Beyond-hot-spot absorption enhancement on top of terahertz nanotrenches

Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 11; no. 13; pp. 3159 - 3167
Main Authors Jeong, Jeeyoon, Kim, Dai-Sik, Park, Hyeong-Ryeol
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 15.06.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2192-8614
2192-8606
2192-8614
DOI10.1515/nanoph-2022-0214

Cover

Abstract Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.
AbstractList Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.
Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.
Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.
Author Kim, Dai-Sik
Jeong, Jeeyoon
Park, Hyeong-Ryeol
Author_xml – sequence: 1
  givenname: Jeeyoon
  orcidid: 0000-0003-1708-0492
  surname: Jeong
  fullname: Jeong, Jeeyoon
  email: peterjjy@kangwon.ac.kr
  organization: Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Gangwon 24341, Republic of Korea
– sequence: 2
  givenname: Dai-Sik
  orcidid: 0000-0001-8269-1340
  surname: Kim
  fullname: Kim, Dai-Sik
  organization: Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
– sequence: 3
  givenname: Hyeong-Ryeol
  orcidid: 0000-0002-6586-9466
  surname: Park
  fullname: Park, Hyeong-Ryeol
  email: nano@unist.ac.kr
  organization: Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39634670$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpnhWKxIZNwNdx_FjxqKBUqsQG1pbt2JOMMnawPUXDr8chLbSVwBu_7vl07HueVkc-eFtVzwG9hg66N175MA8NRhg3CAN5VJ1gELjhFMjRnfVxdZbSFpUhRAuCPqmOW0FbQhk6qS4-2EPwfTOE3KQ55FrpFOKcx-Br6wfljd1Zn-uyzWGug6uzjWqwMf-sFwM5Wm8Gm55Vj52akj27mU-rb58-fj3_3Fx9ubg8f3_VmI7w3PAOGXAUYd1r0lkjBBfIGU0wJ9rhljmHMeuJ4qaz2mqDwHWCYNAckFG8Pa0uV24f1FbOcdypeJBBjfL3QYgbqWIezWRlTyjVTtBCxURhxpHugfVggDGHQBXW25U17_XO9qa8M6rpHvT-jR8HuQnXEqBDwOni5tUNIYbve5uy3I3J2GlS3oZ9ki0Q2mHUMlFKXz4o3YZ99OWvJKaMUsoJW4Av7lr64-W2YaWArgUmhpSiddKMWS3tKg7HSQKSSzjkGg65hEMu4ShC9EB4y_6P5N0q-aGm0vXebuL-UBZ_nf9LCgBtC51ofwHgpNLM
CitedBy_id crossref_primary_10_1515_nanoph_2022_0706
crossref_primary_10_1002_adpr_202300211
crossref_primary_10_3390_nano13182526
crossref_primary_10_1063_5_0134501
crossref_primary_10_1126_sciadv_adm7315
crossref_primary_10_1021_acs_nanolett_3c03572
Cites_doi 10.1007/s10762-013-0003-6
10.1021/acs.nanolett.5b02361
10.1021/nl504455s
10.1103/PhysRevB.74.153411
10.1021/nl1002153
10.1039/c0sc00365d
10.1063/5.0009766
10.1038/srep29103
10.1002/adom.201400546
10.1557/jmr.2011.434
10.1038/s41467-018-07365-w
10.1038/s41467-019-12038-3
10.1021/acs.nanolett.7b03289
10.1021/acsphotonics.6b00047
10.1021/acs.nanolett.5b02505
10.1021/nl503324g
10.1103/PhysRevLett.115.125501
10.1021/acs.analchem.9b01066
10.1063/1.4764304
10.1021/nl904170g
10.1038/srep15459
10.3390/nano11030783
10.1088/0031-9155/47/21/319
10.1021/ph500464j
10.1038/ncomms3361
10.1021/acsphotonics.0c00011
10.1002/adom.201800582
10.1021/acsnano.9b00776
10.1021/acs.nanolett.7b05295
10.1515/nanoph-2017-0058
10.1038/nphoton.2009.22
10.1016/j.optcom.2010.08.008
10.1515/nanoph-2019-0436
10.1021/acsphotonics.8b00151
10.1103/PhysRevLett.92.220801
10.1021/acs.nanolett.7b05033
10.1021/nl400374z
10.1021/acs.nanolett.7b02736
ContentType Journal Article
Copyright 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston.
2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston 2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2022-0214
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DAOJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2192-8614
EndPage 3167
ExternalDocumentID oai_doaj_org_article_d466bf9623724a2780bd17d1c177f01a
PMC11501868
39634670
10_1515_nanoph_2022_0214
10_1515_nanoph_2022_021411133159
Genre Journal Article
GrantInformation_xml – fundername: Ulsan National Institute of Science and Technology
  grantid: 1.190055.01; 1.190098.01; 1.220061.01
– fundername: National Research Foundation of Korea
  grantid: MSIT: NRF-2021R1C1C1010660; MSIP: NRF-2015R1A3A2031768; NRF-2021R1A2C1008452
– fundername: Kangwon National University
  grantid: 2022 Research Grant
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c548t-850c1f602bdb45ec99890fcb4284bf237ff227d4a8c5ebebc01f59421b810ca83
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:24:35 EDT 2025
Thu Aug 21 18:35:32 EDT 2025
Fri Sep 05 07:34:56 EDT 2025
Mon Jul 14 10:38:43 EDT 2025
Wed Feb 19 02:03:16 EST 2025
Tue Jul 01 00:41:52 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Sat Sep 06 17:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords hot spots
field enhancement
absorption
terahertz
nanogaps
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2022 Jeeyoon Jeong et al., published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-850c1f602bdb45ec99890fcb4284bf237ff227d4a8c5ebebc01f59421b810ca83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6586-9466
0000-0001-8269-1340
0000-0003-1708-0492
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0214
PMID 39634670
PQID 2676668478
PQPubID 2038884
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_d466bf9623724a2780bd17d1c177f01a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501868
proquest_miscellaneous_3146520379
proquest_journals_2676668478
pubmed_primary_39634670
crossref_citationtrail_10_1515_nanoph_2022_0214
crossref_primary_10_1515_nanoph_2022_0214
walterdegruyter_journals_10_1515_nanoph_2022_021411133159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023040102075014700_j_nanoph-2022-0214_ref_008
2023040102075014700_j_nanoph-2022-0214_ref_009
2023040102075014700_j_nanoph-2022-0214_ref_006
2023040102075014700_j_nanoph-2022-0214_ref_028
2023040102075014700_j_nanoph-2022-0214_ref_007
2023040102075014700_j_nanoph-2022-0214_ref_029
2023040102075014700_j_nanoph-2022-0214_ref_004
2023040102075014700_j_nanoph-2022-0214_ref_026
2023040102075014700_j_nanoph-2022-0214_ref_005
2023040102075014700_j_nanoph-2022-0214_ref_027
2023040102075014700_j_nanoph-2022-0214_ref_002
2023040102075014700_j_nanoph-2022-0214_ref_024
2023040102075014700_j_nanoph-2022-0214_ref_003
2023040102075014700_j_nanoph-2022-0214_ref_025
2023040102075014700_j_nanoph-2022-0214_ref_022
2023040102075014700_j_nanoph-2022-0214_ref_001
2023040102075014700_j_nanoph-2022-0214_ref_023
2023040102075014700_j_nanoph-2022-0214_ref_031
2023040102075014700_j_nanoph-2022-0214_ref_010
2023040102075014700_j_nanoph-2022-0214_ref_032
2023040102075014700_j_nanoph-2022-0214_ref_030
2023040102075014700_j_nanoph-2022-0214_ref_019
2023040102075014700_j_nanoph-2022-0214_ref_017
2023040102075014700_j_nanoph-2022-0214_ref_039
2023040102075014700_j_nanoph-2022-0214_ref_018
2023040102075014700_j_nanoph-2022-0214_ref_015
2023040102075014700_j_nanoph-2022-0214_ref_037
2023040102075014700_j_nanoph-2022-0214_ref_016
2023040102075014700_j_nanoph-2022-0214_ref_038
2023040102075014700_j_nanoph-2022-0214_ref_013
2023040102075014700_j_nanoph-2022-0214_ref_035
2023040102075014700_j_nanoph-2022-0214_ref_014
2023040102075014700_j_nanoph-2022-0214_ref_036
2023040102075014700_j_nanoph-2022-0214_ref_011
2023040102075014700_j_nanoph-2022-0214_ref_033
2023040102075014700_j_nanoph-2022-0214_ref_012
2023040102075014700_j_nanoph-2022-0214_ref_034
2023040102075014700_j_nanoph-2022-0214_ref_020
2023040102075014700_j_nanoph-2022-0214_ref_021
References_xml – ident: 2023040102075014700_j_nanoph-2022-0214_ref_034
  doi: 10.1007/s10762-013-0003-6
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_023
  doi: 10.1021/acs.nanolett.5b02361
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_007
  doi: 10.1021/nl504455s
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_029
  doi: 10.1103/PhysRevB.74.153411
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_025
  doi: 10.1021/nl1002153
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_032
  doi: 10.1039/c0sc00365d
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_003
  doi: 10.1063/5.0009766
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_019
  doi: 10.1038/srep29103
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_027
  doi: 10.1002/adom.201400546
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_033
  doi: 10.1557/jmr.2011.434
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_021
  doi: 10.1038/s41467-018-07365-w
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_039
  doi: 10.1038/s41467-019-12038-3
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_024
  doi: 10.1021/acs.nanolett.7b03289
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_038
  doi: 10.1021/acsphotonics.6b00047
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_018
  doi: 10.1021/acs.nanolett.5b02505
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_009
  doi: 10.1021/nl503324g
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_020
  doi: 10.1103/PhysRevLett.115.125501
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_037
  doi: 10.1021/acs.analchem.9b01066
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_035
  doi: 10.1063/1.4764304
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_030
  doi: 10.1103/PhysRevB.74.153411
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_002
  doi: 10.1021/nl904170g
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_017
  doi: 10.1038/srep15459
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_013
  doi: 10.3390/nano11030783
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_036
  doi: 10.1088/0031-9155/47/21/319
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_026
  doi: 10.1021/ph500464j
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_028
  doi: 10.1038/ncomms3361
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_008
  doi: 10.1021/acsphotonics.0c00011
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_016
  doi: 10.1002/adom.201800582
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_001
  doi: 10.1021/acsnano.9b00776
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_006
  doi: 10.1021/acs.nanolett.7b05295
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_012
  doi: 10.1515/nanoph-2017-0058
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_011
  doi: 10.1038/nphoton.2009.22
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_014
  doi: 10.1016/j.optcom.2010.08.008
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_022
  doi: 10.1515/nanoph-2019-0436
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_031
  doi: 10.1021/acsphotonics.8b00151
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_004
  doi: 10.1103/PhysRevLett.92.220801
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_010
  doi: 10.1021/acs.nanolett.7b05033
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_015
  doi: 10.1021/nl400374z
– ident: 2023040102075014700_j_nanoph-2022-0214_ref_005
  doi: 10.1021/acs.nanolett.7b02736
SSID ssj0000993196
Score 2.250193
Snippet Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3159
SubjectTerms Absorption
Alumina
Electromagnetic fields
field enhancement
Glass substrates
hot spots
Light
nanogaps
Physics
Radiation
terahertz
Water chemistry
Zinc telluride
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVTTHG3IcKEg0FNH6mcQlII4TElScdJ3lJwGhZLXJCsGvZybOLrc8G8rEjmR_M-P5JmOPCXkatPSa6lDNFQgli65qAw8VV55ZpixIGg84v31Xn1_IN5fq8spVX7gnLJcHzsCtgqxrlzR46YZLy5uWusCawDxrmkTZTI2opleCqU-Z96BuLXlJ8Nmr3vbDugOlgOAL64Qd-KG5XP_vOOavWyWPv8xp7BA_bLZfp13adPZGZzfJ8UIjy-d5-LfItdjfJjcWSlkuBjveIa_zCZWqG6YKAtiptG4cNvMyUca-Q5Hj78ESHqdhXQ6pxBPJIMfpW4lzmfAwYBfHu-Ti7NX7l-fVcndC5SEGmapWUc9STbkLTqroIarSNHkH0YZ0CcBMifMmSNt6BXJ0nrKktOTMtYx624p75Kgf-viAlIrVVvhYN0xLKUILK6IH1sZwt5WzQhdktUPS-KWwON5v8dlggAHYm4y9QewNYl-QZ_sv1rmoxl_6vkDh7PthOez5BSiJWZTE_EtJCnK6E61ZbHQ0vG4gdgPv3Bbkyb4ZrAtTJraPw3Y0AhyJ4lQ0MMv7WRP2IxGwdoGboQVpD3TkYKiHLf3Hbq7gjTQc7ykoiP5JnX4M70-AgHMSAkjoyf8A5iG5ni2irpg6JUfTZhsfAcua3OPZoL4D0JElqA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLgfIKFBQkLhysjR9JnBMCxLZCghOVerP8ShcJJcsmq6r8emYcb6rl0WNekp35PPONxzNDyBvfSNcUjaexAqFkwVLluae8dMyw0oCkMcH5y9fq9Ex-Pi_P04bbkI5V7nRiVNS-d7hHvuBVDUwbdKl6t_5JsWsURldTC43b5A7jgCTMFF-ezHsswH4QYdhfDogMVUDWU6QSrPiiM12_XgFMwB3DymF7likW8P8X6_z78OThZQxs-3Cx2V6Nu0BqtE_LB-QwEcv8_YSEh-RW6I7I_UQy87SEhyNyN575dMMjcjJlr9BVP1Jwbsfc2KHfRBWSh26FcMCtwxwux36d922O2cog4_FXjrMaMVFwFYbH5Gz56dvHU5r6KlAH_slIVVk41lYFt97KMjjwuJqidRY8EWlbLuq25bz20ihXgoytK1hbNpIzq1jhjBJPyEHXd-EZyUtWGeFCVbNGSuEVaEsHjI7hSSxrRJORxe6fapeKjmPvix8anQ-Qgp6koFEKGqWQkbfzF-up4MYN735AMc3vYanseKPfXOi08rSXVWXbBmhezaXhtSqsZ7VnjtV1WzCTkeOdkHVav4O-RltGXs-PYeVhOMV0od8OWoCRKXkhapjl0wkT80gE6DUwQUVG1B5a9oa6_6T7vorVvZGiYw-DjDR_AOt6eP_7IWC4hACC-vzmOb0g9ybUV5SVx-Rg3GzDS-BWo30VF9Bv6TUi2Q
  priority: 102
  providerName: ProQuest
Title Beyond-hot-spot absorption enhancement on top of terahertz nanotrenches
URI https://www.degruyter.com/doi/10.1515/nanoph-2022-0214
https://www.ncbi.nlm.nih.gov/pubmed/39634670
https://www.proquest.com/docview/2676668478
https://www.proquest.com/docview/3146520379
https://pubmed.ncbi.nlm.nih.gov/PMC11501868
https://doaj.org/article/d466bf9623724a2780bd17d1c177f01a
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe-FS3hAoUZC4cAiNHTtxDghR1G2F1AohVuot8isNqEqWJCsov54ZJ7vVwoLEMU85M994vrEzM4S8tAU3RVLY2Fcg5NTpWFpmYyYMVVQo0DQmOJ-dZ6dz_uFCXNykR08C7LeGdthPat5dvf7x7fotGPwb372HisNGNe2iBn1DXIUlwHbIHvglhhg_m8j-15ELId6w2xzQmliCY5r2Lbe9ZMNP-XL-2zjon79S7n_329zWXXbL62G1req91ewu2Z9oZvRuxMU9css198mdiXJGk0H3D8jJmMES1-0QgxSGSOm-7fw0ErmmRkjg8mEEh0O7iNoqwoxl0PPwM8JvGTBZsHb9QzKfHX9-fxpPvRViAzHKEEuRGFplCdNWc-EMRF1FUhkN0QjXFUvzqmIst1xJI0DP2iS0EgVnVEuaGCXTR2S3aRv3hESCZio1LstpwXlqJcyYBlgdxb-xtEqLgByuJFmaqfA49r-4KjEAAdmXo-xLlH2Jsg_Iq_UTi7Hoxj_uPULlrO_Dctn-RNtdlpP1lZZnma4KoHo544rlMtGW5pYamudVQlVADlaqLVcQLFmWQ2wH3lsG5MX6MlgfbqmoxrXLvkzB0QiWpDl85eMRCeuRpDC3gRtKAiI3MLIx1M0rzZfaV_hGmo59DAJS_Aanm-H9TSDgvNIUSOrT_xDiM3J7BH4WU3FAdodu6Z4D2Rp0SHbk7CQke0fH5x8_hX7JIvR2FfqVsV8H2yxB
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKKwQvBcoVKBAkeODB2thxrocKUWjZ0kMItVLfjK90kVCybLKqyo_jtzGTOFstR9_6mFO25_rG45kh5JUthCmiwtKuAqFgTtPcckt5YphiiQJKY4Lz4VE6PhGfTpPTFfJryIXBY5WDTuwUta0N7pGPeJoB0gZdmr-d_qDYNQqjq0MLDeVbK9itrsSYT-zYdxfn4MI1W3sfgN6vOd_dOX4_pr7LADWA1luaJ5FhZRpxbbVInAH_o4hKowGXC13yOCtLzjMrVG4SmLE2ESuTQnCmcxYZlcfw3xtkDWBHDFK1tr1z9PnLYpcH8BfyOHa4AyhFc3AXfKwUcMSoUlU9nQCjgkOItcuWbGPXQuBfuPfv45vr511o3bqz2fyiHUK5nYXcvUvWPbQN3_W8eI-suGqD3PEwN_RKpNkgN7tTp6a5Tz72-TN0UrcU3Os2VLqpZ50SC101QYbEzcsQLtt6GtZliPnSwGXtzxBn1WKq4sQ1D8jJtaz5Q7Ja1ZV7TMKEpSo2Ls1YIURsc9DXBjAlw7NgWsVFQEbDmkrjy55j943vEt0foILsqSCRChKpEJA3iy-mfcmPK97dRjIt3sNi3d2NenYmvexLK9JUlwUAzYwLxbM80pZllhmWZWXEVEA2ByJLr0EaecnvAXm5eAyyjwEdVbl63sgYzFzCoziDWT7qeWIxkhg0KxjBKCD5ErcsDXX5SfVt0tUXRycBuygEpPiDsS6H978FAdMZxwCRn1w9pxfk1vj48EAe7B3tPyW3ewlIKUs2yWo7m7tngPRa_dyLU0i-XrcE_wZfU2bf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrYS4lHcbKBAkLhyijV95HEthu7wKElTqzfIj6SKhZLXJqoJfz0ySDSwULhwTx5I9D883seczwDOfS5fHuY86BkLJChtlnvuIK8cMUwY1TQXO70-T-Zl8c67Od-B4UwtDxyp9cbFaf2t7htSpr92afpSNXAMYgaeVqerlAlWMqRSxfk2XvrwGuwnVO0xg92h-8unD-KsFQRAZ2rBJeVX3raDUcfdfBTj_PDe5d9ntaY8D_iU0zW7B3oApw6PeCG7DTlHdgZsDvgwH723uwklfrhIt6jbCbLYNjW3qVbdmhEW1IP2TCEJ8bOtlWJchlSejUtvvIc2lpcrARdHcg7PZq8_H82i4SCFymJC0UaZix8ok5tZbqQqHKVYel85i6iFtyUValpynXprMKVSqdTErVS45sxmLncnEfZhUdVUcQKhYYoQrkpTlUgqf4fLoEMIxOnpljcgDmG4kqd3AMk6XXXzVlG2g7HUve02y1yT7AJ6PPZY9w8Y_vn1Byhm_I27s7kW9utCDq2kvk8SWOeK6lEvD0yy2nqWeOZamZcxMAIcb1erBYRvNkxQTOQzVWQBPx2Z0Ndo_MVVRrxstMKooHosUZ7nfW8I4EoELGcacOIBsy0a2hrrdUn1ZdHTehMnp0oIA8t_M6efw_iYQjFRCICJ98B99n8D1jy9n-t3r07cP4UbvE0nE1CFM2tW6eISgq7WPB6f6AQy6KxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond-hot-spot+absorption+enhancement+on+top+of+terahertz+nanotrenches&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Jeong%2C+Jeeyoon&rft.au=Kim%2C+Dai-Sik&rft.au=Park%2C+Hyeong-Ryeol&rft.date=2022-06-15&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=11&rft.issue=13&rft.spage=3159&rft.epage=3167&rft_id=info:doi/10.1515%2Fnanoph-2022-0214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2022_0214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon