Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed

Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm‐generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align‐GVGD, PolyPhen‐2, and Xvar when generating functional...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 32; no. 6; pp. 661 - 668
Main Authors Hicks, Stephanie, Wheeler, David A., Plon, Sharon E., Kimmel, Marek
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2011
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1059-7794
1098-1004
1098-1004
DOI10.1002/humu.21490

Cover

Abstract Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm‐generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align‐GVGD, PolyPhen‐2, and Xvar when generating functionality predictions of well‐characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen‐2, (3) Uniprot, and (4) a manually curated alignment tuned for Align‐GVGD. Alignments differ in sequence composition and evolutionary depth. Data‐based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78–79% for all four algorithms. Predictions from the PolyPhen‐2 algorithm were least dependent on the alignment employed. In contrast, Align‐GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Hum Mutat 32:1–8, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction.Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction.
Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction.
Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Hum Mutat 32:1-8, 2011. © 2011 Wiley-Liss, Inc.
Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Hum Mutat 32:1-8, 2011. ? 2011 Wiley-Liss, Inc.
Author Kimmel, Marek
Wheeler, David A.
Plon, Sharon E.
Hicks, Stephanie
AuthorAffiliation 3 Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
2 Human Genome Sequencing Center, Houston, Texas, USA
1 Department of Statistics, Rice University, Houston, Texas, USA
AuthorAffiliation_xml – name: 2 Human Genome Sequencing Center, Houston, Texas, USA
– name: 1 Department of Statistics, Rice University, Houston, Texas, USA
– name: 3 Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
Author_xml – sequence: 1
  givenname: Stephanie
  surname: Hicks
  fullname: Hicks, Stephanie
  organization: Department of Statistics, Rice University, Houston, Texas
– sequence: 2
  givenname: David A.
  surname: Wheeler
  fullname: Wheeler, David A.
  organization: Human Genome Sequencing Center, Houston, Texas
– sequence: 3
  givenname: Sharon E.
  surname: Plon
  fullname: Plon, Sharon E.
  organization: Human Genome Sequencing Center, Houston, Texas
– sequence: 4
  givenname: Marek
  surname: Kimmel
  fullname: Kimmel, Marek
  email: kimmel@rice.edu
  organization: Department of Statistics, Rice University, Houston, Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21480434$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAQxy1URB9w4QMgSxyokFLsxLHjSyVU0RapPFR16dFy4smu28Re7KSw3x7vpltBheqLrZnffzyvfbTjvAOEXlNyRAnJPyzGfjzKKZPkGdqjRFZZMrOd9buUmRCS7aL9GG8IIVVZFi_QboIrwgq2h26_BzC2Gax32Le4tzGCi4D7cdAbYzu6jVd3dlhhA0twJuLkqP2wwMMCsO7mPthh0WPtDI7wcwTXrM127npwA4Z-2fkVmJfoeau7CK_u7wM0O_10dXKeXXw7-3zy8SJrypRWVktmKDOsrRkhtBaNbnOAiudcSpq3BWVE0EbmzEBuBAFSGMLLNolkK3XFiwN0PMVdjnUPpkk5BN2pZbC9DivltVX_epxdqLm_U4yWTPIyBXh3HyD4VE0cVOpLA12nHfgxqopXUpbpJPLwSZISKiQXgpKEvn2E3vgxpL4mSnBe5ZXkNFFv_s79IentxBJAJqAJPsYArWrsNKpUiu3Sj2q9FGq9FGqzFEny_pFkG_W_MJ3gX7aD1ROkOp99mW012aSxcYDfDxodbhUXhSjV9dczdXV5Kq6ryx8qL_4AO9DYpA
CitedBy_id crossref_primary_10_3390_ijms18122711
crossref_primary_10_1093_hmg_dds385
crossref_primary_10_1186_s12881_017_0422_7
crossref_primary_10_1038_jhg_2012_49
crossref_primary_10_1111_hae_12917
crossref_primary_10_1373_clinchem_2013_209213
crossref_primary_10_1002_humu_23193
crossref_primary_10_1371_journal_pcbi_1005628
crossref_primary_10_1111_cbdd_13676
crossref_primary_10_1016_j_atg_2012_06_002
crossref_primary_10_1515_biol_2017_0003
crossref_primary_10_1038_nrg3455
crossref_primary_10_1038_s41397_018_0063_z
crossref_primary_10_1016_j_isci_2021_103276
crossref_primary_10_1038_ng_2734
crossref_primary_10_3390_jpm14111111
crossref_primary_10_1155_2013_948617
crossref_primary_10_1002_hep4_2051
crossref_primary_10_2139_ssrn_3904359
crossref_primary_10_1002_humu_23873
crossref_primary_10_1002_jcb_26209
crossref_primary_10_1093_hmg_ddu607
crossref_primary_10_3390_biom10030475
crossref_primary_10_1002_ijc_29630
crossref_primary_10_1038_s41467_024_55066_4
crossref_primary_10_1038_s41598_019_54976_4
crossref_primary_10_1155_2013_697051
crossref_primary_10_1155_2019_5902391
crossref_primary_10_1186_s13059_017_1353_5
crossref_primary_10_1073_pnas_1511585112
crossref_primary_10_1007_s12013_013_9697_2
crossref_primary_10_1007_s11030_023_10694_8
crossref_primary_10_1186_s12883_022_02828_6
crossref_primary_10_1017_S0952523815000322
crossref_primary_10_1038_srep37284
crossref_primary_10_1016_j_mgene_2019_100626
crossref_primary_10_1016_j_compbiolchem_2019_02_003
crossref_primary_10_1016_j_ygeno_2023_110589
crossref_primary_10_3390_molecules25235543
crossref_primary_10_1016_j_mgene_2016_05_002
crossref_primary_10_1002_wcms_1170
crossref_primary_10_1007_s12013_012_9472_9
crossref_primary_10_1002_mgg3_116
crossref_primary_10_1016_j_braindev_2014_07_003
crossref_primary_10_1111_ane_12515
crossref_primary_10_1007_s12687_016_0289_x
crossref_primary_10_1371_journal_pcbi_1011521
crossref_primary_10_1136_jmedgenet_2019_106368
crossref_primary_10_1016_j_jtbi_2014_03_027
crossref_primary_10_1002_humu_22204
crossref_primary_10_1002_humu_22720
crossref_primary_10_1016_j_bbagen_2021_129935
crossref_primary_10_3390_ijms15058491
crossref_primary_10_1002_humu_21630
crossref_primary_10_1161_JAHA_112_002642
crossref_primary_10_1093_nar_gks919
crossref_primary_10_1096_fj_202000500R
crossref_primary_10_1186_s12920_018_0353_y
crossref_primary_10_1534_g3_116_037184
crossref_primary_10_1007_s00439_014_1470_0
crossref_primary_10_3389_fendo_2023_1195704
crossref_primary_10_1002_humu_22794
crossref_primary_10_1093_bioinformatics_btu018
crossref_primary_10_1093_nar_gks539
crossref_primary_10_1038_jhg_2012_144
crossref_primary_10_1093_ndt_gft532
crossref_primary_10_1371_journal_pone_0083502
crossref_primary_10_1007_s12652_021_02994_4
crossref_primary_10_1016_j_mito_2016_10_006
crossref_primary_10_1093_ckj_sfx075
crossref_primary_10_1371_journal_pgen_1007009
crossref_primary_10_1038_ng_2741
crossref_primary_10_1186_1471_2350_14_118
crossref_primary_10_1093_brain_awt202
crossref_primary_10_1002_mgg3_1355
crossref_primary_10_1371_journal_pone_0220711
crossref_primary_10_1007_s11011_024_01341_8
crossref_primary_10_1186_1753_6561_6_S6_P15
crossref_primary_10_1016_j_ejmg_2017_08_005
crossref_primary_10_1016_j_gene_2012_09_097
crossref_primary_10_1002_pro_2552
crossref_primary_10_1016_j_compbiolchem_2019_05_012
crossref_primary_10_3892_mmr_2019_10763
crossref_primary_10_7717_peerj_796
crossref_primary_10_1002_0471142905_hg0720s76
crossref_primary_10_1016_j_mgene_2019_100556
crossref_primary_10_1002_humu_22903
crossref_primary_10_1093_mutage_ges069
crossref_primary_10_3182_20140824_6_ZA_1003_02095
crossref_primary_10_3390_ijms232012281
crossref_primary_10_1590_1678_4685_gmb_2018_0148
crossref_primary_10_3390_biom11111733
crossref_primary_10_1002_humu_22225
crossref_primary_10_1080_17476348_2018_1457438
crossref_primary_10_1080_01621459_2024_2412464
crossref_primary_10_1007_s11515_014_1320_4
crossref_primary_10_1007_s12010_013_0315_y
crossref_primary_10_1002_humu_23266
crossref_primary_10_1080_07391102_2020_1805018
crossref_primary_10_1016_j_compbiolchem_2021_107560
crossref_primary_10_1080_07391102_2016_1166456
crossref_primary_10_1093_carcin_bgaa079
crossref_primary_10_2174_0113892029285310231227105503
crossref_primary_10_1146_annurev_med_051010_162644
crossref_primary_10_1016_j_cell_2011_09_011
crossref_primary_10_1371_journal_pone_0174953
crossref_primary_10_1002_humu_21642
crossref_primary_10_2139_ssrn_4201188
crossref_primary_10_1002_humu_22214
crossref_primary_10_1371_journal_pgen_1003709
crossref_primary_10_1177_2326409814543468
crossref_primary_10_1007_s00894_015_2794_y
crossref_primary_10_1002_humu_22243
crossref_primary_10_1515_psr_2018_0161
crossref_primary_10_1016_j_ygeno_2020_10_007
crossref_primary_10_1534_genetics_116_190033
crossref_primary_10_1371_journal_pone_0214015
crossref_primary_10_1101_gr_176214_114
crossref_primary_10_1186_s12859_017_1562_7
crossref_primary_10_3389_fphy_2024_1358406
crossref_primary_10_1186_s10020_018_0041_6
crossref_primary_10_1038_482257a
crossref_primary_10_1186_s12881_015_0176_z
crossref_primary_10_1016_j_tig_2011_06_004
crossref_primary_10_1080_07391102_2014_968211
crossref_primary_10_1111_joim_12085
crossref_primary_10_1002_jcb_25499
crossref_primary_10_1186_gm359
crossref_primary_10_3389_fphar_2022_931089
crossref_primary_10_7717_peerj_11724
crossref_primary_10_1007_s00439_022_02457_6
crossref_primary_10_15252_msb_20145222
crossref_primary_10_1093_hmg_ddx404
crossref_primary_10_1155_2017_5096208
crossref_primary_10_1002_ijc_28768
crossref_primary_10_1002_humu_22110
crossref_primary_10_1007_s11816_024_00920_6
crossref_primary_10_1007_s12010_012_0061_6
crossref_primary_10_1016_j_ejmhg_2018_03_001
crossref_primary_10_1111_cge_12406
crossref_primary_10_1161_CIRCGENETICS_112_963785
crossref_primary_10_1186_s12886_023_03276_7
crossref_primary_10_1007_s11094_020_02101_5
crossref_primary_10_1002_mgg3_148
crossref_primary_10_1016_j_jtbi_2016_05_013
crossref_primary_10_14233__ajchem_2019_22020
crossref_primary_10_1002_prot_26051
crossref_primary_10_1016_j_jmgm_2022_108368
crossref_primary_10_1634_theoncologist_2012_0452
crossref_primary_10_1080_26895293_2020_1737249
crossref_primary_10_1093_femsyr_fox078
crossref_primary_10_2119_molmed_2016_00010
crossref_primary_10_1084_jem_20122842
crossref_primary_10_1155_2014_210401
crossref_primary_10_1093_bioinformatics_btt769
crossref_primary_10_1038_ng_2303
crossref_primary_10_1534_g3_118_200563
crossref_primary_10_35193_bseufbd_1205700
crossref_primary_10_1002_humu_22911
crossref_primary_10_1111_hae_12651
crossref_primary_10_3390_ijms23031861
Cites_doi 10.1093/bioinformatics/bti365
10.1002/humu.20735
10.1038/sj.onc.1206101
10.1002/humu.20889
10.1146/annurev.genom.7.080505.115630
10.1101/gr.176601
10.1093/nar/gkj518
10.1002/humu.20938
10.1101/gr.092619.109
10.1093/bioinformatics/btq037
10.1016/j.patrec.2005.10.010
10.1002/humu.10081
10.1086/424388
10.1002/1098-1004(200008)16:2<123::AID-HUMU4>3.0.CO;2-Y
10.1038/nmeth0410-248
10.1002/0471249688
10.1086/513473
10.1093/bib/bbn047
10.1002/humu.20492
10.1016/j.sbi.2010.03.006
10.1093/nar/gkf493
10.1186/gb-2007-8-11-r232
10.1093/bioinformatics/bti623
10.1002/humu.20892
10.1093/nar/gki311
10.1101/gr.212802
10.1136/jmg.2003.015867
10.1016/0022-2836(86)90165-8
10.4137/CIN.S618
ContentType Journal Article
Copyright 2011 Wiley‐Liss, Inc.
2011 Wiley-Liss, Inc.
Copyright_xml – notice: 2011 Wiley‐Liss, Inc.
– notice: 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/humu.21490
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Genetics Abstracts


Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 668
ExternalDocumentID PMC4154965
3958188171
21480434
10_1002_humu_21490
HUMU21490
ark_67375_WNG_TRF7W8RV_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CPRIT
  funderid: RP101089
– fundername: NCI T32 training program
  funderid: CA096520
– fundername: NCI NIH HHS
  grantid: T32 CA096520
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
3V.
88A
AAHHS
AAJEY
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RHX
RWI
RWV
WRC
WTM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5480-b94d14d4fb4001b7caf2ee86269912f314071c924de2d70e03d065f4d19f9a863
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Thu Aug 21 18:18:44 EDT 2025
Thu Oct 02 10:18:44 EDT 2025
Fri Sep 05 11:45:33 EDT 2025
Fri Oct 03 07:41:58 EDT 2025
Mon Jul 21 05:54:06 EDT 2025
Wed Oct 01 01:56:27 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Wed Jan 22 16:56:05 EST 2025
Sun Sep 21 06:19:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5480-b94d14d4fb4001b7caf2ee86269912f314071c924de2d70e03d065f4d19f9a863
Notes CPRIT - No. RP101089
ark:/67375/WNG-TRF7W8RV-2
ArticleID:HUMU21490
Communicated by Sean V. Tavtigian
istex:70D075A47193BDCE51F3EF2446242ED450E1AE6E
NCI T32 training program - No. CA096520
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 21480434
PQID 1766828961
PQPubID 30498
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4154965
proquest_miscellaneous_868995555
proquest_miscellaneous_1017967710
proquest_journals_1766828961
pubmed_primary_21480434
crossref_citationtrail_10_1002_humu_21490
crossref_primary_10_1002_humu_21490
wiley_primary_10_1002_humu_21490_HUMU21490
istex_primary_ark_67375_WNG_TRF7W8RV_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Human mutation
PublicationTitleAlternate Hum. Mutat
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: John Wiley & Sons, Inc
References Reva B, Antipin Y, Sander C. 2007. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 8:R232.
Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27:861-874.
Szabo C, Masiello A, Ryan JF, The BIC Consortium, Brody L. 2000. The breast cancer information core: database design, structure and scope. Hum Mutat 16:123-131.
Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV. 2004. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41:492-507.
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev S. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7:248-249.
Thusberg J, Vihinen M. 2009. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30:703-714.
Karchin R. 2009. Next generation tools for the annotation of human SNPs. Brief Bioinform 10:35-52.
Ng PC, Henikoff S. 2002. Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436-446.
Jordan DM, Ramensky VE, Sunyaev SR. 2010. Human allelic variation: perspective from protein function, structure, and evolution. Curr Opin Struct Biol 20:342-350.
Greenblatt MS, Brody LC, Foulkes WD, Genuardi M, Hofstra RM, Olivier M, Plon S, Sijmons RH, Sinilnikova O, Spurdle AB. 2008. Locus-specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes. Hum Mutat 29:1273-1281.
Agresti A. 2002. Categorical data analysis, 2nd ed. Hoboken, NJ: John Wiley and Sons.
Kryukov GV, Pennacchio LA, Sunyaev SR. 2007. Most rare missense alleles are deleterious in humans: implication for complex disease and association studies. Am J Hum Genet 80:727-739.
Greenblatt MS, Beaudet JG, Gump JR, Godin KS, Trombley L, Koh J, Bond JP. 2003. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Oncogene 22:1150-1163.
Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, Raevaara T, Ollila S, Nystrom M, Grimm AJ, Christodoulou J, Oetting WS, Greenblatt MS. 2007. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat 28:683-693.
Balasubramanian S, Xia Y, Freinkman E, Gerstein M. 2005. Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res 33:1710-1721.
Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. 2002. The IARC TP53 database: new online mutation analysis and recommendation to users. Hum Mutat 19:607-614.
Hogg RV, Tanis EA. 2006. Probability and statistical inference, 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
Karchin R, Mukesh A, Sali A, Couch F, Beattie MS. 2008. Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios. Cancer Inform 6:203-216.
Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB, IARC Unclassified Genetic Variants Working Group. 2008. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327-1336.
Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900.
Bao L, Cui Y. 2005. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 21:2185-2190.
Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome Res 11:863-874.
Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61-80.
Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21:3940-3941.
Reva BA, Antipin YA, Sander C. 2010. Functional impact of protein mutations: evolutionary information score and application to cancer genomics. Nucleic Acids Res (in press).
Chun S, Fay JC. 2009. Identification of deleterious mutations within three human genomes. Genome Res 19:1553-1561.
Goldgar DE, Easton DF, Deffenbaugh AM, Monterio AN, Tavtigian SV, Couch FJ, Breast Cancer Information Core (BIC) Steering Committee. 2004. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75:535-544.
Chao EC, Velasquez JL, Witherspoon MS, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert G, Anton-Culver H, Lynch H, Lipkin SM. 2008. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat 29:852-860.
Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188:415-431.
Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. 2010. Small-sample precision of ROC-related estimates. Bioinformatics 26:822-830.
Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. 2006. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317-1325.
2004; 41
2002; 19
2006; 34
2002; 30
2010
2002; 12
2006; 7
2005; 21
2006
2008; 6
2002
2007; 28
2004; 75
2010; 20
2009; 30
2010; 26
2009; 10
2000; 16
1986; 188
2008; 29
2006; 27
2007; 8
2007; 80
2001; 11
2009; 19
2010; 7
2005; 33
2003; 22
Hogg (10.1002/humu.21490-BIB14|cit14) 2006
Sing (10.1002/humu.21490-BIB28|cit28) 2005; 21
Agresti (10.1002/humu.21490-BIB3|cit3) 2002
Bao (10.1002/humu.21490-BIB5|cit5) 2005; 21
Thusberg (10.1002/humu.21490-BIB31|cit31) 2009; 30
Mathe (10.1002/humu.21490-BIB19|cit19) 2006; 34
Schneider (10.1002/humu.21490-BIB27|cit27) 1986; 188
Jordan (10.1002/humu.21490-BIB15|cit15) 2010; 20
Ramensky (10.1002/humu.21490-BIB24|cit24) 2002; 30
Ng (10.1002/humu.21490-BIB21|cit21) 2002; 12
Karchin (10.1002/humu.21490-BIB17|cit17) 2008; 6
Szabo (10.1002/humu.21490-BIB29|cit29) 2000; 16
Reva (10.1002/humu.21490-BIB26|cit26) 2010
Abkevich (10.1002/humu.21490-BIB1|cit1) 2004; 41
Tavtigian (10.1002/humu.21490-BIB30|cit30) 2008; 29
Greenblatt (10.1002/humu.21490-BIB11|cit11) 2008; 29
Adzhubei (10.1002/humu.21490-BIB2|cit2) 2010; 7
Chan (10.1002/humu.21490-BIB6|cit6) 2007; 28
Chao (10.1002/humu.21490-BIB7|cit7) 2008; 29
Goldgar (10.1002/humu.21490-BIB12|cit12) 2004; 75
Fawcett (10.1002/humu.21490-BIB9|cit9) 2006; 27
Karchin (10.1002/humu.21490-BIB16|cit16) 2009; 10
Balasubramanian (10.1002/humu.21490-BIB4|cit4) 2005; 33
Kryukov (10.1002/humu.21490-BIB18|cit18) 2007; 80
Olivier (10.1002/humu.21490-BIB23|cit23) 2002; 19
Ng (10.1002/humu.21490-BIB20|cit20) 2001; 11
Reva (10.1002/humu.21490-BIB25|cit25) 2007; 8
Hanczar (10.1002/humu.21490-BIB13|cit13) 2010; 26
Greenblatt (10.1002/humu.21490-BIB10|cit10) 2003; 22
Ng (10.1002/humu.21490-BIB22|cit22) 2006; 7
Chun (10.1002/humu.21490-BIB8|cit8) 2009; 19
21618348 - Hum Mutat. 2011 Jun;32(6):v
References_xml – reference: Szabo C, Masiello A, Ryan JF, The BIC Consortium, Brody L. 2000. The breast cancer information core: database design, structure and scope. Hum Mutat 16:123-131.
– reference: Bao L, Cui Y. 2005. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 21:2185-2190.
– reference: Reva B, Antipin Y, Sander C. 2007. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 8:R232.
– reference: Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900.
– reference: Kryukov GV, Pennacchio LA, Sunyaev SR. 2007. Most rare missense alleles are deleterious in humans: implication for complex disease and association studies. Am J Hum Genet 80:727-739.
– reference: Ng PC, Henikoff S. 2002. Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436-446.
– reference: Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev S. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7:248-249.
– reference: Chun S, Fay JC. 2009. Identification of deleterious mutations within three human genomes. Genome Res 19:1553-1561.
– reference: Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB, IARC Unclassified Genetic Variants Working Group. 2008. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327-1336.
– reference: Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. 2010. Small-sample precision of ROC-related estimates. Bioinformatics 26:822-830.
– reference: Agresti A. 2002. Categorical data analysis, 2nd ed. Hoboken, NJ: John Wiley and Sons.
– reference: Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27:861-874.
– reference: Hogg RV, Tanis EA. 2006. Probability and statistical inference, 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
– reference: Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61-80.
– reference: Reva BA, Antipin YA, Sander C. 2010. Functional impact of protein mutations: evolutionary information score and application to cancer genomics. Nucleic Acids Res (in press).
– reference: Thusberg J, Vihinen M. 2009. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30:703-714.
– reference: Balasubramanian S, Xia Y, Freinkman E, Gerstein M. 2005. Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res 33:1710-1721.
– reference: Greenblatt MS, Brody LC, Foulkes WD, Genuardi M, Hofstra RM, Olivier M, Plon S, Sijmons RH, Sinilnikova O, Spurdle AB. 2008. Locus-specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes. Hum Mutat 29:1273-1281.
– reference: Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21:3940-3941.
– reference: Karchin R, Mukesh A, Sali A, Couch F, Beattie MS. 2008. Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios. Cancer Inform 6:203-216.
– reference: Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188:415-431.
– reference: Goldgar DE, Easton DF, Deffenbaugh AM, Monterio AN, Tavtigian SV, Couch FJ, Breast Cancer Information Core (BIC) Steering Committee. 2004. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75:535-544.
– reference: Karchin R. 2009. Next generation tools for the annotation of human SNPs. Brief Bioinform 10:35-52.
– reference: Chao EC, Velasquez JL, Witherspoon MS, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert G, Anton-Culver H, Lynch H, Lipkin SM. 2008. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat 29:852-860.
– reference: Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV. 2004. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41:492-507.
– reference: Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. 2002. The IARC TP53 database: new online mutation analysis and recommendation to users. Hum Mutat 19:607-614.
– reference: Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. 2006. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317-1325.
– reference: Greenblatt MS, Beaudet JG, Gump JR, Godin KS, Trombley L, Koh J, Bond JP. 2003. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Oncogene 22:1150-1163.
– reference: Jordan DM, Ramensky VE, Sunyaev SR. 2010. Human allelic variation: perspective from protein function, structure, and evolution. Curr Opin Struct Biol 20:342-350.
– reference: Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome Res 11:863-874.
– reference: Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, Raevaara T, Ollila S, Nystrom M, Grimm AJ, Christodoulou J, Oetting WS, Greenblatt MS. 2007. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat 28:683-693.
– volume: 6
  start-page: 203
  year: 2008
  end-page: 216
  article-title: Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios
  publication-title: Cancer Inform
– year: 2010
  article-title: Functional impact of protein mutations: evolutionary information score and application to cancer genomics
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 1150
  year: 2003
  end-page: 1163
  article-title: Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease‐associated mutations to predict the functional consequences of allelic variants
  publication-title: Oncogene
– volume: 11
  start-page: 863
  year: 2001
  end-page: 874
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res
– volume: 33
  start-page: 1710
  year: 2005
  end-page: 1721
  article-title: Sequence variation in G‐protein‐coupled receptors: analysis of single nucleotide polymorphisms
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 342
  year: 2010
  end-page: 350
  article-title: Human allelic variation: perspective from protein function, structure, and evolution
  publication-title: Curr Opin Struct Biol
– volume: 12
  start-page: 436
  year: 2002
  end-page: 446
  article-title: Accounting for human polymorphisms predicted to affect protein function
  publication-title: Genome Res
– volume: 7
  start-page: 61
  year: 2006
  end-page: 80
  article-title: Predicting the effects of amino acid substitutions on protein function
  publication-title: Annu Rev Genomics Hum Genet
– volume: 7
  start-page: 248
  year: 2010
  end-page: 249
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat Methods
– volume: 19
  start-page: 607
  year: 2002
  end-page: 614
  article-title: The IARC TP53 database: new online mutation analysis and recommendation to users
  publication-title: Hum Mutat
– volume: 28
  start-page: 683
  year: 2007
  end-page: 693
  article-title: Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR)
  publication-title: Hum Mutat
– volume: 21
  start-page: 2185
  year: 2005
  end-page: 2190
  article-title: Prediction of the phenotypic effects of non‐synonymous single nucleotide polymorphisms using structural and evolutionary information
  publication-title: Bioinformatics
– volume: 75
  start-page: 535
  year: 2004
  end-page: 544
  article-title: Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2
  publication-title: Am J Hum Genet
– volume: 30
  start-page: 3894
  year: 2002
  end-page: 3900
  article-title: Human non‐synonymous SNPs: server and survey
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 1327
  year: 2008
  end-page: 1336
  article-title: In silico analysis of missense substitutions using sequence‐alignment based methods
  publication-title: Hum Mutat
– volume: 29
  start-page: 1273
  year: 2008
  end-page: 1281
  article-title: Locus‐specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes
  publication-title: Hum Mutat
– volume: 41
  start-page: 492
  year: 2004
  end-page: 507
  article-title: Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation
  publication-title: J Med Genet
– volume: 188
  start-page: 415
  year: 1986
  end-page: 431
  article-title: Information content of binding sites on nucleotide sequences
  publication-title: J Mol Biol
– volume: 29
  start-page: 852
  year: 2008
  end-page: 860
  article-title: Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms‐mismatch repair (MAPP‐MMR)
  publication-title: Hum Mutat
– volume: 10
  start-page: 35
  year: 2009
  end-page: 52
  article-title: Next generation tools for the annotation of human SNPs
  publication-title: Brief Bioinform
– year: 2002
– year: 2006
– volume: 8
  start-page: R232
  year: 2007
  article-title: Determinants of protein function revealed by combinatorial entropy optimization
  publication-title: Genome Biol
– volume: 30
  start-page: 703
  year: 2009
  end-page: 714
  article-title: Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods
  publication-title: Hum Mutat
– volume: 26
  start-page: 822
  year: 2010
  end-page: 830
  article-title: Small‐sample precision of ROC‐related estimates
  publication-title: Bioinformatics
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
– volume: 34
  start-page: 1317
  year: 2006
  end-page: 1325
  article-title: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 3940
  year: 2005
  end-page: 3941
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
– volume: 19
  start-page: 1553
  year: 2009
  end-page: 1561
  article-title: Identification of deleterious mutations within three human genomes
  publication-title: Genome Res
– volume: 80
  start-page: 727
  year: 2007
  end-page: 739
  article-title: Most rare missense alleles are deleterious in humans: implication for complex disease and association studies
  publication-title: Am J Hum Genet
– volume: 16
  start-page: 123
  year: 2000
  end-page: 131
  article-title: The breast cancer information core: database design, structure and scope
  publication-title: Hum Mutat
– volume: 21
  start-page: 2185
  year: 2005
  ident: 10.1002/humu.21490-BIB5|cit5
  article-title: Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti365
– volume: 29
  start-page: 852
  year: 2008
  ident: 10.1002/humu.21490-BIB7|cit7
  article-title: Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR)
  publication-title: Hum Mutat
  doi: 10.1002/humu.20735
– volume: 22
  start-page: 1150
  year: 2003
  ident: 10.1002/humu.21490-BIB10|cit10
  article-title: Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206101
– volume: 29
  start-page: 1273
  year: 2008
  ident: 10.1002/humu.21490-BIB11|cit11
  article-title: Locus-specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes
  publication-title: Hum Mutat
  doi: 10.1002/humu.20889
– volume: 7
  start-page: 61
  year: 2006
  ident: 10.1002/humu.21490-BIB22|cit22
  article-title: Predicting the effects of amino acid substitutions on protein function
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.7.080505.115630
– volume: 11
  start-page: 863
  year: 2001
  ident: 10.1002/humu.21490-BIB20|cit20
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res
  doi: 10.1101/gr.176601
– volume: 34
  start-page: 1317
  year: 2006
  ident: 10.1002/humu.21490-BIB19|cit19
  article-title: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj518
– volume: 30
  start-page: 703
  year: 2009
  ident: 10.1002/humu.21490-BIB31|cit31
  article-title: Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods
  publication-title: Hum Mutat
  doi: 10.1002/humu.20938
– volume: 19
  start-page: 1553
  year: 2009
  ident: 10.1002/humu.21490-BIB8|cit8
  article-title: Identification of deleterious mutations within three human genomes
  publication-title: Genome Res
  doi: 10.1101/gr.092619.109
– volume: 26
  start-page: 822
  year: 2010
  ident: 10.1002/humu.21490-BIB13|cit13
  article-title: Small-sample precision of ROC-related estimates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq037
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1002/humu.21490-BIB9|cit9
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 19
  start-page: 607
  year: 2002
  ident: 10.1002/humu.21490-BIB23|cit23
  article-title: The IARC TP53 database: new online mutation analysis and recommendation to users
  publication-title: Hum Mutat
  doi: 10.1002/humu.10081
– volume: 75
  start-page: 535
  year: 2004
  ident: 10.1002/humu.21490-BIB12|cit12
  article-title: Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2
  publication-title: Am J Hum Genet
  doi: 10.1086/424388
– volume: 16
  start-page: 123
  year: 2000
  ident: 10.1002/humu.21490-BIB29|cit29
  article-title: The breast cancer information core: database design, structure and scope
  publication-title: Hum Mutat
  doi: 10.1002/1098-1004(200008)16:2<123::AID-HUMU4>3.0.CO;2-Y
– volume: 7
  start-page: 248
  year: 2010
  ident: 10.1002/humu.21490-BIB2|cit2
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat Methods
  doi: 10.1038/nmeth0410-248
– volume-title: Categorical data analysis
  year: 2002
  ident: 10.1002/humu.21490-BIB3|cit3
  doi: 10.1002/0471249688
– volume: 80
  start-page: 727
  year: 2007
  ident: 10.1002/humu.21490-BIB18|cit18
  article-title: Most rare missense alleles are deleterious in humans: implication for complex disease and association studies
  publication-title: Am J Hum Genet
  doi: 10.1086/513473
– volume: 10
  start-page: 35
  year: 2009
  ident: 10.1002/humu.21490-BIB16|cit16
  article-title: Next generation tools for the annotation of human SNPs
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbn047
– volume: 28
  start-page: 683
  year: 2007
  ident: 10.1002/humu.21490-BIB6|cit6
  article-title: Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR)
  publication-title: Hum Mutat
  doi: 10.1002/humu.20492
– volume-title: Probability and statistical inference
  year: 2006
  ident: 10.1002/humu.21490-BIB14|cit14
– volume: 20
  start-page: 342
  year: 2010
  ident: 10.1002/humu.21490-BIB15|cit15
  article-title: Human allelic variation: perspective from protein function, structure, and evolution
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2010.03.006
– volume: 30
  start-page: 3894
  year: 2002
  ident: 10.1002/humu.21490-BIB24|cit24
  article-title: Human non-synonymous SNPs: server and survey
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf493
– volume: 8
  start-page: R232
  year: 2007
  ident: 10.1002/humu.21490-BIB25|cit25
  article-title: Determinants of protein function revealed by combinatorial entropy optimization
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-11-r232
– year: 2010
  ident: 10.1002/humu.21490-BIB26|cit26
  article-title: Functional impact of protein mutations: evolutionary information score and application to cancer genomics
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 3940
  year: 2005
  ident: 10.1002/humu.21490-BIB28|cit28
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 29
  start-page: 1327
  year: 2008
  ident: 10.1002/humu.21490-BIB30|cit30
  article-title: In silico analysis of missense substitutions using sequence-alignment based methods
  publication-title: Hum Mutat
  doi: 10.1002/humu.20892
– volume: 33
  start-page: 1710
  year: 2005
  ident: 10.1002/humu.21490-BIB4|cit4
  article-title: Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki311
– volume: 12
  start-page: 436
  year: 2002
  ident: 10.1002/humu.21490-BIB21|cit21
  article-title: Accounting for human polymorphisms predicted to affect protein function
  publication-title: Genome Res
  doi: 10.1101/gr.212802
– volume: 41
  start-page: 492
  year: 2004
  ident: 10.1002/humu.21490-BIB1|cit1
  article-title: Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation
  publication-title: J Med Genet
  doi: 10.1136/jmg.2003.015867
– volume: 188
  start-page: 415
  year: 1986
  ident: 10.1002/humu.21490-BIB27|cit27
  article-title: Information content of binding sites on nucleotide sequences
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(86)90165-8
– volume: 6
  start-page: 203
  year: 2008
  ident: 10.1002/humu.21490-BIB17|cit17
  article-title: Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios
  publication-title: Cancer Inform
  doi: 10.4137/CIN.S618
– reference: 21618348 - Hum Mutat. 2011 Jun;32(6):v
SSID ssj0008553
Score 2.4443636
Snippet Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm‐generated sequence alignments or...
Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 661
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Algorithms
Align-GVGD
BRCA1
BRCA1 protein
BRCA1 Protein - genetics
BRCA1 Protein - metabolism
Computational Biology
Evolution
Genes, Tumor Suppressor
Humans
Missense mutation
MLH1
MLH1 protein
MSH2
MSH2 protein
multiple sequence alignment
Mutation, Missense - genetics
MutL Protein Homolog 1
MutS Homolog 2 Protein - genetics
MutS Homolog 2 Protein - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleotide sequence
p53 protein
PolyPhen-2
Protein structure
Sequence Alignment - methods
Sequence Analysis, Protein
SIFT
TP53
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Xvar
Title Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed
URI https://api.istex.fr/ark:/67375/WNG-TRF7W8RV-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.21490
https://www.ncbi.nlm.nih.gov/pubmed/21480434
https://www.proquest.com/docview/1766828961
https://www.proquest.com/docview/1017967710
https://www.proquest.com/docview/868995555
https://pubmed.ncbi.nlm.nih.gov/PMC4154965
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1059-7794
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1004
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008553
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFD4sK4ovXtZbdJURRVBIt5lMbuCLiLUIXaRs3X2RYTIz2ZZuU2kbUH-958y0qdVV0DyFzElIZs6Z-c4l3wA878Za6EjxUKW8CEWWpWGui26YpbqKEN8bU1EccnCc9kfiw1lytgevN__CeH6INuBGluHmazJwVS6PtqSh42bWdDgCfHLYozh1_tRwyx2VJ4mvrk8KhJCFaLlJ-dH21p3V6Ap17NfLoObvFZM_I1m3FPVuwufNR_gKlGmnWZUd_f0Xfsf__cpbcGONUdkbr1S3Yc_WB3DV71r57QCuDdb5-Dsw_bigcxpcNq_YjJL79dKyWeMz_IyWTR9tRLTP_I67S4YNJWoIQ_DJ1MX5fDFZjWdM1YZtKrvx8uTcFSow6_ckNndh1Ht38rYfrrdvCDWRyIVlIUwkjKhKnCeiMtOq4taSB4WYlFdxRL6kRv_PWG6yru3GBvFQhTcVVaHyNL4H-_W8tg-AqYRrLuLcVBnit8oUlP0T2iqltMWnBvByM4xSr7nNaYuNC-lZmbmkfpSuHwN41sp-8Ywel0q9cNrQiqjFlGrgskSeHr-XJ8NedpoPP0kewOFGXeTa_JeSWDfJlU2jAJ62zTgIlI1RtZ03S-nmwjRDhBcA-4NMnqK5JHgEcN8rYPs--JZ5V8QigGxHNVsB4g3fbaknY8cfLoiWL8VnvnKa95dekP3RYOTOHv6L8CO47kPvFKw6hP3VorGPEbutyifORn8A3FBCvw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbQrjheOJYrsIARCAmkdBPHuR4RohTYVqhq2X2zHNvZVt2mqG0k4NczY6cphQUJ8hTFkyixx_Y3R74h5HkQKa5CyXyZsNznaZr4mcoDP01UGQK-17pEP2R_kPTG_MNpfNrk5uC_MI4fonW44cyw6zVOcHRIH21ZQyf1vO4wQPhgse_zBAwVxETDLXtUFscuvz7OAUTmvGUnZUfbe3f2o33s2q8Xgc3fcyZ_xrJ2M-recBVXV5bDEHNQZp16XXTU918YHv_7O2-S6w1Mpa-dXt0il0x1QC67wpXfDsiVfhOSv01mn5Z4juNLFyWdY3y_Whk6r12Qn-LO6RyOAPipK7q7otBQgJJQwJ9Unp8tltP1ZE5lpekmuRsuT89srgI1riyxvkPG3bejNz2_qeDgK-SR84uc65BrXhawVIRFqmTJjEEjCmApK6MQzUkFJqA2TKeBCSINkKiEm_Iyl1kS3SV71aIy9wmVMVOMR5kuU4Bwpc4xAMiVkVIqA0_1yMvNOArV0JtjlY1z4YiZmcB-FLYfPfKslf3iSD0ulHph1aEVkcsZpsGlsTgZvBOjYTc9yYafBfPI4UZfRLMCrAQSb6I1m4Qeedo2wyBgQEZWZlGvhF0OkxRAnkfoH2SyBGZMDIdH7jkNbN8H3jILeMQ9ku7oZiuA1OG7LdV0YinEOTLzJfDMV1b1_tILojfuj-3Zg38RfkKu9kb9Y3H8fvDxIbnmPPHouzoke-tlbR4BlFsXj-2E_QHm6Ebg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJiZeuAwYYQOMQEggpWsS5_aIGKVcWk3VyvZmOb6sVdd0ahtp8Os5x05TCgMJ8hTFJ1FiH9vfueQ7hLxsR5LJQIS-SMLcZ2ma-JnM236aSBMAvlfKoB-y10-6Q_bpLD6rc3PwXxjHD9E43HBm2PUaJ7i-VOZwzRo6qqZVKwSEDxb7NovzDDP6jgZr9qgsjl1-fZwDiMxZw04aHq7v3diPtrFrr64Dm7_nTP6MZe1m1LnjKq4uLIch5qBMWtWyaMnvvzA8_vd33iW3a5hK3zq9ukdu6HKX3HSFK7_tkp1eHZK_TybHczzH8aUzQ6cY3y8Xmk4rF-SnuHM6hyMAfuqK7i4oNBSgJBTwJxUX57P5eDmaUlEqukruhsvjc5urQLUrS6wekGHn_cm7rl9XcPAl8sj5Rc5UwBQzBSwVQZFKYUKt0YgCWBqaKEBzUoIJqHSo0rZuRwogkYGbcpOLLIkekq1yVupHhIo4lCGLMmVSgHBG5RgAZFILIaSGp3rk9WocuazpzbHKxgV3xMwhx37kth898qKRvXSkHtdKvbLq0IiI-QTT4NKYn_Y_8JNBJz3NBl956JGDlb7wegVYcCTeRGs2CTzyvGmGQcCAjCj1rFpwuxwmKYA8j9A_yGQJzJgYDo_sOQ1s3gfeMmuziHkk3dDNRgCpwzdbyvHIUogzZOZL4JlvrOr9pRd4d9gb2rPH_yL8jOwcH3X4l4_9z_vklnPEo-vqgGwt55V-AkhuWTy18_UHMRFGZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+missense+mutation+functionality+depends+on+both+the+algorithm+and+sequence+alignment+employed&rft.jtitle=Human+mutation&rft.au=Hicks%2C+Stephanie&rft.au=Wheeler%2C+David+A&rft.au=Plon%2C+Sharon+E&rft.au=Kimmel%2C+Marek&rft.date=2011-06-01&rft.issn=1098-1004&rft.eissn=1098-1004&rft.volume=32&rft.issue=6&rft.spage=661&rft_id=info:doi/10.1002%2Fhumu.21490&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon