJ4Lbbf-PVSDZqbcOqavbn_RA7IHKCS-n03OX5MHUCksWV37ZDdfrfUbMFhz9baABkrEHUPRX7jeqMk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagK_E48CivwAJGgnJAKUmch3usFlYrpC0cdqVyimzHFoU2rZpUqPwz_h0ziZM2FaC9tfXEtR17_I3n8wwhr40W0hcsdDWPQzf0ZeBKJY0rPBOwKDR8VCWbOJ_EZ5fhp2k0tYZiYWmVdUjLSk037LD3s-_LAM0VPhquMnOdHMURYO8eObqcfBl_baIdwm4eVdeJktgFwyexTHePcawAiVzJMMCM7nt70KEm3tuKDmmSra_0Nrm5yVdi-1PM53vb0eld8rnpSM1C-THclHKofh3EeLx6T--ROxaZ0nEtcZ9c03mfOB9muqQDasOHzumkid7fJzfOrV--T_o79AnCVeb04gH5fdImOaRLQzEHBOJ-akRJF7uzyYLKLcUrYa6uLiLSqbsWWypksVyjQlvocg1f84zuU-ThhzrFw664cnpQsZtwFE-Z6QIZSOsCm9CcNNe1dai41LqqKJLtH5KL048XJ2euTRXhKjC5SlcyBdAxMjrkIezFnq9ZhKF2RABWcuhJLoNMBUYBoBWeZiYe-SYJQZuZAPQ7Y49IL1_m-gmhwlcJy1jiy8igz1hG3JN-xmORqVh6sUPeNXMnVTaMOmbzmKeVO5_xFF5gim8whVfokDet9KoOH_IPuZc4DdP68murddJxxEaAOZMocsjbSgL1DvyfEvb6BLQaI3h1JI87kqAvVLe4meqp1VcFtAOAuccBLjrkVVuMTyIHL9fLTZGCrkbwzHyo4nG9Mto-BaMKGMPoJJ010wpgFPNuST77VkUzh6fApIA6B83q2jXr70M1aNfef8f06VUFn5Fb8JHXfKxj0ivXG_0coGYpX1j98gc8Q4Hm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+regional+fat+measurements+by+dual-energy+X-ray+absorptiometry+and+conventional+anthropometry+and+their+association+with+markers+of+diabetes+and+cardiovascular+disease+risk&rft.jtitle=International+journal+of+obesity+%282005%29&rft.au=Vasan%2C+S+K&rft.au=Osmond%2C+C&rft.au=Canoy%2C+D&rft.au=Christodoulides%2C+C&rft.date=2018-04-01&rft.issn=1476-5497&rft.eissn=1476-5497&rft.volume=42&rft.issue=4&rft.spage=850&rft_id=info:doi/10.1038%2Fijo.2017.289&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-0565&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-0565&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-0565&client=summon |