A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla

A 128‐channel receive‐only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam‐shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to m...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 59; no. 6; pp. 1431 - 1439
Main Authors Schmitt, Melanie, Potthast, Andreas, Sosnovik, David E., Polimeni, Jonathan R., Wiggins, Graham C., Triantafyllou, Christina, Wald, Lawrence L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2008
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.21598

Cover

Abstract A 128‐channel receive‐only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam‐shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal‐to‐noise ratio (SNR) and noise amplification for parallel imaging (G‐factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24‐channel and 32‐channel coils in routine use for cardiac imaging. The in vivo measurements with the 128‐channel coil resulted in SNR gains compared to the 24‐channel coil (up to 2.2‐fold in the apex). The 128‐ and 32‐channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G‐factor values were up to seven times better for a seven‐fold acceleration factor (R = 7) compared to the 24‐channel coil and up to two‐fold improved compared to the 32‐channel coil. The ability of the 128‐channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven‐fold (R = 7) in a single spatial dimension. Magn Reson Med 59:1431–1439, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension.
A 128‐channel receive‐only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam‐shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal‐to‐noise ratio (SNR) and noise amplification for parallel imaging ( G ‐factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24‐channel and 32‐channel coils in routine use for cardiac imaging. The in vivo measurements with the 128‐channel coil resulted in SNR gains compared to the 24‐channel coil (up to 2.2‐fold in the apex). The 128‐ and 32‐channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G ‐factor values were up to seven times better for a seven‐fold acceleration factor (R = 7) compared to the 24‐channel coil and up to two‐fold improved compared to the 32‐channel coil. The ability of the 128‐channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven‐fold (R = 7) in a single spatial dimension. Magn Reson Med 59:1431–1439, 2008. © 2008 Wiley‐Liss, Inc.
A 128‐channel receive‐only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam‐shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal‐to‐noise ratio (SNR) and noise amplification for parallel imaging (G‐factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24‐channel and 32‐channel coils in routine use for cardiac imaging. The in vivo measurements with the 128‐channel coil resulted in SNR gains compared to the 24‐channel coil (up to 2.2‐fold in the apex). The 128‐ and 32‐channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G‐factor values were up to seven times better for a seven‐fold acceleration factor (R = 7) compared to the 24‐channel coil and up to two‐fold improved compared to the 32‐channel coil. The ability of the 128‐channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven‐fold (R = 7) in a single spatial dimension. Magn Reson Med 59:1431–1439, 2008. © 2008 Wiley‐Liss, Inc.
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension.A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension.
Author Triantafyllou, Christina
Sosnovik, David E.
Wald, Lawrence L.
Potthast, Andreas
Wiggins, Graham C.
Schmitt, Melanie
Polimeni, Jonathan R.
AuthorAffiliation 2 MR Division, Siemens Medical Solutions, Charlestown, Massachusetts, USA
5 Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
1 Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
4 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3 Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
AuthorAffiliation_xml – name: 5 Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
– name: 3 Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
– name: 1 Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– name: 2 MR Division, Siemens Medical Solutions, Charlestown, Massachusetts, USA
– name: 4 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Author_xml – sequence: 1
  givenname: Melanie
  surname: Schmitt
  fullname: Schmitt, Melanie
  organization: Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 2
  givenname: Andreas
  surname: Potthast
  fullname: Potthast, Andreas
  organization: MR Division, Siemens Medical Solutions, Charlestown, Massachusetts, USA
– sequence: 3
  givenname: David E.
  surname: Sosnovik
  fullname: Sosnovik, David E.
  organization: Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 4
  givenname: Jonathan R.
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  organization: Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 5
  givenname: Graham C.
  surname: Wiggins
  fullname: Wiggins, Graham C.
  organization: Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 6
  givenname: Christina
  surname: Triantafyllou
  fullname: Triantafyllou, Christina
  organization: Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 7
  givenname: Lawrence L.
  surname: Wald
  fullname: Wald, Lawrence L.
  email: wald@nmr.mgh.harvard.edu
  organization: Department of Radiology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18506789$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1PFDEUxRuDkQV98B8w82SiyUA_ptvOiwlLBElYTAiEx-Zu55atdmbWdhbY_57irqDGj6emvb9zcu7pDtnq-g4Jec3oHqOU77ex3eNM1voZGTHJecllXW2REVUVLQWrq22yk9IXSmldq-oF2WZa0rHS9YhcHhSM69LOoeswFBEt-hss-y6sCgux8WAL2_tQuD4Wc389z-9gLQaMMGDzyEzPTwoYClFcYArwkjx3EBK-2py75PLo48Xhp_L08_HJ4cFpaWWlddk4C1AJ5wAsOKlnjlqmG6xtPWNcWO04No5WdKxlvsNM1E1eQDIErZGC2CXv177LbgGrWwjBLKJvIa4Mo-ahG5O7Md-7yfCHNbxYzlpsLHZDhCdBD978Oun83Fz3N4bnsFyJbPB2YxD7b0tMg2l9ylUE6LBfJqPYWDCl_w9yqqUSjGXwzc-RnsJv_icD-2vAxj6liM5YP8Dg-4eEPvxxy3e_Kf7VyMb91gdc_R000_PpD0W5Vvg04N2jAuJXM1ZCSXN1dmwm-uqIT9TEnIl7oBvOdw
CitedBy_id crossref_primary_10_1148_radiol_14131926
crossref_primary_10_1088_1361_6560_acd614
crossref_primary_10_1016_j_jmr_2009_09_019
crossref_primary_10_1002_mrm_30428
crossref_primary_10_1002_cmr_b_20149
crossref_primary_10_1002_mrm_24267
crossref_primary_10_1109_TMI_2016_2553844
crossref_primary_10_1016_j_jmr_2013_11_002
crossref_primary_10_1109_TMTT_2015_2495366
crossref_primary_10_1002_mrm_29798
crossref_primary_10_1109_TBME_2012_2182993
crossref_primary_10_1002_mrm_24427
crossref_primary_10_1002_mrm_25999
crossref_primary_10_1002_mrm_22906
crossref_primary_10_1002_jmri_27865
crossref_primary_10_3390_s23041800
crossref_primary_10_1002_mrm_27123
crossref_primary_10_1109_TMI_2019_2944696
crossref_primary_10_1038_s42254_021_00326_1
crossref_primary_10_1038_srep42347
crossref_primary_10_1097_RCT_0b013e3182455cca
crossref_primary_10_1016_j_jacc_2009_03_016
crossref_primary_10_1109_TMI_2011_2169681
crossref_primary_10_1371_journal_pone_0094654
crossref_primary_10_1016_j_mri_2022_10_001
crossref_primary_10_1007_s12410_009_0014_9
crossref_primary_10_1148_rg_210110
crossref_primary_10_1016_j_jmr_2011_01_025
crossref_primary_10_1002_mrm_25373
crossref_primary_10_1002_nbm_3860
crossref_primary_10_1016_j_jmr_2022_107269
crossref_primary_10_1016_j_jmr_2017_09_015
crossref_primary_10_1002_mrm_22265
crossref_primary_10_1021_acs_analchem_2c01560
crossref_primary_10_1002_mrm_26504
crossref_primary_10_1016_j_mri_2018_07_010
crossref_primary_10_1186_1532_429X_11_47
crossref_primary_10_1155_2017_3872783
crossref_primary_10_1259_bjr_20200113
crossref_primary_10_1038_s41551_018_0233_y
crossref_primary_10_1148_radiol_14140706
crossref_primary_10_1002_mrm_22028
crossref_primary_10_1002_mrm_24206
crossref_primary_10_13104_imri_2015_19_1_19
crossref_primary_10_1016_j_jmr_2018_08_013
crossref_primary_10_3389_fcvm_2023_1285206
crossref_primary_10_1007_s10334_023_01075_1
crossref_primary_10_3109_02656736_2015_1108462
crossref_primary_10_1088_1361_6560_ad388c
crossref_primary_10_1016_j_jmr_2014_12_004
crossref_primary_10_1177_08465371241255903
crossref_primary_10_1002_mrm_29168
crossref_primary_10_1016_j_jmr_2009_09_009
crossref_primary_10_1016_j_jmr_2015_03_007
crossref_primary_10_3389_fcvm_2022_913707
crossref_primary_10_1109_TMTT_2019_2913636
crossref_primary_10_1002_jmri_22633
crossref_primary_10_1016_j_jmr_2009_01_037
crossref_primary_10_1109_TMI_2019_2939090
crossref_primary_10_1148_radiol_2016152613
crossref_primary_10_1371_journal_pone_0149446
crossref_primary_10_1002_mrm_22771
crossref_primary_10_1586_erc_10_46
crossref_primary_10_1002_mrm_25364
crossref_primary_10_1109_TIM_2023_3311068
crossref_primary_10_1002_mrm_22414
crossref_primary_10_1002_cmr_b_20191
crossref_primary_10_1002_cta_2043
crossref_primary_10_1002_nbm_4491
crossref_primary_10_1186_s41747_022_00305_w
crossref_primary_10_1002_jmri_22023
crossref_primary_10_1186_s41824_019_0061_7
crossref_primary_10_1002_jmri_23639
crossref_primary_10_1016_j_pnmrs_2017_04_002
crossref_primary_10_1007_s10334_019_00824_5
crossref_primary_10_1002_nbm_1429
crossref_primary_10_1002_mrm_29755
crossref_primary_10_1002_mrm_22961
crossref_primary_10_1016_j_mri_2014_12_004
crossref_primary_10_1002_jmri_26187
crossref_primary_10_1039_C2LC20585H
crossref_primary_10_1016_j_jmr_2013_02_001
crossref_primary_10_1007_s12410_010_9007_y
crossref_primary_10_1002_mrm_24903
crossref_primary_10_1002_mrm_25837
crossref_primary_10_13104_imri_2020_24_3_95
crossref_primary_10_1002_nbm_3392
crossref_primary_10_3389_fphy_2020_00080
crossref_primary_10_1002_jmri_24159
crossref_primary_10_1109_OJEMB_2020_3030531
crossref_primary_10_1002_mrm_23240
crossref_primary_10_1097_RLI_0b013e318272d29f
crossref_primary_10_1016_j_jmr_2019_07_004
crossref_primary_10_1002_mrm_25786
crossref_primary_10_1186_s12968_015_0162_9
crossref_primary_10_1002_mrm_22791
crossref_primary_10_1002_mrm_24612
crossref_primary_10_1002_cmr_b_21268
crossref_primary_10_1002_mrm_24613
crossref_primary_10_1016_j_neuroimage_2013_04_077
crossref_primary_10_1002_mrm_22439
crossref_primary_10_1002_mrm_29508
crossref_primary_10_1371_journal_pone_0237494
crossref_primary_10_1007_s10554_013_0297_4
crossref_primary_10_1016_j_mri_2019_01_020
crossref_primary_10_1002_mrm_24883
crossref_primary_10_1002_cmr_b_20203
crossref_primary_10_1002_mrm_27637
crossref_primary_10_1126_sciadv_adn5195
crossref_primary_10_1002_mrm_28843
crossref_primary_10_1007_s42600_021_00129_4
crossref_primary_10_3390_electronics10141642
crossref_primary_10_1002_mrm_27519
crossref_primary_10_1002_jmri_24333
crossref_primary_10_1016_j_jmr_2020_106860
crossref_primary_10_1155_2016_1724630
crossref_primary_10_2463_mrms_rev_2022_0107
crossref_primary_10_1161_CIRCIMAGING_108_815050
crossref_primary_10_1002_mrm_22295
crossref_primary_10_1002_cmr_b_21245
crossref_primary_10_1002_mrm_24479
crossref_primary_10_1002_mrm_24114
crossref_primary_10_1109_TMI_2021_3073381
crossref_primary_10_1002_cmr_b_20150
Cites_doi 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.1910340322
10.1002/mrm.1910380414
10.1002/mrm.20925
10.1148/radiology.219.1.r01ap12264
10.1055/s-2007-972144
10.1002/mrm.1910180206
10.1002/mrm.20568
10.1002/mrm.1910160203
10.1002/mrm.10137
10.1002/jmri.20484
10.1002/nbm.1051
10.1016/j.jmr.2003.11.003
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
Copyright (c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: Copyright (c) 2008 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.21598
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1439
ExternalDocumentID 10.1002/mrm.21598
PMC2548273
18506789
10_1002_mrm_21598
MRM21598
ark_67375_WNG_B8WF2B7B_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
– fundername: National Center for Research Resources (NCRR)
  funderid: P41RR14075
– fundername: National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  funderid: 1R01EB006847; RO1EB000790
– fundername: MIND Institute
– fundername: NCRR NIH HHS
  grantid: P41RR14075
– fundername: NIBIB NIH HHS
  grantid: R01 EB000790
– fundername: NIBIB NIH HHS
  grantid: R01 EB006847
– fundername: NIBIB NIH HHS
  grantid: R01EB000790
– fundername: NIBIB NIH HHS
  grantid: 1R01EB006847
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5488-dfcaa43ffaacaf58bf0c18de9c9b123c8f2edf040685123ab39d97451ea88e0a3
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Wed Oct 29 12:20:52 EDT 2025
Tue Sep 30 16:59:33 EDT 2025
Thu Sep 04 15:56:25 EDT 2025
Mon Oct 06 18:04:40 EDT 2025
Fri May 30 11:01:51 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Wed Oct 01 02:04:55 EDT 2025
Wed Jan 22 16:36:18 EST 2025
Sun Sep 21 06:18:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5488-dfcaa43ffaacaf58bf0c18de9c9b123c8f2edf040685123ab39d97451ea88e0a3
Notes National Institute of Biomedical Imaging and Bioengineering (NIBIB) - No. 1R01EB006847; No. RO1EB000790
MIND Institute
istex:85A710DB4BB324F68B6B5A91BC7B3999751CC975
National Institutes of Health
National Center for Research Resources (NCRR) - No. P41RR14075
ark:/67375/WNG-B8WF2B7B-N
ArticleID:MRM21598
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.21598
PMID 18506789
PQID 20857311
PQPubID 23462
PageCount 9
ParticipantIDs unpaywall_primary_10_1002_mrm_21598
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2548273
proquest_miscellaneous_71631783
proquest_miscellaneous_20857311
pubmed_primary_18506789
crossref_citationtrail_10_1002_mrm_21598
crossref_primary_10_1002_mrm_21598
wiley_primary_10_1002_mrm_21598_MRM21598
istex_primary_ark_67375_WNG_B8WF2B7B_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Hayes CE, Hattes N, Roemer PB. Volume imaging with MR phased arrays. Magn Reson Med 1991; 18: 309-319.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591-603.
Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990; 16: 192-225.
Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001; 219: 264-269.
Wald LL, Moyher SE, Day MR, Nelson SJ, Vigneron DB. Proton spectroscopic imaging of the human brain using phased array detectors. Magn Reson Med 1995; 34: 440-445.
Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006; 56: 216-223.
Wintersperger BJ, Reeder SB, Nikolaou K, Dietrich O, Huber A, Greiser A, Lanz T, Reiser MF, Schoenberg SO. Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging 2006; 23: 222-227.
Niendorf T, Sodickson DK. Parallel imaging in cardiovascular MRI: methods and applications. NMR Biomed 2006; 19: 325-341.
McDougall MP, Wright SM. 64-channel array coil for single echo acquisition magnetic resonance imaging. Magn Reson Med 2005; 54: 386-392.
Tropp J. Image brightening in samples of high dielectric constant. J Magn Reson 2004; 167: 12-24.
2004; 167
1991; 18
2002; 47
2006; 23
2006; 56
1990; 16
1995; 34
2007
2006
1997; 38
2005; 54
2006; 19
1999; 42
2005
2001; 219
e_1_2_5_14_2
e_1_2_5_13_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_6_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_19_2
References_xml – reference: Tropp J. Image brightening in samples of high dielectric constant. J Magn Reson 2004; 167: 12-24.
– reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990; 16: 192-225.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Hayes CE, Hattes N, Roemer PB. Volume imaging with MR phased arrays. Magn Reson Med 1991; 18: 309-319.
– reference: Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989.
– reference: Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591-603.
– reference: Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001; 219: 264-269.
– reference: Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006; 56: 216-223.
– reference: McDougall MP, Wright SM. 64-channel array coil for single echo acquisition magnetic resonance imaging. Magn Reson Med 2005; 54: 386-392.
– reference: Wald LL, Moyher SE, Day MR, Nelson SJ, Vigneron DB. Proton spectroscopic imaging of the human brain using phased array detectors. Magn Reson Med 1995; 34: 440-445.
– reference: Niendorf T, Sodickson DK. Parallel imaging in cardiovascular MRI: methods and applications. NMR Biomed 2006; 19: 325-341.
– reference: Wintersperger BJ, Reeder SB, Nikolaou K, Dietrich O, Huber A, Greiser A, Lanz T, Reiser MF, Schoenberg SO. Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging 2006; 23: 222-227.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 54
  start-page: 386
  year: 2005
  end-page: 392
  article-title: 64‐channel array coil for single echo acquisition magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 19
  start-page: 325
  year: 2006
  end-page: 341
  article-title: Parallel imaging in cardiovascular MRI: methods and applications
  publication-title: NMR Biomed
– start-page: 672
  year: 2005
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 23
  start-page: 222
  year: 2006
  end-page: 227
  article-title: Cardiac CINE MR imaging with a 32‐channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy
  publication-title: J Magn Reson Imaging
– year: 2007
– year: 2006
– volume: 56
  start-page: 216
  year: 2006
  end-page: 223
  article-title: 32‐channel 3 Tesla receive‐only phased‐array head coil with soccer‐ball element geometry
  publication-title: Magn Reson Med
– volume: 18
  start-page: 309
  year: 1991
  end-page: 319
  article-title: Volume imaging with MR phased arrays
  publication-title: Magn Reson Med
– volume: 219
  start-page: 264
  year: 2001
  end-page: 269
  article-title: MR evaluation of ventricular function: true fast imaging with steady‐state precession versus fast low‐angle shot cine MR imaging: feasibility study
  publication-title: Radiology
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 167
  start-page: 12
  year: 2004
  end-page: 24
  article-title: Image brightening in samples of high dielectric constant
  publication-title: J Magn Reson
– start-page: 244
  year: 2007
– volume: 34
  start-page: 440
  year: 1995
  end-page: 445
  article-title: Proton spectroscopic imaging of the human brain using phased array detectors
  publication-title: Magn Reson Med
– volume: 47
  start-page: 982
  year: 2002
  end-page: 989
  article-title: Analysis of wave behavior in lossy dielectric samples at high field
  publication-title: Magn Reson Med
– ident: e_1_2_5_5_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_5_11_2
  doi: 10.1002/mrm.1910340322
– ident: e_1_2_5_19_2
– ident: e_1_2_5_12_2
– ident: e_1_2_5_6_2
  doi: 10.1002/mrm.1910380414
– ident: e_1_2_5_16_2
– ident: e_1_2_5_17_2
  doi: 10.1002/mrm.20925
– ident: e_1_2_5_2_2
  doi: 10.1148/radiology.219.1.r01ap12264
– ident: e_1_2_5_14_2
  doi: 10.1055/s-2007-972144
– ident: e_1_2_5_7_2
  doi: 10.1002/mrm.1910180206
– ident: e_1_2_5_9_2
– ident: e_1_2_5_10_2
  doi: 10.1002/mrm.20568
– ident: e_1_2_5_3_2
  doi: 10.1002/mrm.1910160203
– ident: e_1_2_5_8_2
  doi: 10.1002/mrm.10137
– ident: e_1_2_5_15_2
  doi: 10.1002/jmri.20484
– ident: e_1_2_5_4_2
  doi: 10.1055/s-2007-972144
– ident: e_1_2_5_13_2
  doi: 10.1002/nbm.1051
– ident: e_1_2_5_18_2
  doi: 10.1016/j.jmr.2003.11.003
SSID ssj0009974
Score 2.3245218
Snippet A 128‐channel receive‐only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam‐shell” geometry...
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry...
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a clam-shell geometry...
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam-shell” geometry...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1431
SubjectTerms Algorithms
cardiac MRI
Equipment Design
Heart - anatomy & histology
Humans
Image Enhancement - instrumentation
Image Processing, Computer-Assisted
Magnetic Resonance Imaging, Cine - instrumentation
MR array coil
parallel imaging
Phantoms, Imaging
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqVlxeWigUQrlYgFBfsk3iZGOLpy5iKUi7D6tWLRKSZU9sUXWbrfYiKE_9hH4jX8LY2WS10CLEW5RMLnaOZ84k42NCXrPI6ExoTFMLzHTSDFiIcYaHqY5UZlKIdFUg22_vH6afjrPjFfK2ngtT6UM0H9zcyPD-2g1wpSe7C9HQs_FZC-OVcBN9Y9b26dRgIR0lRKXAnKfOz4i0VhWKkt3mzKVYtOa69ft1RPPPesk7s_JcXXxTw-Eyp_VBqbtBvtTNqWpRTluzqW7Bj9-UHv-zvffI-pys0r0KXffJiik3ye3e_Hf8Jrnl60dh8oB83qMYgn5eXrmJxHgnio7UoCPFPXjvCwoeiEBhdDKkyJOpk0nG_QoA456Tqygam97gI1VTyuiBQbw-JIfd9wfv9sP5qg0hYPbDw8KCUimzVilQNuPaRhDzwghASCQMuE1MYdF3tJHsJUxpJgp8V1lsFOcmUmyLrJaj0jwmNI8zC5EVhuGlTSq0gAL5hYrACptEIiA79fuTMJc0dytrDGUlxpxI7DTpOy0gLxvT80rH4zqjNx4EjYUan7rCtzyTR_0PssOPukkn78h-QF7UKJE4HN0_FlWa0Wwi_ZKnLI5vtsAEFTkbZwF5VKFq8TxOPTDn2Kx8CW-NgZMCXz5Snnz1kuCY5nMkogF51SDzb83c8UC72UL2Bj2_8eTfTbfJ3aqWxn2hekpWp-OZeYaEbaqf-5H5C8pJPgM
  priority: 102
  providerName: Wiley-Blackwell
Title A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla
URI https://api.istex.fr/ark:/67375/WNG-B8WF2B7B-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21598
https://www.ncbi.nlm.nih.gov/pubmed/18506789
https://www.proquest.com/docview/20857311
https://www.proquest.com/docview/71631783
https://pubmed.ncbi.nlm.nih.gov/PMC2548273
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.21598
UnpaywallVersion publishedVersion
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2CVny8DBgwwsewAKG9pCRx0jiPLaIMpFaoWrXtyXMcW5vWpVXXCsbTfsJ-434J13YaKGwIibcqvXFi5_jec-ObY4A3NFB5kuWYphaY6cSJpD7GGebHeSASFcsgdwWyg_b2KP68l-xV-5yab2GcPkT9ws3MDOuvzQSfFtr5-Wp1P3p3MjtpYczK2E1othMk4w1ojgZfOvtOfNN4GLsVIgapyEeiHy-1hX49dyUiNc3gfruKbv5ZNXlnUU7F2VcxHq8yWxuaevfgYNkpV5Fy3FrM85b8_pve43_0-j6sVbSVdBzOHsANVa7D7X61ML8Ot2wlqTx9CPsdgsHo8vzCfFKMVyPYqEKXikfw-mdEWkhKIidHY4KMmRjBZDwupMQIaIQritqmP_xExJxQsqMQuY9g1Puw837br_Zv8CXmQcwvtBQiploLIYVOWK4DGbJCZRLBEVHJdKQKjV6kjbQvoiKnWYHpTRIqwZgKBH0MjXJSqidA0jDRMtCZoti0irM8kwUyDRFInekoyDzYWj5DLitxc7PHxpg7WeaI46BxO2gevKpNp07R4yqjtxYItYWYHZsSuDThu4OPvMt2e1E37fKBBy-XSOE4Mc1qiyjVZHHK7eanNAyvt8BUFdkbox5sOGT9vB-jI5gy7Fa6grnawIiCr_5THh1acXBM-BlSUg9e1-j8Wze3LNiut-D9Yd_-ePpPDT6Du66gxrymeg6N-WyhXiBrm-ebmK8Mo81qfv4AyItDSg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am2C8cBm3cJsFCO0lXRInjS3xsiJKB0sfqk7bHpDlOLaY1qVT1wrGEz-B38gv4dhpUhU2hHiLkpOLnc_nfMc5-QzwigY6T3iOaWqBmU6cKOpjnGF-nAcy0bEK8qpAtt_u7ccfDpPDFXhT_wtT6UM0E252ZDh_bQe4nZDeXqiGnk5OWxiwOLsGa3Eb8xRLiQYL8SjOKw3mNLaehse1rlAQbTenLkWjNduxXy-jmn9WTK7PyjN58UWORsus1oWl7m34VDeoqkY5ac2meUt9-03r8X9bfAduzfkq2akAdhdWdLkBN7L5F_kNuO5KSNX5PTjaIRiFfn7_Yf8lxlsR9KUafSnuwZtfEOWwqIgaH48IUmVilZJxv1QKQ59VrCgam2ywS-SUUDLUCNn7sN99N3zb8-cLN_gKEyDmF0ZJGVNjpFTSJCw3gQpZoblCVERUMRPpwqD7aCPfi6jMKS_wZSWhlozpQNIHsFqOS_0ISBomRgWGa4qX1jHPuSqQYshAGW6igHuwVb9Aoeaq5nZxjZGo9JgjgZ0mXKd58KIxPaukPC4zeu1Q0FjIyYmtfUsTcdB_LzrsoBt10o7oe7BZw0TgiLSfWWSpx7Nz4VY9pWF4tQXmqEjbGPXgYQWrxfNYAcGUYbPSJcA1BlYNfPlIefzZqYJjps-Qi3rwsoHm35q55ZB2tYXIBpnbePzvppuw3htme2Jvt__xCdysSmvshNVTWJ1OZvoZ8rdp_twN01-L-kIk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9RAFL1BiOgLKioWUSZqDC9d2k5LZxJfWHEFdTdmAwEezGQ6nQmEpbtZdqP45E_wN_pLuDPddrMKxvjUpr39mOmZe89tb88AvKKBzhKeYZqaY6YTJ4r6GGeYH2eBTHSsgqwskO1s7R7EH46Sozl4U_0LU-pD1C_c7Mhw_toOcD3IzeZUNfR8eN7AgMXZLViIcWEL-na6U_EozksN5jS2nobHla5QEG3Wh85EowXbsd-uo5p_VkzeGRcDeflV9nqzrNaFpdY9-FI1qKxGOWuMR1lDff9N6_F_W3wfliZ8lWyXAHsAc7pYhsX25Iv8Mtx2JaTq4iEcbxOMQr9-_LT_EuOlCPpSjb4Ut-DFL4lyWFRE9U97BKkysUrJuF0qhaHPKlbktU27u0fkiFCyrxGyj-Cg9W7_7a4_mbjBV5gAMT83SsqYGiOlkiZhmQlUyHLNFaIiooqZSOcG3ccW8r2IyozyHB9WEmrJmA4kfQzzRb_QT4CkYWJUYLimeGod84yrHCmGDJThJgq4BxvVAxRqompuJ9foiVKPORLYacJ1mgcvatNBKeVxndFrh4LaQg7PbO1bmojDznvRZIetqJk2RceD9QomAkek_cwiC90fXwg36ykNw5stMEdF2saoByslrKb3YwUEU4bNSmcAVxtYNfDZPcXpiVMFx0yfIRf14GUNzb81c8Mh7WYL0e623crqv5uuw-LnnZb4tNf5-BTulpU19n3VGsyPhmP9DOnbKHvuRukV3QZBqA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CVjBeuIxbuFqA0F5SkjhpnMcWUQZSKzSt2vZkbMfWpnVp1bWC8cRP4DfySzi200BhQ0i8VemJEzufz_lOfPIZ4AWNtMwKiWlqiZlOmikaYpxhYSojkelURdIXyI662-P0_X62X-9zar-F8foQzQs3OzOcv7YTfFYa7-fr1f3k1cn8pIMxq2CXod3NkIy3oD0efegdePFN62HcVogYpJIQiX660hb69dy1iNS2g_v5PLr5Z9XkxrKaibNPYjJZZ7YuNA1uwMdVp3xFynFnuZAd9eU3vcf_6PVNuF7TVtLzOLsFl3S1CVeH9cL8JlxxlaTq9DYc9AgGo-9fv9lPivFqBBvV6FLxCF7_jCgHSUXU9GhCkDETK5iMx4VSGAGtcEXZ2Ax33hGxIJTsakTuHRgP3uy-3g7r_RtChXkQC0ujhEipMUIoYTImTaRiVupCITgSqphJdGnQi3SR9iVUSFqUmN5ksRaM6UjQu9CqppW-DySPM6MiU2iKTeu0kIUqkWmISJnCJFERwNbqGXJVi5vbPTYm3MsyJxwHjbtBC-BZYzrzih7nGb10QGgsxPzYlsDlGd8bveV9tjdI-nmfjwJ4ukIKx4lpV1tEpafLU-42P6VxfLEFpqrI3hgN4J5H1s_7sTqCOcNu5WuYawysKPj6P9XRoRMHx4SfISUN4HmDzr91c8uB7WILPtwZuh8P_qnBh3DNF9TY11SPoLWYL_VjZG0L-aSemT8AOqxCYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+128-Channel+Receive-Only+Cardiac+Coil+for+Highly+Accelerated+Cardiac+MRI+at+3+Tesla&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Schmitt%2C+Melanie&rft.au=Potthast%2C+Andreas&rft.au=Sosnovik%2C+David+E.&rft.au=Polimeni%2C+Jonathan+R.&rft.date=2008-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=59&rft.issue=6&rft.spage=1431&rft.epage=1439&rft_id=info:doi/10.1002%2Fmrm.21598&rft_id=info%3Apmid%2F18506789&rft.externalDocID=PMC2548273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon