Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes

Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for spec...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 12; no. 1; pp. 5 - 12
Main Authors Eizaguirre, Christophe, Lenz, Tobias L, Traulsen, Arne, Milinski, Manfred
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text
ISSN1461-023X
1461-0248
1461-0248
DOI10.1111/j.1461-0248.2008.01247.x

Cover

Abstract Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes -'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats.
AbstractList AbstractSpeciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes -'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats.
Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best‐adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes –‘magic traits’. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC‐based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC‐based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super‐optimal individual MHC diversity and should therefore suffer more from parasites in all habitats.
Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes--'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. [PUBLICATION ABSTRACT]
Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes--'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats.Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes--'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats.
Author Eizaguirre, Christophe
Milinski, Manfred
Lenz, Tobias L.
Traulsen, Arne
Author_xml – sequence: 1
  fullname: Eizaguirre, Christophe
– sequence: 2
  fullname: Lenz, Tobias L
– sequence: 3
  fullname: Traulsen, Arne
– sequence: 4
  fullname: Milinski, Manfred
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21006648$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19087108$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xD7gL0CEBHct_rZzwSRUdRtTBRdjGuLGOnGc4ZLEwU61ll-Ps5Yi7WbzjX3k532t4_MeZwed72yW5RhNcVofllPMBJ4gwtSUIKSmCBMmp-tn2dH-4mB_pt8Ps-MYlyhRhcQvskNcICUxUkcZXPXWOBic73IwxjY2wGCrHLoqjwOUrnF_Ullu8r6xzg_B987kLSx9yH-6OHjj2z7JR3DY5GPV2HXu2nbV-Vvb2fgye15DE-2r3X6SXZ_Nv80uJouv559nnxYTw5mSE1uJsuKYSyOVQnVVIV5SWbKKkYpIBZyOO60sZxQDK1hJsAFTACWkVhjTk-z91rcP_vfKxkG3LqaGGuisX0UthKSKcvooyBRWWLLHHQkikgjKEvj2Abj0q9ClbhNDhcAF5wl6vYNWZWsr3QfXQtjof7NIwLsdANFAUwfojIt7jmCEhGAjp7acCT7GYOv_VkiP8dBLPU5ejynQYzz0fTz0OklPH0iNG-6HPwRwzVMMPm4N7lxjN09-WM8X8_GU9JOtPkXHrvd6CL90Go_k-ubLuVazm8sf4vJCj72-2fI1eA23If3H9RVBmCLMRYEYoX8BDMTrQQ
CitedBy_id crossref_primary_10_1002_ece3_4070
crossref_primary_10_1534_g3_113_008839
crossref_primary_10_1111_j_1095_8649_2009_02410_x
crossref_primary_10_1371_journal_pgen_1004966
crossref_primary_10_1111_1365_2435_13241
crossref_primary_10_1111_mec_13295
crossref_primary_10_1111_jeb_12370
crossref_primary_10_1111_mec_12846
crossref_primary_10_1111_j_1365_294X_2012_05756_x
crossref_primary_10_1111_jzs_12462
crossref_primary_10_1186_s12863_017_0474_x
crossref_primary_10_1111_jeb_13304
crossref_primary_10_1186_s12862_022_01997_9
crossref_primary_10_3389_fmars_2023_1215125
crossref_primary_10_1093_evolut_qpad080
crossref_primary_10_1111_j_1469_7998_2010_00755_x
crossref_primary_10_1111_mec_15709
crossref_primary_10_1111_j_1461_0248_2011_01606_x
crossref_primary_10_1111_j_1558_5646_2010_01210_x
crossref_primary_10_1111_jeb_12934
crossref_primary_10_3390_genes14071500
crossref_primary_10_1098_rspb_2016_0691
crossref_primary_10_1111_jeb_12817
crossref_primary_10_1111_mec_13520
crossref_primary_10_1007_s00251_022_01255_8
crossref_primary_10_1093_beheco_ary202
crossref_primary_10_1371_journal_pgen_1004830
crossref_primary_10_1111_j_1600_0706_2012_20555_x
crossref_primary_10_1111_jeb_13111
crossref_primary_10_1111_j_1365_294X_2009_04243_x
crossref_primary_10_1098_rstb_2010_0023
crossref_primary_10_1371_journal_pone_0065883
crossref_primary_10_1111_jeb_12585
crossref_primary_10_1038_s41598_021_96205_x
crossref_primary_10_1016_j_zool_2016_04_001
crossref_primary_10_1017_S0031182022000531
crossref_primary_10_1111_j_1461_0248_2012_01791_x
crossref_primary_10_1093_beheco_arx074
crossref_primary_10_1371_journal_pone_0130579
crossref_primary_10_1038_s41559_022_01734_x
crossref_primary_10_1098_rspb_2014_1662
crossref_primary_10_1007_s10750_018_3798_2
crossref_primary_10_1007_s00251_015_0827_4
crossref_primary_10_1111_1365_2435_13268
crossref_primary_10_1111_eva_12166
crossref_primary_10_1111_j_1461_0248_2010_01546_x
crossref_primary_10_1073_pnas_1619147114
crossref_primary_10_1186_1471_2148_12_68
crossref_primary_10_1093_icb_icz025
crossref_primary_10_1086_667589
crossref_primary_10_1007_s10682_010_9424_z
crossref_primary_10_1007_s00265_010_1125_7
crossref_primary_10_1111_mec_13833
crossref_primary_10_1111_j_1365_294X_2011_05397_x
crossref_primary_10_1038_srep42677
crossref_primary_10_1002_ece3_1426
crossref_primary_10_1111_j_1365_294X_2011_05401_x
crossref_primary_10_1007_s10709_009_9402_y
crossref_primary_10_1038_ng_3645
crossref_primary_10_1111_j_1095_8649_2012_03430_x
crossref_primary_10_1007_s10764_013_9700_1
crossref_primary_10_1155_2012_280169
crossref_primary_10_1371_journal_pone_0010948
crossref_primary_10_1155_2012_148745
crossref_primary_10_1002_ece3_568
crossref_primary_10_1371_journal_pone_0040780
crossref_primary_10_1002_ece3_8109
crossref_primary_10_1002_ece3_1311
crossref_primary_10_1093_gbe_evw236
crossref_primary_10_1111_fwb_12492
crossref_primary_10_1111_j_1365_294X_2010_04934_x
crossref_primary_10_1146_annurev_arplant_042809_112146
crossref_primary_10_1111_j_1365_294X_2012_05680_x
crossref_primary_10_1016_j_meegid_2012_07_024
crossref_primary_10_1093_gbe_evz148
crossref_primary_10_1111_jeb_13057
crossref_primary_10_1111_j_1558_5646_2009_00800_x
crossref_primary_10_1016_j_ijpara_2017_10_003
crossref_primary_10_1111_j_1095_8649_2010_02819_x
crossref_primary_10_1093_molbev_msv151
crossref_primary_10_1093_molbev_msz235
Cites_doi 10.1017/CBO9781139342179
10.1046/j.1420-9101.2003.00519.x
10.1098/rspb.2005.3113
10.1111/j.1420-9101.2007.01366.x
10.1016/j.coi.2005.07.012
10.1111/j.0022-1112.2004.00433.x
10.1111/j.1420-9101.2007.01380.x
10.1038/35104547
10.1038/22521
10.1371/journal.pone.0000734
10.1515/9780691187051
10.1111/j.0014-3820.2003.tb00233.x
10.1038/35051570
10.1146/annurev.ecolsys.37.091305.110242
10.1111/j.0014-3820.2002.tb01461.x
10.1186/1742-9994-2-1
10.1098/rspb.1993.0062
10.1098/rstb.1996.0075
10.1073/pnas.0408264102
10.1126/science.227.4690.1056
10.1111/j.1420-9101.2006.01158.x
10.1038/nature02556
10.1038/324060a0
10.1038/35077075
10.1046/j.1095-8649.2003.00069.x
10.1038/nature01164
10.1111/j.1558-5646.1990.tb03804.x
10.1126/science.1088293
10.1073/pnas.78.6.3721
10.1073/pnas.89.22.10896
10.1086/303210
10.1126/science.284.5418.1313
10.1016/S0169-5347(02)00004-6
10.1007/s00265-003-0611-6
10.1038/425679a
10.1126/science.7123238
10.1086/303166
10.1139/g89-037
10.1046/j.1420-9101.2001.00348.x
10.1086/282457
10.1111/j.1558-5646.1981.tb04864.x
10.1086/383621
10.1098/rspb.2005.3325
10.1111/j.0014-3820.2005.tb00995.x
10.1111/j.1439-0388.2004.00449.x
10.1111/j.1365-294X.2007.03281.x
10.1111/j.1558-5646.1998.tb02254.x
10.1098/rspb.1995.0093
10.1038/352619a0
10.1098/rstb.1998.0208
10.1146/annurev.ecolsys.38.091206.095804
10.1146/annurev.ecolsys.38.091206.095733
10.1098/rstb.2008.0174
10.1098/rspb.2007.1433
10.1038/nrg1269
10.1098/rspb.2004.2751
10.1111/j.1420-9101.2004.00711.x
10.1111/j.1365-294X.2004.02402.x
10.1046/j.1439-0310.2002.00768.x
10.1093/oso/9780198505235.001.0001
10.1111/j.1461-0248.2008.01207.x
10.1111/j.0014-3820.2006.tb01114.x
10.1111/j.0014-3820.2006.tb01143.x
10.1098/rspb.2007.0210
10.1111/j.1461-0248.2007.01141.x
10.1017/S146479310300616X
10.1139/f69-301
10.1093/nar/gkg070
10.1098/rspb.2000.1378
10.1111/j.1461-0248.2004.00715.x
10.1126/science.1104022
10.1111/j.1558-5646.1982.tb05432.x
10.1007/BF01237687
10.1146/annurev.iy.08.040190.000323
10.1084/jem.144.5.1324
10.1038/35002564
10.1111/j.1095-8312.1996.tb01434.x
10.1111/j.1365-294X.2008.03791.x
10.1111/j.0014-3820.2004.tb01633.x
10.1098/rsbl.2006.0465
10.1098/rspb.2003.2645
10.1038/344330a0
10.1016/S0169-5347(01)02198-X
10.1093/icb/30.2.235
10.1086/285346
10.1038/352595a0
ContentType Journal Article
Copyright 2008 Blackwell Publishing Ltd/CNRS
2009 INIST-CNRS
Journal compilation © 2008 Blackwell Publishing Ltd/CNRS
Copyright_xml – notice: 2008 Blackwell Publishing Ltd/CNRS
– notice: 2009 INIST-CNRS
– notice: Journal compilation © 2008 Blackwell Publishing Ltd/CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
7T5
7U6
8FD
FR3
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1461-0248.2008.01247.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Immunology Abstracts
Sustainability Science Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
Genetics Abstracts
Technology Research Database
Sustainability Science Abstracts
Immunology Abstracts
Engineering Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
CrossRef
Entomology Abstracts

AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 12
ExternalDocumentID 1610937391
19087108
21006648
10_1111_j_1461_0248_2008_01247_x
ELE1247
ark_67375_WNG_8CWJZ6JH_8
US201301569042
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
7T5
7U6
8FD
FR3
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5487-ed6bd5157c7880fdd05b37b4d42d278a532d273de5431a494b21cac9a322f8113
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Thu Jul 10 23:47:11 EDT 2025
Fri Jul 11 06:38:28 EDT 2025
Fri Jul 11 09:49:04 EDT 2025
Fri Jul 25 11:02:20 EDT 2025
Mon Jul 21 05:58:36 EDT 2025
Wed Apr 02 07:25:38 EDT 2025
Tue Jul 01 02:29:35 EDT 2025
Thu Apr 24 22:54:15 EDT 2025
Wed Jan 22 16:49:21 EST 2025
Sun Sep 21 06:18:11 EDT 2025
Wed Dec 27 19:18:48 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pleiotropy
Vertebrata
Hybrids
Geographic distribution
Major histocompatibility system
Hybrid
Parasite
Sympatry
parasites
svmpatric speciation
major histocompatibility complex
Speciation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5487-ed6bd5157c7880fdd05b37b4d42d278a532d273de5431a494b21cac9a322f8113
Notes http://dx.doi.org/10.1111/j.1461-0248.2008.01247.x
ark:/67375/WNG-8CWJZ6JH-8
istex:A2C41F6C84205A18B8A2BF46C6AB3A0C0FE26144
ArticleID:ELE1247
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 19087108
PQID 203661955
PQPubID 32390
PageCount 8
ParticipantIDs proquest_miscellaneous_66738353
proquest_miscellaneous_48181741
proquest_miscellaneous_20272634
proquest_journals_203661955
pubmed_primary_19087108
pascalfrancis_primary_21006648
crossref_primary_10_1111_j_1461_0248_2008_01247_x
crossref_citationtrail_10_1111_j_1461_0248_2008_01247_x
wiley_primary_10_1111_j_1461_0248_2008_01247_x_ELE1247
istex_primary_ark_67375_WNG_8CWJZ6JH_8
fao_agris_US201301569042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009
2009-01
January 2009
2009-01-00
2009-Jan
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References Wu, C.I. & Ting, C. (2004). Genes and speciation. Nat. Rev. Genet., 5, 114-122.
Bonneaud, C., Perez-Tris, J., Federici, P., Chastel, O. & Sorci, G. (2006b). Major histocompatibilty alleles associated with local resistance to malaria in a passerine. Evolution, 60, 383-389.
Nuismer, S.L., Otto, S.P. & Blanquart, F. (2008). When do host-parasite interactions drive the evolution of non-random mating? Ecol. Lett., 11, 937-946.
Parker, G.A. & Partridge, L. (1998). Sexual conflict and speciation. Philos. Trans. R Soc. B Biol. Sci., 353, 261-274.
Robinson, J., Waller, M.J., Parham, P., De Groot, N., Bontrop, R., Kennedy, L.J. et al. (2003). IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res., 31, 311-314.
Reusch, T.B.H., Haberli, M.A., Aeschlimann, P.B. & Milinski, M. (2001). Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414, 300-302.
Scharsack, J.P., Kalbe, M., Harrod, C. & Rauch, G. (2007). Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R Soc. B Biol. Sci., 274, 1523-1532.
Funk, D.J. (1998). Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution, 52, 1744-1759.
Langefors, A., Lohm, J., Grahn, M., Andersen, O. & Von Schantz, T. (2001). Association between MHC class II B alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. R Soc. Lond. Ser. B Biol. Sci., 268, 479-485.
Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl Acad. Sci. USA, 102, 4414-4418.
Gavrilets, S. (2005). 'Adaptive speciation'- it is not that easy: a reply to Doebeli et al.. Evolution, 59, 696-699.
Turner, G.F. & Burrows, M.T. (1995). A model of sympatric speciation by sexual selection. Proc. R Soc. Lond. B Biol. Sci., 260, 287-292.
Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886-889.
Grant, B.R. & Grant, P.R. (1982). Niche shifts and competition in Darwin's finches: geospiza conirostris and congeners. Evolution, 36, 637-657.
Dieckmann, U. & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354-357.
Sage, R.D., Heyneman, D., Lim, K.C. & Wilson, A.C. (1986). Wormy mice in a hybrid zone. Nature, 324, 60-63.
Penn, D.J. & Potts, W.K. (1999). The evolution of mating preferences and major histocompatibility complex genes. Am. Nat., 153, 145-164.
Alcaide, M., Edwards, S.V., Negro, J.J., Serrano, D. & Tella, J.L. (2008). Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol. Ecol., 17, 2652-2665.
Westerdahl, H., Hansson, B., Bensch, S. & Hasselquist, D. (2004). Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J. Evol. Biol., 17, 485-492.
Schwensow, N., Eberle, M. & Sommer, S. (2008). Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R Soc. B Biol. Sci., 275, 555-564.
Dietl, G.P. & Hendricks, J.R. (2006). Crab scars reveal survival advantage of left-handed snails. Biol. Lett., 2, 439-442.
Folstad, I. & Karter, A.J. (1992). Parasites, bright males, and the immunocompetence handicap. Am. Nat., 139, 603-622.
Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst., 37, 159-186.
Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380.
Wegner, K.M. (2004). Major Histocompatibility Genes, Polymorphism and Balancing Selection the Case of Parasites and Sticklebacks. Christian-Albrechts-University, Kiel, pp. 118.
Allen, R.L., Bittner-Eddy, P.D., Grenville-Briggs, L.J., Meitz, J.C., Rehmany, A.P., Rose, L.E. et al. (2004). Host-parasite coevolutionary conflict between arabidopsis and downy mildew. Science, 306, 1957.
Zuk, M., Thornhill, R., Ligon, J.D. & Johnson, K. (1990). Parasites and mate choice in red jungle fowl. Am. Zool., 30, 235-244.
Lawlor, D.A., Zemmour, J., Ennis, P.D. & Parham, P. (1990). Evolution of class-I MHC genes and proteins - from natural-selection to thymic selection. Annu. Rev. Immunol., 8, 23-63.
Hamilton, W.D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384-387.
Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford University Press, Oxford.
Potts, W.K., Manning, C.J. & Wakeland, E.K. (1991). Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature, 352, 619-621.
Jiggins, C.D., Naisbit, R.E., Coe, R.L. & Mallet, J. (2001). Reproductive isolation caused by colour pattern mimicry. Nature, 411, 302-305.
Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool., 2, 1-8.
Lande, R. (1989). Fisherian and Wrightian theories of speciation. Genome, 31, 221-227.
Dieckmann, U., Doebeli, M., Metz, J. & Tautz, D. (2004). Adaptive Speciation. Cambridge University Press, Cambridge.
Schluter, D. & Rambaut, A. (1996). Ecological speciation in postglacial fishes [and discussion]. Proc. R Soc. Lond. B Biol. Sci., 351, 807-814.
Martin, M.P. & Carrington, M. (2005). Immunogenetics of viral infections. Curr. Opin. Immunol., 17, 510-516.
Schluter, D., Clifford, E.A., Nemethy, M. & McKinnon, J.S. (2004). Parallel evolution and inheritance of quantitative traits. Am. Nat., 163, 809-822.
Thompson, J.N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago.
Maynard Smith, J. (1966). Sympatric speciation. Am. Nat., 100, 637-650.
Boughman, J.W., Rundle, H.D. & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59, 361-373.
Frank, S.A. (1996). Statistical properties of polymorphism in host-parasite genetics. Evol. Ecol., 10, 307-317.
Haldane, J.B.S. (1992). Disease and evolution. Reprinted From La Ricerca Scientifica Supplemento, Vol. 19, pp. 1-11, 1949). Curr. Sci., 63, 599-604.
Woelfing, B., Traulsen, A., Nowak, M.A., Milinski, M. & Boehm, T. (2009). Does intra-individual MHC diversity keep a golden mean? Philos. Trans. R Soc. B Biol. Sci., 364, (in press).
Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409, 185-188.
Buchholz, R., Jones Dukes, M.D., Hecht, S. & Findley, A.M. (2004). Investigating the turkey's 'snood' as a morphological marker of heritable disease resistance. J. Anim. Breed. Genet., 121, 176-185.
Wegner, K.M., Reusch, T.B.H. & Kalbe, M. (2003b). Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol., 16, 224-232.
Blais, J., Rico, C., Van Oosterhout, C., Cable, J., Turner, G.F. & Bernatchez, L. (2007). MHC adaptive divergence between closely related and sympatric African cichlids. PLoS One, 2, e734.
Hill, A.V.S., Allsopp, C.E.M., Kwiatkowski, D., Anstey, N.M., Twumasi, P., Rowe, P.A. et al. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature, 352, 595-600.
Ridley, M. (2003). Evolution, 3rd edn. Blackwell Publishing, Oxford.
Rundle, H.D., Nagel, L., Boughman, J.W. & Schluter, D. (2000). Natural selection and parallel speciation in sympatric sticklebacks. Science, 287, 306-308.
Knudsen, R., Amundsen, P.A. & Klemetsen, A. (2003). Inter- and intra-morph patterns in helminth communities of sympatric whitefish morphs. J. Fish Biol., 62, 847-859.
Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R Soc. Lond. Ser. B Biol. Sci., 271, 1521-1528.
Wegner, K.M., Kalbe, M., Kurtz, J., Reusch, T.B.H. & Milinski, M. (2003a). Parasite selection for immunogenetic optimality. Science, 301, 1343.
McPhail, J.D. (1969). Predation and evolution of a stickleback (gasterosteus). J. Fish. Res. Board Can., 26, 3183-3208.
Westerdahl, H., Waldenström, J., Hansson, B., Hasselquist, D., Von Schantz, T. & Bensch, S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proc. R Soc. B Biol. Sci., 272, 1511-1518.
Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA Biol. Sci., 78, 3721-3725.
Yamazaki, K., Boyse, E.A., Mike, V., Thaler, H.T., Mathieson, B.J., Abbott, J. et al. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med., 144, 1324-1335.
Milinski, M. & Bakker, T.C.M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344, 330-333.
De Boer, R.J. & Perelson, A.S. (1993). How diverse should the immune system be? Proc. R Soc. Lond. Ser. B Biol. Sci., 252, 171-175.
Bonneaud, C., Mazuc, J., Chastel, O., Westerdahl, H. & Sorci, G. (2004). Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution, 58, 2823-2830.
Schluter, D., Price, T.D. & Grant, P.R. (1985). Ecological character displacement in Darwin's finches. Science, 227, 1056-1059.
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003). Sexual conflict. Trends Ecol. Evol., 18, 41-47.
Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138.
Ritchie, M.G. (2007). Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst., 38, 79-102.
Loiseau, C., Zoorob, R., Garnier, S., Birard, J., Federici, P., Julliard, R. et al. (2008). Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol. Lett., 11, 258-265.
Buckling, A. & Rainey, P.B. (2002). The role of parasites in sympatric and allopatric host diversification. Nature, 420, 496-499.
Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H. & Sorci, G. (2006a). Complex MHC-base
1991; 352
2004; 121
2002; 56
2004; 163
2006; 37
2003; 57
1999; 284
2004; 5
2003; 18
1999; 400
1998; 353
1990; 344
2003; 54
2001; 268
2007; 38
1977
2003b; 16
1990; 44
1989; 31
1982; 218
2001
2000
2005; 102
2000; 403
2002; 420
1981; 35
2009; 364
2001; 16
2007; 2
2002; 108
2000; 287
2007; 20
1998; 52
2006b; 60
2008; 275
1992; 89
1993; 252
2001; 411
1981; 78
2001; 414
1990; 30
1982; 36
1976; 144
2005; 272
2008; 17
2006; 19
2001; 409
1994
2004
2008; 11
1985; 227
2003
2006; 2
2003a; 301
2004; 306
1996; 10
2003; 31
2007; 16
2004; 429
2003; 78
1966; 100
2006a; 273
2003; 425
1986; 324
2004; 17
2004; 58
2005; 8
2004; 271
2007; 274
1999; 153
1992; 139
1963
1969; 26
1996; 351
2005; 2
2005; 59
2003; 62
2005; 17
1990; 8
1995; 260
1992; 63
2005; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
Wegner K.M. (e_1_2_9_85_1) 2004
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Schluter D. (e_1_2_9_74_1) 2000
Ridley M. (e_1_2_9_67_1) 2003
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
Mayr E. (e_1_2_9_50_1) 1977
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
Gavrilets S. (e_1_2_9_28_1) 2005; 59
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
Janeway C.A. (e_1_2_9_36_1) 2001
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
Haldane J.B.S. (e_1_2_9_30_1) 1992; 63
e_1_2_9_9_1
e_1_2_9_25_1
Schluter D. (e_1_2_9_76_1) 1996; 351
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – reference: Buchholz, R., Jones Dukes, M.D., Hecht, S. & Findley, A.M. (2004). Investigating the turkey's 'snood' as a morphological marker of heritable disease resistance. J. Anim. Breed. Genet., 121, 176-185.
– reference: Lawlor, D.A., Zemmour, J., Ennis, P.D. & Parham, P. (1990). Evolution of class-I MHC genes and proteins - from natural-selection to thymic selection. Annu. Rev. Immunol., 8, 23-63.
– reference: Rundle, H.D. & Nosil, P. (2005). Ecological speciation. Ecol. Lett., 8, 336-352.
– reference: Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138.
– reference: Forsberg, L.A., Dannewitz, J., Petersson, E. & Grahn, M. (2007). Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout - females fishing for optimal MHC dissimilarity. J. Evol. Biol., 20, 1859-1869.
– reference: Martin, M.P. & Carrington, M. (2005). Immunogenetics of viral infections. Curr. Opin. Immunol., 17, 510-516.
– reference: McPhail, J.D. (1969). Predation and evolution of a stickleback (gasterosteus). J. Fish. Res. Board Can., 26, 3183-3208.
– reference: Mayr, E. (1963). Animal Species and Evolution. Harvard University Press, Cambridge, MA.
– reference: Schluter, D., Clifford, E.A., Nemethy, M. & McKinnon, J.S. (2004). Parallel evolution and inheritance of quantitative traits. Am. Nat., 163, 809-822.
– reference: Gavrilets, S. (2005). 'Adaptive speciation'- it is not that easy: a reply to Doebeli et al.. Evolution, 59, 696-699.
– reference: Hill, A.V.S., Allsopp, C.E.M., Kwiatkowski, D., Anstey, N.M., Twumasi, P., Rowe, P.A. et al. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature, 352, 595-600.
– reference: Wu, C.I. & Ting, C. (2004). Genes and speciation. Nat. Rev. Genet., 5, 114-122.
– reference: Wegner, K.M. (2004). Major Histocompatibility Genes, Polymorphism and Balancing Selection the Case of Parasites and Sticklebacks. Christian-Albrechts-University, Kiel, pp. 118.
– reference: Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer Associates, Sunderland, MA.
– reference: Janeway, C.A., Travers, P., Walport, M. & Capra, J.D. (2001). Immunobiology: The Immune System in Health and Disease, 5th edn. Garland Publishing, London.
– reference: Ueshima, R. & Asami, T. (2003). Single-gene speciation by left-right reversal - a land snail species of polyphyletic origin results from chirality constraints on mating. Nature, 425, 679-679.
– reference: Woelfing, B., Traulsen, A., Nowak, M.A., Milinski, M. & Boehm, T. (2009). Does intra-individual MHC diversity keep a golden mean? Philos. Trans. R Soc. B Biol. Sci., 364, (in press).
– reference: Dieckmann, U., Doebeli, M., Metz, J. & Tautz, D. (2004). Adaptive Speciation. Cambridge University Press, Cambridge.
– reference: Haldane, J.B.S. (1992). Disease and evolution. Reprinted From La Ricerca Scientifica Supplemento, Vol. 19, pp. 1-11, 1949). Curr. Sci., 63, 599-604.
– reference: Westerdahl, H., Waldenström, J., Hansson, B., Hasselquist, D., Von Schantz, T. & Bensch, S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proc. R Soc. B Biol. Sci., 272, 1511-1518.
– reference: Aeschlimann, P.B., Häberli, M.A., Reusch, T.B.H., Boehm, T. & Milinski, M. (2003). Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav. Ecol. Sociobiol., 54, 119-126.
– reference: Funk, D.J. (1998). Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution, 52, 1744-1759.
– reference: Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380.
– reference: Milinski, M. & Bakker, T.C.M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344, 330-333.
– reference: Grant, B.R. & Grant, P.R. (1982). Niche shifts and competition in Darwin's finches: geospiza conirostris and congeners. Evolution, 36, 637-657.
– reference: Lande, R. (1989). Fisherian and Wrightian theories of speciation. Genome, 31, 221-227.
– reference: Dieckmann, U. & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354-357.
– reference: Summers, K., McKeon, S., Sellars, J., Keusenkothen, M., Morris, J., Gloeckner, D. et al. (2003). Parasitic exploitation as an engine of diversity. Biol. Rev., 78, 639-675.
– reference: Madsen, T. & Ujvari, B. (2006). MHC class I variation associates with parasite resistance and longevity in tropical pythons. J. Evol. Biol., 19, 1973-1978.
– reference: Parker, G.A. & Partridge, L. (1998). Sexual conflict and speciation. Philos. Trans. R Soc. B Biol. Sci., 353, 261-274.
– reference: Blais, J., Rico, C., Van Oosterhout, C., Cable, J., Turner, G.F. & Bernatchez, L. (2007). MHC adaptive divergence between closely related and sympatric African cichlids. PLoS One, 2, e734.
– reference: Reusch, T.B.H., Haberli, M.A., Aeschlimann, P.B. & Milinski, M. (2001). Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414, 300-302.
– reference: Harf, R. & Sommer, S. (2005). Association between MHC class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paebe, in the southern Kalahari. Mol. Ecol., 14, 85-91.
– reference: Robinson, J., Waller, M.J., Parham, P., De Groot, N., Bontrop, R., Kennedy, L.J. et al. (2003). IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res., 31, 311-314.
– reference: Maynard Smith, J. (1966). Sympatric speciation. Am. Nat., 100, 637-650.
– reference: Bonneaud, C., Perez-Tris, J., Federici, P., Chastel, O. & Sorci, G. (2006b). Major histocompatibilty alleles associated with local resistance to malaria in a passerine. Evolution, 60, 383-389.
– reference: Jiggins, C.D., Naisbit, R.E., Coe, R.L. & Mallet, J. (2001). Reproductive isolation caused by colour pattern mimicry. Nature, 411, 302-305.
– reference: Lively, C.M. (1999). Migration, virulence, and the geographic mosaic of adaptation by parasites. Am. Nat., 153, S34-S47.
– reference: Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H. & Sorci, G. (2006a). Complex MHC-based mate choice in a wild passerine. Proceedings of the Royal Society of London Series B: Biological Sciences, 273, 1111-1116.
– reference: Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford University Press, Oxford.
– reference: De Boer, R.J. & Perelson, A.S. (1993). How diverse should the immune system be? Proc. R Soc. Lond. Ser. B Biol. Sci., 252, 171-175.
– reference: Penn, D.J. (2002). The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology, 108, 1-21.
– reference: Yamazaki, K., Boyse, E.A., Mike, V., Thaler, H.T., Mathieson, B.J., Abbott, J. et al. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med., 144, 1324-1335.
– reference: Schluter, D., Price, T.D. & Grant, P.R. (1985). Ecological character displacement in Darwin's finches. Science, 227, 1056-1059.
– reference: Allen, R.L., Bittner-Eddy, P.D., Grenville-Briggs, L.J., Meitz, J.C., Rehmany, A.P., Rose, L.E. et al. (2004). Host-parasite coevolutionary conflict between arabidopsis and downy mildew. Science, 306, 1957.
– reference: Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl Acad. Sci. USA, 102, 4414-4418.
– reference: Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886-889.
– reference: Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., Jr & Ezekowitz, R.A.B. (1999). Phylogenetic perspectives in innate immunity. Science, 284, 1313-1318.
– reference: Moller, A.P. (1990). Effects of a hematophagous mite on the Barn Swallow (Hirundo-Rustica) - A test of the Hamilton and Zuk hypothesis. Evolution, 44, 771-784.
– reference: Westerdahl, H., Hansson, B., Bensch, S. & Hasselquist, D. (2004). Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J. Evol. Biol., 17, 485-492.
– reference: Buckling, A. & Rainey, P.B. (2002). The role of parasites in sympatric and allopatric host diversification. Nature, 420, 496-499.
– reference: Dietl, G.P. & Hendricks, J.R. (2006). Crab scars reveal survival advantage of left-handed snails. Biol. Lett., 2, 439-442.
– reference: Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003). Sexual conflict. Trends Ecol. Evol., 18, 41-47.
– reference: Kirkpatrick, M. & Nuismer, S.L. (2004). Sexual selection can constrain sympatric speciation. Proc. R Soc. Lond. Ser. B Biol. Sci., 271, 687-693.
– reference: Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R Soc. Lond. Ser. B Biol. Sci., 271, 1521-1528.
– reference: Alcaide, M., Edwards, S.V., Negro, J.J., Serrano, D. & Tella, J.L. (2008). Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol. Ecol., 17, 2652-2665.
– reference: Rundle, H.D., Nagel, L., Boughman, J.W. & Schluter, D. (2000). Natural selection and parallel speciation in sympatric sticklebacks. Science, 287, 306-308.
– reference: Folstad, I. & Karter, A.J. (1992). Parasites, bright males, and the immunocompetence handicap. Am. Nat., 139, 603-622.
– reference: Gavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57, 2197-2215.
– reference: Scharsack, J.P., Kalbe, M., Harrod, C. & Rauch, G. (2007). Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R Soc. B Biol. Sci., 274, 1523-1532.
– reference: Zuk, M., Thornhill, R., Ligon, J.D. & Johnson, K. (1990). Parasites and mate choice in red jungle fowl. Am. Zool., 30, 235-244.
– reference: Bonneaud, C., Mazuc, J., Chastel, O., Westerdahl, H. & Sorci, G. (2004). Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution, 58, 2823-2830.
– reference: Potts, W.K., Manning, C.J. & Wakeland, E.K. (1991). Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature, 352, 619-621.
– reference: Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA Biol. Sci., 78, 3721-3725.
– reference: Frank, S.A. (1996). Statistical properties of polymorphism in host-parasite genetics. Evol. Ecol., 10, 307-317.
– reference: Mayr, E. (1977). Populations, Species, and Evolution. Harvard University Press, Cambridge, MA.
– reference: Ridley, M. (2003). Evolution, 3rd edn. Blackwell Publishing, Oxford.
– reference: Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst., 37, 159-186.
– reference: Nuismer, S.L., Otto, S.P. & Blanquart, F. (2008). When do host-parasite interactions drive the evolution of non-random mating? Ecol. Lett., 11, 937-946.
– reference: Wegner, K.M., Reusch, T.B.H. & Kalbe, M. (2003b). Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol., 16, 224-232.
– reference: McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson, L. et al. (2004). Evidence for ecology's role in speciation. Nature, 429, 294-298.
– reference: Hamilton, W.D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384-387.
– reference: Penn, D.J. & Potts, W.K. (1999). The evolution of mating preferences and major histocompatibility complex genes. Am. Nat., 153, 145-164.
– reference: Sage, R.D., Heyneman, D., Lim, K.C. & Wilson, A.C. (1986). Wormy mice in a hybrid zone. Nature, 324, 60-63.
– reference: Langefors, A., Lohm, J., Grahn, M., Andersen, O. & Von Schantz, T. (2001). Association between MHC class II B alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. R Soc. Lond. Ser. B Biol. Sci., 268, 479-485.
– reference: Jäger, I., Eizaguirre, C., Griffiths, S.W., Kalbe, M., Krobbach, C.K., Reusch, T.B.H. et al. (2007). Individual MHC class I and MHC class IIB diversities are associated with male and female reproductive traits in the three-spined stickleback. J. Evol. Biol., 20, 2005-2015.
– reference: Turner, G.F. & Burrows, M.T. (1995). A model of sympatric speciation by sexual selection. Proc. R Soc. Lond. B Biol. Sci., 260, 287-292.
– reference: Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool., 2, 1-8.
– reference: Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409, 185-188.
– reference: Ritchie, M.G. (2007). Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst., 38, 79-102.
– reference: Thompson, J.N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago.
– reference: Loiseau, C., Zoorob, R., Garnier, S., Birard, J., Federici, P., Julliard, R. et al. (2008). Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol. Lett., 11, 258-265.
– reference: Richmond, J.Q. & Reeder, T.W. (2002). Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae). Evolution, 56, 1498-1513.
– reference: Ekblom, R., Saether, S.A., Jacobsson, P.A.R., Fiske, P., Sahlman, T., Grahn, M. et al. (2007). Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol. Ecol., 16, 1439-1451.
– reference: Schluter, D. & Rambaut, A. (1996). Ecological speciation in postglacial fishes [and discussion]. Proc. R Soc. Lond. B Biol. Sci., 351, 807-814.
– reference: Knudsen, R., Amundsen, P.A. & Klemetsen, A. (2003). Inter- and intra-morph patterns in helminth communities of sympatric whitefish morphs. J. Fish Biol., 62, 847-859.
– reference: Boughman, J.W., Rundle, H.D. & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59, 361-373.
– reference: Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton, NJ.
– reference: Bolnick, D.I. & Fitzpatrick, B.M. (2007). Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst., 38, 459-487.
– reference: Nowak, M.A., Tarczyhornoch, K. & Austyn, J.M. (1992). The optimal number of major histocompatibility complex-molecules in an individual. Proc. Natl Acad. Sci. USA, 89, 10896-10899.
– reference: Schwensow, N., Eberle, M. & Sommer, S. (2008). Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R Soc. B Biol. Sci., 275, 555-564.
– reference: Wegner, K.M., Kalbe, M., Kurtz, J., Reusch, T.B.H. & Milinski, M. (2003a). Parasite selection for immunogenetic optimality. Science, 301, 1343.
– volume: 100
  start-page: 637
  year: 1966
  end-page: 650
  article-title: Sympatric speciation
  publication-title: Am. Nat.
– volume: 287
  start-page: 306
  year: 2000
  end-page: 308
  article-title: Natural selection and parallel speciation in sympatric sticklebacks
  publication-title: Science
– volume: 10
  start-page: 307
  year: 1996
  end-page: 317
  article-title: Statistical properties of polymorphism in host–parasite genetics
  publication-title: Evol. Ecol.
– volume: 271
  start-page: 1521
  year: 2004
  end-page: 1528
  article-title: Reproductive isolation caused by visual predation on migrants between divergent environments
  publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci.
– volume: 56
  start-page: 1498
  year: 2002
  end-page: 1513
  article-title: Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae)
  publication-title: Evolution
– volume: 52
  start-page: 1744
  year: 1998
  end-page: 1759
  article-title: Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles
  publication-title: Evolution
– volume: 14
  start-page: 85
  year: 2005
  end-page: 91
  article-title: Association between MHC class II DRB alleles and parasite load in the hairy‐footed gerbil, , in the southern Kalahari
  publication-title: Mol. Ecol.
– volume: 275
  start-page: 555
  year: 2008
  end-page: 564
  article-title: Compatibility counts: MHC‐associated mate choice in a wild promiscuous primate
  publication-title: Proc. R Soc. B Biol. Sci.
– volume: 44
  start-page: 771
  year: 1990
  end-page: 784
  article-title: Effects of a hematophagous mite on the Barn Swallow (Hirundo‐Rustica) – A test of the Hamilton and Zuk hypothesis
  publication-title: Evolution
– year: 2001
– volume: 38
  start-page: 79
  year: 2007
  end-page: 102
  article-title: Sexual selection and speciation
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 218
  start-page: 384
  year: 1982
  end-page: 387
  article-title: Heritable true fitness and bright birds: a role for parasites?
  publication-title: Science
– volume: 17
  start-page: 510
  year: 2005
  end-page: 516
  article-title: Immunogenetics of viral infections
  publication-title: Curr. Opin. Immunol.
– volume: 108
  start-page: 1
  year: 2002
  end-page: 21
  article-title: The scent of genetic compatibility: sexual selection and the major histocompatibility complex
  publication-title: Ethology
– volume: 420
  start-page: 496
  year: 2002
  end-page: 499
  article-title: The role of parasites in sympatric and allopatric host diversification
  publication-title: Nature
– volume: 227
  start-page: 1056
  year: 1985
  end-page: 1059
  article-title: Ecological character displacement in Darwin’s finches
  publication-title: Science
– volume: 144
  start-page: 1324
  year: 1976
  end-page: 1335
  article-title: Control of mating preferences in mice by genes in the major histocompatibility complex
  publication-title: J. Exp. Med.
– volume: 59
  start-page: 696
  year: 2005
  end-page: 699
  article-title: ‘Adaptive speciation’– it is not that easy: a reply to Doebeli
  publication-title: Evolution
– volume: 78
  start-page: 639
  year: 2003
  end-page: 675
  article-title: Parasitic exploitation as an engine of diversity
  publication-title: Biol. Rev.
– volume: 400
  start-page: 354
  year: 1999
  end-page: 357
  article-title: On the origin of species by sympatric speciation
  publication-title: Nature
– volume: 89
  start-page: 10896
  year: 1992
  end-page: 10899
  article-title: The optimal number of major histocompatibility complex‐molecules in an individual
  publication-title: Proc. Natl Acad. Sci. USA
– year: 1994
– volume: 411
  start-page: 302
  year: 2001
  end-page: 305
  article-title: Reproductive isolation caused by colour pattern mimicry
  publication-title: Nature
– volume: 271
  start-page: 687
  year: 2004
  end-page: 693
  article-title: Sexual selection can constrain sympatric speciation
  publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci.
– volume: 58
  start-page: 2823
  year: 2004
  end-page: 2830
  article-title: Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow
  publication-title: Evolution
– volume: 57
  start-page: 2197
  year: 2003
  end-page: 2215
  article-title: Perspective: models of speciation: what have we learned in 40 years?
  publication-title: Evolution
– volume: 352
  start-page: 595
  year: 1991
  end-page: 600
  article-title: Common West African HLA antigens are associated with protection from severe malaria
  publication-title: Nature
– volume: 163
  start-page: 809
  year: 2004
  end-page: 822
  article-title: Parallel evolution and inheritance of quantitative traits
  publication-title: Am. Nat.
– volume: 306
  start-page: 1957
  year: 2004
  article-title: Host–parasite coevolutionary conflict between arabidopsis and downy mildew
  publication-title: Science
– volume: 252
  start-page: 171
  year: 1993
  end-page: 175
  article-title: How diverse should the immune system be?
  publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci.
– volume: 344
  start-page: 330
  year: 1990
  end-page: 333
  article-title: Female sticklebacks use male coloration in mate choice and hence avoid parasitized males
  publication-title: Nature
– volume: 301
  start-page: 1343
  year: 2003a
  article-title: Parasite selection for immunogenetic optimality
  publication-title: Science
– volume: 8
  start-page: 336
  year: 2005
  end-page: 352
  article-title: Ecological speciation
  publication-title: Ecol. Lett.
– volume: 59
  start-page: 361
  year: 2005
  end-page: 373
  article-title: Parallel evolution of sexual isolation in sticklebacks
  publication-title: Evolution
– volume: 30
  start-page: 235
  year: 1990
  end-page: 244
  article-title: Parasites and mate choice in red jungle fowl
  publication-title: Am. Zool.
– volume: 11
  start-page: 937
  year: 2008
  end-page: 946
  article-title: When do host‐parasite interactions drive the evolution of non‐random mating?
  publication-title: Ecol. Lett.
– year: 2004
– volume: 351
  start-page: 807
  year: 1996
  end-page: 814
  article-title: Ecological speciation in postglacial fishes [and discussion]
  publication-title: Proc. R Soc. Lond. B Biol. Sci.
– volume: 273
  start-page: 1111
  year: 2006a
  end-page: 1116
  article-title: Complex ‐based mate choice in a wild passerine
  publication-title: Proceedings of the Royal Society of London Series B: Biological Sciences
– volume: 18
  start-page: 41
  year: 2003
  end-page: 47
  article-title: Sexual conflict
  publication-title: Trends Ecol. Evol.
– volume: 31
  start-page: 221
  year: 1989
  end-page: 227
  article-title: Fisherian and Wrightian theories of speciation
  publication-title: Genome
– volume: 35
  start-page: 124
  year: 1981
  end-page: 138
  article-title: Skepticism towards Santa Rosalia, or why are there so few kinds of animals
  publication-title: Evolution
– volume: 324
  start-page: 60
  year: 1986
  end-page: 63
  article-title: Wormy mice in a hybrid zone
  publication-title: Nature
– volume: 2
  start-page: e734
  year: 2007
  article-title: MHC adaptive divergence between closely related and sympatric African cichlids
  publication-title: PLoS One
– volume: 63
  start-page: 599
  year: 1992
  end-page: 604
  article-title: Disease and evolution
  publication-title: Curr. Sci.
– volume: 54
  start-page: 119
  year: 2003
  end-page: 126
  article-title: Female sticklebacks use self‐reference to optimize MHC allele number during mate selection
  publication-title: Behav. Ecol. Sociobiol.
– volume: 62
  start-page: 847
  year: 2003
  end-page: 859
  article-title: Inter‐ and intra‐morph patterns in helminth communities of sympatric whitefish morphs
  publication-title: J. Fish Biol.
– volume: 16
  start-page: 1439
  year: 2007
  end-page: 1451
  article-title: Spatial pattern of MHC class II variation in the great snipe (Gallinago media)
  publication-title: Mol. Ecol.
– volume: 36
  start-page: 637
  year: 1982
  end-page: 657
  article-title: Niche shifts and competition in Darwin’s finches: geospiza conirostris and congeners
  publication-title: Evolution
– volume: 425
  start-page: 679
  year: 2003
  end-page: 679
  article-title: Single‐gene speciation by left‐right reversal – a land snail species of polyphyletic origin results from chirality constraints on mating
  publication-title: Nature
– volume: 11
  start-page: 258
  year: 2008
  end-page: 265
  article-title: Antagonistic effects of a Mhc class I allele on malaria‐infected house sparrows
  publication-title: Ecol. Lett.
– volume: 274
  start-page: 1523
  year: 2007
  end-page: 1532
  article-title: Habitat‐specific adaptation of immune responses of stickleback ( ) lake and river ecotypes
  publication-title: Proc. R Soc. B Biol. Sci.
– volume: 260
  start-page: 287
  year: 1995
  end-page: 292
  article-title: A model of sympatric speciation by sexual selection
  publication-title: Proc. R Soc. Lond. B Biol. Sci.
– volume: 20
  start-page: 1859
  year: 2007
  end-page: 1869
  article-title: Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout – females fishing for optimal MHC dissimilarity
  publication-title: J. Evol. Biol.
– volume: 16
  start-page: 372
  year: 2001
  end-page: 380
  article-title: Ecology and the origin of species
  publication-title: Trends Ecol. Evol.
– volume: 268
  start-page: 479
  year: 2001
  end-page: 485
  article-title: Association between MHC class II B alleles and resistance to in Atlantic salmon
  publication-title: Proc. R Soc. Lond. Ser. B Biol. Sci.
– volume: 37
  start-page: 159
  year: 2006
  end-page: 186
  article-title: The major histocompatibility complex, sexual selection, and mate choice
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 153
  start-page: 145
  year: 1999
  end-page: 164
  article-title: The evolution of mating preferences and major histocompatibility complex genes
  publication-title: Am. Nat.
– volume: 19
  start-page: 1973
  year: 2006
  end-page: 1978
  article-title: MHC class I variation associates with parasite resistance and longevity in tropical pythons
  publication-title: J. Evol. Biol.
– year: 2003
– volume: 2
  start-page: 1
  year: 2005
  end-page: 8
  article-title: The importance of immune gene variability (MHC) in evolutionary ecology and conservation
  publication-title: Front. Zool.
– volume: 414
  start-page: 300
  year: 2001
  end-page: 302
  article-title: Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism
  publication-title: Nature
– year: 2000
– volume: 17
  start-page: 2652
  year: 2008
  end-page: 2665
  article-title: Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel ( )
  publication-title: Mol. Ecol.
– volume: 60
  start-page: 383
  year: 2006b
  end-page: 389
  article-title: Major histocompatibilty alleles associated with local resistance to malaria in a passerine
  publication-title: Evolution
– volume: 284
  start-page: 1313
  year: 1999
  end-page: 1318
  article-title: Phylogenetic perspectives in innate immunity
  publication-title: Science
– volume: 5
  start-page: 114
  year: 2004
  end-page: 122
  article-title: Genes and speciation
  publication-title: Nat. Rev. Genet.
– volume: 153
  start-page: S34
  year: 1999
  end-page: S47
  article-title: Migration, virulence, and the geographic mosaic of adaptation by parasites
  publication-title: Am. Nat.
– volume: 38
  start-page: 459
  year: 2007
  end-page: 487
  article-title: Sympatric speciation: models and empirical evidence
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 121
  start-page: 176
  year: 2004
  end-page: 185
  article-title: Investigating the turkey’s ‘snood’ as a morphological marker of heritable disease resistance
  publication-title: J. Anim. Breed. Genet.
– year: 1977
– volume: 409
  start-page: 185
  year: 2001
  end-page: 188
  article-title: Correlated evolution of morphology and vocal signal structure in Darwin’s finches
  publication-title: Nature
– volume: 16
  start-page: 224
  year: 2003b
  end-page: 232
  article-title: Multiple parasites are driving major histocompatibility complex polymorphism in the wild
  publication-title: J. Evol. Biol.
– volume: 78
  start-page: 3721
  year: 1981
  end-page: 3725
  article-title: Models of speciation by sexual selection on polygenic traits
  publication-title: Proc. Natl Acad. Sci. USA Biol. Sci.
– volume: 353
  start-page: 261
  year: 1998
  end-page: 274
  article-title: Sexual conflict and speciation
  publication-title: Philos. Trans. R Soc. B Biol. Sci.
– volume: 20
  start-page: 2005
  year: 2007
  end-page: 2015
  article-title: Individual MHC class I and MHC class IIB diversities are associated with male and female reproductive traits in the three‐spined stickleback
  publication-title: J. Evol. Biol.
– volume: 17
  start-page: 485
  year: 2004
  end-page: 492
  article-title: Between‐year variation of MHC allele frequencies in great reed warblers: selection or drift?
  publication-title: J. Evol. Biol.
– volume: 272
  start-page: 1511
  year: 2005
  end-page: 1518
  article-title: Associations between malaria and MHC genes in a migratory songbird
  publication-title: Proc. R Soc. B Biol. Sci.
– volume: 429
  start-page: 294
  year: 2004
  end-page: 298
  article-title: Evidence for ecology’s role in speciation
  publication-title: Nature
– volume: 31
  start-page: 311
  year: 2003
  end-page: 314
  article-title: IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex
  publication-title: Nucleic Acids Res.
– year: 1963
– volume: 403
  start-page: 886
  year: 2000
  end-page: 889
  article-title: Rapid evolution of reproductive barriers driven by sexual conflict
  publication-title: Nature
– volume: 139
  start-page: 603
  year: 1992
  end-page: 622
  article-title: Parasites, bright males, and the immunocompetence handicap
  publication-title: Am. Nat.
– volume: 2
  start-page: 439
  year: 2006
  end-page: 442
  article-title: Crab scars reveal survival advantage of left‐handed snails
  publication-title: Biol. Lett.
– volume: 26
  start-page: 3183
  year: 1969
  end-page: 3208
  article-title: Predation and evolution of a stickleback (gasterosteus)
  publication-title: J. Fish. Res. Board Can.
– volume: 102
  start-page: 4414
  year: 2005
  end-page: 4418
  article-title: Mate choice decisions of stickleback females predictably modified by MHC peptide ligands
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 23
  year: 1990
  end-page: 63
  article-title: Evolution of class‐I MHC genes and proteins – from natural‐selection to thymic selection
  publication-title: Annu. Rev. Immunol.
– volume: 352
  start-page: 619
  year: 1991
  end-page: 621
  article-title: Mating patterns in seminatural populations of mice influenced by MHC genotype
  publication-title: Nature
– volume: 364
  year: 2009
  article-title: Does intra‐individual MHC diversity keep a golden mean?
  publication-title: Philos. Trans. R Soc. B Biol. Sci.
– ident: e_1_2_9_17_1
  doi: 10.1017/CBO9781139342179
– ident: e_1_2_9_87_1
  doi: 10.1046/j.1420-9101.2003.00519.x
– ident: e_1_2_9_89_1
  doi: 10.1098/rspb.2005.3113
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1420-9101.2007.01366.x
– ident: e_1_2_9_47_1
  doi: 10.1016/j.coi.2005.07.012
– ident: e_1_2_9_49_1
  doi: 10.1111/j.0022-1112.2004.00433.x
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1420-9101.2007.01380.x
– ident: e_1_2_9_65_1
  doi: 10.1038/35104547
– ident: e_1_2_9_16_1
  doi: 10.1038/22521
– ident: e_1_2_9_5_1
  doi: 10.1371/journal.pone.0000734
– ident: e_1_2_9_27_1
  doi: 10.1515/9780691187051
– ident: e_1_2_9_26_1
  doi: 10.1111/j.0014-3820.2003.tb00233.x
– ident: e_1_2_9_63_1
  doi: 10.1038/35051570
– ident: e_1_2_9_53_1
  doi: 10.1146/annurev.ecolsys.37.091305.110242
– ident: e_1_2_9_66_1
  doi: 10.1111/j.0014-3820.2002.tb01461.x
– ident: e_1_2_9_80_1
  doi: 10.1186/1742-9994-2-1
– volume-title: Evolution
  year: 2003
  ident: e_1_2_9_67_1
– ident: e_1_2_9_15_1
  doi: 10.1098/rspb.1993.0062
– volume: 351
  start-page: 807
  year: 1996
  ident: e_1_2_9_76_1
  article-title: Ecological speciation in postglacial fishes [and discussion]
  publication-title: Proc. R Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1996.0075
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.0408264102
– ident: e_1_2_9_77_1
  doi: 10.1126/science.227.4690.1056
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1420-9101.2006.01158.x
– ident: e_1_2_9_51_1
  doi: 10.1038/nature02556
– ident: e_1_2_9_72_1
  doi: 10.1038/324060a0
– ident: e_1_2_9_37_1
  doi: 10.1038/35077075
– ident: e_1_2_9_39_1
  doi: 10.1046/j.1095-8649.2003.00069.x
– ident: e_1_2_9_12_1
  doi: 10.1038/nature01164
– volume-title: Major Histocompatibility Genes, Polymorphism and Balancing Selection the Case of Parasites and Sticklebacks
  year: 2004
  ident: e_1_2_9_85_1
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1558-5646.1990.tb03804.x
– ident: e_1_2_9_86_1
  doi: 10.1126/science.1088293
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.78.6.3721
– ident: e_1_2_9_58_1
  doi: 10.1073/pnas.89.22.10896
– ident: e_1_2_9_44_1
  doi: 10.1086/303210
– ident: e_1_2_9_34_1
  doi: 10.1126/science.284.5418.1313
– ident: e_1_2_9_13_1
  doi: 10.1016/S0169-5347(02)00004-6
– ident: e_1_2_9_2_1
  doi: 10.1007/s00265-003-0611-6
– ident: e_1_2_9_84_1
  doi: 10.1038/425679a
– ident: e_1_2_9_31_1
  doi: 10.1126/science.7123238
– ident: e_1_2_9_62_1
  doi: 10.1086/303166
– ident: e_1_2_9_41_1
  doi: 10.1139/g89-037
– ident: e_1_2_9_82_1
  doi: 10.1046/j.1420-9101.2001.00348.x
– ident: e_1_2_9_48_1
  doi: 10.1086/282457
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1558-5646.1981.tb04864.x
– ident: e_1_2_9_78_1
  doi: 10.1086/383621
– ident: e_1_2_9_8_1
  doi: 10.1098/rspb.2005.3325
– ident: e_1_2_9_10_1
  doi: 10.1111/j.0014-3820.2005.tb00995.x
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1439-0388.2004.00449.x
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1365-294X.2007.03281.x
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1558-5646.1998.tb02254.x
– ident: e_1_2_9_83_1
  doi: 10.1098/rspb.1995.0093
– ident: e_1_2_9_64_1
  doi: 10.1038/352619a0
– volume-title: Immunobiology: The Immune System in Health and Disease
  year: 2001
  ident: e_1_2_9_36_1
– ident: e_1_2_9_60_1
  doi: 10.1098/rstb.1998.0208
– ident: e_1_2_9_6_1
  doi: 10.1146/annurev.ecolsys.38.091206.095804
– ident: e_1_2_9_68_1
  doi: 10.1146/annurev.ecolsys.38.091206.095733
– ident: e_1_2_9_90_1
  doi: 10.1098/rstb.2008.0174
– ident: e_1_2_9_79_1
  doi: 10.1098/rspb.2007.1433
– ident: e_1_2_9_91_1
  doi: 10.1038/nrg1269
– ident: e_1_2_9_57_1
  doi: 10.1098/rspb.2004.2751
– ident: e_1_2_9_88_1
  doi: 10.1111/j.1420-9101.2004.00711.x
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-294X.2004.02402.x
– ident: e_1_2_9_61_1
  doi: 10.1046/j.1439-0310.2002.00768.x
– volume-title: The Ecology of Adaptive Radiation
  year: 2000
  ident: e_1_2_9_74_1
  doi: 10.1093/oso/9780198505235.001.0001
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1461-0248.2008.01207.x
– ident: e_1_2_9_9_1
  doi: 10.1111/j.0014-3820.2006.tb01114.x
– ident: e_1_2_9_14_1
  doi: 10.1111/j.0014-3820.2006.tb01143.x
– ident: e_1_2_9_73_1
  doi: 10.1098/rspb.2007.0210
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1461-0248.2007.01141.x
– ident: e_1_2_9_81_1
  doi: 10.1017/S146479310300616X
– ident: e_1_2_9_52_1
  doi: 10.1139/f69-301
– ident: e_1_2_9_69_1
  doi: 10.1093/nar/gkg070
– ident: e_1_2_9_42_1
  doi: 10.1098/rspb.2000.1378
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1461-0248.2004.00715.x
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1104022
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1558-5646.1982.tb05432.x
– ident: e_1_2_9_23_1
  doi: 10.1007/BF01237687
– volume-title: Populations, Species, and Evolution
  year: 1977
  ident: e_1_2_9_50_1
– volume: 63
  start-page: 599
  year: 1992
  ident: e_1_2_9_30_1
  article-title: Disease and evolution
  publication-title: Curr. Sci.
– ident: e_1_2_9_43_1
  doi: 10.1146/annurev.iy.08.040190.000323
– ident: e_1_2_9_92_1
  doi: 10.1084/jem.144.5.1324
– ident: e_1_2_9_25_1
  doi: 10.1038/35002564
– ident: e_1_2_9_71_1
  doi: 10.1111/j.1095-8312.1996.tb01434.x
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365-294X.2008.03791.x
– ident: e_1_2_9_7_1
  doi: 10.1111/j.0014-3820.2004.tb01633.x
– ident: e_1_2_9_18_1
  doi: 10.1098/rsbl.2006.0465
– ident: e_1_2_9_38_1
  doi: 10.1098/rspb.2003.2645
– ident: e_1_2_9_54_1
  doi: 10.1038/344330a0
– volume: 59
  start-page: 696
  year: 2005
  ident: e_1_2_9_28_1
  article-title: ‘Adaptive speciation’– it is not that easy: a reply to Doebeli et al.
  publication-title: Evolution
– ident: e_1_2_9_75_1
  doi: 10.1016/S0169-5347(01)02198-X
– ident: e_1_2_9_93_1
  doi: 10.1093/icb/30.2.235
– ident: e_1_2_9_21_1
  doi: 10.1086/285346
– ident: e_1_2_9_33_1
  doi: 10.1038/352595a0
SSID ssj0012971
Score 2.2586162
SecondaryResourceType review_article
Snippet Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of...
AbstractSpeciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5
SubjectTerms alleles
allopatry
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Ecology
Evolutionary biology
Fundamental and applied biological sciences. Psychology
General aspects
Genetic Speciation
Genetics
Genetics, Population
genotype
Hybridization, Genetic
Hybrids
Immune system
Immunology
loci
major histocompatibility complex
Major Histocompatibility Complex - genetics
Major Histocompatibility Complex - immunology
mating behavior
Mating Preference, Animal
Models, Genetic
Niches
Parasite resistance
parasites
Parasites - immunology
parasitology
pleiotropy
Selection, Genetic
Speciation
sympatric speciation
sympatry
Taxonomy
Vertebrates
Vertebrates - genetics
Vertebrates - immunology
Vertebrates - parasitology
Title Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes
URI https://api.istex.fr/ark:/67375/WNG-8CWJZ6JH-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2008.01247.x
https://www.ncbi.nlm.nih.gov/pubmed/19087108
https://www.proquest.com/docview/203661955
https://www.proquest.com/docview/20272634
https://www.proquest.com/docview/48181741
https://www.proquest.com/docview/66738353
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BJSQuvKGmUHxA3Bz5sV47R1RSogh6AKJGXFb7rEKKHSWOlPTXM7PrGLlqpQpxiqPMWsnk29n5vN_OEPKesthKm4ootoZGNEmyCGuERDKXeaaNNpk7FPb1jI2ndDLLZ63-Cc_C-PoQ3QM3nBkuXuMEF3J9fZIDFU6dQgslkbBUFQPMJ5OMYRn9T9-6SlKwqnnu5Ydks76o58Yb9Vaq-1bUkL-i67eonxRrcKH1vS9uSk77ua5brE4fk8X-Z3qNymKwaeRAXV2rAPl__PCEPGpz2vCjB-FTcs9Uz8gD3-VyB1cjVxl795wI3-0esRAKpWDFw0IVOhSVDiFLRZ3uFbyVu3B5aeZ1s6qXcxX-Fr_qVegKIzvFfOMFvbvQyeHNNpzjGZf6AqP2CzI9Hf04GUdtj4dIIVeKjGZSQ05VKODisdU6zmVWSKppqtOiFHmGr4AaPLMv6JDKNFFCDQUEIlsCtF6Sg6quzCEJAV4qoQXwNytooeRQgUnKypiVllmrA1Ls_0-u2gLo2IfjkveIUMLRlW17TnQl3wYk6UYufRGQO4w5BMhwcQGxmk-_p7hDDFx5CEEyIB8cjrp7idUC9XVFzs_PPvPy5Hzyk03GvAzIcQ9o3QDg6ZAqUjA42iOPt7FnzXFrGWhxngfkXfcpBA3cCRKVqTdokhYpy-jtFhQSOSCrye0Wrl9slmcBeeUh_9c1wxhoeAzfjjng3tlnfPRlhFev_3XgEXnod_vwEdkbctCsNuYtJI2NPHbh4A-FY1mx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYJLeZaaQusD4ubIj_XriKqUENIcoFEjLqt9eKvQYEepIyX99Z3ZdYxctVKFONlWdq1k8u3s9-3OzhDyiSa-Fjrknq8L6tEgiDzMEeKJWMSRKlQRmUNhp-NkMKHDaTxtygHhWRibH6JdcMORYfw1DnBckL49ykELhyZEC2MiYa5Ke0Aon5jtOmRIP9pcUjCvWfVl-0TTbljPnW_qzFWPNa-AwaLx1xhBya_AiNpWv7iLnnbZrpmuTl6Q-faH2iiVy96qFj15fSsH5H-yxEuy29Ba94vF4SvyqChfk6e20OUG7vomOfbmDeG24D3CweVSwqSHuSqUy0vlAlHFUN1reBQbdzEvZlW9rBYz6f7hv6ula3Ijm6D52sb0blwTEV-s3Rkec6ku0HG_JZOT_tnxwGvKPHgS5ZJXqEQooFWpBDnua6X8WESpoIqGKkwzHkd4BeDgsX1OcyrCQHKZc_BFOgN07ZGdsiqLfeICwmRAU5BwmtNUilxCkzDJ_CTTidbKIen2D2WyyYGOpTjmrKOFAoambCp0oinZ2iFB23Nh84A8oM8-YIbxC3DXbPIzxE1ikMs5-EmHfDZAat_Fl5cYYpfG7Hz8lWXH58NfyXDAMoccdpDWdgCpDmyRQoODLfRY436uGO4ugzKOY4cctZ-C38DNIF4W1QqbhGmYRPT-FhS4HOjV4P4WpmRsFEcOeWcx_9c0uQ9K3IdvlxjkPthmrD_q4937f-14RJ4Nzk5HbPRt_P2APLebf7hi9oHs1MtV8RE4ZC0OjW-4AR8OXc8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYhLeVNTaH1A3Bz5sX4dUZsQQokQEDXistqHtwpp7Sh1pKS_npldx8hVK1WIk21l17In387O5_12hpD3NPG10CH3fF1QjwZB5GGOEE_EIo5UoYrIbAr7Ok6GEzqaxtNG_4R7YWx-iPaDG44M469xgC-Uvj7IgQqHRqGFkkiYqtIexJMP4AFClHcdf29TScG0ZsmX7RNNu6qeG-_Umarua15BAIu2X6OAkl-CDbUtfnFTdNoNds1sNXhC5tv3tCKVeW9Vi568upYC8v8Y4inZbYJa96NF4TNyryifk4e2zOUGzvomNfbmBeG23D2CweVSwpSHmSqUy0vlQpiKQt0ruBQbd3FezKp6WS1m0r3gv6ulazIjG8l8bRW9G9fo4Yu1O8NNLtUZuu2XZDLo_zwaek2RB08iWfIKlQgFQVUqgYz7Wik_FlEqqKKhCtOMxxEeATa4aZ_TnIowkFzmHDyRzgBbr8hOWZXFHnEBXzKgKRA4zWkqRS6hSZhkfpLpRGvlkHT7fzLZZEDHQhznrMOEAoambOpzoinZ2iFB23Nhs4Dcoc8eQIbxM3DWbPIjxCViIMs5eEmHfDA4au_Fl3MU2KUxOx1_YtnR6ehXMhqyzCEHHaC1HYCoQ6xIocH-FnmscT6XDNeWgRfHsUMO21_Ba-BSEC-LaoVNwjRMInp7CwqRHLDV4PYWpmBsFEcOeW0h_9c0uQ883IenSwxw72wz1j_p49mbf-14SB59Ox6wk8_jL_vksV35w89lb8lOvVwV7yCArMWB8Qx_AJ8AXH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+accelerated+and+stabilized+by+pleiotropic+major+histocompatibility+complex+immunogenes&rft.jtitle=Ecology+letters&rft.au=EIZAGUIRRE%2C+Christophe&rft.au=LENZ%2C+Tobias+L&rft.au=TRAULSEN%2C+Arne&rft.au=MILINSKI%2C+Manfred&rft.date=2009&rft.pub=Blackwell&rft.issn=1461-023X&rft.volume=12&rft.issue=1&rft.spage=5&rft.epage=12&rft_id=info:doi/10.1111%2Fj.1461-0248.2008.01247.x&rft.externalDBID=n%2Fa&rft.externalDocID=21006648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon