Image reconstruction in SNR units: A general method for SNR measurement

The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root‐sum‐o...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 54; no. 6; pp. 1439 - 1447
Main Authors Kellman, Peter, McVeigh, Elliot R.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2005
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.20713

Cover

Abstract The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root‐sum‐of‐squares magnitude combining, B1‐weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field‐of‐view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining. Magn Reson Med, 2005. Published 2005 Wiley‐Liss, Inc.
AbstractList The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root-sum-of-squares magnitude combining, B(1)-weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field-of-view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining.The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root-sum-of-squares magnitude combining, B(1)-weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field-of-view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining.
The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root-sum-of-squares magnitude combining, B1-weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field-of-view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining.
The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root‐sum‐of‐squares magnitude combining, B 1 ‐weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field‐of‐view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining. Magn Reson Med, 2005. Published 2005 Wiley‐Liss, Inc.
The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root‐sum‐of‐squares magnitude combining, B1‐weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field‐of‐view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining. Magn Reson Med, 2005. Published 2005 Wiley‐Liss, Inc.
The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing images directly in SNR units. This facilitates accurate and precise SNR measurement on a per pixel basis. This method is applicable to root-sum-of-squares magnitude combining, B(1)-weighted combining, and parallel imaging such as SENSE. A procedure for image reconstruction and scaling is presented, and the method for SNR measurement is validated with phantom data. Alternative methods that rely on noise only regions are not appropriate for parallel imaging where the noise level is highly variable across the field-of-view. The purpose of this article is to provide a nuts and bolts procedure for calculating scale factors used for reconstructing images directly in SNR units. The procedure includes scaling for noise equivalent bandwidth of digital receivers, FFTs and associated window functions (raw data filters), and array combining.
Author McVeigh, Elliot R.
Kellman, Peter
Author_xml – sequence: 1
  givenname: Peter
  surname: Kellman
  fullname: Kellman, Peter
  email: kellman@nih.gov
  organization: Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, DHHS, Bethesda, Maryland 20892-1061, USA
– sequence: 2
  givenname: Elliot R.
  surname: McVeigh
  fullname: McVeigh, Elliot R.
  organization: Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, DHHS, Bethesda, Maryland 20892-1061, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16261576$$D View this record in MEDLINE/PubMed
BookMark eNqFUdtuEzEUtFARTQsP_ADaJySQtvV118tDpSqQUNQWKQXxaDnO2dSwtoO9S8nf4zShXMTl6UjnzIxm5hygPR88IPSY4COCMT120R1RXBN2D42IoLSkouF7aIRrjktGGr6PDlL6iDFumpo_QPukohURdTVC0zOnl1BEMMGnPg6mt8EX1hdXl7Ni8LZPL4rTYgkeou4KB_11WBRtiLd3BzoNERz4_iG63-ouwaPdPETvJ6_ejV-X52-nZ-PT89IILlkpgMuWESKBLngledUwAa3Ic9HKVrPW6DobplJWcyM15H3TcDPnpMJGzgk7RM-3uoNf6fWN7jq1itbpuFYEq00bKrehbtvI4JMteDXMHSxM9plT3BGCturXi7fXahm-KCpqjBnNAk93AjF8HiD1ytlkoOu0hzAkVUnJGM_B_gekWIqGkI3ik58t_TC_-0gGHG8BJoaUIrTK2F5vvpId2u6PKZ_9xvhXIzv1G9vB-u9AdTG7-M4otwybevh6x9Dxk6pqVgv14XKqJm_YbPzyCqsJ-wavgsjs
CitedBy_id crossref_primary_10_1088_1361_6560_ab37a8
crossref_primary_10_1002_mrm_30386
crossref_primary_10_1016_j_neuroimage_2019_06_039
crossref_primary_10_1002_mrm_30025
crossref_primary_10_1002_jmri_22628
crossref_primary_10_1002_mrm_27095
crossref_primary_10_1148_radiol_2453062151
crossref_primary_10_1088_1361_6560_ac2a8a
crossref_primary_10_1007_s10334_008_0110_x
crossref_primary_10_1002_mrm_29147
crossref_primary_10_1002_mrm_29022
crossref_primary_10_1186_s12968_019_0583_y
crossref_primary_10_1118_1_3480511
crossref_primary_10_1088_1361_6560_aba87a
crossref_primary_10_1088_0967_3334_30_9_004
crossref_primary_10_1002_mrm_21784
crossref_primary_10_1145_3457613
crossref_primary_10_3390_s22166076
crossref_primary_10_1186_s12968_014_0055_3
crossref_primary_10_1002_mrm_29170
crossref_primary_10_1016_j_mri_2024_04_016
crossref_primary_10_3390_diagnostics11101886
crossref_primary_10_1002_mrm_30289
crossref_primary_10_1109_TBME_2019_2959030
crossref_primary_10_1016_j_jmr_2022_107302
crossref_primary_10_1016_j_jmr_2019_106681
crossref_primary_10_1002_jmri_23975
crossref_primary_10_1016_j_acra_2008_04_002
crossref_primary_10_1016_j_micron_2018_11_003
crossref_primary_10_1007_s00723_019_01153_5
crossref_primary_10_1016_j_mri_2018_07_010
crossref_primary_10_1038_s41592_023_02068_7
crossref_primary_10_1002_mrm_21215
crossref_primary_10_1016_j_radonc_2018_04_018
crossref_primary_10_1002_mrm_25815
crossref_primary_10_1109_JTEHM_2018_2855213
crossref_primary_10_1002_mrm_30150
crossref_primary_10_1002_mrm_30274
crossref_primary_10_1063_5_0061838
crossref_primary_10_1109_TIM_2023_3327487
crossref_primary_10_1007_s10334_022_01036_0
crossref_primary_10_1016_j_jmr_2019_01_015
crossref_primary_10_1002_mrm_29288
crossref_primary_10_1002_jmri_23724
crossref_primary_10_1002_mrm_28073
crossref_primary_10_1177_0954411915574306
crossref_primary_10_1002_mrm_22771
crossref_primary_10_1007_s00330_009_1672_3
crossref_primary_10_1002_mrm_22893
crossref_primary_10_1016_j_mri_2012_04_015
crossref_primary_10_1002_mrm_25807
crossref_primary_10_1016_j_mri_2008_02_001
crossref_primary_10_1002_mrm_22414
crossref_primary_10_1080_02656736_2019_1705404
crossref_primary_10_3389_fonc_2019_00647
crossref_primary_10_1002_mrm_21207
crossref_primary_10_1007_s00330_007_0692_0
crossref_primary_10_1155_2020_8828047
crossref_primary_10_1002_jmri_25936
crossref_primary_10_1016_j_neuroimage_2020_117539
crossref_primary_10_1002_jmri_22305
crossref_primary_10_1186_1532_429X_11_29
crossref_primary_10_1177_1352458515591070
crossref_primary_10_1002_mrm_22444
crossref_primary_10_1002_mrm_24623
crossref_primary_10_1002_mrm_26803
crossref_primary_10_1002_mrm_29062
crossref_primary_10_1002_jmri_23506
crossref_primary_10_1002_nbm_2868
crossref_primary_10_1002_nbm_1539
crossref_primary_10_1002_mrm_22791
crossref_primary_10_1002_nbm_4800
crossref_primary_10_1002_mrm_26916
crossref_primary_10_1097_RLI_0000000000000049
crossref_primary_10_1002_nbm_4928
crossref_primary_10_1109_TBME_2024_3440317
crossref_primary_10_1016_j_mri_2010_08_016
crossref_primary_10_1002_nbm_2970
crossref_primary_10_1007_s00392_011_0373_5
crossref_primary_10_1002_jmri_24869
crossref_primary_10_1002_mrm_21491
crossref_primary_10_1002_mrm_24883
crossref_primary_10_1002_mrm_22584
crossref_primary_10_1002_mrm_26943
crossref_primary_10_1002_nbm_3944
crossref_primary_10_1002_mrm_25730
crossref_primary_10_1002_mrm_22228
crossref_primary_10_1007_s00247_014_3093_y
crossref_primary_10_1016_j_neuroimage_2015_08_066
crossref_primary_10_1002_jmri_23640
crossref_primary_10_1007_s00330_012_2732_7
crossref_primary_10_1016_j_neuroimage_2011_04_018
crossref_primary_10_1016_j_mri_2015_10_034
crossref_primary_10_1016_j_radonc_2020_12_032
crossref_primary_10_1016_j_zemedi_2023_04_004
crossref_primary_10_2214_AJR_06_0520
crossref_primary_10_1002_mrm_22691
crossref_primary_10_1088_1361_6560_aaa303
crossref_primary_10_3174_ajnr_A2093
crossref_primary_10_1002_mrm_22455
crossref_primary_10_1002_nbm_2965
crossref_primary_10_1002_mrm_22219
crossref_primary_10_1002_mrm_25606
crossref_primary_10_1002_jmri_21256
crossref_primary_10_1002_mrm_25190
crossref_primary_10_1002_mrm_30301
crossref_primary_10_1016_j_neucom_2021_01_133
crossref_primary_10_1002_nbm_5146
crossref_primary_10_1002_mp_14138
crossref_primary_10_1002_mrm_25194
crossref_primary_10_1002_mrm_26041
crossref_primary_10_1002_mrm_29798
crossref_primary_10_1007_s00330_007_0814_8
crossref_primary_10_1016_j_neuroimage_2019_05_065
crossref_primary_10_1002_mrm_22906
crossref_primary_10_1002_jmri_22571
crossref_primary_10_1002_jmri_24518
crossref_primary_10_1088_2057_1976_ac9f4e
crossref_primary_10_1002_mrm_27485
crossref_primary_10_1002_nbm_5136
crossref_primary_10_1061_JHEND8_HYENG_13215
crossref_primary_10_1002_jmri_22218
crossref_primary_10_1002_mrm_29546
crossref_primary_10_1002_mrm_28455
crossref_primary_10_1002_mrm_21701
crossref_primary_10_1016_j_neuroimage_2019_116087
crossref_primary_10_1038_jcbfm_2010_215
crossref_primary_10_1002_jmri_22002
crossref_primary_10_1016_j_mri_2009_01_001
crossref_primary_10_1002_mrm_21728
crossref_primary_10_1186_1532_429X_14_34
crossref_primary_10_1002_mrm_29696
crossref_primary_10_1002_nbm_4039
crossref_primary_10_1088_1361_6560_aab691
crossref_primary_10_1002_mrm_30203
crossref_primary_10_1002_jmri_27816
crossref_primary_10_1002_nbm_5002
crossref_primary_10_1002_jmri_24305
crossref_primary_10_1002_nbm_4396
crossref_primary_10_1002_mrm_28005
crossref_primary_10_1002_mrm_29458
crossref_primary_10_1002_mrm_29698
crossref_primary_10_1016_j_mri_2006_12_007
crossref_primary_10_1155_2021_6638576
crossref_primary_10_3233_JAD_230030
crossref_primary_10_1038_s44172_022_00001_y
crossref_primary_10_1002_mrm_22706
crossref_primary_10_1038_s41598_023_49023_2
crossref_primary_10_1016_j_mri_2016_10_018
crossref_primary_10_1002_mrm_28231
crossref_primary_10_1002_jmri_22358
crossref_primary_10_2214_AJR_09_2994
crossref_primary_10_1089_brain_2012_0113
crossref_primary_10_1371_journal_pone_0052075
crossref_primary_10_1002_jmri_24205
crossref_primary_10_1002_jmri_24689
crossref_primary_10_1002_jmri_24687
crossref_primary_10_1002_mrm_21509
crossref_primary_10_1002_jmri_22023
crossref_primary_10_1002_jmri_27950
crossref_primary_10_1002_mrm_28144
crossref_primary_10_1186_1532_429X_13_44
crossref_primary_10_1253_circj_CJ_11_1043
crossref_primary_10_1007_s00723_016_0764_x
crossref_primary_10_3389_fnins_2023_1133086
crossref_primary_10_1186_s43074_024_00126_7
crossref_primary_10_1002_mrm_22962
crossref_primary_10_1002_mrm_22961
crossref_primary_10_1186_s12880_018_0256_6
crossref_primary_10_1016_j_mri_2013_06_011
crossref_primary_10_1038_s41597_019_0254_8
crossref_primary_10_1109_TBME_2013_2240301
crossref_primary_10_1002_mrm_24903
crossref_primary_10_1016_j_neuroimage_2019_116396
crossref_primary_10_1002_jmri_21167
crossref_primary_10_1002_jmri_24315
crossref_primary_10_1002_mrm_30450
crossref_primary_10_1002_mrm_30331
crossref_primary_10_1109_TMI_2023_3261922
crossref_primary_10_1002_mrm_30456
crossref_primary_10_1016_j_jmr_2019_07_001
crossref_primary_10_1186_1532_429X_13_55
crossref_primary_10_1002_mrm_28010
crossref_primary_10_1002_mrm_27048
crossref_primary_10_1118_1_4944500
crossref_primary_10_1007_s10334_017_0657_5
crossref_primary_10_1259_dmfr_20160268
crossref_primary_10_1002_jmri_24345
crossref_primary_10_1016_j_mri_2013_07_007
crossref_primary_10_1002_jmri_25672
crossref_primary_10_1007_s00330_020_07291_w
crossref_primary_10_1002_mrm_29135
crossref_primary_10_1002_nbm_5049
crossref_primary_10_1002_mrm_28285
crossref_primary_10_1002_jmri_26527
crossref_primary_10_1002_mrm_29130
crossref_primary_10_1002_mrm_21770
crossref_primary_10_1002_mrm_22742
crossref_primary_10_2214_AJR_10_5914
crossref_primary_10_1016_j_neuroimage_2015_06_090
crossref_primary_10_1002_nbm_1809
crossref_primary_10_1002_mrm_21657
crossref_primary_10_1002_mrm_24907
crossref_primary_10_1002_mrm_30351
crossref_primary_10_1002_mrm_27186
crossref_primary_10_1002_mrm_28278
crossref_primary_10_1186_s12968_015_0167_4
crossref_primary_10_1016_j_neuroimage_2020_117478
crossref_primary_10_1371_journal_pone_0148393
crossref_primary_10_1007_s00723_013_0472_8
crossref_primary_10_1088_1361_6560_ac6ebd
crossref_primary_10_1002_mrm_21522
crossref_primary_10_1002_jmri_22067
crossref_primary_10_1007_s00330_019_06510_3
crossref_primary_10_1002_nbm_4457
crossref_primary_10_1016_j_neuroimage_2010_08_048
crossref_primary_10_1002_mrm_23297
crossref_primary_10_1007_s11042_022_12031_x
crossref_primary_10_1002_mrm_29719
crossref_primary_10_1007_s00330_008_0972_3
crossref_primary_10_1364_OE_531818
crossref_primary_10_1186_s12968_016_0297_3
crossref_primary_10_1002_nbm_4567
crossref_primary_10_1038_s41598_021_81833_0
crossref_primary_10_1002_mrm_24377
crossref_primary_10_1016_j_neuroimage_2019_02_008
crossref_primary_10_2463_mrms_mp_2021_0084
crossref_primary_10_1002_mrm_29821
crossref_primary_10_1007_s11831_021_09587_6
crossref_primary_10_1002_mrm_25587
crossref_primary_10_3348_kjr_2023_0377
crossref_primary_10_1371_journal_pone_0288529
crossref_primary_10_2214_AJR_09_3306
crossref_primary_10_1109_TBME_2020_3027296
crossref_primary_10_1002_mrm_27799
crossref_primary_10_1002_mrm_29977
crossref_primary_10_1002_mrm_27554
crossref_primary_10_1002_mrm_27675
crossref_primary_10_1002_mrm_28885
crossref_primary_10_1038_s41551_018_0233_y
crossref_primary_10_1016_j_neuroimage_2021_118256
crossref_primary_10_1177_1178221820904140
crossref_primary_10_3109_02656736_2015_1108462
crossref_primary_10_1088_1361_6560_ad388c
crossref_primary_10_1016_j_mri_2017_01_017
crossref_primary_10_1109_TPAMI_2019_2930192
crossref_primary_10_1002_mrm_26572
crossref_primary_10_1118_1_3036118
crossref_primary_10_1371_journal_pone_0149446
crossref_primary_10_1002_cmr_b_21325
crossref_primary_10_1002_mrm_29962
crossref_primary_10_1002_jmri_22072
crossref_primary_10_1016_j_neuroimage_2016_12_057
crossref_primary_10_1002_nbm_3040
crossref_primary_10_1002_nbm_4491
crossref_primary_10_1186_s12968_014_0106_9
crossref_primary_10_1371_journal_pone_0187528
crossref_primary_10_1002_mrm_27695
crossref_primary_10_1186_s12968_015_0174_5
crossref_primary_10_1007_s00247_024_06024_1
crossref_primary_10_1002_mrm_28788
crossref_primary_10_1016_j_jmr_2013_02_001
crossref_primary_10_1038_srep30568
crossref_primary_10_1016_j_mri_2015_04_004
crossref_primary_10_1016_j_brs_2023_05_025
crossref_primary_10_1186_1532_429X_16_46
crossref_primary_10_1002_jmri_24155
crossref_primary_10_1186_s12968_017_0355_5
crossref_primary_10_1002_mrm_29747
crossref_primary_10_1016_j_neuroimage_2010_11_084
crossref_primary_10_1148_radiol_2502072137
crossref_primary_10_3390_photonics10020198
crossref_primary_10_1002_mrm_25386
crossref_primary_10_1002_mrm_27444
crossref_primary_10_1002_mrm_28654
crossref_primary_10_1016_j_jmr_2018_02_011
crossref_primary_10_1007_s10334_012_0336_5
crossref_primary_10_1002_mrm_28562
crossref_primary_10_1088_0031_9155_58_11_3775
crossref_primary_10_1016_j_neuroimage_2017_05_013
crossref_primary_10_1002_nbm_3264
crossref_primary_10_1007_s00330_010_1827_2
crossref_primary_10_1007_s00330_018_5958_1
crossref_primary_10_1371_journal_pone_0061661
crossref_primary_10_1002_mrm_27591
crossref_primary_10_1002_mrm_28209
crossref_primary_10_1007_s00330_022_08687_6
crossref_primary_10_3390_s19153297
crossref_primary_10_1109_TMI_2014_2377792
crossref_primary_10_1002_jmri_25150
crossref_primary_10_1002_nbm_4580
crossref_primary_10_1097_01_rli_0000262566_89636_3f
crossref_primary_10_1186_1532_429X_15_56
crossref_primary_10_1007_s00330_012_2487_1
crossref_primary_10_1109_ACCESS_2022_3143544
crossref_primary_10_1016_j_ejrad_2010_04_020
crossref_primary_10_1148_radiol_12111327
crossref_primary_10_1002_mrm_24192
crossref_primary_10_1002_nbm_3379
crossref_primary_10_1002_mp_16801
crossref_primary_10_1002_mrm_28791
crossref_primary_10_1016_j_jmr_2006_01_016
crossref_primary_10_1002_mrm_26017
crossref_primary_10_1002_mrm_27469
crossref_primary_10_1002_nbm_4106
crossref_primary_10_1002_mrm_21922
crossref_primary_10_1109_ACCESS_2020_3036598
crossref_primary_10_1007_s00261_018_01886_0
crossref_primary_10_18100_ijamec_280333
crossref_primary_10_1016_j_neuroimage_2013_05_078
crossref_primary_10_1002_mrm_22488
crossref_primary_10_1002_mrm_24427
crossref_primary_10_1016_j_joca_2016_09_015
crossref_primary_10_1002_jmri_20954
crossref_primary_10_1002_nbm_3993
crossref_primary_10_1002_mrm_21381
crossref_primary_10_3390_tomography9010006
crossref_primary_10_1007_s10554_015_0615_0
crossref_primary_10_1002_mrm_21264
crossref_primary_10_1002_nbm_4608
crossref_primary_10_1186_1532_429X_10_29
crossref_primary_10_1002_mrm_22114
crossref_primary_10_1002_mrm_21268
crossref_primary_10_1002_mrm_22115
crossref_primary_10_1002_mrm_24534
crossref_primary_10_1002_mrm_27808
crossref_primary_10_1038_s41598_022_19282_6
crossref_primary_10_1016_j_neuroimage_2018_06_045
crossref_primary_10_1063_5_0057847
crossref_primary_10_1097_RLI_0b013e31817ed1ff
crossref_primary_10_1155_2020_8886543
crossref_primary_10_1016_j_neuroimage_2021_118093
crossref_primary_10_1007_s11220_020_00325_z
crossref_primary_10_1109_TMI_2017_2764160
crossref_primary_10_1002_mrm_27954
crossref_primary_10_1259_bjr_20170652
crossref_primary_10_1002_mrm_28800
crossref_primary_10_1016_j_mri_2024_03_005
crossref_primary_10_1002_mrm_25535
crossref_primary_10_1002_mrm_28923
crossref_primary_10_1016_j_neuroimage_2013_05_057
crossref_primary_10_1002_nbm_3867
crossref_primary_10_1002_mrm_22028
crossref_primary_10_1002_mrm_27958
crossref_primary_10_1038_s41598_023_29521_z
crossref_primary_10_1002_jmri_25073
crossref_primary_10_1088_1361_6560_ad4d50
crossref_primary_10_1148_radiol_2019181883
crossref_primary_10_1002_jmri_28577
crossref_primary_10_1186_s12968_015_0115_3
crossref_primary_10_31159_ksmrt_2024_34_4_45
crossref_primary_10_1002_mrm_24432
crossref_primary_10_1002_mrm_25764
crossref_primary_10_1002_mrm_25646
crossref_primary_10_1002_jmri_20969
crossref_primary_10_1002_mrm_22258
crossref_primary_10_1002_mrm_22013
crossref_primary_10_1016_j_neuroimage_2012_05_028
crossref_primary_10_1177_0284185113479051
crossref_primary_10_1002_nbm_1435
crossref_primary_10_1109_TDSC_2023_3286842
crossref_primary_10_1007_s00034_019_01200_3
crossref_primary_10_1109_TMI_2017_2760921
crossref_primary_10_1016_j_jmr_2020_106798
crossref_primary_10_1002_nbm_4771
crossref_primary_10_1186_s12968_021_00823_3
crossref_primary_10_1016_j_bspc_2021_102842
crossref_primary_10_1002_mrm_25430
crossref_primary_10_1002_mrm_22289
crossref_primary_10_1002_mrm_27731
crossref_primary_10_1007_s11548_010_0528_2
crossref_primary_10_1371_journal_pone_0113969
crossref_primary_10_1002_cmr_b_20186
crossref_primary_10_1007_s42600_020_00074_8
crossref_primary_10_1016_j_compmedimag_2007_09_003
crossref_primary_10_1007_s10334_025_01244_4
crossref_primary_10_1007_s10334_018_0709_5
crossref_primary_10_1002_mrm_21061
crossref_primary_10_1002_jmri_21964
crossref_primary_10_1016_j_ejrad_2011_08_002
crossref_primary_10_1002_mrm_24453
crossref_primary_10_3233_THC_191817
crossref_primary_10_1002_mrm_22153
crossref_primary_10_1002_mrm_24699
crossref_primary_10_1002_mrm_26994
crossref_primary_10_1002_jmri_29565
crossref_primary_10_1002_mrm_26632
crossref_primary_10_1002_mrm_27962
crossref_primary_10_1148_radiol_10092487
crossref_primary_10_1088_1361_6560_aaf9e4
crossref_primary_10_1016_j_bbe_2022_12_006
crossref_primary_10_1002_jmri_20426
crossref_primary_10_1002_jmri_22605
crossref_primary_10_1148_radiol_2471070132
crossref_primary_10_1109_TBME_2022_3166279
crossref_primary_10_1002_mrm_22066
crossref_primary_10_1002_mrm_25335
crossref_primary_10_1002_mrm_27637
crossref_primary_10_1186_s12968_022_00888_8
crossref_primary_10_1002_mrm_29931
crossref_primary_10_1002_nbm_1126
crossref_primary_10_1002_mrm_24247
crossref_primary_10_1186_s12968_017_0407_x
crossref_primary_10_1186_s12968_020_00618_y
crossref_primary_10_1002_mrm_26890
crossref_primary_10_1002_nbm_4981
crossref_primary_10_1002_mrm_27743
crossref_primary_10_1002_cmr_b_21364
crossref_primary_10_1016_j_mri_2010_06_008
crossref_primary_10_1002_mrm_26538
crossref_primary_10_1016_j_jocmr_2024_101098
crossref_primary_10_1007_s00330_014_3445_x
Cites_doi 10.1016/S0730-725X(97)00199-9
10.1109/42.79473
10.1002/mrm.1241
10.1002/1522-2594(200012)44:6<933::AID-MRM15>3.0.CO;2-I
10.1002/mrm.1910380524
10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S
10.1118/1.595711
10.1002/mrm.1910160203
10.1007/BF02530047
10.1002/mrm.10303
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1002/mrm.1113
10.1088/0022-3735/16/1/007
10.1002/mrm.10087
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
ContentType Journal Article
Copyright Published 2005 Wiley‐Liss, Inc.
Copyright_xml – notice: Published 2005 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.20713
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1447
ExternalDocumentID 10.1002/mrm.20713
PMC2570032
16261576
10_1002_mrm_20713
MRM20713
ark_67375_WNG_FJ3RCDS0_F
Genre article
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural Research Program of the NIH, National Heart, Lung and Blood Institute
– fundername: Intramural NIH HHS
  grantid: Z01 HL004608
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5483-5e48f3118e2d46846935ef5469df8fa3fca73192886bc8ae69d994cb4160c8b13
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:45:35 EDT 2025
Tue Sep 30 16:43:11 EDT 2025
Thu Sep 04 17:39:18 EDT 2025
Mon Oct 06 18:06:58 EDT 2025
Mon Jul 21 05:43:44 EDT 2025
Wed Oct 01 04:56:37 EDT 2025
Thu Apr 24 23:13:44 EDT 2025
Wed Jan 22 16:50:51 EST 2025
Sun Sep 21 06:23:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5483-5e48f3118e2d46846935ef5469df8fa3fca73192886bc8ae69d994cb4160c8b13
Notes ArticleID:MRM20713
This article is a US Government work and, as such, is in the public domain in the United States of America.
ark:/67375/WNG-FJ3RCDS0-F
Intramural Research Program of the NIH, National Heart, Lung and Blood Institute
istex:194FFD85F2E9C8ED5069E97ADB647EFB044733B2
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20713
PMID 16261576
PQID 20859112
PQPubID 23462
PageCount 9
ParticipantIDs unpaywall_primary_10_1002_mrm_20713
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570032
proquest_miscellaneous_68833448
proquest_miscellaneous_20859112
pubmed_primary_16261576
crossref_citationtrail_10_1002_mrm_20713
crossref_primary_10_1002_mrm_20713
wiley_primary_10_1002_mrm_20713_MRM20713
istex_primary_ark_67375_WNG_FJ3RCDS0_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2005
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: December 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic-resonance-imaging. IEEE Trans Med Imaging 1991; 10: 154-163.
De Wilde JP, Lunt JA, Straughan K. Information in magnetic resonance images: evaluation of signal, noise and contrast. Med Biol Eng Comput 1997; 35: 259-265.
Henkelman RM. Measurement of signal intensities in the presence of noise in MR images [Published erratum in Med Phys 1986;13:544]. Med Phys 1985; 12: 232-233.
McKenzie CA, Yeh EN, Ohliger MA, Price MD, Sodickson DK. Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magn Reson Med 2002; 47: 529-538.
Pruessmann KP, Wieger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. [Published erratum in: Magn Reson Med. 2004 Jul;52:219]. Magn Reson Med 1997; 38: 852-857.
Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000; 43: 682-690.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
Kellman P, Sorger JM, Epstein FH, McVeigh ER. Low-latency temporal filter design for real-time MRI using UNFOLD. Magn Reson Med 2000; 44: 933-939.
de Zwart JA, van Gelderen P, Kellman P, Duyn JH. Application of sensitivity-encoded EPI for BOLD functional brain imaging. Magn Reson Med 2002 Dec; 48: 1011-1020.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990; 16: 192-225.
Lai CM. Reconstructing NMR images under non-linear field gradients. J Phys E Sci Instrum 1983; 16: 34-38.
Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828.
Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. 3rd ed. New York: John Wiley & Sons; 2000.
Sijbers J, Den Dekker AJ, Van Audekerke J, Verhoye M, Van Dyck D. Estimation of the noise in magnitude MR images. Magn Reson Imaging 1998; 16: 87-90.
1998; 16
2002; 47
2002; 48
2000
1990; 16
1991; 10
2000; 43
2000; 44
1997; 35
1997; 38
1999; 42
1985; 12
2001; 45
2001; 46
1983; 16
e_1_2_6_8_2
Bendat JS (e_1_2_6_7_2) 2000
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
Magn Reson Med. 2007 Jul;58(1):211-2
References_xml – reference: Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000; 43: 682-690.
– reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990; 16: 192-225.
– reference: Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. 3rd ed. New York: John Wiley & Sons; 2000.
– reference: Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. [Published erratum in: Magn Reson Med. 2004 Jul;52:219]. Magn Reson Med 1997; 38: 852-857.
– reference: De Wilde JP, Lunt JA, Straughan K. Information in magnetic resonance images: evaluation of signal, noise and contrast. Med Biol Eng Comput 1997; 35: 259-265.
– reference: McKenzie CA, Yeh EN, Ohliger MA, Price MD, Sodickson DK. Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magn Reson Med 2002; 47: 529-538.
– reference: Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic-resonance-imaging. IEEE Trans Med Imaging 1991; 10: 154-163.
– reference: de Zwart JA, van Gelderen P, Kellman P, Duyn JH. Application of sensitivity-encoded EPI for BOLD functional brain imaging. Magn Reson Med 2002 Dec; 48: 1011-1020.
– reference: Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828.
– reference: Pruessmann KP, Wieger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Lai CM. Reconstructing NMR images under non-linear field gradients. J Phys E Sci Instrum 1983; 16: 34-38.
– reference: Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
– reference: Kellman P, Sorger JM, Epstein FH, McVeigh ER. Low-latency temporal filter design for real-time MRI using UNFOLD. Magn Reson Med 2000; 44: 933-939.
– reference: Henkelman RM. Measurement of signal intensities in the presence of noise in MR images [Published erratum in Med Phys 1986;13:544]. Med Phys 1985; 12: 232-233.
– reference: Sijbers J, Den Dekker AJ, Van Audekerke J, Verhoye M, Van Dyck D. Estimation of the noise in magnitude MR images. Magn Reson Imaging 1998; 16: 87-90.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 48
  start-page: 1011
  year: 2002
  end-page: 1020
  article-title: Application of sensitivity‐encoded EPI for BOLD functional brain imaging
  publication-title: Magn Reson Med
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 38
  start-page: 852
  year: 1997
  end-page: 857
  article-title: Signal‐to‐noise measurements in magnitude images from NMR phased arrays
  publication-title: Magn Reson Med
– volume: 16
  start-page: 34
  year: 1983
  end-page: 38
  article-title: Reconstructing NMR images under non‐linear field gradients
  publication-title: J Phys E Sci Instrum
– year: 2000
– volume: 35
  start-page: 259
  year: 1997
  end-page: 265
  article-title: Information in magnetic resonance images: evaluation of signal, noise and contrast
  publication-title: Med Biol Eng Comput
– volume: 12
  start-page: 232
  year: 1985
  end-page: 233
  article-title: Measurement of signal intensities in the presence of noise in MR images
  publication-title: Med Phys
– volume: 10
  start-page: 154
  year: 1991
  end-page: 163
  article-title: Homodyne detection in magnetic‐resonance‐imaging
  publication-title: IEEE Trans Med Imaging
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 16
  start-page: 87
  year: 1998
  end-page: 90
  article-title: Estimation of the noise in magnitude MR images
  publication-title: Magn Reson Imaging
– volume: 47
  start-page: 529
  year: 2002
  end-page: 538
  article-title: Self‐calibrating parallel imaging with automatic coil sensitivity extraction
  publication-title: Magn Reson Med
– volume: 42
  start-page: 813
  year: 1999
  end-page: 828
  article-title: Unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI
  publication-title: Magn Reson Med
– volume: 45
  start-page: 846
  year: 2001
  end-page: 852
  article-title: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE)
  publication-title: Magn Reson Med
– volume: 44
  start-page: 933
  year: 2000
  end-page: 939
  article-title: Low‐latency temporal filter design for real‐time MRI using UNFOLD
  publication-title: Magn Reson Med
– ident: e_1_2_6_4_2
  doi: 10.1016/S0730-725X(97)00199-9
– ident: e_1_2_6_13_2
  doi: 10.1109/42.79473
– ident: e_1_2_6_12_2
  doi: 10.1002/mrm.1241
– ident: e_1_2_6_15_2
  doi: 10.1002/1522-2594(200012)44:6<933::AID-MRM15>3.0.CO;2-I
– ident: e_1_2_6_3_2
  doi: 10.1002/mrm.1910380524
– ident: e_1_2_6_14_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S
– ident: e_1_2_6_2_2
  doi: 10.1118/1.595711
– ident: e_1_2_6_8_2
  doi: 10.1002/mrm.1910160203
– volume-title: Random Data: Analysis and Measurement Procedures
  year: 2000
  ident: e_1_2_6_7_2
– ident: e_1_2_6_5_2
  doi: 10.1007/BF02530047
– ident: e_1_2_6_17_2
  doi: 10.1002/mrm.10303
– ident: e_1_2_6_10_2
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– ident: e_1_2_6_11_2
  doi: 10.1002/mrm.1113
– ident: e_1_2_6_16_2
  doi: 10.1088/0022-3735/16/1/007
– ident: e_1_2_6_9_2
  doi: 10.1002/mrm.10087
– ident: e_1_2_6_6_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– reference: - Magn Reson Med. 2007 Jul;58(1):211-2
SSID ssj0009974
Score 2.39486
Snippet The method for phased array image reconstruction of uniform noise images may be used in conjunction with proper image scaling as a means of reconstructing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1439
SubjectTerms Algorithms
Computer Simulation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Models, Biological
Models, Statistical
MRI
noise
parallel MRI
Phantoms, Imaging
phased array
Reproducibility of Results
SENSE
Sensitivity and Specificity
Signal Processing, Computer-Assisted
SNR measurement
Stochastic Processes
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQ8Be2BgwAgwsQGgv2ZL4VzyepkE3JrUPHRN7QLIcN4FpbTatq4D99TvbTarChhBPieKLEp_P9nf2-TuAt2k2MIWgNJZcpm61KokVNyxmPJeVqNIBC1G-PbF_xA6O-fECvG_OwgR-iHbBzfUMP167Dm6K8daMNHR04Q6SS5-xNqXCu1P9GXWUUoGBWTI3zijWsAol2Vb75txcdMep9edNQPPPeMn7k_rc_PphhsN5TOsnpc4yfG2qE2JRTjcnl8WmvfqN6fE_67sCD6ZglewE63oIC2W9Cve60-34Vbjr40ft-BHsfRrhwES8e91S0pKTmhz2-mSCw8Z4m-yQb4HjmoS01QTxsi8fzdYpH8NR5-Pn3f14mqMhtujr0JiXLK8oeillNmACwYyivKw4XgdVXhlaWSNR_Vmei8LmpsTnSjFbIA5MbF6k9Aks1md1-RQIk8qyyqbSIiQ1givh8ghnqhAIygxVEWw0raXtlMDc5dEY6kC9nGlUkfYqiuB1K3oeWDtuEnrnm7yVMBenLsxNcv2lt6c7B7S_--Ew0Z0IXjU2obHzuR0VU5dnk7F2CU5xtshulxAumTO6wBGsBRua_Q-6kil6exHIOetqBRzx93xJffLdE4C7zIMJxa--ae3wb9Xc8GZ1u4Tu9rv-5tm_iz6HpUBi6wJ7XsAiWla5jvDssnjp--E18sUzHA
  priority: 102
  providerName: Wiley-Blackwell
Title Image reconstruction in SNR units: A general method for SNR measurement
URI https://api.istex.fr/ark:/67375/WNG-FJ3RCDS0-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20713
https://www.ncbi.nlm.nih.gov/pubmed/16261576
https://www.proquest.com/docview/20859112
https://www.proquest.com/docview/68833448
https://pubmed.ncbi.nlm.nih.gov/PMC2570032
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20713
UnpaywallVersion publishedVersion
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Crbi8MBi3cBkWILSXjMZ24oS3atCNSa1QR8V4Mo4Tb9ParFpXwfbrd2ynGYUNIfHUqjltavv4-Dv2yfcBvIloofKEsVDEIrK7VZ0wixUPeZwKk5io4L7Kd5Bsj_jOXrxX65zaZ2E8P0Sz4WZnhovXdoJPC-PjfH26T99NTuzD5MKq1raTGMF4C9qjwefuN0--aSOMk0LERYqGCPT5glvo1-8urUht27k_r4Kbf1ZN3p5XU3X2Q43Hy8jWLU29Ffi-aJSvSDnamJ_mG_r8N77H_2j1Pbhbw1bS9X52H26U1Src6tcH86tw01WS6tkD2Po0wRBFXKLdkNOSw4rsDoZkjgFk9p50yb5nuyZewJogcnbXJ5c7lg9h1Pv4ZXM7rNUaQo1ZDwvjkqeGYb5S0oInCGsyFpcmxtfCpEYxo5XA4aBpmuQ6VSV-nmVc54gIOzrNI_YIWtVxVT4BwkWmudGR0AhOlR1YqyhMszxBeKZYFsD6YsSkrqnMraLGWHoSZiqxi6TrogBeNaZTz99xldFbN-yNhTo5sgVvIpZfB1uyt8OGmx92O7IXwMuFX0ichvZsRVXl8XwmrdQprhv0eovEyjpjMhzAY-9Hl_8Hk8oI874AxJKHNQaWAnz5SnV44KjArQZhh-FdXze--LdmrjvXut5C9od99-bpP_3gM7jjmWxtdc9zaKFTlS8Qo53ma5idDOlaPRsvAICLOG8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8h0MZe2MYGhH1gbdPESyCJHTue9oLYSmG0DwU0XibLcZOBaAOiVPv463e2m1TdYJr2lCi-KLF9tn93Pv8O4E2c9HXOKQ1FKmLrrYpCmWoWsjQTJS_jPvNRvl3ePmEHp-npHLyvz8J4fojG4WZHhpuv7QC3DuntKWvo8NqeJBc2Ze0C42inWEjUm5JHSek5mAWzM41kNa9QlGw3r86sRgu2Yb_fBjX_jJhcHFdX-sc3PRjMolq3LLUewpe6Qj4a5WJrfJNvmZ-_cT3-b40fwdIEr5Idr2CPYa6oluF-Z7Ijvwz3XAipGT2Bvf0hzk3EWdgNKy05r8hRt0fGOHOM3pEd8tXTXBOfuZogZHblw6mr8imctD4e77bDSZqG0KC5Q8O0YFlJ0VApkj7jiGckTYsyxWu_zEpNS6MFtn-SZTw3mS7wuZTM5AgFI5PlMV2B-eqyKtaAMCENK00sDKJSzVPJbSrhROYccZmmMoDNuruUmXCY21QaA-XZlxOFTaRcEwXwqhG98sQdtwm9dX3eSOjrCxvpJlL1ubunWge0t_vhKFKtADZqpVA4_uymiq6Ky_FI2RynuGAkd0twm88ZreAAVr0STf8HrckYDb4AxIx6NQKW-3u2pDo_cxzgNvlgRPGrrxtF_Fs1N51e3S2hOr2Ou1n_d9ENWGwfdw7V4X730zN44DltbZzPc5hHLSteIFq7yV-6QfkLGnc3PQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VrSi8cJQrXLUAob6kTWI7jhEvVZftAbtCWyr6gizHSaDqbrrqdsXx6xnbm6wWWoR4ShRPlHg8tr-xx98AvIyTQucppaHgIrarVVEouWYh45mo0ioumI_y7ad7R-zgmB8vwZvmLIznh2gX3GzPcOO17eDluKi25qyho3N7klzYlLUrjMvMBvR1BnPyKCk9B7NgdqSRrOEVipKt9tWF2WjFKvb7ZVDzz4jJ69N6rH9808PhIqp101L3FnxuKuSjUU43pxf5pvn5G9fj_9b4Ntyc4VWy7Q3sDiyV9Rqs9mY78mtwzYWQmsld2N0f4dhEnIfdstKSk5oc9gdkiiPH5DXZJl88zTXxmasJQmZXPpovVd6Do-7bjzt74SxNQ2jQ3aEhL1lWUXRUyqRgKeIZSXlZcbwWVVZpWhktUP9JlqW5yXSJz6VkJkcoGJksj-l9WK7P6vIhECakYZWJhUFUqlMuU5tKOJF5irhMUxnARtNcysw4zG0qjaHy7MuJQhUpp6IAnreiY0_ccZnQK9fmrYQ-P7WRboKrT_1d1T2gg53OYaS6Aaw3RqGw_9lNFV2XZ9OJsjlOccJIrpZIbT5n9IIDeOCNaP4_6E3G6PAFIBbMqxWw3N-LJfXJV8cBbpMPRhS_-qI1xL9Vc8PZ1dUSqjfouZtH_y66DqsfOl31fr__7jHc8JS2NsznCSyjkZVPEaxd5M9cn_wFeKQ2wQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hVsBe-DEYhJ8WILSXjCa244S3atCNSa1QR8X25DlOPKa1WbWugu2v52ynGYUNIfHUqrk2tX0-f2dfvg_gTRQXKk8oDQUXkd2t6oQZVyxkPBUmMVHBfJXvINkesZ09vlfrnNpnYTw_RLPhZmeGi9d2gk8L4-N8fbofv5uc2ofJhVWtbSccwXgL2qPB5-6-J9-0EcZJIeIiFYcI9NmCW-jX7y6tSG3buT-ugpt_Vk3enldTdf5djcfLyNYtTb27cLBolK9IOd6Yn-Ub-uI3vsf_aPU9uFPDVtL1fnYfbpTVKtzq1wfzq3DTVZLq2QPY-jTBEEVcot2Q05KjiuwOhmSOAWT2nnTJoWe7Jl7AmiBydtcnlzuWD2HU-_hlczus1RpCjVkPDXnJUkMxXynjgiUIazLKS8PxtTCpUdRoJXA44jRNcp2qEj_PMqZzRIQdneYRXYNWdVKVj4EwkWlmdCQ0glNlB9YqCsdZniA8UzQLYH0xYlLXVOZWUWMsPQlzLLGLpOuiAF41plPP33GV0Vs37I2FOj22BW-Cy6-DLdnbocPND7sd2Qvg5cIvJE5De7aiqvJkPpNW6hTXjfh6i8TKOmMyHMAj70eX_weTygjzvgDEkoc1BpYCfPlKdfTNUYFbDcIOxbu-bnzxb81cd651vYXsD_vuzZN_-sGnsOKZbG11zzNooVOVzxGjneUv6nn4EzPON4Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Reconstruction+in+SNR+Units%3A+A+General+Method+for+SNR+Measurement&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kellman%2C+Peter&rft.au=McVeigh%2C+Elliot+R.&rft.date=2005-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=54&rft.issue=6&rft.spage=1439&rft.epage=1447&rft_id=info:doi/10.1002%2Fmrm.20713&rft_id=info%3Apmid%2F16261576&rft.externalDocID=PMC2570032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon