Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes
Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for spec...
Saved in:
Published in | Ecology letters Vol. 12; no. 1; pp. 5 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
2009
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 1461-023X 1461-0248 1461-0248 |
DOI | 10.1111/j.1461-0248.2008.01247.x |
Cover
Abstract | Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes -'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. |
---|---|
AbstractList | AbstractSpeciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes -'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best‐adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes –‘magic traits’. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC‐based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC‐based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super‐optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes--'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. [PUBLICATION ABSTRACT] Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes--'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats.Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes--'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. |
Author | Eizaguirre, Christophe Milinski, Manfred Lenz, Tobias L. Traulsen, Arne |
Author_xml | – sequence: 1 fullname: Eizaguirre, Christophe – sequence: 2 fullname: Lenz, Tobias L – sequence: 3 fullname: Traulsen, Arne – sequence: 4 fullname: Milinski, Manfred |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21006648$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19087108$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAUhiM0xD7gL0CEBHct_rZzwSRUdRtTBRdjGuLGOnGc4ZLEwU61ll-Ps5Yi7WbzjX3k532t4_MeZwed72yW5RhNcVofllPMBJ4gwtSUIKSmCBMmp-tn2dH-4mB_pt8Ps-MYlyhRhcQvskNcICUxUkcZXPXWOBic73IwxjY2wGCrHLoqjwOUrnF_Ullu8r6xzg_B987kLSx9yH-6OHjj2z7JR3DY5GPV2HXu2nbV-Vvb2fgye15DE-2r3X6SXZ_Nv80uJouv559nnxYTw5mSE1uJsuKYSyOVQnVVIV5SWbKKkYpIBZyOO60sZxQDK1hJsAFTACWkVhjTk-z91rcP_vfKxkG3LqaGGuisX0UthKSKcvooyBRWWLLHHQkikgjKEvj2Abj0q9ClbhNDhcAF5wl6vYNWZWsr3QfXQtjof7NIwLsdANFAUwfojIt7jmCEhGAjp7acCT7GYOv_VkiP8dBLPU5ejynQYzz0fTz0OklPH0iNG-6HPwRwzVMMPm4N7lxjN09-WM8X8_GU9JOtPkXHrvd6CL90Go_k-ubLuVazm8sf4vJCj72-2fI1eA23If3H9RVBmCLMRYEYoX8BDMTrQQ |
CitedBy_id | crossref_primary_10_1002_ece3_4070 crossref_primary_10_1534_g3_113_008839 crossref_primary_10_1111_j_1095_8649_2009_02410_x crossref_primary_10_1371_journal_pgen_1004966 crossref_primary_10_1111_1365_2435_13241 crossref_primary_10_1111_mec_13295 crossref_primary_10_1111_jeb_12370 crossref_primary_10_1111_mec_12846 crossref_primary_10_1111_j_1365_294X_2012_05756_x crossref_primary_10_1111_jzs_12462 crossref_primary_10_1186_s12863_017_0474_x crossref_primary_10_1111_jeb_13304 crossref_primary_10_1186_s12862_022_01997_9 crossref_primary_10_3389_fmars_2023_1215125 crossref_primary_10_1093_evolut_qpad080 crossref_primary_10_1111_j_1469_7998_2010_00755_x crossref_primary_10_1111_mec_15709 crossref_primary_10_1111_j_1461_0248_2011_01606_x crossref_primary_10_1111_j_1558_5646_2010_01210_x crossref_primary_10_1111_jeb_12934 crossref_primary_10_3390_genes14071500 crossref_primary_10_1098_rspb_2016_0691 crossref_primary_10_1111_jeb_12817 crossref_primary_10_1111_mec_13520 crossref_primary_10_1007_s00251_022_01255_8 crossref_primary_10_1093_beheco_ary202 crossref_primary_10_1371_journal_pgen_1004830 crossref_primary_10_1111_j_1600_0706_2012_20555_x crossref_primary_10_1111_jeb_13111 crossref_primary_10_1111_j_1365_294X_2009_04243_x crossref_primary_10_1098_rstb_2010_0023 crossref_primary_10_1371_journal_pone_0065883 crossref_primary_10_1111_jeb_12585 crossref_primary_10_1038_s41598_021_96205_x crossref_primary_10_1016_j_zool_2016_04_001 crossref_primary_10_1017_S0031182022000531 crossref_primary_10_1111_j_1461_0248_2012_01791_x crossref_primary_10_1093_beheco_arx074 crossref_primary_10_1371_journal_pone_0130579 crossref_primary_10_1038_s41559_022_01734_x crossref_primary_10_1098_rspb_2014_1662 crossref_primary_10_1007_s10750_018_3798_2 crossref_primary_10_1007_s00251_015_0827_4 crossref_primary_10_1111_1365_2435_13268 crossref_primary_10_1111_eva_12166 crossref_primary_10_1111_j_1461_0248_2010_01546_x crossref_primary_10_1073_pnas_1619147114 crossref_primary_10_1186_1471_2148_12_68 crossref_primary_10_1093_icb_icz025 crossref_primary_10_1086_667589 crossref_primary_10_1007_s10682_010_9424_z crossref_primary_10_1007_s00265_010_1125_7 crossref_primary_10_1111_mec_13833 crossref_primary_10_1111_j_1365_294X_2011_05397_x crossref_primary_10_1038_srep42677 crossref_primary_10_1002_ece3_1426 crossref_primary_10_1111_j_1365_294X_2011_05401_x crossref_primary_10_1007_s10709_009_9402_y crossref_primary_10_1038_ng_3645 crossref_primary_10_1111_j_1095_8649_2012_03430_x crossref_primary_10_1007_s10764_013_9700_1 crossref_primary_10_1155_2012_280169 crossref_primary_10_1371_journal_pone_0010948 crossref_primary_10_1155_2012_148745 crossref_primary_10_1002_ece3_568 crossref_primary_10_1371_journal_pone_0040780 crossref_primary_10_1002_ece3_8109 crossref_primary_10_1002_ece3_1311 crossref_primary_10_1093_gbe_evw236 crossref_primary_10_1111_fwb_12492 crossref_primary_10_1111_j_1365_294X_2010_04934_x crossref_primary_10_1146_annurev_arplant_042809_112146 crossref_primary_10_1111_j_1365_294X_2012_05680_x crossref_primary_10_1016_j_meegid_2012_07_024 crossref_primary_10_1093_gbe_evz148 crossref_primary_10_1111_jeb_13057 crossref_primary_10_1111_j_1558_5646_2009_00800_x crossref_primary_10_1016_j_ijpara_2017_10_003 crossref_primary_10_1111_j_1095_8649_2010_02819_x crossref_primary_10_1093_molbev_msv151 crossref_primary_10_1093_molbev_msz235 |
Cites_doi | 10.1017/CBO9781139342179 10.1046/j.1420-9101.2003.00519.x 10.1098/rspb.2005.3113 10.1111/j.1420-9101.2007.01366.x 10.1016/j.coi.2005.07.012 10.1111/j.0022-1112.2004.00433.x 10.1111/j.1420-9101.2007.01380.x 10.1038/35104547 10.1038/22521 10.1371/journal.pone.0000734 10.1515/9780691187051 10.1111/j.0014-3820.2003.tb00233.x 10.1038/35051570 10.1146/annurev.ecolsys.37.091305.110242 10.1111/j.0014-3820.2002.tb01461.x 10.1186/1742-9994-2-1 10.1098/rspb.1993.0062 10.1098/rstb.1996.0075 10.1073/pnas.0408264102 10.1126/science.227.4690.1056 10.1111/j.1420-9101.2006.01158.x 10.1038/nature02556 10.1038/324060a0 10.1038/35077075 10.1046/j.1095-8649.2003.00069.x 10.1038/nature01164 10.1111/j.1558-5646.1990.tb03804.x 10.1126/science.1088293 10.1073/pnas.78.6.3721 10.1073/pnas.89.22.10896 10.1086/303210 10.1126/science.284.5418.1313 10.1016/S0169-5347(02)00004-6 10.1007/s00265-003-0611-6 10.1038/425679a 10.1126/science.7123238 10.1086/303166 10.1139/g89-037 10.1046/j.1420-9101.2001.00348.x 10.1086/282457 10.1111/j.1558-5646.1981.tb04864.x 10.1086/383621 10.1098/rspb.2005.3325 10.1111/j.0014-3820.2005.tb00995.x 10.1111/j.1439-0388.2004.00449.x 10.1111/j.1365-294X.2007.03281.x 10.1111/j.1558-5646.1998.tb02254.x 10.1098/rspb.1995.0093 10.1038/352619a0 10.1098/rstb.1998.0208 10.1146/annurev.ecolsys.38.091206.095804 10.1146/annurev.ecolsys.38.091206.095733 10.1098/rstb.2008.0174 10.1098/rspb.2007.1433 10.1038/nrg1269 10.1098/rspb.2004.2751 10.1111/j.1420-9101.2004.00711.x 10.1111/j.1365-294X.2004.02402.x 10.1046/j.1439-0310.2002.00768.x 10.1093/oso/9780198505235.001.0001 10.1111/j.1461-0248.2008.01207.x 10.1111/j.0014-3820.2006.tb01114.x 10.1111/j.0014-3820.2006.tb01143.x 10.1098/rspb.2007.0210 10.1111/j.1461-0248.2007.01141.x 10.1017/S146479310300616X 10.1139/f69-301 10.1093/nar/gkg070 10.1098/rspb.2000.1378 10.1111/j.1461-0248.2004.00715.x 10.1126/science.1104022 10.1111/j.1558-5646.1982.tb05432.x 10.1007/BF01237687 10.1146/annurev.iy.08.040190.000323 10.1084/jem.144.5.1324 10.1038/35002564 10.1111/j.1095-8312.1996.tb01434.x 10.1111/j.1365-294X.2008.03791.x 10.1111/j.0014-3820.2004.tb01633.x 10.1098/rsbl.2006.0465 10.1098/rspb.2003.2645 10.1038/344330a0 10.1016/S0169-5347(01)02198-X 10.1093/icb/30.2.235 10.1086/285346 10.1038/352595a0 |
ContentType | Journal Article |
Copyright | 2008 Blackwell Publishing Ltd/CNRS 2009 INIST-CNRS Journal compilation © 2008 Blackwell Publishing Ltd/CNRS |
Copyright_xml | – notice: 2008 Blackwell Publishing Ltd/CNRS – notice: 2009 INIST-CNRS – notice: Journal compilation © 2008 Blackwell Publishing Ltd/CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7ST 7T5 7U6 8FD FR3 P64 RC3 7S9 L.6 7X8 |
DOI | 10.1111/j.1461-0248.2008.01247.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environment Abstracts Immunology Abstracts Sustainability Science Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management Genetics Abstracts Technology Research Database Sustainability Science Abstracts Immunology Abstracts Engineering Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef Entomology Abstracts AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 12 |
ExternalDocumentID | 1610937391 19087108 21006648 10_1111_j_1461_0248_2008_01247_x ELE1247 ark_67375_WNG_8CWJZ6JH_8 US201301569042 |
Genre | article Journal Article Feature |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7ST 7T5 7U6 8FD FR3 P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5487-ed6bd5157c7880fdd05b37b4d42d278a532d273de5431a494b21cac9a322f8113 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Thu Jul 10 23:47:11 EDT 2025 Fri Jul 11 06:38:28 EDT 2025 Fri Jul 11 09:49:04 EDT 2025 Fri Jul 25 11:02:20 EDT 2025 Mon Jul 21 05:58:36 EDT 2025 Wed Apr 02 07:25:38 EDT 2025 Tue Jul 01 02:29:35 EDT 2025 Thu Apr 24 22:54:15 EDT 2025 Wed Jan 22 16:49:21 EST 2025 Sun Sep 21 06:18:11 EDT 2025 Wed Dec 27 19:18:48 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pleiotropy Vertebrata Hybrids Geographic distribution Major histocompatibility system Hybrid Parasite Sympatry parasites svmpatric speciation major histocompatibility complex Speciation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5487-ed6bd5157c7880fdd05b37b4d42d278a532d273de5431a494b21cac9a322f8113 |
Notes | http://dx.doi.org/10.1111/j.1461-0248.2008.01247.x ark:/67375/WNG-8CWJZ6JH-8 istex:A2C41F6C84205A18B8A2BF46C6AB3A0C0FE26144 ArticleID:ELE1247 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 19087108 |
PQID | 203661955 |
PQPubID | 32390 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66738353 proquest_miscellaneous_48181741 proquest_miscellaneous_20272634 proquest_journals_203661955 pubmed_primary_19087108 pascalfrancis_primary_21006648 crossref_primary_10_1111_j_1461_0248_2008_01247_x crossref_citationtrail_10_1111_j_1461_0248_2008_01247_x wiley_primary_10_1111_j_1461_0248_2008_01247_x_ELE1247 istex_primary_ark_67375_WNG_8CWJZ6JH_8 fao_agris_US201301569042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009 2009-01 January 2009 2009-01-00 2009-Jan 20090101 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – year: 2009 text: 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | Wu, C.I. & Ting, C. (2004). Genes and speciation. Nat. Rev. Genet., 5, 114-122. Bonneaud, C., Perez-Tris, J., Federici, P., Chastel, O. & Sorci, G. (2006b). Major histocompatibilty alleles associated with local resistance to malaria in a passerine. Evolution, 60, 383-389. Nuismer, S.L., Otto, S.P. & Blanquart, F. (2008). When do host-parasite interactions drive the evolution of non-random mating? Ecol. Lett., 11, 937-946. Parker, G.A. & Partridge, L. (1998). Sexual conflict and speciation. Philos. Trans. R Soc. B Biol. Sci., 353, 261-274. Robinson, J., Waller, M.J., Parham, P., De Groot, N., Bontrop, R., Kennedy, L.J. et al. (2003). IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res., 31, 311-314. Reusch, T.B.H., Haberli, M.A., Aeschlimann, P.B. & Milinski, M. (2001). Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414, 300-302. Scharsack, J.P., Kalbe, M., Harrod, C. & Rauch, G. (2007). Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R Soc. B Biol. Sci., 274, 1523-1532. Funk, D.J. (1998). Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution, 52, 1744-1759. Langefors, A., Lohm, J., Grahn, M., Andersen, O. & Von Schantz, T. (2001). Association between MHC class II B alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. R Soc. Lond. Ser. B Biol. Sci., 268, 479-485. Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl Acad. Sci. USA, 102, 4414-4418. Gavrilets, S. (2005). 'Adaptive speciation'- it is not that easy: a reply to Doebeli et al.. Evolution, 59, 696-699. Turner, G.F. & Burrows, M.T. (1995). A model of sympatric speciation by sexual selection. Proc. R Soc. Lond. B Biol. Sci., 260, 287-292. Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886-889. Grant, B.R. & Grant, P.R. (1982). Niche shifts and competition in Darwin's finches: geospiza conirostris and congeners. Evolution, 36, 637-657. Dieckmann, U. & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354-357. Sage, R.D., Heyneman, D., Lim, K.C. & Wilson, A.C. (1986). Wormy mice in a hybrid zone. Nature, 324, 60-63. Penn, D.J. & Potts, W.K. (1999). The evolution of mating preferences and major histocompatibility complex genes. Am. Nat., 153, 145-164. Alcaide, M., Edwards, S.V., Negro, J.J., Serrano, D. & Tella, J.L. (2008). Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol. Ecol., 17, 2652-2665. Westerdahl, H., Hansson, B., Bensch, S. & Hasselquist, D. (2004). Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J. Evol. Biol., 17, 485-492. Schwensow, N., Eberle, M. & Sommer, S. (2008). Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R Soc. B Biol. Sci., 275, 555-564. Dietl, G.P. & Hendricks, J.R. (2006). Crab scars reveal survival advantage of left-handed snails. Biol. Lett., 2, 439-442. Folstad, I. & Karter, A.J. (1992). Parasites, bright males, and the immunocompetence handicap. Am. Nat., 139, 603-622. Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst., 37, 159-186. Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380. Wegner, K.M. (2004). Major Histocompatibility Genes, Polymorphism and Balancing Selection the Case of Parasites and Sticklebacks. Christian-Albrechts-University, Kiel, pp. 118. Allen, R.L., Bittner-Eddy, P.D., Grenville-Briggs, L.J., Meitz, J.C., Rehmany, A.P., Rose, L.E. et al. (2004). Host-parasite coevolutionary conflict between arabidopsis and downy mildew. Science, 306, 1957. Zuk, M., Thornhill, R., Ligon, J.D. & Johnson, K. (1990). Parasites and mate choice in red jungle fowl. Am. Zool., 30, 235-244. Lawlor, D.A., Zemmour, J., Ennis, P.D. & Parham, P. (1990). Evolution of class-I MHC genes and proteins - from natural-selection to thymic selection. Annu. Rev. Immunol., 8, 23-63. Hamilton, W.D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384-387. Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford University Press, Oxford. Potts, W.K., Manning, C.J. & Wakeland, E.K. (1991). Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature, 352, 619-621. Jiggins, C.D., Naisbit, R.E., Coe, R.L. & Mallet, J. (2001). Reproductive isolation caused by colour pattern mimicry. Nature, 411, 302-305. Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool., 2, 1-8. Lande, R. (1989). Fisherian and Wrightian theories of speciation. Genome, 31, 221-227. Dieckmann, U., Doebeli, M., Metz, J. & Tautz, D. (2004). Adaptive Speciation. Cambridge University Press, Cambridge. Schluter, D. & Rambaut, A. (1996). Ecological speciation in postglacial fishes [and discussion]. Proc. R Soc. Lond. B Biol. Sci., 351, 807-814. Martin, M.P. & Carrington, M. (2005). Immunogenetics of viral infections. Curr. Opin. Immunol., 17, 510-516. Schluter, D., Clifford, E.A., Nemethy, M. & McKinnon, J.S. (2004). Parallel evolution and inheritance of quantitative traits. Am. Nat., 163, 809-822. Thompson, J.N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago. Maynard Smith, J. (1966). Sympatric speciation. Am. Nat., 100, 637-650. Boughman, J.W., Rundle, H.D. & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59, 361-373. Frank, S.A. (1996). Statistical properties of polymorphism in host-parasite genetics. Evol. Ecol., 10, 307-317. Haldane, J.B.S. (1992). Disease and evolution. Reprinted From La Ricerca Scientifica Supplemento, Vol. 19, pp. 1-11, 1949). Curr. Sci., 63, 599-604. Woelfing, B., Traulsen, A., Nowak, M.A., Milinski, M. & Boehm, T. (2009). Does intra-individual MHC diversity keep a golden mean? Philos. Trans. R Soc. B Biol. Sci., 364, (in press). Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409, 185-188. Buchholz, R., Jones Dukes, M.D., Hecht, S. & Findley, A.M. (2004). Investigating the turkey's 'snood' as a morphological marker of heritable disease resistance. J. Anim. Breed. Genet., 121, 176-185. Wegner, K.M., Reusch, T.B.H. & Kalbe, M. (2003b). Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol., 16, 224-232. Blais, J., Rico, C., Van Oosterhout, C., Cable, J., Turner, G.F. & Bernatchez, L. (2007). MHC adaptive divergence between closely related and sympatric African cichlids. PLoS One, 2, e734. Hill, A.V.S., Allsopp, C.E.M., Kwiatkowski, D., Anstey, N.M., Twumasi, P., Rowe, P.A. et al. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature, 352, 595-600. Ridley, M. (2003). Evolution, 3rd edn. Blackwell Publishing, Oxford. Rundle, H.D., Nagel, L., Boughman, J.W. & Schluter, D. (2000). Natural selection and parallel speciation in sympatric sticklebacks. Science, 287, 306-308. Knudsen, R., Amundsen, P.A. & Klemetsen, A. (2003). Inter- and intra-morph patterns in helminth communities of sympatric whitefish morphs. J. Fish Biol., 62, 847-859. Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R Soc. Lond. Ser. B Biol. Sci., 271, 1521-1528. Wegner, K.M., Kalbe, M., Kurtz, J., Reusch, T.B.H. & Milinski, M. (2003a). Parasite selection for immunogenetic optimality. Science, 301, 1343. McPhail, J.D. (1969). Predation and evolution of a stickleback (gasterosteus). J. Fish. Res. Board Can., 26, 3183-3208. Westerdahl, H., Waldenström, J., Hansson, B., Hasselquist, D., Von Schantz, T. & Bensch, S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proc. R Soc. B Biol. Sci., 272, 1511-1518. Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA Biol. Sci., 78, 3721-3725. Yamazaki, K., Boyse, E.A., Mike, V., Thaler, H.T., Mathieson, B.J., Abbott, J. et al. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med., 144, 1324-1335. Milinski, M. & Bakker, T.C.M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344, 330-333. De Boer, R.J. & Perelson, A.S. (1993). How diverse should the immune system be? Proc. R Soc. Lond. Ser. B Biol. Sci., 252, 171-175. Bonneaud, C., Mazuc, J., Chastel, O., Westerdahl, H. & Sorci, G. (2004). Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution, 58, 2823-2830. Schluter, D., Price, T.D. & Grant, P.R. (1985). Ecological character displacement in Darwin's finches. Science, 227, 1056-1059. Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003). Sexual conflict. Trends Ecol. Evol., 18, 41-47. Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138. Ritchie, M.G. (2007). Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst., 38, 79-102. Loiseau, C., Zoorob, R., Garnier, S., Birard, J., Federici, P., Julliard, R. et al. (2008). Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol. Lett., 11, 258-265. Buckling, A. & Rainey, P.B. (2002). The role of parasites in sympatric and allopatric host diversification. Nature, 420, 496-499. Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H. & Sorci, G. (2006a). Complex MHC-base 1991; 352 2004; 121 2002; 56 2004; 163 2006; 37 2003; 57 1999; 284 2004; 5 2003; 18 1999; 400 1998; 353 1990; 344 2003; 54 2001; 268 2007; 38 1977 2003b; 16 1990; 44 1989; 31 1982; 218 2001 2000 2005; 102 2000; 403 2002; 420 1981; 35 2009; 364 2001; 16 2007; 2 2002; 108 2000; 287 2007; 20 1998; 52 2006b; 60 2008; 275 1992; 89 1993; 252 2001; 411 1981; 78 2001; 414 1990; 30 1982; 36 1976; 144 2005; 272 2008; 17 2006; 19 2001; 409 1994 2004 2008; 11 1985; 227 2003 2006; 2 2003a; 301 2004; 306 1996; 10 2003; 31 2007; 16 2004; 429 2003; 78 1966; 100 2006a; 273 2003; 425 1986; 324 2004; 17 2004; 58 2005; 8 2004; 271 2007; 274 1999; 153 1992; 139 1963 1969; 26 1996; 351 2005; 2 2005; 59 2003; 62 2005; 17 1990; 8 1995; 260 1992; 63 2005; 14 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 Wegner K.M. (e_1_2_9_85_1) 2004 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Schluter D. (e_1_2_9_74_1) 2000 Ridley M. (e_1_2_9_67_1) 2003 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 Mayr E. (e_1_2_9_50_1) 1977 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 Gavrilets S. (e_1_2_9_28_1) 2005; 59 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 Janeway C.A. (e_1_2_9_36_1) 2001 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 Haldane J.B.S. (e_1_2_9_30_1) 1992; 63 e_1_2_9_9_1 e_1_2_9_25_1 Schluter D. (e_1_2_9_76_1) 1996; 351 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – reference: Buchholz, R., Jones Dukes, M.D., Hecht, S. & Findley, A.M. (2004). Investigating the turkey's 'snood' as a morphological marker of heritable disease resistance. J. Anim. Breed. Genet., 121, 176-185. – reference: Lawlor, D.A., Zemmour, J., Ennis, P.D. & Parham, P. (1990). Evolution of class-I MHC genes and proteins - from natural-selection to thymic selection. Annu. Rev. Immunol., 8, 23-63. – reference: Rundle, H.D. & Nosil, P. (2005). Ecological speciation. Ecol. Lett., 8, 336-352. – reference: Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138. – reference: Forsberg, L.A., Dannewitz, J., Petersson, E. & Grahn, M. (2007). Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout - females fishing for optimal MHC dissimilarity. J. Evol. Biol., 20, 1859-1869. – reference: Martin, M.P. & Carrington, M. (2005). Immunogenetics of viral infections. Curr. Opin. Immunol., 17, 510-516. – reference: McPhail, J.D. (1969). Predation and evolution of a stickleback (gasterosteus). J. Fish. Res. Board Can., 26, 3183-3208. – reference: Mayr, E. (1963). Animal Species and Evolution. Harvard University Press, Cambridge, MA. – reference: Schluter, D., Clifford, E.A., Nemethy, M. & McKinnon, J.S. (2004). Parallel evolution and inheritance of quantitative traits. Am. Nat., 163, 809-822. – reference: Gavrilets, S. (2005). 'Adaptive speciation'- it is not that easy: a reply to Doebeli et al.. Evolution, 59, 696-699. – reference: Hill, A.V.S., Allsopp, C.E.M., Kwiatkowski, D., Anstey, N.M., Twumasi, P., Rowe, P.A. et al. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature, 352, 595-600. – reference: Wu, C.I. & Ting, C. (2004). Genes and speciation. Nat. Rev. Genet., 5, 114-122. – reference: Wegner, K.M. (2004). Major Histocompatibility Genes, Polymorphism and Balancing Selection the Case of Parasites and Sticklebacks. Christian-Albrechts-University, Kiel, pp. 118. – reference: Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer Associates, Sunderland, MA. – reference: Janeway, C.A., Travers, P., Walport, M. & Capra, J.D. (2001). Immunobiology: The Immune System in Health and Disease, 5th edn. Garland Publishing, London. – reference: Ueshima, R. & Asami, T. (2003). Single-gene speciation by left-right reversal - a land snail species of polyphyletic origin results from chirality constraints on mating. Nature, 425, 679-679. – reference: Woelfing, B., Traulsen, A., Nowak, M.A., Milinski, M. & Boehm, T. (2009). Does intra-individual MHC diversity keep a golden mean? Philos. Trans. R Soc. B Biol. Sci., 364, (in press). – reference: Dieckmann, U., Doebeli, M., Metz, J. & Tautz, D. (2004). Adaptive Speciation. Cambridge University Press, Cambridge. – reference: Haldane, J.B.S. (1992). Disease and evolution. Reprinted From La Ricerca Scientifica Supplemento, Vol. 19, pp. 1-11, 1949). Curr. Sci., 63, 599-604. – reference: Westerdahl, H., Waldenström, J., Hansson, B., Hasselquist, D., Von Schantz, T. & Bensch, S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proc. R Soc. B Biol. Sci., 272, 1511-1518. – reference: Aeschlimann, P.B., Häberli, M.A., Reusch, T.B.H., Boehm, T. & Milinski, M. (2003). Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav. Ecol. Sociobiol., 54, 119-126. – reference: Funk, D.J. (1998). Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution, 52, 1744-1759. – reference: Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380. – reference: Milinski, M. & Bakker, T.C.M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344, 330-333. – reference: Grant, B.R. & Grant, P.R. (1982). Niche shifts and competition in Darwin's finches: geospiza conirostris and congeners. Evolution, 36, 637-657. – reference: Lande, R. (1989). Fisherian and Wrightian theories of speciation. Genome, 31, 221-227. – reference: Dieckmann, U. & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354-357. – reference: Summers, K., McKeon, S., Sellars, J., Keusenkothen, M., Morris, J., Gloeckner, D. et al. (2003). Parasitic exploitation as an engine of diversity. Biol. Rev., 78, 639-675. – reference: Madsen, T. & Ujvari, B. (2006). MHC class I variation associates with parasite resistance and longevity in tropical pythons. J. Evol. Biol., 19, 1973-1978. – reference: Parker, G.A. & Partridge, L. (1998). Sexual conflict and speciation. Philos. Trans. R Soc. B Biol. Sci., 353, 261-274. – reference: Blais, J., Rico, C., Van Oosterhout, C., Cable, J., Turner, G.F. & Bernatchez, L. (2007). MHC adaptive divergence between closely related and sympatric African cichlids. PLoS One, 2, e734. – reference: Reusch, T.B.H., Haberli, M.A., Aeschlimann, P.B. & Milinski, M. (2001). Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414, 300-302. – reference: Harf, R. & Sommer, S. (2005). Association between MHC class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paebe, in the southern Kalahari. Mol. Ecol., 14, 85-91. – reference: Robinson, J., Waller, M.J., Parham, P., De Groot, N., Bontrop, R., Kennedy, L.J. et al. (2003). IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res., 31, 311-314. – reference: Maynard Smith, J. (1966). Sympatric speciation. Am. Nat., 100, 637-650. – reference: Bonneaud, C., Perez-Tris, J., Federici, P., Chastel, O. & Sorci, G. (2006b). Major histocompatibilty alleles associated with local resistance to malaria in a passerine. Evolution, 60, 383-389. – reference: Jiggins, C.D., Naisbit, R.E., Coe, R.L. & Mallet, J. (2001). Reproductive isolation caused by colour pattern mimicry. Nature, 411, 302-305. – reference: Lively, C.M. (1999). Migration, virulence, and the geographic mosaic of adaptation by parasites. Am. Nat., 153, S34-S47. – reference: Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H. & Sorci, G. (2006a). Complex MHC-based mate choice in a wild passerine. Proceedings of the Royal Society of London Series B: Biological Sciences, 273, 1111-1116. – reference: Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford University Press, Oxford. – reference: De Boer, R.J. & Perelson, A.S. (1993). How diverse should the immune system be? Proc. R Soc. Lond. Ser. B Biol. Sci., 252, 171-175. – reference: Penn, D.J. (2002). The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology, 108, 1-21. – reference: Yamazaki, K., Boyse, E.A., Mike, V., Thaler, H.T., Mathieson, B.J., Abbott, J. et al. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med., 144, 1324-1335. – reference: Schluter, D., Price, T.D. & Grant, P.R. (1985). Ecological character displacement in Darwin's finches. Science, 227, 1056-1059. – reference: Allen, R.L., Bittner-Eddy, P.D., Grenville-Briggs, L.J., Meitz, J.C., Rehmany, A.P., Rose, L.E. et al. (2004). Host-parasite coevolutionary conflict between arabidopsis and downy mildew. Science, 306, 1957. – reference: Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl Acad. Sci. USA, 102, 4414-4418. – reference: Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886-889. – reference: Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., Jr & Ezekowitz, R.A.B. (1999). Phylogenetic perspectives in innate immunity. Science, 284, 1313-1318. – reference: Moller, A.P. (1990). Effects of a hematophagous mite on the Barn Swallow (Hirundo-Rustica) - A test of the Hamilton and Zuk hypothesis. Evolution, 44, 771-784. – reference: Westerdahl, H., Hansson, B., Bensch, S. & Hasselquist, D. (2004). Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J. Evol. Biol., 17, 485-492. – reference: Buckling, A. & Rainey, P.B. (2002). The role of parasites in sympatric and allopatric host diversification. Nature, 420, 496-499. – reference: Dietl, G.P. & Hendricks, J.R. (2006). Crab scars reveal survival advantage of left-handed snails. Biol. Lett., 2, 439-442. – reference: Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003). Sexual conflict. Trends Ecol. Evol., 18, 41-47. – reference: Kirkpatrick, M. & Nuismer, S.L. (2004). Sexual selection can constrain sympatric speciation. Proc. R Soc. Lond. Ser. B Biol. Sci., 271, 687-693. – reference: Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R Soc. Lond. Ser. B Biol. Sci., 271, 1521-1528. – reference: Alcaide, M., Edwards, S.V., Negro, J.J., Serrano, D. & Tella, J.L. (2008). Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol. Ecol., 17, 2652-2665. – reference: Rundle, H.D., Nagel, L., Boughman, J.W. & Schluter, D. (2000). Natural selection and parallel speciation in sympatric sticklebacks. Science, 287, 306-308. – reference: Folstad, I. & Karter, A.J. (1992). Parasites, bright males, and the immunocompetence handicap. Am. Nat., 139, 603-622. – reference: Gavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57, 2197-2215. – reference: Scharsack, J.P., Kalbe, M., Harrod, C. & Rauch, G. (2007). Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R Soc. B Biol. Sci., 274, 1523-1532. – reference: Zuk, M., Thornhill, R., Ligon, J.D. & Johnson, K. (1990). Parasites and mate choice in red jungle fowl. Am. Zool., 30, 235-244. – reference: Bonneaud, C., Mazuc, J., Chastel, O., Westerdahl, H. & Sorci, G. (2004). Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution, 58, 2823-2830. – reference: Potts, W.K., Manning, C.J. & Wakeland, E.K. (1991). Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature, 352, 619-621. – reference: Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA Biol. Sci., 78, 3721-3725. – reference: Frank, S.A. (1996). Statistical properties of polymorphism in host-parasite genetics. Evol. Ecol., 10, 307-317. – reference: Mayr, E. (1977). Populations, Species, and Evolution. Harvard University Press, Cambridge, MA. – reference: Ridley, M. (2003). Evolution, 3rd edn. Blackwell Publishing, Oxford. – reference: Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst., 37, 159-186. – reference: Nuismer, S.L., Otto, S.P. & Blanquart, F. (2008). When do host-parasite interactions drive the evolution of non-random mating? Ecol. Lett., 11, 937-946. – reference: Wegner, K.M., Reusch, T.B.H. & Kalbe, M. (2003b). Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol., 16, 224-232. – reference: McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson, L. et al. (2004). Evidence for ecology's role in speciation. Nature, 429, 294-298. – reference: Hamilton, W.D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384-387. – reference: Penn, D.J. & Potts, W.K. (1999). The evolution of mating preferences and major histocompatibility complex genes. Am. Nat., 153, 145-164. – reference: Sage, R.D., Heyneman, D., Lim, K.C. & Wilson, A.C. (1986). Wormy mice in a hybrid zone. Nature, 324, 60-63. – reference: Langefors, A., Lohm, J., Grahn, M., Andersen, O. & Von Schantz, T. (2001). Association between MHC class II B alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. R Soc. Lond. Ser. B Biol. Sci., 268, 479-485. – reference: Jäger, I., Eizaguirre, C., Griffiths, S.W., Kalbe, M., Krobbach, C.K., Reusch, T.B.H. et al. (2007). Individual MHC class I and MHC class IIB diversities are associated with male and female reproductive traits in the three-spined stickleback. J. Evol. Biol., 20, 2005-2015. – reference: Turner, G.F. & Burrows, M.T. (1995). A model of sympatric speciation by sexual selection. Proc. R Soc. Lond. B Biol. Sci., 260, 287-292. – reference: Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool., 2, 1-8. – reference: Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409, 185-188. – reference: Ritchie, M.G. (2007). Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst., 38, 79-102. – reference: Thompson, J.N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago. – reference: Loiseau, C., Zoorob, R., Garnier, S., Birard, J., Federici, P., Julliard, R. et al. (2008). Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol. Lett., 11, 258-265. – reference: Richmond, J.Q. & Reeder, T.W. (2002). Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae). Evolution, 56, 1498-1513. – reference: Ekblom, R., Saether, S.A., Jacobsson, P.A.R., Fiske, P., Sahlman, T., Grahn, M. et al. (2007). Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol. Ecol., 16, 1439-1451. – reference: Schluter, D. & Rambaut, A. (1996). Ecological speciation in postglacial fishes [and discussion]. Proc. R Soc. Lond. B Biol. Sci., 351, 807-814. – reference: Knudsen, R., Amundsen, P.A. & Klemetsen, A. (2003). Inter- and intra-morph patterns in helminth communities of sympatric whitefish morphs. J. Fish Biol., 62, 847-859. – reference: Boughman, J.W., Rundle, H.D. & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59, 361-373. – reference: Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton, NJ. – reference: Bolnick, D.I. & Fitzpatrick, B.M. (2007). Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst., 38, 459-487. – reference: Nowak, M.A., Tarczyhornoch, K. & Austyn, J.M. (1992). The optimal number of major histocompatibility complex-molecules in an individual. Proc. Natl Acad. Sci. USA, 89, 10896-10899. – reference: Schwensow, N., Eberle, M. & Sommer, S. (2008). Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R Soc. B Biol. Sci., 275, 555-564. – reference: Wegner, K.M., Kalbe, M., Kurtz, J., Reusch, T.B.H. & Milinski, M. (2003a). Parasite selection for immunogenetic optimality. Science, 301, 1343. – volume: 100 start-page: 637 year: 1966 end-page: 650 article-title: Sympatric speciation publication-title: Am. Nat. – volume: 287 start-page: 306 year: 2000 end-page: 308 article-title: Natural selection and parallel speciation in sympatric sticklebacks publication-title: Science – volume: 10 start-page: 307 year: 1996 end-page: 317 article-title: Statistical properties of polymorphism in host–parasite genetics publication-title: Evol. Ecol. – volume: 271 start-page: 1521 year: 2004 end-page: 1528 article-title: Reproductive isolation caused by visual predation on migrants between divergent environments publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci. – volume: 56 start-page: 1498 year: 2002 end-page: 1513 article-title: Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae) publication-title: Evolution – volume: 52 start-page: 1744 year: 1998 end-page: 1759 article-title: Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles publication-title: Evolution – volume: 14 start-page: 85 year: 2005 end-page: 91 article-title: Association between MHC class II DRB alleles and parasite load in the hairy‐footed gerbil, , in the southern Kalahari publication-title: Mol. Ecol. – volume: 275 start-page: 555 year: 2008 end-page: 564 article-title: Compatibility counts: MHC‐associated mate choice in a wild promiscuous primate publication-title: Proc. R Soc. B Biol. Sci. – volume: 44 start-page: 771 year: 1990 end-page: 784 article-title: Effects of a hematophagous mite on the Barn Swallow (Hirundo‐Rustica) – A test of the Hamilton and Zuk hypothesis publication-title: Evolution – year: 2001 – volume: 38 start-page: 79 year: 2007 end-page: 102 article-title: Sexual selection and speciation publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 218 start-page: 384 year: 1982 end-page: 387 article-title: Heritable true fitness and bright birds: a role for parasites? publication-title: Science – volume: 17 start-page: 510 year: 2005 end-page: 516 article-title: Immunogenetics of viral infections publication-title: Curr. Opin. Immunol. – volume: 108 start-page: 1 year: 2002 end-page: 21 article-title: The scent of genetic compatibility: sexual selection and the major histocompatibility complex publication-title: Ethology – volume: 420 start-page: 496 year: 2002 end-page: 499 article-title: The role of parasites in sympatric and allopatric host diversification publication-title: Nature – volume: 227 start-page: 1056 year: 1985 end-page: 1059 article-title: Ecological character displacement in Darwin’s finches publication-title: Science – volume: 144 start-page: 1324 year: 1976 end-page: 1335 article-title: Control of mating preferences in mice by genes in the major histocompatibility complex publication-title: J. Exp. Med. – volume: 59 start-page: 696 year: 2005 end-page: 699 article-title: ‘Adaptive speciation’– it is not that easy: a reply to Doebeli publication-title: Evolution – volume: 78 start-page: 639 year: 2003 end-page: 675 article-title: Parasitic exploitation as an engine of diversity publication-title: Biol. Rev. – volume: 400 start-page: 354 year: 1999 end-page: 357 article-title: On the origin of species by sympatric speciation publication-title: Nature – volume: 89 start-page: 10896 year: 1992 end-page: 10899 article-title: The optimal number of major histocompatibility complex‐molecules in an individual publication-title: Proc. Natl Acad. Sci. USA – year: 1994 – volume: 411 start-page: 302 year: 2001 end-page: 305 article-title: Reproductive isolation caused by colour pattern mimicry publication-title: Nature – volume: 271 start-page: 687 year: 2004 end-page: 693 article-title: Sexual selection can constrain sympatric speciation publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci. – volume: 58 start-page: 2823 year: 2004 end-page: 2830 article-title: Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow publication-title: Evolution – volume: 57 start-page: 2197 year: 2003 end-page: 2215 article-title: Perspective: models of speciation: what have we learned in 40 years? publication-title: Evolution – volume: 352 start-page: 595 year: 1991 end-page: 600 article-title: Common West African HLA antigens are associated with protection from severe malaria publication-title: Nature – volume: 163 start-page: 809 year: 2004 end-page: 822 article-title: Parallel evolution and inheritance of quantitative traits publication-title: Am. Nat. – volume: 306 start-page: 1957 year: 2004 article-title: Host–parasite coevolutionary conflict between arabidopsis and downy mildew publication-title: Science – volume: 252 start-page: 171 year: 1993 end-page: 175 article-title: How diverse should the immune system be? publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci. – volume: 344 start-page: 330 year: 1990 end-page: 333 article-title: Female sticklebacks use male coloration in mate choice and hence avoid parasitized males publication-title: Nature – volume: 301 start-page: 1343 year: 2003a article-title: Parasite selection for immunogenetic optimality publication-title: Science – volume: 8 start-page: 336 year: 2005 end-page: 352 article-title: Ecological speciation publication-title: Ecol. Lett. – volume: 59 start-page: 361 year: 2005 end-page: 373 article-title: Parallel evolution of sexual isolation in sticklebacks publication-title: Evolution – volume: 30 start-page: 235 year: 1990 end-page: 244 article-title: Parasites and mate choice in red jungle fowl publication-title: Am. Zool. – volume: 11 start-page: 937 year: 2008 end-page: 946 article-title: When do host‐parasite interactions drive the evolution of non‐random mating? publication-title: Ecol. Lett. – year: 2004 – volume: 351 start-page: 807 year: 1996 end-page: 814 article-title: Ecological speciation in postglacial fishes [and discussion] publication-title: Proc. R Soc. Lond. B Biol. Sci. – volume: 273 start-page: 1111 year: 2006a end-page: 1116 article-title: Complex ‐based mate choice in a wild passerine publication-title: Proceedings of the Royal Society of London Series B: Biological Sciences – volume: 18 start-page: 41 year: 2003 end-page: 47 article-title: Sexual conflict publication-title: Trends Ecol. Evol. – volume: 31 start-page: 221 year: 1989 end-page: 227 article-title: Fisherian and Wrightian theories of speciation publication-title: Genome – volume: 35 start-page: 124 year: 1981 end-page: 138 article-title: Skepticism towards Santa Rosalia, or why are there so few kinds of animals publication-title: Evolution – volume: 324 start-page: 60 year: 1986 end-page: 63 article-title: Wormy mice in a hybrid zone publication-title: Nature – volume: 2 start-page: e734 year: 2007 article-title: MHC adaptive divergence between closely related and sympatric African cichlids publication-title: PLoS One – volume: 63 start-page: 599 year: 1992 end-page: 604 article-title: Disease and evolution publication-title: Curr. Sci. – volume: 54 start-page: 119 year: 2003 end-page: 126 article-title: Female sticklebacks use self‐reference to optimize MHC allele number during mate selection publication-title: Behav. Ecol. Sociobiol. – volume: 62 start-page: 847 year: 2003 end-page: 859 article-title: Inter‐ and intra‐morph patterns in helminth communities of sympatric whitefish morphs publication-title: J. Fish Biol. – volume: 16 start-page: 1439 year: 2007 end-page: 1451 article-title: Spatial pattern of MHC class II variation in the great snipe (Gallinago media) publication-title: Mol. Ecol. – volume: 36 start-page: 637 year: 1982 end-page: 657 article-title: Niche shifts and competition in Darwin’s finches: geospiza conirostris and congeners publication-title: Evolution – volume: 425 start-page: 679 year: 2003 end-page: 679 article-title: Single‐gene speciation by left‐right reversal – a land snail species of polyphyletic origin results from chirality constraints on mating publication-title: Nature – volume: 11 start-page: 258 year: 2008 end-page: 265 article-title: Antagonistic effects of a Mhc class I allele on malaria‐infected house sparrows publication-title: Ecol. Lett. – volume: 274 start-page: 1523 year: 2007 end-page: 1532 article-title: Habitat‐specific adaptation of immune responses of stickleback ( ) lake and river ecotypes publication-title: Proc. R Soc. B Biol. Sci. – volume: 260 start-page: 287 year: 1995 end-page: 292 article-title: A model of sympatric speciation by sexual selection publication-title: Proc. R Soc. Lond. B Biol. Sci. – volume: 20 start-page: 1859 year: 2007 end-page: 1869 article-title: Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout – females fishing for optimal MHC dissimilarity publication-title: J. Evol. Biol. – volume: 16 start-page: 372 year: 2001 end-page: 380 article-title: Ecology and the origin of species publication-title: Trends Ecol. Evol. – volume: 268 start-page: 479 year: 2001 end-page: 485 article-title: Association between MHC class II B alleles and resistance to in Atlantic salmon publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci. – volume: 37 start-page: 159 year: 2006 end-page: 186 article-title: The major histocompatibility complex, sexual selection, and mate choice publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 153 start-page: 145 year: 1999 end-page: 164 article-title: The evolution of mating preferences and major histocompatibility complex genes publication-title: Am. Nat. – volume: 19 start-page: 1973 year: 2006 end-page: 1978 article-title: MHC class I variation associates with parasite resistance and longevity in tropical pythons publication-title: J. Evol. Biol. – year: 2003 – volume: 2 start-page: 1 year: 2005 end-page: 8 article-title: The importance of immune gene variability (MHC) in evolutionary ecology and conservation publication-title: Front. Zool. – volume: 414 start-page: 300 year: 2001 end-page: 302 article-title: Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism publication-title: Nature – year: 2000 – volume: 17 start-page: 2652 year: 2008 end-page: 2665 article-title: Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel ( ) publication-title: Mol. Ecol. – volume: 60 start-page: 383 year: 2006b end-page: 389 article-title: Major histocompatibilty alleles associated with local resistance to malaria in a passerine publication-title: Evolution – volume: 284 start-page: 1313 year: 1999 end-page: 1318 article-title: Phylogenetic perspectives in innate immunity publication-title: Science – volume: 5 start-page: 114 year: 2004 end-page: 122 article-title: Genes and speciation publication-title: Nat. Rev. Genet. – volume: 153 start-page: S34 year: 1999 end-page: S47 article-title: Migration, virulence, and the geographic mosaic of adaptation by parasites publication-title: Am. Nat. – volume: 38 start-page: 459 year: 2007 end-page: 487 article-title: Sympatric speciation: models and empirical evidence publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 121 start-page: 176 year: 2004 end-page: 185 article-title: Investigating the turkey’s ‘snood’ as a morphological marker of heritable disease resistance publication-title: J. Anim. Breed. Genet. – year: 1977 – volume: 409 start-page: 185 year: 2001 end-page: 188 article-title: Correlated evolution of morphology and vocal signal structure in Darwin’s finches publication-title: Nature – volume: 16 start-page: 224 year: 2003b end-page: 232 article-title: Multiple parasites are driving major histocompatibility complex polymorphism in the wild publication-title: J. Evol. Biol. – volume: 78 start-page: 3721 year: 1981 end-page: 3725 article-title: Models of speciation by sexual selection on polygenic traits publication-title: Proc. Natl Acad. Sci. USA Biol. Sci. – volume: 353 start-page: 261 year: 1998 end-page: 274 article-title: Sexual conflict and speciation publication-title: Philos. Trans. R Soc. B Biol. Sci. – volume: 20 start-page: 2005 year: 2007 end-page: 2015 article-title: Individual MHC class I and MHC class IIB diversities are associated with male and female reproductive traits in the three‐spined stickleback publication-title: J. Evol. Biol. – volume: 17 start-page: 485 year: 2004 end-page: 492 article-title: Between‐year variation of MHC allele frequencies in great reed warblers: selection or drift? publication-title: J. Evol. Biol. – volume: 272 start-page: 1511 year: 2005 end-page: 1518 article-title: Associations between malaria and MHC genes in a migratory songbird publication-title: Proc. R Soc. B Biol. Sci. – volume: 429 start-page: 294 year: 2004 end-page: 298 article-title: Evidence for ecology’s role in speciation publication-title: Nature – volume: 31 start-page: 311 year: 2003 end-page: 314 article-title: IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex publication-title: Nucleic Acids Res. – year: 1963 – volume: 403 start-page: 886 year: 2000 end-page: 889 article-title: Rapid evolution of reproductive barriers driven by sexual conflict publication-title: Nature – volume: 139 start-page: 603 year: 1992 end-page: 622 article-title: Parasites, bright males, and the immunocompetence handicap publication-title: Am. Nat. – volume: 2 start-page: 439 year: 2006 end-page: 442 article-title: Crab scars reveal survival advantage of left‐handed snails publication-title: Biol. Lett. – volume: 26 start-page: 3183 year: 1969 end-page: 3208 article-title: Predation and evolution of a stickleback (gasterosteus) publication-title: J. Fish. Res. Board Can. – volume: 102 start-page: 4414 year: 2005 end-page: 4418 article-title: Mate choice decisions of stickleback females predictably modified by MHC peptide ligands publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: 23 year: 1990 end-page: 63 article-title: Evolution of class‐I MHC genes and proteins – from natural‐selection to thymic selection publication-title: Annu. Rev. Immunol. – volume: 352 start-page: 619 year: 1991 end-page: 621 article-title: Mating patterns in seminatural populations of mice influenced by MHC genotype publication-title: Nature – volume: 364 year: 2009 article-title: Does intra‐individual MHC diversity keep a golden mean? publication-title: Philos. Trans. R Soc. B Biol. Sci. – ident: e_1_2_9_17_1 doi: 10.1017/CBO9781139342179 – ident: e_1_2_9_87_1 doi: 10.1046/j.1420-9101.2003.00519.x – ident: e_1_2_9_89_1 doi: 10.1098/rspb.2005.3113 – ident: e_1_2_9_35_1 doi: 10.1111/j.1420-9101.2007.01366.x – ident: e_1_2_9_47_1 doi: 10.1016/j.coi.2005.07.012 – ident: e_1_2_9_49_1 doi: 10.1111/j.0022-1112.2004.00433.x – ident: e_1_2_9_22_1 doi: 10.1111/j.1420-9101.2007.01380.x – ident: e_1_2_9_65_1 doi: 10.1038/35104547 – ident: e_1_2_9_16_1 doi: 10.1038/22521 – ident: e_1_2_9_5_1 doi: 10.1371/journal.pone.0000734 – ident: e_1_2_9_27_1 doi: 10.1515/9780691187051 – ident: e_1_2_9_26_1 doi: 10.1111/j.0014-3820.2003.tb00233.x – ident: e_1_2_9_63_1 doi: 10.1038/35051570 – ident: e_1_2_9_53_1 doi: 10.1146/annurev.ecolsys.37.091305.110242 – ident: e_1_2_9_66_1 doi: 10.1111/j.0014-3820.2002.tb01461.x – ident: e_1_2_9_80_1 doi: 10.1186/1742-9994-2-1 – volume-title: Evolution year: 2003 ident: e_1_2_9_67_1 – ident: e_1_2_9_15_1 doi: 10.1098/rspb.1993.0062 – volume: 351 start-page: 807 year: 1996 ident: e_1_2_9_76_1 article-title: Ecological speciation in postglacial fishes [and discussion] publication-title: Proc. R Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1996.0075 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.0408264102 – ident: e_1_2_9_77_1 doi: 10.1126/science.227.4690.1056 – ident: e_1_2_9_46_1 doi: 10.1111/j.1420-9101.2006.01158.x – ident: e_1_2_9_51_1 doi: 10.1038/nature02556 – ident: e_1_2_9_72_1 doi: 10.1038/324060a0 – ident: e_1_2_9_37_1 doi: 10.1038/35077075 – ident: e_1_2_9_39_1 doi: 10.1046/j.1095-8649.2003.00069.x – ident: e_1_2_9_12_1 doi: 10.1038/nature01164 – volume-title: Major Histocompatibility Genes, Polymorphism and Balancing Selection the Case of Parasites and Sticklebacks year: 2004 ident: e_1_2_9_85_1 – ident: e_1_2_9_56_1 doi: 10.1111/j.1558-5646.1990.tb03804.x – ident: e_1_2_9_86_1 doi: 10.1126/science.1088293 – ident: e_1_2_9_40_1 doi: 10.1073/pnas.78.6.3721 – ident: e_1_2_9_58_1 doi: 10.1073/pnas.89.22.10896 – ident: e_1_2_9_44_1 doi: 10.1086/303210 – ident: e_1_2_9_34_1 doi: 10.1126/science.284.5418.1313 – ident: e_1_2_9_13_1 doi: 10.1016/S0169-5347(02)00004-6 – ident: e_1_2_9_2_1 doi: 10.1007/s00265-003-0611-6 – ident: e_1_2_9_84_1 doi: 10.1038/425679a – ident: e_1_2_9_31_1 doi: 10.1126/science.7123238 – ident: e_1_2_9_62_1 doi: 10.1086/303166 – ident: e_1_2_9_41_1 doi: 10.1139/g89-037 – ident: e_1_2_9_82_1 doi: 10.1046/j.1420-9101.2001.00348.x – ident: e_1_2_9_48_1 doi: 10.1086/282457 – ident: e_1_2_9_20_1 doi: 10.1111/j.1558-5646.1981.tb04864.x – ident: e_1_2_9_78_1 doi: 10.1086/383621 – ident: e_1_2_9_8_1 doi: 10.1098/rspb.2005.3325 – ident: e_1_2_9_10_1 doi: 10.1111/j.0014-3820.2005.tb00995.x – ident: e_1_2_9_11_1 doi: 10.1111/j.1439-0388.2004.00449.x – ident: e_1_2_9_19_1 doi: 10.1111/j.1365-294X.2007.03281.x – ident: e_1_2_9_24_1 doi: 10.1111/j.1558-5646.1998.tb02254.x – ident: e_1_2_9_83_1 doi: 10.1098/rspb.1995.0093 – ident: e_1_2_9_64_1 doi: 10.1038/352619a0 – volume-title: Immunobiology: The Immune System in Health and Disease year: 2001 ident: e_1_2_9_36_1 – ident: e_1_2_9_60_1 doi: 10.1098/rstb.1998.0208 – ident: e_1_2_9_6_1 doi: 10.1146/annurev.ecolsys.38.091206.095804 – ident: e_1_2_9_68_1 doi: 10.1146/annurev.ecolsys.38.091206.095733 – ident: e_1_2_9_90_1 doi: 10.1098/rstb.2008.0174 – ident: e_1_2_9_79_1 doi: 10.1098/rspb.2007.1433 – ident: e_1_2_9_91_1 doi: 10.1038/nrg1269 – ident: e_1_2_9_57_1 doi: 10.1098/rspb.2004.2751 – ident: e_1_2_9_88_1 doi: 10.1111/j.1420-9101.2004.00711.x – ident: e_1_2_9_32_1 doi: 10.1111/j.1365-294X.2004.02402.x – ident: e_1_2_9_61_1 doi: 10.1046/j.1439-0310.2002.00768.x – volume-title: The Ecology of Adaptive Radiation year: 2000 ident: e_1_2_9_74_1 doi: 10.1093/oso/9780198505235.001.0001 – ident: e_1_2_9_59_1 doi: 10.1111/j.1461-0248.2008.01207.x – ident: e_1_2_9_9_1 doi: 10.1111/j.0014-3820.2006.tb01114.x – ident: e_1_2_9_14_1 doi: 10.1111/j.0014-3820.2006.tb01143.x – ident: e_1_2_9_73_1 doi: 10.1098/rspb.2007.0210 – ident: e_1_2_9_45_1 doi: 10.1111/j.1461-0248.2007.01141.x – ident: e_1_2_9_81_1 doi: 10.1017/S146479310300616X – ident: e_1_2_9_52_1 doi: 10.1139/f69-301 – ident: e_1_2_9_69_1 doi: 10.1093/nar/gkg070 – ident: e_1_2_9_42_1 doi: 10.1098/rspb.2000.1378 – ident: e_1_2_9_70_1 doi: 10.1111/j.1461-0248.2004.00715.x – ident: e_1_2_9_4_1 doi: 10.1126/science.1104022 – ident: e_1_2_9_29_1 doi: 10.1111/j.1558-5646.1982.tb05432.x – ident: e_1_2_9_23_1 doi: 10.1007/BF01237687 – volume-title: Populations, Species, and Evolution year: 1977 ident: e_1_2_9_50_1 – volume: 63 start-page: 599 year: 1992 ident: e_1_2_9_30_1 article-title: Disease and evolution publication-title: Curr. Sci. – ident: e_1_2_9_43_1 doi: 10.1146/annurev.iy.08.040190.000323 – ident: e_1_2_9_92_1 doi: 10.1084/jem.144.5.1324 – ident: e_1_2_9_25_1 doi: 10.1038/35002564 – ident: e_1_2_9_71_1 doi: 10.1111/j.1095-8312.1996.tb01434.x – ident: e_1_2_9_3_1 doi: 10.1111/j.1365-294X.2008.03791.x – ident: e_1_2_9_7_1 doi: 10.1111/j.0014-3820.2004.tb01633.x – ident: e_1_2_9_18_1 doi: 10.1098/rsbl.2006.0465 – ident: e_1_2_9_38_1 doi: 10.1098/rspb.2003.2645 – ident: e_1_2_9_54_1 doi: 10.1038/344330a0 – volume: 59 start-page: 696 year: 2005 ident: e_1_2_9_28_1 article-title: ‘Adaptive speciation’– it is not that easy: a reply to Doebeli et al. publication-title: Evolution – ident: e_1_2_9_75_1 doi: 10.1016/S0169-5347(01)02198-X – ident: e_1_2_9_93_1 doi: 10.1093/icb/30.2.235 – ident: e_1_2_9_21_1 doi: 10.1086/285346 – ident: e_1_2_9_33_1 doi: 10.1038/352595a0 |
SSID | ssj0012971 |
Score | 2.2586162 |
SecondaryResourceType | review_article |
Snippet | Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of... AbstractSpeciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5 |
SubjectTerms | alleles allopatry Animal and plant ecology Animal, plant and microbial ecology Animals Biological and medical sciences Ecology Evolutionary biology Fundamental and applied biological sciences. Psychology General aspects Genetic Speciation Genetics Genetics, Population genotype Hybridization, Genetic Hybrids Immune system Immunology loci major histocompatibility complex Major Histocompatibility Complex - genetics Major Histocompatibility Complex - immunology mating behavior Mating Preference, Animal Models, Genetic Niches Parasite resistance parasites Parasites - immunology parasitology pleiotropy Selection, Genetic Speciation sympatric speciation sympatry Taxonomy Vertebrates Vertebrates - genetics Vertebrates - immunology Vertebrates - parasitology |
Title | Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes |
URI | https://api.istex.fr/ark:/67375/WNG-8CWJZ6JH-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2008.01247.x https://www.ncbi.nlm.nih.gov/pubmed/19087108 https://www.proquest.com/docview/203661955 https://www.proquest.com/docview/20272634 https://www.proquest.com/docview/48181741 https://www.proquest.com/docview/66738353 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BJSQuvKGmUHxA3Bz5sV47R1RSogh6AKJGXFb7rEKKHSWOlPTXM7PrGLlqpQpxiqPMWsnk29n5vN_OEPKesthKm4ootoZGNEmyCGuERDKXeaaNNpk7FPb1jI2ndDLLZ63-Cc_C-PoQ3QM3nBkuXuMEF3J9fZIDFU6dQgslkbBUFQPMJ5OMYRn9T9-6SlKwqnnu5Ydks76o58Yb9Vaq-1bUkL-i67eonxRrcKH1vS9uSk77ua5brE4fk8X-Z3qNymKwaeRAXV2rAPl__PCEPGpz2vCjB-FTcs9Uz8gD3-VyB1cjVxl795wI3-0esRAKpWDFw0IVOhSVDiFLRZ3uFbyVu3B5aeZ1s6qXcxX-Fr_qVegKIzvFfOMFvbvQyeHNNpzjGZf6AqP2CzI9Hf04GUdtj4dIIVeKjGZSQ05VKODisdU6zmVWSKppqtOiFHmGr4AaPLMv6JDKNFFCDQUEIlsCtF6Sg6quzCEJAV4qoQXwNytooeRQgUnKypiVllmrA1Ls_0-u2gLo2IfjkveIUMLRlW17TnQl3wYk6UYufRGQO4w5BMhwcQGxmk-_p7hDDFx5CEEyIB8cjrp7idUC9XVFzs_PPvPy5Hzyk03GvAzIcQ9o3QDg6ZAqUjA42iOPt7FnzXFrGWhxngfkXfcpBA3cCRKVqTdokhYpy-jtFhQSOSCrye0Wrl9slmcBeeUh_9c1wxhoeAzfjjng3tlnfPRlhFev_3XgEXnod_vwEdkbctCsNuYtJI2NPHbh4A-FY1mx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYJLeZaaQusD4ubIj_XriKqUENIcoFEjLqt9eKvQYEepIyX99Z3ZdYxctVKFONlWdq1k8u3s9-3OzhDyiSa-Fjrknq8L6tEgiDzMEeKJWMSRKlQRmUNhp-NkMKHDaTxtygHhWRibH6JdcMORYfw1DnBckL49ykELhyZEC2MiYa5Ke0Aon5jtOmRIP9pcUjCvWfVl-0TTbljPnW_qzFWPNa-AwaLx1xhBya_AiNpWv7iLnnbZrpmuTl6Q-faH2iiVy96qFj15fSsH5H-yxEuy29Ba94vF4SvyqChfk6e20OUG7vomOfbmDeG24D3CweVSwqSHuSqUy0vlAlHFUN1reBQbdzEvZlW9rBYz6f7hv6ula3Ijm6D52sb0blwTEV-s3Rkec6ku0HG_JZOT_tnxwGvKPHgS5ZJXqEQooFWpBDnua6X8WESpoIqGKkwzHkd4BeDgsX1OcyrCQHKZc_BFOgN07ZGdsiqLfeICwmRAU5BwmtNUilxCkzDJ_CTTidbKIen2D2WyyYGOpTjmrKOFAoambCp0oinZ2iFB23Nh84A8oM8-YIbxC3DXbPIzxE1ikMs5-EmHfDZAat_Fl5cYYpfG7Hz8lWXH58NfyXDAMoccdpDWdgCpDmyRQoODLfRY436uGO4ugzKOY4cctZ-C38DNIF4W1QqbhGmYRPT-FhS4HOjV4P4WpmRsFEcOeWcx_9c0uQ9K3IdvlxjkPthmrD_q4937f-14RJ4Nzk5HbPRt_P2APLebf7hi9oHs1MtV8RE4ZC0OjW-4AR8OXc8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYhLeVNTaH1A3Bz5sX4dUZsQQokQEDXistqHtwpp7Sh1pKS_npldx8hVK1WIk21l17In387O5_12hpD3NPG10CH3fF1QjwZB5GGOEE_EIo5UoYrIbAr7Ok6GEzqaxtNG_4R7YWx-iPaDG44M469xgC-Uvj7IgQqHRqGFkkiYqtIexJMP4AFClHcdf29TScG0ZsmX7RNNu6qeG-_Umarua15BAIu2X6OAkl-CDbUtfnFTdNoNds1sNXhC5tv3tCKVeW9Vi568upYC8v8Y4inZbYJa96NF4TNyryifk4e2zOUGzvomNfbmBeG23D2CweVSwpSHmSqUy0vlQpiKQt0ruBQbd3FezKp6WS1m0r3gv6ulazIjG8l8bRW9G9fo4Yu1O8NNLtUZuu2XZDLo_zwaek2RB08iWfIKlQgFQVUqgYz7Wik_FlEqqKKhCtOMxxEeATa4aZ_TnIowkFzmHDyRzgBbr8hOWZXFHnEBXzKgKRA4zWkqRS6hSZhkfpLpRGvlkHT7fzLZZEDHQhznrMOEAoambOpzoinZ2iFB23Nhs4Dcoc8eQIbxM3DWbPIjxCViIMs5eEmHfDA4au_Fl3MU2KUxOx1_YtnR6ehXMhqyzCEHHaC1HYCoQ6xIocH-FnmscT6XDNeWgRfHsUMO21_Ba-BSEC-LaoVNwjRMInp7CwqRHLDV4PYWpmBsFEcOeW0h_9c0uQ883IenSwxw72wz1j_p49mbf-14SB59Ox6wk8_jL_vksV35w89lb8lOvVwV7yCArMWB8Qx_AJ8AXH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+accelerated+and+stabilized+by+pleiotropic+major+histocompatibility+complex+immunogenes&rft.jtitle=Ecology+letters&rft.au=EIZAGUIRRE%2C+Christophe&rft.au=LENZ%2C+Tobias+L&rft.au=TRAULSEN%2C+Arne&rft.au=MILINSKI%2C+Manfred&rft.date=2009&rft.pub=Blackwell&rft.issn=1461-023X&rft.volume=12&rft.issue=1&rft.spage=5&rft.epage=12&rft_id=info:doi/10.1111%2Fj.1461-0248.2008.01247.x&rft.externalDBID=n%2Fa&rft.externalDocID=21006648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |