Beyond-hot-spot absorption enhancement on top of terahertz nanotrenches
Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 11; no. 13; pp. 3159 - 3167 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
15.06.2022
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 2192-8614 2192-8606 2192-8614 |
DOI | 10.1515/nanoph-2022-0214 |
Cover
Abstract | Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems. |
---|---|
AbstractList | Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems. Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems. Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems. |
Author | Kim, Dai-Sik Jeong, Jeeyoon Park, Hyeong-Ryeol |
Author_xml | – sequence: 1 givenname: Jeeyoon orcidid: 0000-0003-1708-0492 surname: Jeong fullname: Jeong, Jeeyoon email: peterjjy@kangwon.ac.kr organization: Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Gangwon 24341, Republic of Korea – sequence: 2 givenname: Dai-Sik orcidid: 0000-0001-8269-1340 surname: Kim fullname: Kim, Dai-Sik organization: Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 3 givenname: Hyeong-Ryeol orcidid: 0000-0002-6586-9466 surname: Park fullname: Park, Hyeong-Ryeol email: nano@unist.ac.kr organization: Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39634670$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpnhWKxIZNwNdx_FjxqKBUqsQG1pbt2JOMMnawPUXDr8chLbSVwBu_7vl07HueVkc-eFtVzwG9hg66N175MA8NRhg3CAN5VJ1gELjhFMjRnfVxdZbSFpUhRAuCPqmOW0FbQhk6qS4-2EPwfTOE3KQ55FrpFOKcx-Br6wfljd1Zn-uyzWGug6uzjWqwMf-sFwM5Wm8Gm55Vj52akj27mU-rb58-fj3_3Fx9ubg8f3_VmI7w3PAOGXAUYd1r0lkjBBfIGU0wJ9rhljmHMeuJ4qaz2mqDwHWCYNAckFG8Pa0uV24f1FbOcdypeJBBjfL3QYgbqWIezWRlTyjVTtBCxURhxpHugfVggDGHQBXW25U17_XO9qa8M6rpHvT-jR8HuQnXEqBDwOni5tUNIYbve5uy3I3J2GlS3oZ9ki0Q2mHUMlFKXz4o3YZ99OWvJKaMUsoJW4Av7lr64-W2YaWArgUmhpSiddKMWS3tKg7HSQKSSzjkGg65hEMu4ShC9EB4y_6P5N0q-aGm0vXebuL-UBZ_nf9LCgBtC51ofwHgpNLM |
CitedBy_id | crossref_primary_10_1515_nanoph_2022_0706 crossref_primary_10_1002_adpr_202300211 crossref_primary_10_3390_nano13182526 crossref_primary_10_1063_5_0134501 crossref_primary_10_1126_sciadv_adm7315 crossref_primary_10_1021_acs_nanolett_3c03572 |
Cites_doi | 10.1007/s10762-013-0003-6 10.1021/acs.nanolett.5b02361 10.1021/nl504455s 10.1103/PhysRevB.74.153411 10.1021/nl1002153 10.1039/c0sc00365d 10.1063/5.0009766 10.1038/srep29103 10.1002/adom.201400546 10.1557/jmr.2011.434 10.1038/s41467-018-07365-w 10.1038/s41467-019-12038-3 10.1021/acs.nanolett.7b03289 10.1021/acsphotonics.6b00047 10.1021/acs.nanolett.5b02505 10.1021/nl503324g 10.1103/PhysRevLett.115.125501 10.1021/acs.analchem.9b01066 10.1063/1.4764304 10.1021/nl904170g 10.1038/srep15459 10.3390/nano11030783 10.1088/0031-9155/47/21/319 10.1021/ph500464j 10.1038/ncomms3361 10.1021/acsphotonics.0c00011 10.1002/adom.201800582 10.1021/acsnano.9b00776 10.1021/acs.nanolett.7b05295 10.1515/nanoph-2017-0058 10.1038/nphoton.2009.22 10.1016/j.optcom.2010.08.008 10.1515/nanoph-2019-0436 10.1021/acsphotonics.8b00151 10.1103/PhysRevLett.92.220801 10.1021/acs.nanolett.7b05033 10.1021/nl400374z 10.1021/acs.nanolett.7b02736 |
ContentType | Journal Article |
Copyright | 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston. 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1515/nanoph-2022-0214 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DAOJ: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 2192-8614 |
EndPage | 3167 |
ExternalDocumentID | oai_doaj_org_article_d466bf9623724a2780bd17d1c177f01a PMC11501868 39634670 10_1515_nanoph_2022_0214 10_1515_nanoph_2022_021411133159 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ulsan National Institute of Science and Technology grantid: 1.190055.01; 1.190098.01; 1.220061.01 – fundername: National Research Foundation of Korea grantid: MSIT: NRF-2021R1C1C1010660; MSIP: NRF-2015R1A3A2031768; NRF-2021R1A2C1008452 – fundername: Kangwon National University grantid: 2022 Research Grant |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c548t-850c1f602bdb45ec99890fcb4284bf237ff227d4a8c5ebebc01f59421b810ca83 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:24:35 EDT 2025 Thu Aug 21 18:35:32 EDT 2025 Fri Sep 05 07:34:56 EDT 2025 Mon Jul 14 10:38:43 EDT 2025 Wed Feb 19 02:03:16 EST 2025 Tue Jul 01 00:41:52 EDT 2025 Thu Apr 24 22:59:02 EDT 2025 Sat Sep 06 17:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | hot spots field enhancement absorption terahertz nanogaps |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-850c1f602bdb45ec99890fcb4284bf237ff227d4a8c5ebebc01f59421b810ca83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6586-9466 0000-0001-8269-1340 0000-0003-1708-0492 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0214 |
PMID | 39634670 |
PQID | 2676668478 |
PQPubID | 2038884 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d466bf9623724a2780bd17d1c177f01a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501868 proquest_miscellaneous_3146520379 proquest_journals_2676668478 pubmed_primary_39634670 crossref_citationtrail_10_1515_nanoph_2022_0214 crossref_primary_10_1515_nanoph_2022_0214 walterdegruyter_journals_10_1515_nanoph_2022_021411133159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2022 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023040102075014700_j_nanoph-2022-0214_ref_008 2023040102075014700_j_nanoph-2022-0214_ref_009 2023040102075014700_j_nanoph-2022-0214_ref_006 2023040102075014700_j_nanoph-2022-0214_ref_028 2023040102075014700_j_nanoph-2022-0214_ref_007 2023040102075014700_j_nanoph-2022-0214_ref_029 2023040102075014700_j_nanoph-2022-0214_ref_004 2023040102075014700_j_nanoph-2022-0214_ref_026 2023040102075014700_j_nanoph-2022-0214_ref_005 2023040102075014700_j_nanoph-2022-0214_ref_027 2023040102075014700_j_nanoph-2022-0214_ref_002 2023040102075014700_j_nanoph-2022-0214_ref_024 2023040102075014700_j_nanoph-2022-0214_ref_003 2023040102075014700_j_nanoph-2022-0214_ref_025 2023040102075014700_j_nanoph-2022-0214_ref_022 2023040102075014700_j_nanoph-2022-0214_ref_001 2023040102075014700_j_nanoph-2022-0214_ref_023 2023040102075014700_j_nanoph-2022-0214_ref_031 2023040102075014700_j_nanoph-2022-0214_ref_010 2023040102075014700_j_nanoph-2022-0214_ref_032 2023040102075014700_j_nanoph-2022-0214_ref_030 2023040102075014700_j_nanoph-2022-0214_ref_019 2023040102075014700_j_nanoph-2022-0214_ref_017 2023040102075014700_j_nanoph-2022-0214_ref_039 2023040102075014700_j_nanoph-2022-0214_ref_018 2023040102075014700_j_nanoph-2022-0214_ref_015 2023040102075014700_j_nanoph-2022-0214_ref_037 2023040102075014700_j_nanoph-2022-0214_ref_016 2023040102075014700_j_nanoph-2022-0214_ref_038 2023040102075014700_j_nanoph-2022-0214_ref_013 2023040102075014700_j_nanoph-2022-0214_ref_035 2023040102075014700_j_nanoph-2022-0214_ref_014 2023040102075014700_j_nanoph-2022-0214_ref_036 2023040102075014700_j_nanoph-2022-0214_ref_011 2023040102075014700_j_nanoph-2022-0214_ref_033 2023040102075014700_j_nanoph-2022-0214_ref_012 2023040102075014700_j_nanoph-2022-0214_ref_034 2023040102075014700_j_nanoph-2022-0214_ref_020 2023040102075014700_j_nanoph-2022-0214_ref_021 |
References_xml | – ident: 2023040102075014700_j_nanoph-2022-0214_ref_034 doi: 10.1007/s10762-013-0003-6 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_023 doi: 10.1021/acs.nanolett.5b02361 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_007 doi: 10.1021/nl504455s – ident: 2023040102075014700_j_nanoph-2022-0214_ref_029 doi: 10.1103/PhysRevB.74.153411 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_025 doi: 10.1021/nl1002153 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_032 doi: 10.1039/c0sc00365d – ident: 2023040102075014700_j_nanoph-2022-0214_ref_003 doi: 10.1063/5.0009766 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_019 doi: 10.1038/srep29103 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_027 doi: 10.1002/adom.201400546 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_033 doi: 10.1557/jmr.2011.434 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_021 doi: 10.1038/s41467-018-07365-w – ident: 2023040102075014700_j_nanoph-2022-0214_ref_039 doi: 10.1038/s41467-019-12038-3 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_024 doi: 10.1021/acs.nanolett.7b03289 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_038 doi: 10.1021/acsphotonics.6b00047 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_018 doi: 10.1021/acs.nanolett.5b02505 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_009 doi: 10.1021/nl503324g – ident: 2023040102075014700_j_nanoph-2022-0214_ref_020 doi: 10.1103/PhysRevLett.115.125501 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_037 doi: 10.1021/acs.analchem.9b01066 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_035 doi: 10.1063/1.4764304 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_030 doi: 10.1103/PhysRevB.74.153411 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_002 doi: 10.1021/nl904170g – ident: 2023040102075014700_j_nanoph-2022-0214_ref_017 doi: 10.1038/srep15459 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_013 doi: 10.3390/nano11030783 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_036 doi: 10.1088/0031-9155/47/21/319 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_026 doi: 10.1021/ph500464j – ident: 2023040102075014700_j_nanoph-2022-0214_ref_028 doi: 10.1038/ncomms3361 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_008 doi: 10.1021/acsphotonics.0c00011 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_016 doi: 10.1002/adom.201800582 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_001 doi: 10.1021/acsnano.9b00776 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_006 doi: 10.1021/acs.nanolett.7b05295 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_012 doi: 10.1515/nanoph-2017-0058 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_011 doi: 10.1038/nphoton.2009.22 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_014 doi: 10.1016/j.optcom.2010.08.008 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_022 doi: 10.1515/nanoph-2019-0436 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_031 doi: 10.1021/acsphotonics.8b00151 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_004 doi: 10.1103/PhysRevLett.92.220801 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_010 doi: 10.1021/acs.nanolett.7b05033 – ident: 2023040102075014700_j_nanoph-2022-0214_ref_015 doi: 10.1021/nl400374z – ident: 2023040102075014700_j_nanoph-2022-0214_ref_005 doi: 10.1021/acs.nanolett.7b02736 |
SSID | ssj0000993196 |
Score | 2.250193 |
Snippet | Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots.... |
SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3159 |
SubjectTerms | Absorption Alumina Electromagnetic fields field enhancement Glass substrates hot spots Light nanogaps Physics Radiation terahertz Water chemistry Zinc telluride |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVTTHG3IcKEg0FNH6mcQlII4TElScdJ3lJwGhZLXJCsGvZybOLrc8G8rEjmR_M-P5JmOPCXkatPSa6lDNFQgli65qAw8VV55ZpixIGg84v31Xn1_IN5fq8spVX7gnLJcHzsCtgqxrlzR46YZLy5uWusCawDxrmkTZTI2opleCqU-Z96BuLXlJ8Nmr3vbDugOlgOAL64Qd-KG5XP_vOOavWyWPv8xp7BA_bLZfp13adPZGZzfJ8UIjy-d5-LfItdjfJjcWSlkuBjveIa_zCZWqG6YKAtiptG4cNvMyUca-Q5Hj78ESHqdhXQ6pxBPJIMfpW4lzmfAwYBfHu-Ti7NX7l-fVcndC5SEGmapWUc9STbkLTqroIarSNHkH0YZ0CcBMifMmSNt6BXJ0nrKktOTMtYx624p75Kgf-viAlIrVVvhYN0xLKUILK6IH1sZwt5WzQhdktUPS-KWwON5v8dlggAHYm4y9QewNYl-QZ_sv1rmoxl_6vkDh7PthOez5BSiJWZTE_EtJCnK6E61ZbHQ0vG4gdgPv3Bbkyb4ZrAtTJraPw3Y0AhyJ4lQ0MMv7WRP2IxGwdoGboQVpD3TkYKiHLf3Hbq7gjTQc7ykoiP5JnX4M70-AgHMSAkjoyf8A5iG5ni2irpg6JUfTZhsfAcua3OPZoL4D0JElqA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLgfIKFBQkLhysjR9JnBMCxLZCghOVerP8ShcJJcsmq6r8emYcb6rl0WNekp35PPONxzNDyBvfSNcUjaexAqFkwVLluae8dMyw0oCkMcH5y9fq9Ex-Pi_P04bbkI5V7nRiVNS-d7hHvuBVDUwbdKl6t_5JsWsURldTC43b5A7jgCTMFF-ezHsswH4QYdhfDogMVUDWU6QSrPiiM12_XgFMwB3DymF7likW8P8X6_z78OThZQxs-3Cx2V6Nu0BqtE_LB-QwEcv8_YSEh-RW6I7I_UQy87SEhyNyN575dMMjcjJlr9BVP1Jwbsfc2KHfRBWSh26FcMCtwxwux36d922O2cog4_FXjrMaMVFwFYbH5Gz56dvHU5r6KlAH_slIVVk41lYFt97KMjjwuJqidRY8EWlbLuq25bz20ihXgoytK1hbNpIzq1jhjBJPyEHXd-EZyUtWGeFCVbNGSuEVaEsHjI7hSSxrRJORxe6fapeKjmPvix8anQ-Qgp6koFEKGqWQkbfzF-up4MYN735AMc3vYanseKPfXOi08rSXVWXbBmhezaXhtSqsZ7VnjtV1WzCTkeOdkHVav4O-RltGXs-PYeVhOMV0od8OWoCRKXkhapjl0wkT80gE6DUwQUVG1B5a9oa6_6T7vorVvZGiYw-DjDR_AOt6eP_7IWC4hACC-vzmOb0g9ybUV5SVx-Rg3GzDS-BWo30VF9Bv6TUi2Q priority: 102 providerName: ProQuest |
Title | Beyond-hot-spot absorption enhancement on top of terahertz nanotrenches |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2022-0214 https://www.ncbi.nlm.nih.gov/pubmed/39634670 https://www.proquest.com/docview/2676668478 https://www.proquest.com/docview/3146520379 https://pubmed.ncbi.nlm.nih.gov/PMC11501868 https://doaj.org/article/d466bf9623724a2780bd17d1c177f01a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe-FS3hAoUZC4cAiNHTtxDghR1G2F1AohVuot8isNqEqWJCsov54ZJ7vVwoLEMU85M994vrEzM4S8tAU3RVLY2Fcg5NTpWFpmYyYMVVQo0DQmOJ-dZ6dz_uFCXNykR08C7LeGdthPat5dvf7x7fotGPwb372HisNGNe2iBn1DXIUlwHbIHvglhhg_m8j-15ELId6w2xzQmliCY5r2Lbe9ZMNP-XL-2zjon79S7n_329zWXXbL62G1req91ewu2Z9oZvRuxMU9css198mdiXJGk0H3D8jJmMES1-0QgxSGSOm-7fw0ErmmRkjg8mEEh0O7iNoqwoxl0PPwM8JvGTBZsHb9QzKfHX9-fxpPvRViAzHKEEuRGFplCdNWc-EMRF1FUhkN0QjXFUvzqmIst1xJI0DP2iS0EgVnVEuaGCXTR2S3aRv3hESCZio1LstpwXlqJcyYBlgdxb-xtEqLgByuJFmaqfA49r-4KjEAAdmXo-xLlH2Jsg_Iq_UTi7Hoxj_uPULlrO_Dctn-RNtdlpP1lZZnma4KoHo544rlMtGW5pYamudVQlVADlaqLVcQLFmWQ2wH3lsG5MX6MlgfbqmoxrXLvkzB0QiWpDl85eMRCeuRpDC3gRtKAiI3MLIx1M0rzZfaV_hGmo59DAJS_Aanm-H9TSDgvNIUSOrT_xDiM3J7BH4WU3FAdodu6Z4D2Rp0SHbk7CQke0fH5x8_hX7JIvR2FfqVsV8H2yxB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKKwQvBcoVKBAkeODB2thxrocKUWjZ0kMItVLfjK90kVCybLKqyo_jtzGTOFstR9_6mFO25_rG45kh5JUthCmiwtKuAqFgTtPcckt5YphiiQJKY4Lz4VE6PhGfTpPTFfJryIXBY5WDTuwUta0N7pGPeJoB0gZdmr-d_qDYNQqjq0MLDeVbK9itrsSYT-zYdxfn4MI1W3sfgN6vOd_dOX4_pr7LADWA1luaJ5FhZRpxbbVInAH_o4hKowGXC13yOCtLzjMrVG4SmLE2ESuTQnCmcxYZlcfw3xtkDWBHDFK1tr1z9PnLYpcH8BfyOHa4AyhFc3AXfKwUcMSoUlU9nQCjgkOItcuWbGPXQuBfuPfv45vr511o3bqz2fyiHUK5nYXcvUvWPbQN3_W8eI-suGqD3PEwN_RKpNkgN7tTp6a5Tz72-TN0UrcU3Os2VLqpZ50SC101QYbEzcsQLtt6GtZliPnSwGXtzxBn1WKq4sQ1D8jJtaz5Q7Ja1ZV7TMKEpSo2Ls1YIURsc9DXBjAlw7NgWsVFQEbDmkrjy55j943vEt0foILsqSCRChKpEJA3iy-mfcmPK97dRjIt3sNi3d2NenYmvexLK9JUlwUAzYwLxbM80pZllhmWZWXEVEA2ByJLr0EaecnvAXm5eAyyjwEdVbl63sgYzFzCoziDWT7qeWIxkhg0KxjBKCD5ErcsDXX5SfVt0tUXRycBuygEpPiDsS6H978FAdMZxwCRn1w9pxfk1vj48EAe7B3tPyW3ewlIKUs2yWo7m7tngPRa_dyLU0i-XrcE_wZfU2bf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrYS4lHcbKBAkLhyijV95HEthu7wKElTqzfIj6SKhZLXJqoJfz0ySDSwULhwTx5I9D883seczwDOfS5fHuY86BkLJChtlnvuIK8cMUwY1TQXO70-T-Zl8c67Od-B4UwtDxyp9cbFaf2t7htSpr92afpSNXAMYgaeVqerlAlWMqRSxfk2XvrwGuwnVO0xg92h-8unD-KsFQRAZ2rBJeVX3raDUcfdfBTj_PDe5d9ntaY8D_iU0zW7B3oApw6PeCG7DTlHdgZsDvgwH723uwklfrhIt6jbCbLYNjW3qVbdmhEW1IP2TCEJ8bOtlWJchlSejUtvvIc2lpcrARdHcg7PZq8_H82i4SCFymJC0UaZix8ok5tZbqQqHKVYel85i6iFtyUValpynXprMKVSqdTErVS45sxmLncnEfZhUdVUcQKhYYoQrkpTlUgqf4fLoEMIxOnpljcgDmG4kqd3AMk6XXXzVlG2g7HUve02y1yT7AJ6PPZY9w8Y_vn1Byhm_I27s7kW9utCDq2kvk8SWOeK6lEvD0yy2nqWeOZamZcxMAIcb1erBYRvNkxQTOQzVWQBPx2Z0Ndo_MVVRrxstMKooHosUZ7nfW8I4EoELGcacOIBsy0a2hrrdUn1ZdHTehMnp0oIA8t_M6efw_iYQjFRCICJ98B99n8D1jy9n-t3r07cP4UbvE0nE1CFM2tW6eISgq7WPB6f6AQy6KxU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond-hot-spot+absorption+enhancement+on+top+of+terahertz+nanotrenches&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Jeong%2C+Jeeyoon&rft.au=Kim%2C+Dai-Sik&rft.au=Park%2C+Hyeong-Ryeol&rft.date=2022-06-15&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=11&rft.issue=13&rft.spage=3159&rft.epage=3167&rft_id=info:doi/10.1515%2Fnanoph-2022-0214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2022_0214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |