Wind farm layout optimization using genetic algorithm with different hub height wind turbines

► Introducing wind farm layout optimization with different hub height wind turbines. ► Considering both maximum power output and minimum cost/power as objective functions. ► Using both nested and real code genetic algorithms. ► Using both single and multi-objective optimizations. Layout optimization...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 70; pp. 56 - 65
Main Authors Chen, Ying, Li, Hua, Jin, Kai, Song, Qing
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2013.02.007

Cover

Abstract ► Introducing wind farm layout optimization with different hub height wind turbines. ► Considering both maximum power output and minimum cost/power as objective functions. ► Using both nested and real code genetic algorithms. ► Using both single and multi-objective optimizations. Layout optimization is one of the methods to increase wind farm’s utilization rate and power output. Previous researches have revealed that different hub height wind turbines may increase wind farm’s power output. However, few researches focus on optimizing a wind farm’s layout in a two-dimensional area using different hub height wind turbines. In this paper, the authors first investigate the effect of using different hub height wind turbines in a small wind farm on power output. Three different wind conditions are analyzed using nested genetic algorithm, where the results show that power output of the wind farm using different hub height wind turbines will be increased even when the total numbers of wind turbines are same. Different cost models are also taken into account in the analysis, and results show that different hub height wind turbines can also improve cost per unit power of a wind farm. At last, a large wind farm with commercial wind turbines is analyzed to further examine the benefits of using different hub height wind turbines in more realistic conditions.
AbstractList Layout optimization is one of the methods to increase wind farm’s utilization rate and power output. Previous researches have revealed that different hub height wind turbines may increase wind farm’s power output. However, few researches focus on optimizing a wind farm’s layout in a two-dimensional area using different hub height wind turbines. In this paper, the authors first investigate the effect of using different hub height wind turbines in a small wind farm on power output. Three different wind conditions are analyzed using nested genetic algorithm, where the results show that power output of the wind farm using different hub height wind turbines will be increased even when the total numbers of wind turbines are same. Different cost models are also taken into account in the analysis, and results show that different hub height wind turbines can also improve cost per unit power of a wind farm. At last, a large wind farm with commercial wind turbines is analyzed to further examine the benefits of using different hub height wind turbines in more realistic conditions.
Layout optimization is one of the methods to increase wind farmas utilization rate and power output. Previous researches have revealed that different hub height wind turbines may increase wind farmas power output. However, few researches focus on optimizing a wind farmas layout in a two-dimensional area using different hub height wind turbines. In this paper, the authors first investigate the effect of using different hub height wind turbines in a small wind farm on power output. Three different wind conditions are analyzed using nested genetic algorithm, where the results show that power output of the wind farm using different hub height wind turbines will be increased even when the total numbers of wind turbines are same. Different cost models are also taken into account in the analysis, and results show that different hub height wind turbines can also improve cost per unit power of a wind farm. At last, a large wind farm with commercial wind turbines is analyzed to further examine the benefits of using different hub height wind turbines in more realistic conditions.
► Introducing wind farm layout optimization with different hub height wind turbines. ► Considering both maximum power output and minimum cost/power as objective functions. ► Using both nested and real code genetic algorithms. ► Using both single and multi-objective optimizations. Layout optimization is one of the methods to increase wind farm’s utilization rate and power output. Previous researches have revealed that different hub height wind turbines may increase wind farm’s power output. However, few researches focus on optimizing a wind farm’s layout in a two-dimensional area using different hub height wind turbines. In this paper, the authors first investigate the effect of using different hub height wind turbines in a small wind farm on power output. Three different wind conditions are analyzed using nested genetic algorithm, where the results show that power output of the wind farm using different hub height wind turbines will be increased even when the total numbers of wind turbines are same. Different cost models are also taken into account in the analysis, and results show that different hub height wind turbines can also improve cost per unit power of a wind farm. At last, a large wind farm with commercial wind turbines is analyzed to further examine the benefits of using different hub height wind turbines in more realistic conditions.
Author Li, Hua
Jin, Kai
Chen, Ying
Song, Qing
Author_xml – sequence: 1
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
– sequence: 2
  givenname: Hua
  surname: Li
  fullname: Li, Hua
  email: hua.li@tamuk.edu
– sequence: 3
  givenname: Kai
  surname: Jin
  fullname: Jin, Kai
– sequence: 4
  givenname: Qing
  surname: Song
  fullname: Song, Qing
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27353714$$DView record in Pascal Francis
BookMark eNqNkk9vEzEQxS1UJNLAV0C-IHHJ4j_r9a7EAVRBQarEBcQJWV57nDjatYPtLSqfvg5pL1zSy_gwv_dm5HmX6CLEAAi9pqShhHbv9g0EE8OsQ8MI5Q1hDSHyGVrRXg4bxpi8QCtCh27TD6R9gS5z3hNCuCDdCv366YPFTqcZT_ouLgXHQ_Gz_6uLjwEv2Yct3kKA4g3W0zYmX3Yz_lMrtt45SBAK3i0j3oHf7krtVL-ypNEHyC_Rc6enDK8e3jX68fnT96svm5tv11-vPt5sjGj7smGScc0GKiQzXGrL3cgNB-6saJ0TTrScjuA47wdjudWUO8GtAedG5izp-Rq9PfkeUvy9QC5q9tnANOkAccmKSl6_ZGCkexradaylT0ApYbQllJxHRZ3fC9nJ82jLB0b7jh4XePOA6mz05JIOxmd1SH7W6U4xyQWXlV-j9yfOpJhzAqeML_8OWJL2k6JEHZOi9uoxKeqYFEWYqmtVefef_HHCWeGHkxDqbW89JJWNryRYn8AUZaM_Z3EPqgHecQ
CODEN ECMADL
CitedBy_id crossref_primary_10_1016_j_renene_2017_01_063
crossref_primary_10_1002_qre_2088
crossref_primary_10_1016_j_enconman_2022_116077
crossref_primary_10_1016_j_energy_2019_07_019
crossref_primary_10_1007_s11804_024_00473_8
crossref_primary_10_1016_j_asoc_2024_112462
crossref_primary_10_1063_5_0191884
crossref_primary_10_1016_j_enconman_2021_114610
crossref_primary_10_1016_j_renene_2019_07_002
crossref_primary_10_1016_j_energy_2018_11_073
crossref_primary_10_1016_j_energy_2021_121850
crossref_primary_10_1109_MCI_2021_3108306
crossref_primary_10_1080_15435075_2021_1976651
crossref_primary_10_1016_j_renene_2016_10_038
crossref_primary_10_3390_su15032525
crossref_primary_10_1016_j_oceaneng_2023_114944
crossref_primary_10_1016_j_rser_2015_12_229
crossref_primary_10_1007_s40095_018_0280_x
crossref_primary_10_1016_j_renene_2017_08_041
crossref_primary_10_1016_j_energy_2017_05_076
crossref_primary_10_1063_1_4881684
crossref_primary_10_3390_en8066177
crossref_primary_10_32604_iasc_2021_018338
crossref_primary_10_1016_j_jweia_2014_03_012
crossref_primary_10_1016_j_apenergy_2020_115050
crossref_primary_10_3390_su142416960
crossref_primary_10_1007_s40435_023_01172_y
crossref_primary_10_1016_j_oceaneng_2019_106675
crossref_primary_10_1016_j_renene_2018_03_053
crossref_primary_10_1016_j_enconman_2022_116174
crossref_primary_10_1016_j_enconman_2015_05_031
crossref_primary_10_1016_j_renene_2016_05_018
crossref_primary_10_1016_j_apm_2015_09_039
crossref_primary_10_1016_j_apenergy_2017_03_089
crossref_primary_10_1016_j_enconman_2020_112964
crossref_primary_10_3390_computation11120241
crossref_primary_10_1016_j_renene_2020_06_003
crossref_primary_10_1016_j_enconman_2014_02_010
crossref_primary_10_1016_j_enconman_2015_05_035
crossref_primary_10_1016_j_energy_2020_119244
crossref_primary_10_1049_rpg2_12154
crossref_primary_10_3390_en12132465
crossref_primary_10_1016_j_apenergy_2019_04_084
crossref_primary_10_1049_rpg2_13005
crossref_primary_10_1016_j_energy_2022_126141
crossref_primary_10_1016_j_egyr_2023_08_091
crossref_primary_10_1109_TIA_2017_2737399
crossref_primary_10_1109_ACCESS_2025_3549035
crossref_primary_10_1016_j_enconman_2013_08_039
crossref_primary_10_1007_s11831_021_09586_7
crossref_primary_10_1016_j_jweia_2014_06_017
crossref_primary_10_1016_j_apenergy_2016_06_085
crossref_primary_10_1016_j_enconman_2019_06_082
crossref_primary_10_1016_j_renene_2024_120161
crossref_primary_10_1063_5_0159271
crossref_primary_10_1016_j_enconman_2015_11_002
crossref_primary_10_3390_en12234403
crossref_primary_10_1007_s11227_024_05986_1
crossref_primary_10_1016_j_apenergy_2023_122346
crossref_primary_10_1080_15435075_2021_1904949
crossref_primary_10_3390_en14082041
crossref_primary_10_1007_s12008_021_00828_3
crossref_primary_10_1016_j_enconman_2014_01_064
crossref_primary_10_1016_j_energy_2020_118415
crossref_primary_10_1007_s11356_023_27849_7
crossref_primary_10_1016_j_apenergy_2015_03_139
crossref_primary_10_3390_math13020282
crossref_primary_10_1016_j_egyr_2022_04_030
crossref_primary_10_1177_0957650920936030
crossref_primary_10_1007_s40095_019_0303_2
crossref_primary_10_1162_ARTL_a_00225
crossref_primary_10_1016_j_rser_2016_07_021
crossref_primary_10_1080_0305215X_2020_1717482
crossref_primary_10_1016_j_enconman_2015_09_011
crossref_primary_10_1016_j_seta_2020_100970
crossref_primary_10_1016_j_renene_2017_11_018
crossref_primary_10_1016_j_apenergy_2020_115090
crossref_primary_10_1088_1742_6596_2767_3_032036
crossref_primary_10_1002_ep_13193
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_egyr_2023_04_014
crossref_primary_10_1016_j_energy_2024_134050
crossref_primary_10_1080_14786451_2015_1007139
crossref_primary_10_1016_j_enconman_2019_03_028
crossref_primary_10_3390_app11209746
crossref_primary_10_3390_su12145761
crossref_primary_10_1016_j_rser_2015_03_094
crossref_primary_10_1016_j_cie_2018_04_051
crossref_primary_10_1016_j_enconman_2021_114469
crossref_primary_10_3934_era_2024212
crossref_primary_10_1016_j_oceaneng_2022_112807
crossref_primary_10_1007_s13198_024_02462_0
crossref_primary_10_1017_dce_2024_40
crossref_primary_10_3390_en9050352
crossref_primary_10_1002_er_4779
crossref_primary_10_1016_j_energy_2020_117541
crossref_primary_10_3390_math12233762
crossref_primary_10_1016_j_jweia_2018_07_019
crossref_primary_10_1016_j_enconman_2019_04_059
crossref_primary_10_1016_j_jweia_2018_07_016
crossref_primary_10_1016_j_enconman_2016_07_017
crossref_primary_10_1016_j_energy_2023_129745
crossref_primary_10_1016_j_apenergy_2022_119599
crossref_primary_10_1016_j_oceaneng_2022_110859
crossref_primary_10_1002_we_2310
crossref_primary_10_2139_ssrn_4191082
crossref_primary_10_3390_en7116930
crossref_primary_10_1016_j_apenergy_2021_117229
crossref_primary_10_1016_j_renene_2017_03_072
crossref_primary_10_3390_jmse11081566
crossref_primary_10_1007_s12206_024_0219_5
crossref_primary_10_1063_1_4953791
crossref_primary_10_1155_2024_9406519
crossref_primary_10_1016_j_renene_2021_12_057
crossref_primary_10_1016_j_asoc_2016_10_022
crossref_primary_10_1016_j_enconman_2016_01_027
crossref_primary_10_1016_j_energy_2020_118339
crossref_primary_10_1007_s11081_023_09822_y
crossref_primary_10_1049_iet_rpg_2017_0787
crossref_primary_10_1016_j_oceaneng_2017_04_049
crossref_primary_10_1016_j_enconman_2023_116743
crossref_primary_10_1016_j_renene_2025_122654
crossref_primary_10_1016_j_aej_2023_06_035
crossref_primary_10_1109_TSTE_2018_2837060
crossref_primary_10_5194_wes_1_311_2016
crossref_primary_10_3233_ICA_200646
crossref_primary_10_1016_j_energy_2015_11_064
crossref_primary_10_1016_j_renene_2017_02_036
crossref_primary_10_1007_s00170_017_1525_1
crossref_primary_10_1016_j_renene_2022_04_104
crossref_primary_10_1016_j_apenergy_2018_06_027
crossref_primary_10_1177_1548512920937077
crossref_primary_10_1016_j_cie_2021_107880
crossref_primary_10_1007_s10710_019_09356_2
crossref_primary_10_1088_1742_6596_1452_1_012072
crossref_primary_10_1088_1742_6596_1037_7_072041
crossref_primary_10_1109_TSTE_2018_2885946
crossref_primary_10_1177_13694332221115466
crossref_primary_10_1080_01430750_2016_1155493
crossref_primary_10_1016_j_energy_2021_121476
crossref_primary_10_1016_j_cor_2021_105588
crossref_primary_10_1016_j_renene_2016_07_020
crossref_primary_10_1007_s11069_014_1189_1
crossref_primary_10_1007_s10098_017_1360_y
crossref_primary_10_1115_1_4064189
crossref_primary_10_1016_j_rser_2014_07_120
crossref_primary_10_1016_j_enconman_2021_114778
crossref_primary_10_1260_0309_524X_39_5_495
crossref_primary_10_1016_j_enconman_2014_05_025
crossref_primary_10_1016_j_apenergy_2017_05_071
crossref_primary_10_1016_j_renene_2017_02_017
crossref_primary_10_1016_j_energy_2019_116340
crossref_primary_10_1109_JAS_2023_123387
crossref_primary_10_31127_tuje_698856
crossref_primary_10_1016_j_apenergy_2021_117947
crossref_primary_10_1016_j_enconman_2014_11_005
crossref_primary_10_1016_j_renene_2015_11_021
crossref_primary_10_1016_j_enconman_2023_116949
crossref_primary_10_1016_j_renene_2024_120558
crossref_primary_10_1016_j_enconman_2020_112593
crossref_primary_10_1007_s13344_023_0009_3
crossref_primary_10_1016_j_ref_2020_09_001
crossref_primary_10_1016_j_oceaneng_2023_116644
crossref_primary_10_5194_wes_4_99_2019
crossref_primary_10_1016_j_rser_2020_110047
crossref_primary_10_1016_j_est_2018_05_006
crossref_primary_10_1051_e3sconf_202129701038
crossref_primary_10_1016_j_rser_2015_01_063
crossref_primary_10_1016_j_enconman_2014_02_025
crossref_primary_10_1016_j_eswa_2022_116835
crossref_primary_10_1016_j_renene_2018_04_004
crossref_primary_10_1016_j_jweia_2022_104991
crossref_primary_10_17352_tcsit_000065
crossref_primary_10_3390_electronics13163196
crossref_primary_10_1016_j_aquaeng_2024_102438
crossref_primary_10_1016_j_enconman_2024_118759
crossref_primary_10_1016_j_apenergy_2023_121554
crossref_primary_10_1016_j_enconman_2021_115047
crossref_primary_10_1016_j_renene_2018_02_083
crossref_primary_10_1016_j_energy_2022_123970
crossref_primary_10_1016_j_apenergy_2017_08_107
crossref_primary_10_1016_j_engappai_2018_02_007
crossref_primary_10_4028_www_scientific_net_JERA_40_136
crossref_primary_10_1016_j_fmre_2021_09_011
crossref_primary_10_1007_s10546_019_00473_0
crossref_primary_10_1016_j_enconman_2016_11_014
crossref_primary_10_1016_j_jweia_2017_10_032
crossref_primary_10_1016_j_seta_2021_101022
crossref_primary_10_1016_j_apor_2020_102444
crossref_primary_10_1109_ACCESS_2022_3158981
crossref_primary_10_1007_s40722_018_0108_z
crossref_primary_10_1016_j_energy_2014_12_012
crossref_primary_10_1088_1742_6596_2265_2_022012
crossref_primary_10_1016_j_asoc_2023_110306
crossref_primary_10_1061__ASCE_CP_1943_5487_0000567
crossref_primary_10_3390_en12224335
crossref_primary_10_1088_1742_6596_1618_4_042023
crossref_primary_10_1016_j_apenergy_2019_114189
crossref_primary_10_1002_we_2278
crossref_primary_10_5194_wes_6_1143_2021
Cites_doi 10.1016/j.renene.2011.06.033
10.1016/j.enconman.2012.09.004
10.2172/1050125
10.1016/j.neucom.2006.05.017
10.1016/j.renene.2010.08.037
10.1016/j.enconman.2009.01.007
10.1016/j.enconman.2004.08.012
10.1007/978-3-642-57137-4_6
10.1016/j.renene.2004.05.007
10.1016/j.enconman.2008.01.010
10.1016/j.renene.2009.08.019
10.1016/0360-8352(96)00045-9
10.1016/j.enconman.2012.10.016
10.2514/6.2008-6025
10.1115/DETC2011-47772
10.1016/j.enconman.2010.09.008
10.1016/0167-6105(92)90551-K
10.2172/964608
10.1016/j.renene.2010.01.010
10.1016/j.renene.2007.09.004
10.1016/0167-6105(94)90080-9
10.1016/j.rser.2005.08.004
10.1615/InterJEnerCleanEnv.2012004413
10.1016/j.renene.2011.12.013
10.1007/978-3-642-05258-3_61
10.1016/j.enconman.2011.07.007
10.1016/j.rser.2011.02.030
10.1016/j.enconman.2009.09.026
ContentType Journal Article
Copyright 2013
2014 INIST-CNRS
Copyright_xml – notice: 2013
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
7U6
C1K
7S9
L.6
7SC
7SU
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.enconman.2013.02.007
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Computer and Information Systems Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList AGRICOLA
Environment Abstracts
Aerospace Database
Aerospace Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2227
EndPage 65
ExternalDocumentID 27353714
10_1016_j_enconman_2013_02_007
S0196890413000873
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
7ST
7U6
C1K
7S9
L.6
7SC
7SU
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c548t-2723a291572c37ad3fb3c3e3fd54ff5f5431bef3389cd3da13f53dceffb2fd083
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Tue Oct 07 09:39:11 EDT 2025
Tue Oct 07 09:24:57 EDT 2025
Sun Sep 28 02:58:24 EDT 2025
Tue Oct 07 09:59:48 EDT 2025
Tue Oct 07 09:51:42 EDT 2025
Mon Jul 21 09:12:10 EDT 2025
Wed Oct 01 01:59:30 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Fri Feb 23 02:20:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Layout
Genetic algorithm
Optimization
Wind farm
Wind energy
Windfarm
Wind generator
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-2723a291572c37ad3fb3c3e3fd54ff5f5431bef3389cd3da13f53dceffb2fd083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1439218611
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1730079206
proquest_miscellaneous_1730066241
proquest_miscellaneous_1710214010
proquest_miscellaneous_1500785767
proquest_miscellaneous_1439218611
pascalfrancis_primary_27353714
crossref_citationtrail_10_1016_j_enconman_2013_02_007
crossref_primary_10_1016_j_enconman_2013_02_007
elsevier_sciencedirect_doi_10_1016_j_enconman_2013_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy conversion and management
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wiser R, Bolinger M. 2011 Wind Technologies Market Report. Lawrence Berkeley National Laboratory; August 2012.
Mora, Baron, Santos, Payan (b0090) 2007; 70
Jensen (b0115) 1983
Mohammadi, Mostafaeipour (b0045) 2013; 65
Hall, Mecklenborg, Chen, Pratap (b0050) 2011; 36
Katic I, Hojstrup J, Jensen NO. A simple model for cluster efficiency, European wind energy association conference and exhibition. Rome, Italy; 198. p. 407–10.
Acero J, Acevedo J, Rendon M, Oleszewski O. Linear wind farm layout optimization through computational intelligence. In: Proceedings of 8th Mexican international conference on artificial intelligence; 2009. p. 692–703.
Pohlheim H. GEATbx: genetic and evolutionary algorithm toolbox for use with MATLAB; 1999.
Burton, Sharpe, Jenkins, Bossanyi (b0010) 2001
Carta, Velázquez, Matías (b0025) 2011; 52
Grady, Hussaini, Abdullah (b0070) 2005; 30
Akpinar, Akpinar (b0155) 2009; 50
Liu, Shi, Qu (b0040) 2013; 67
Chowdhury, Zhang, Messac, Castillo (b0105) 2012; 38
Ciprian, Iulian, Bratcu, Ceangă (b0135) 2010; 51
Kusiak, Song (b0170) 2010; 35
Murata, Ishibuchi, Tanaka (b0185) 1996; 30
Akpinar, Akpinar (b0020) 2005; 46
Ramos, Ramirez, Jin, Li (b0190) 2011; 12
Wiser R, Lantz E, Bolinger M, Hand M. Recent developments in the levelized cost of Energy from US wind power projects. National Renewable Energy Laboratory; 2012.
Gonzalez, Rodriguez, Mora, Santos, Payan (b0095) 2010; 35
[accessed 01.12.12].
Denholm P, Hand M, Jackson M, Ong S. Land-use requirements of modern wind power plants in the United States. Technical, Report NREL/TP-6A2 45834; 2009.
Mostafaeipour, Sedaghat, Dehghan-Niri, Kalantar (b0005) 2011; 15
A. Mittal, Optimization of the layout of large wind farms using genetic algorithm. M.S. Thesis. Case Western Reserve University; 2010.
Mosetti, Poloni, Diviacco (b0065) 1994; 51
Adaramola, Paul, Oyedepo (b0030) 2011; 52
Joselin Herbert, Iniyan, Sreevalsan, Rajapandian (b0015) 2007; 11
Chen L, McDonald E. A new model for wind farm layout optimization with landowner decisions. In: ASME 2011 international design engineering technical conference & computers and information in engineering conference. Washington (DC), United States; 2011.
Marmidis, Lazarou, Pyrgioti (b0100) 2008; 33
Sorensen, Nielsen (b0110) 2006
Eroğlu, Seçkiner (b0175) 2012; 44
Frandsen (b0125) 1992; 39
Kenway G, Martin J. Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria, British Columbia, Canada; 2008.
<
Carta, Ramírez, Bueno (b0160) 2008; 49
Carta (10.1016/j.enconman.2013.02.007_b0160) 2008; 49
Mora (10.1016/j.enconman.2013.02.007_b0090) 2007; 70
Liu (10.1016/j.enconman.2013.02.007_b0040) 2013; 67
Chowdhury (10.1016/j.enconman.2013.02.007_b0105) 2012; 38
Eroğlu (10.1016/j.enconman.2013.02.007_b0175) 2012; 44
10.1016/j.enconman.2013.02.007_b0055
Carta (10.1016/j.enconman.2013.02.007_b0025) 2011; 52
10.1016/j.enconman.2013.02.007_b0075
10.1016/j.enconman.2013.02.007_b0130
10.1016/j.enconman.2013.02.007_b0150
Grady (10.1016/j.enconman.2013.02.007_b0070) 2005; 30
Mosetti (10.1016/j.enconman.2013.02.007_b0065) 1994; 51
Ciprian (10.1016/j.enconman.2013.02.007_b0135) 2010; 51
Joselin Herbert (10.1016/j.enconman.2013.02.007_b0015) 2007; 11
Jensen (10.1016/j.enconman.2013.02.007_b0115) 1983
10.1016/j.enconman.2013.02.007_b0035
Sorensen (10.1016/j.enconman.2013.02.007_b0110) 2006
10.1016/j.enconman.2013.02.007_b0080
Mostafaeipour (10.1016/j.enconman.2013.02.007_b0005) 2011; 15
Burton (10.1016/j.enconman.2013.02.007_b0010) 2001
Adaramola (10.1016/j.enconman.2013.02.007_b0030) 2011; 52
Kusiak (10.1016/j.enconman.2013.02.007_b0170) 2010; 35
10.1016/j.enconman.2013.02.007_b0120
Mohammadi (10.1016/j.enconman.2013.02.007_b0045) 2013; 65
10.1016/j.enconman.2013.02.007_b0165
10.1016/j.enconman.2013.02.007_b0085
Marmidis (10.1016/j.enconman.2013.02.007_b0100) 2008; 33
10.1016/j.enconman.2013.02.007_b0140
10.1016/j.enconman.2013.02.007_b0180
Gonzalez (10.1016/j.enconman.2013.02.007_b0095) 2010; 35
Akpinar (10.1016/j.enconman.2013.02.007_b0020) 2005; 46
10.1016/j.enconman.2013.02.007_b0145
Ramos (10.1016/j.enconman.2013.02.007_b0190) 2011; 12
Frandsen (10.1016/j.enconman.2013.02.007_b0125) 1992; 39
Hall (10.1016/j.enconman.2013.02.007_b0050) 2011; 36
Akpinar (10.1016/j.enconman.2013.02.007_b0155) 2009; 50
Murata (10.1016/j.enconman.2013.02.007_b0185) 1996; 30
References_xml – reference: A. Mittal, Optimization of the layout of large wind farms using genetic algorithm. M.S. Thesis. Case Western Reserve University; 2010.
– volume: 50
  start-page: 877
  year: 2009
  end-page: 884
  ident: b0155
  article-title: Estimation of wind energy potential using finite mixture distribution models
  publication-title: Energy Convers Manage
– volume: 39
  start-page: 251
  year: 1992
  end-page: 265
  ident: b0125
  article-title: On the wind speed reduction in the center of large clusters of wind turbines
  publication-title: J Wind Eng Ind Aerodyn
– volume: 70
  start-page: 2651
  year: 2007
  end-page: 2658
  ident: b0090
  article-title: An evaluative algorithm for wind farm optimal design
  publication-title: Neurocomputing
– volume: 67
  start-page: 8
  year: 2013
  end-page: 17
  ident: b0040
  article-title: Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines
  publication-title: Energy Convers Manage
– reference: > [accessed 01.12.12].
– volume: 15
  start-page: 2545
  year: 2011
  end-page: 2556
  ident: b0005
  article-title: Wind energy feasibility study for city of Shahrbabak in Iran
  publication-title: Renew Sustain Energy Rev
– reference: Katic I, Hojstrup J, Jensen NO. A simple model for cluster efficiency, European wind energy association conference and exhibition. Rome, Italy; 198. p. 407–10.
– volume: 49
  start-page: 1309
  year: 2008
  end-page: 1320
  ident: b0160
  article-title: A joint probability density function of wind speed and direction for wind energy analysis
  publication-title: Energy Convers Manage
– volume: 52
  start-page: 1137
  year: 2011
  end-page: 1149
  ident: b0025
  article-title: Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site
  publication-title: Energy Convers Manage
– volume: 12
  start-page: 67
  year: 2011
  end-page: 77
  ident: b0190
  article-title: Factorial analysis of selected factors affecting the electricity production of onshore wind farms
  publication-title: Int J Energy Clean Environ.
– volume: 51
  start-page: 305
  year: 2010
  end-page: 310
  ident: b0135
  article-title: Output power maximization of low-power wind energy conversion systems revisited: possible control solutions
  publication-title: Energy Convers Manage
– reference: <
– volume: 35
  start-page: 685
  year: 2010
  end-page: 694
  ident: b0170
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renewable Energy
– volume: 36
  start-page: 1075
  year: 2011
  end-page: 1080
  ident: b0050
  article-title: Wind energy conversion with a variable-ratio gearbox: design and analysis
  publication-title: Renewable Energy
– reference: Denholm P, Hand M, Jackson M, Ong S. Land-use requirements of modern wind power plants in the United States. Technical, Report NREL/TP-6A2 45834; 2009.
– year: 2006
  ident: b0110
  article-title: Recalibrating wind turbine wake model parameters-validating the wake model performance for large offshore wind farms, European wind energy conference and exhibition
– year: 2001
  ident: b0010
  article-title: Wind energy handbook
– volume: 33
  start-page: 1455
  year: 2008
  end-page: 1460
  ident: b0100
  article-title: Optimal placement of wind turbines in a wind park using Monte Carlo simulation
  publication-title: Renewable Energy
– volume: 65
  start-page: 463
  year: 2013
  end-page: 470
  ident: b0045
  article-title: Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran
  publication-title: Energy Conver Manage
– reference: Wiser R, Bolinger M. 2011 Wind Technologies Market Report. Lawrence Berkeley National Laboratory; August 2012.
– reference: Kenway G, Martin J. Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria, British Columbia, Canada; 2008.
– volume: 11
  start-page: 1117
  year: 2007
  end-page: 1145
  ident: b0015
  article-title: A review of wind energy technologies
  publication-title: Renew Sustain Energy Rev
– volume: 38
  start-page: 16
  year: 2012
  end-page: 30
  ident: b0105
  article-title: Unrestricted wind farm layout optimization (UWFLO): investigating key factors influencing the maximum power generation
  publication-title: Renewable Energy
– volume: 52
  start-page: 3363
  year: 2011
  end-page: 3368
  ident: b0030
  article-title: Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria
  publication-title: Energy Convers Manage
– volume: 30
  start-page: 259
  year: 2005
  end-page: 270
  ident: b0070
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renewable Energy
– volume: 35
  start-page: 1671
  year: 2010
  end-page: 1681
  ident: b0095
  article-title: Optimization of wind farm turbines layout using an evaluative algorithm
  publication-title: Renewable Energy
– reference: Wiser R, Lantz E, Bolinger M, Hand M. Recent developments in the levelized cost of Energy from US wind power projects. National Renewable Energy Laboratory; 2012.
– reference: Pohlheim H. GEATbx: genetic and evolutionary algorithm toolbox for use with MATLAB; 1999.
– year: 1983
  ident: b0115
  article-title: A note on wind generator interaction
– volume: 46
  start-page: 1848
  year: 2005
  end-page: 1867
  ident: b0020
  article-title: An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics
  publication-title: Energy Convers Manage
– reference: Acero J, Acevedo J, Rendon M, Oleszewski O. Linear wind farm layout optimization through computational intelligence. In: Proceedings of 8th Mexican international conference on artificial intelligence; 2009. p. 692–703.
– reference: Chen L, McDonald E. A new model for wind farm layout optimization with landowner decisions. In: ASME 2011 international design engineering technical conference & computers and information in engineering conference. Washington (DC), United States; 2011.
– volume: 44
  start-page: 53
  year: 2012
  end-page: 62
  ident: b0175
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renewable Energy
– volume: 30
  start-page: 957
  year: 1996
  end-page: 968
  ident: b0185
  article-title: Multi-objective genetic algorithm and its applications to flowshop scheduling
  publication-title: Comput Ind Eng
– volume: 51
  start-page: 105
  year: 1994
  end-page: 116
  ident: b0065
  article-title: Optimization of wind turbine positioning in a large windfarms by means of a genetic algorithm
  publication-title: J Wind Eng Ind Aerodyn
– volume: 38
  start-page: 16
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2013.02.007_b0105
  article-title: Unrestricted wind farm layout optimization (UWFLO): investigating key factors influencing the maximum power generation
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.06.033
– volume: 65
  start-page: 463
  year: 2013
  ident: 10.1016/j.enconman.2013.02.007_b0045
  article-title: Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran
  publication-title: Energy Conver Manage
  doi: 10.1016/j.enconman.2012.09.004
– ident: 10.1016/j.enconman.2013.02.007_b0165
– ident: 10.1016/j.enconman.2013.02.007_b0035
  doi: 10.2172/1050125
– volume: 70
  start-page: 2651
  year: 2007
  ident: 10.1016/j.enconman.2013.02.007_b0090
  article-title: An evaluative algorithm for wind farm optimal design
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.05.017
– ident: 10.1016/j.enconman.2013.02.007_b0150
– volume: 36
  start-page: 1075
  issue: 3
  year: 2011
  ident: 10.1016/j.enconman.2013.02.007_b0050
  article-title: Wind energy conversion with a variable-ratio gearbox: design and analysis
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.08.037
– volume: 50
  start-page: 877
  issue: 4
  year: 2009
  ident: 10.1016/j.enconman.2013.02.007_b0155
  article-title: Estimation of wind energy potential using finite mixture distribution models
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.01.007
– volume: 46
  start-page: 1848
  issue: 11–12
  year: 2005
  ident: 10.1016/j.enconman.2013.02.007_b0020
  article-title: An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2004.08.012
– year: 2001
  ident: 10.1016/j.enconman.2013.02.007_b0010
– year: 1983
  ident: 10.1016/j.enconman.2013.02.007_b0115
– ident: 10.1016/j.enconman.2013.02.007_b0130
  doi: 10.1007/978-3-642-57137-4_6
– volume: 30
  start-page: 259
  year: 2005
  ident: 10.1016/j.enconman.2013.02.007_b0070
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2004.05.007
– volume: 49
  start-page: 1309
  issue: 6
  year: 2008
  ident: 10.1016/j.enconman.2013.02.007_b0160
  article-title: A joint probability density function of wind speed and direction for wind energy analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.01.010
– volume: 35
  start-page: 685
  year: 2010
  ident: 10.1016/j.enconman.2013.02.007_b0170
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.08.019
– volume: 30
  start-page: 957
  issue: 4
  year: 1996
  ident: 10.1016/j.enconman.2013.02.007_b0185
  article-title: Multi-objective genetic algorithm and its applications to flowshop scheduling
  publication-title: Comput Ind Eng
  doi: 10.1016/0360-8352(96)00045-9
– volume: 67
  start-page: 8
  year: 2013
  ident: 10.1016/j.enconman.2013.02.007_b0040
  article-title: Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2012.10.016
– ident: 10.1016/j.enconman.2013.02.007_b0120
– ident: 10.1016/j.enconman.2013.02.007_b0055
  doi: 10.2514/6.2008-6025
– ident: 10.1016/j.enconman.2013.02.007_b0085
  doi: 10.1115/DETC2011-47772
– ident: 10.1016/j.enconman.2013.02.007_b0145
– volume: 52
  start-page: 1137
  issue: 2
  year: 2011
  ident: 10.1016/j.enconman.2013.02.007_b0025
  article-title: Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.09.008
– volume: 39
  start-page: 251
  issue: 1–3
  year: 1992
  ident: 10.1016/j.enconman.2013.02.007_b0125
  article-title: On the wind speed reduction in the center of large clusters of wind turbines
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(92)90551-K
– ident: 10.1016/j.enconman.2013.02.007_b0180
  doi: 10.2172/964608
– volume: 35
  start-page: 1671
  year: 2010
  ident: 10.1016/j.enconman.2013.02.007_b0095
  article-title: Optimization of wind farm turbines layout using an evaluative algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.01.010
– volume: 33
  start-page: 1455
  year: 2008
  ident: 10.1016/j.enconman.2013.02.007_b0100
  article-title: Optimal placement of wind turbines in a wind park using Monte Carlo simulation
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2007.09.004
– volume: 51
  start-page: 105
  issue: 1
  year: 1994
  ident: 10.1016/j.enconman.2013.02.007_b0065
  article-title: Optimization of wind turbine positioning in a large windfarms by means of a genetic algorithm
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(94)90080-9
– ident: 10.1016/j.enconman.2013.02.007_b0075
– volume: 11
  start-page: 1117
  year: 2007
  ident: 10.1016/j.enconman.2013.02.007_b0015
  article-title: A review of wind energy technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2005.08.004
– volume: 12
  start-page: 67
  issue: 1
  year: 2011
  ident: 10.1016/j.enconman.2013.02.007_b0190
  article-title: Factorial analysis of selected factors affecting the electricity production of onshore wind farms
  publication-title: Int J Energy Clean Environ.
  doi: 10.1615/InterJEnerCleanEnv.2012004413
– volume: 44
  start-page: 53
  year: 2012
  ident: 10.1016/j.enconman.2013.02.007_b0175
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.12.013
– ident: 10.1016/j.enconman.2013.02.007_b0080
  doi: 10.1007/978-3-642-05258-3_61
– volume: 52
  start-page: 3363
  year: 2011
  ident: 10.1016/j.enconman.2013.02.007_b0030
  article-title: Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2011.07.007
– year: 2006
  ident: 10.1016/j.enconman.2013.02.007_b0110
– ident: 10.1016/j.enconman.2013.02.007_b0140
– volume: 15
  start-page: 2545
  year: 2011
  ident: 10.1016/j.enconman.2013.02.007_b0005
  article-title: Wind energy feasibility study for city of Shahrbabak in Iran
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.02.030
– volume: 51
  start-page: 305
  issue: 2
  year: 2010
  ident: 10.1016/j.enconman.2013.02.007_b0135
  article-title: Output power maximization of low-power wind energy conversion systems revisited: possible control solutions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.09.026
SSID ssj0003506
Score 2.535003
Snippet ► Introducing wind farm layout optimization with different hub height wind turbines. ► Considering both maximum power output and minimum cost/power as...
Layout optimization is one of the methods to increase wind farm's utilization rate and power output. Previous researches have revealed that different hub...
Layout optimization is one of the methods to increase wind farmas utilization rate and power output. Previous researches have revealed that different hub...
Layout optimization is one of the methods to increase wind farm’s utilization rate and power output. Previous researches have revealed that different hub...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms algorithms
Applied sciences
commercial farms
Cost analysis
Energy
Exact sciences and technology
Genetic algorithm
Genetic algorithms
Layout
Natural energy
Optimization
Two dimensional
Utilization
wind
Wind energy
Wind farm
Wind power
Wind power generation
Wind turbines
Title Wind farm layout optimization using genetic algorithm with different hub height wind turbines
URI https://dx.doi.org/10.1016/j.enconman.2013.02.007
https://www.proquest.com/docview/1439218611
https://www.proquest.com/docview/1500785767
https://www.proquest.com/docview/1710214010
https://www.proquest.com/docview/1730066241
https://www.proquest.com/docview/1730079206
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQvbSqqj7VAI1cqdcl61ccHxEqSqnEpUXlUll-rElQshuFzaEXfjsz-6CgquHAdXdsr8b2eMY7832EfPE5mwSJhCaK60xGFjJfiJSNvXEG8elYaNA-z8bTc3l6oS52yHFfC4NplZ3tb216Y627J6NOm6PVfD76gcguE5OjFUZgNUT8lFIji8Hhzd80D6Eafk0UzlD6XpXw1SFiRZZLhzioTLTYnfp_B9TLlbsGtaWW7-If092cRyevyavOkaRH7be-ITtF-Za8uAcv-I78_gUBN01uvaQL96fa1LQCA7HsKi8pprxfUlhAWMdI3eKyWs_r2ZLi1SztiVNqOtt4OmsuUOEN9AdnlMdc-ffk_OTrz-Np1tEpZAHCkjrjmgvHDVOaB6FdFMmLIGBiopIpqYRV8b5IELOaEEV0TCQlYihS8jxFcNU-kN2yKouPhMYWxMepIpfQVngDnhvPoUstiyjNgKhehzZ0WONIebGwfVLZle11b1H3NucWdD8go7t2qxZt49EWpp8i-2DdWDgSHm07fDCnd0OCS6cQyXBAPveTbGHX4a8UVxbV5hoCJvAr2WTM2BYZhf4XxHN6i4xuqNUhKN4mIxqcfrltLJTRhufjvScoZJ885y3bR5azA7JbrzfFJ_C5aj9sNtWQPDv69n16dguvpS3-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKOQCqEK-KFChG4rrN-hXHR1RRBSi90IpekGWv7SZVshulmwMXfjsz-yitEOmB6-6MvZqxxzPemW8Iee9zNi4kNjRRXGcysCLzUaRs5I0ziE_Higbt82Q0OZOfz9X5Fjnsa2EwrbKz_a1Nb6x192TYSXO4nM2G3xDZZWxytMIIrCbukfsSJsQI7ODXnzwPoZoGm0idIfmNMuHLAwSLLBcOgVCZaME79b9OqJ2luwK5pbbhxV-2uzmQjp6Qx50nST-0H_uUbMXyGXl0A1_wOfnxHSJumtxqQefuZ7WuaQUWYtGVXlLMeb-gsIKwkJG6-UW1mtXTBcW7Wdp3TqnpdO3ptLlBhTcwHhxSHpPlX5Czo4-nh5Os66eQFRCX1BnXXDhumNK8ENoFkbwoBGgmKJmSSlgW72OCoNUUQQTHRFIiFDElz1MAX22XbJdVGV8SGloUH6diLoFXeAOuG89hSC1jkGZAVC9DW3Rg49jzYm77rLJL28veouxtzi3IfkCG13zLFm7jTg7Tq8jeWjgWzoQ7efdv6fR6SvDpFEIZDsi7XskWth3-S3FlrNZXEDGBY8nGI8Y20Ch0wCCg0xtodNNbHaLiTTSiAeqXm-ZCGm14Ptr7D4G8JQ8mp1-P7fGnky-vyEPetv7IcvaabNerdXwDDljt95sN9hti-S-T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+farm+layout+optimization+using+genetic+algorithm+with+different+hub+height+wind+turbines&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Ying&rft.au=Li%2C+Hua&rft.au=Jin%2C+Kai&rft.au=Song%2C+Qing&rft.date=2013-06-01&rft.issn=0196-8904&rft.volume=70+p.56-65&rft.spage=56&rft.epage=65&rft_id=info:doi/10.1016%2Fj.enconman.2013.02.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon