Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed
Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm‐generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align‐GVGD, PolyPhen‐2, and Xvar when generating functional...
Saved in:
| Published in | Human mutation Vol. 32; no. 6; pp. 661 - 668 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2011
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1059-7794 1098-1004 1098-1004 |
| DOI | 10.1002/humu.21490 |
Cover
| Abstract | Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm‐generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align‐GVGD, PolyPhen‐2, and Xvar when generating functionality predictions of well‐characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen‐2, (3) Uniprot, and (4) a manually curated alignment tuned for Align‐GVGD. Alignments differ in sequence composition and evolutionary depth. Data‐based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78–79% for all four algorithms. Predictions from the PolyPhen‐2 algorithm were least dependent on the alignment employed. In contrast, Align‐GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Hum Mutat 32:1–8, 2011. © 2011 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction.Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Hum Mutat 32:1-8, 2011. © 2011 Wiley-Liss, Inc. Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or manually curated alignments. We compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2, and Xvar when generating functionality predictions of well-characterized missense mutations (n = 267) within the BRCA1, MSH2, MLH1, and TP53 genes. We also evaluated the impact of the alignment employed on predictions from these algorithms (except Xvar) when supplied the same four alignments including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition and evolutionary depth. Data-based receiver operating characteristic curves employing the native alignment for each algorithm result in area under the curve of 78-79% for all four algorithms. Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number of sequences. Of note, algorithms make different predictions of variants even when provided the same alignment and do not necessarily perform best using their own alignment. Thus, researchers should consider optimizing both the algorithm and sequence alignment employed in missense prediction. Hum Mutat 32:1-8, 2011. ? 2011 Wiley-Liss, Inc. |
| Author | Kimmel, Marek Wheeler, David A. Plon, Sharon E. Hicks, Stephanie |
| AuthorAffiliation | 3 Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA 2 Human Genome Sequencing Center, Houston, Texas, USA 1 Department of Statistics, Rice University, Houston, Texas, USA |
| AuthorAffiliation_xml | – name: 2 Human Genome Sequencing Center, Houston, Texas, USA – name: 1 Department of Statistics, Rice University, Houston, Texas, USA – name: 3 Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA |
| Author_xml | – sequence: 1 givenname: Stephanie surname: Hicks fullname: Hicks, Stephanie organization: Department of Statistics, Rice University, Houston, Texas – sequence: 2 givenname: David A. surname: Wheeler fullname: Wheeler, David A. organization: Human Genome Sequencing Center, Houston, Texas – sequence: 3 givenname: Sharon E. surname: Plon fullname: Plon, Sharon E. organization: Human Genome Sequencing Center, Houston, Texas – sequence: 4 givenname: Marek surname: Kimmel fullname: Kimmel, Marek email: kimmel@rice.edu organization: Department of Statistics, Rice University, Houston, Texas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21480434$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAQxy1URB9w4QMgSxyokFLsxLHjSyVU0RapPFR16dFy4smu28Re7KSw3x7vpltBheqLrZnffzyvfbTjvAOEXlNyRAnJPyzGfjzKKZPkGdqjRFZZMrOd9buUmRCS7aL9GG8IIVVZFi_QboIrwgq2h26_BzC2Gax32Le4tzGCi4D7cdAbYzu6jVd3dlhhA0twJuLkqP2wwMMCsO7mPthh0WPtDI7wcwTXrM127npwA4Z-2fkVmJfoeau7CK_u7wM0O_10dXKeXXw7-3zy8SJrypRWVktmKDOsrRkhtBaNbnOAiudcSpq3BWVE0EbmzEBuBAFSGMLLNolkK3XFiwN0PMVdjnUPpkk5BN2pZbC9DivltVX_epxdqLm_U4yWTPIyBXh3HyD4VE0cVOpLA12nHfgxqopXUpbpJPLwSZISKiQXgpKEvn2E3vgxpL4mSnBe5ZXkNFFv_s79IentxBJAJqAJPsYArWrsNKpUiu3Sj2q9FGq9FGqzFEny_pFkG_W_MJ3gX7aD1ROkOp99mW012aSxcYDfDxodbhUXhSjV9dczdXV5Kq6ryx8qL_4AO9DYpA |
| CitedBy_id | crossref_primary_10_3390_ijms18122711 crossref_primary_10_1093_hmg_dds385 crossref_primary_10_1186_s12881_017_0422_7 crossref_primary_10_1038_jhg_2012_49 crossref_primary_10_1111_hae_12917 crossref_primary_10_1373_clinchem_2013_209213 crossref_primary_10_1002_humu_23193 crossref_primary_10_1371_journal_pcbi_1005628 crossref_primary_10_1111_cbdd_13676 crossref_primary_10_1016_j_atg_2012_06_002 crossref_primary_10_1515_biol_2017_0003 crossref_primary_10_1038_nrg3455 crossref_primary_10_1038_s41397_018_0063_z crossref_primary_10_1016_j_isci_2021_103276 crossref_primary_10_1038_ng_2734 crossref_primary_10_3390_jpm14111111 crossref_primary_10_1155_2013_948617 crossref_primary_10_1002_hep4_2051 crossref_primary_10_2139_ssrn_3904359 crossref_primary_10_1002_humu_23873 crossref_primary_10_1002_jcb_26209 crossref_primary_10_1093_hmg_ddu607 crossref_primary_10_3390_biom10030475 crossref_primary_10_1002_ijc_29630 crossref_primary_10_1038_s41467_024_55066_4 crossref_primary_10_1038_s41598_019_54976_4 crossref_primary_10_1155_2013_697051 crossref_primary_10_1155_2019_5902391 crossref_primary_10_1186_s13059_017_1353_5 crossref_primary_10_1073_pnas_1511585112 crossref_primary_10_1007_s12013_013_9697_2 crossref_primary_10_1007_s11030_023_10694_8 crossref_primary_10_1186_s12883_022_02828_6 crossref_primary_10_1017_S0952523815000322 crossref_primary_10_1038_srep37284 crossref_primary_10_1016_j_mgene_2019_100626 crossref_primary_10_1016_j_compbiolchem_2019_02_003 crossref_primary_10_1016_j_ygeno_2023_110589 crossref_primary_10_3390_molecules25235543 crossref_primary_10_1016_j_mgene_2016_05_002 crossref_primary_10_1002_wcms_1170 crossref_primary_10_1007_s12013_012_9472_9 crossref_primary_10_1002_mgg3_116 crossref_primary_10_1016_j_braindev_2014_07_003 crossref_primary_10_1111_ane_12515 crossref_primary_10_1007_s12687_016_0289_x crossref_primary_10_1371_journal_pcbi_1011521 crossref_primary_10_1136_jmedgenet_2019_106368 crossref_primary_10_1016_j_jtbi_2014_03_027 crossref_primary_10_1002_humu_22204 crossref_primary_10_1002_humu_22720 crossref_primary_10_1016_j_bbagen_2021_129935 crossref_primary_10_3390_ijms15058491 crossref_primary_10_1002_humu_21630 crossref_primary_10_1161_JAHA_112_002642 crossref_primary_10_1093_nar_gks919 crossref_primary_10_1096_fj_202000500R crossref_primary_10_1186_s12920_018_0353_y crossref_primary_10_1534_g3_116_037184 crossref_primary_10_1007_s00439_014_1470_0 crossref_primary_10_3389_fendo_2023_1195704 crossref_primary_10_1002_humu_22794 crossref_primary_10_1093_bioinformatics_btu018 crossref_primary_10_1093_nar_gks539 crossref_primary_10_1038_jhg_2012_144 crossref_primary_10_1093_ndt_gft532 crossref_primary_10_1371_journal_pone_0083502 crossref_primary_10_1007_s12652_021_02994_4 crossref_primary_10_1016_j_mito_2016_10_006 crossref_primary_10_1093_ckj_sfx075 crossref_primary_10_1371_journal_pgen_1007009 crossref_primary_10_1038_ng_2741 crossref_primary_10_1186_1471_2350_14_118 crossref_primary_10_1093_brain_awt202 crossref_primary_10_1002_mgg3_1355 crossref_primary_10_1371_journal_pone_0220711 crossref_primary_10_1007_s11011_024_01341_8 crossref_primary_10_1186_1753_6561_6_S6_P15 crossref_primary_10_1016_j_ejmg_2017_08_005 crossref_primary_10_1016_j_gene_2012_09_097 crossref_primary_10_1002_pro_2552 crossref_primary_10_1016_j_compbiolchem_2019_05_012 crossref_primary_10_3892_mmr_2019_10763 crossref_primary_10_7717_peerj_796 crossref_primary_10_1002_0471142905_hg0720s76 crossref_primary_10_1016_j_mgene_2019_100556 crossref_primary_10_1002_humu_22903 crossref_primary_10_1093_mutage_ges069 crossref_primary_10_3182_20140824_6_ZA_1003_02095 crossref_primary_10_3390_ijms232012281 crossref_primary_10_1590_1678_4685_gmb_2018_0148 crossref_primary_10_3390_biom11111733 crossref_primary_10_1002_humu_22225 crossref_primary_10_1080_17476348_2018_1457438 crossref_primary_10_1080_01621459_2024_2412464 crossref_primary_10_1007_s11515_014_1320_4 crossref_primary_10_1007_s12010_013_0315_y crossref_primary_10_1002_humu_23266 crossref_primary_10_1080_07391102_2020_1805018 crossref_primary_10_1016_j_compbiolchem_2021_107560 crossref_primary_10_1080_07391102_2016_1166456 crossref_primary_10_1093_carcin_bgaa079 crossref_primary_10_2174_0113892029285310231227105503 crossref_primary_10_1146_annurev_med_051010_162644 crossref_primary_10_1016_j_cell_2011_09_011 crossref_primary_10_1371_journal_pone_0174953 crossref_primary_10_1002_humu_21642 crossref_primary_10_2139_ssrn_4201188 crossref_primary_10_1002_humu_22214 crossref_primary_10_1371_journal_pgen_1003709 crossref_primary_10_1177_2326409814543468 crossref_primary_10_1007_s00894_015_2794_y crossref_primary_10_1002_humu_22243 crossref_primary_10_1515_psr_2018_0161 crossref_primary_10_1016_j_ygeno_2020_10_007 crossref_primary_10_1534_genetics_116_190033 crossref_primary_10_1371_journal_pone_0214015 crossref_primary_10_1101_gr_176214_114 crossref_primary_10_1186_s12859_017_1562_7 crossref_primary_10_3389_fphy_2024_1358406 crossref_primary_10_1186_s10020_018_0041_6 crossref_primary_10_1038_482257a crossref_primary_10_1186_s12881_015_0176_z crossref_primary_10_1016_j_tig_2011_06_004 crossref_primary_10_1080_07391102_2014_968211 crossref_primary_10_1111_joim_12085 crossref_primary_10_1002_jcb_25499 crossref_primary_10_1186_gm359 crossref_primary_10_3389_fphar_2022_931089 crossref_primary_10_7717_peerj_11724 crossref_primary_10_1007_s00439_022_02457_6 crossref_primary_10_15252_msb_20145222 crossref_primary_10_1093_hmg_ddx404 crossref_primary_10_1155_2017_5096208 crossref_primary_10_1002_ijc_28768 crossref_primary_10_1002_humu_22110 crossref_primary_10_1007_s11816_024_00920_6 crossref_primary_10_1007_s12010_012_0061_6 crossref_primary_10_1016_j_ejmhg_2018_03_001 crossref_primary_10_1111_cge_12406 crossref_primary_10_1161_CIRCGENETICS_112_963785 crossref_primary_10_1186_s12886_023_03276_7 crossref_primary_10_1007_s11094_020_02101_5 crossref_primary_10_1002_mgg3_148 crossref_primary_10_1016_j_jtbi_2016_05_013 crossref_primary_10_14233__ajchem_2019_22020 crossref_primary_10_1002_prot_26051 crossref_primary_10_1016_j_jmgm_2022_108368 crossref_primary_10_1634_theoncologist_2012_0452 crossref_primary_10_1080_26895293_2020_1737249 crossref_primary_10_1093_femsyr_fox078 crossref_primary_10_2119_molmed_2016_00010 crossref_primary_10_1084_jem_20122842 crossref_primary_10_1155_2014_210401 crossref_primary_10_1093_bioinformatics_btt769 crossref_primary_10_1038_ng_2303 crossref_primary_10_1534_g3_118_200563 crossref_primary_10_35193_bseufbd_1205700 crossref_primary_10_1002_humu_22911 crossref_primary_10_1111_hae_12651 crossref_primary_10_3390_ijms23031861 |
| Cites_doi | 10.1093/bioinformatics/bti365 10.1002/humu.20735 10.1038/sj.onc.1206101 10.1002/humu.20889 10.1146/annurev.genom.7.080505.115630 10.1101/gr.176601 10.1093/nar/gkj518 10.1002/humu.20938 10.1101/gr.092619.109 10.1093/bioinformatics/btq037 10.1016/j.patrec.2005.10.010 10.1002/humu.10081 10.1086/424388 10.1002/1098-1004(200008)16:2<123::AID-HUMU4>3.0.CO;2-Y 10.1038/nmeth0410-248 10.1002/0471249688 10.1086/513473 10.1093/bib/bbn047 10.1002/humu.20492 10.1016/j.sbi.2010.03.006 10.1093/nar/gkf493 10.1186/gb-2007-8-11-r232 10.1093/bioinformatics/bti623 10.1002/humu.20892 10.1093/nar/gki311 10.1101/gr.212802 10.1136/jmg.2003.015867 10.1016/0022-2836(86)90165-8 10.4137/CIN.S618 |
| ContentType | Journal Article |
| Copyright | 2011 Wiley‐Liss, Inc. 2011 Wiley-Liss, Inc. |
| Copyright_xml | – notice: 2011 Wiley‐Liss, Inc. – notice: 2011 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/humu.21490 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1098-1004 |
| EndPage | 668 |
| ExternalDocumentID | PMC4154965 3958188171 21480434 10_1002_humu_21490 HUMU21490 ark_67375_WNG_TRF7W8RV_2 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: CPRIT funderid: RP101089 – fundername: NCI T32 training program funderid: CA096520 – fundername: NCI NIH HHS grantid: T32 CA096520 |
| GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29I 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 AAESR AAEVG AAMMB AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNP GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M66 M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ X7M XG1 XSW XV2 ZZTAW ~IA ~KM ~WT 3V. 88A AAHHS AAJEY ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV M0L RHX RWI RWV WRC WTM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5480-b94d14d4fb4001b7caf2ee86269912f314071c924de2d70e03d065f4d19f9a863 |
| IEDL.DBID | DR2 |
| ISSN | 1059-7794 1098-1004 |
| IngestDate | Thu Aug 21 18:18:44 EDT 2025 Thu Oct 02 10:18:44 EDT 2025 Fri Sep 05 11:45:33 EDT 2025 Fri Oct 03 07:41:58 EDT 2025 Mon Jul 21 05:54:06 EDT 2025 Wed Oct 01 01:56:27 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Jan 22 16:56:05 EST 2025 Sun Sep 21 06:19:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 2011 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5480-b94d14d4fb4001b7caf2ee86269912f314071c924de2d70e03d065f4d19f9a863 |
| Notes | CPRIT - No. RP101089 ark:/67375/WNG-TRF7W8RV-2 ArticleID:HUMU21490 Communicated by Sean V. Tavtigian istex:70D075A47193BDCE51F3EF2446242ED450E1AE6E NCI T32 training program - No. CA096520 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PMID | 21480434 |
| PQID | 1766828961 |
| PQPubID | 30498 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4154965 proquest_miscellaneous_868995555 proquest_miscellaneous_1017967710 proquest_journals_1766828961 pubmed_primary_21480434 crossref_citationtrail_10_1002_humu_21490 crossref_primary_10_1002_humu_21490 wiley_primary_10_1002_humu_21490_HUMU21490 istex_primary_ark_67375_WNG_TRF7W8RV_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2011 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Human mutation |
| PublicationTitleAlternate | Hum. Mutat |
| PublicationYear | 2011 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company John Wiley & Sons, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: John Wiley & Sons, Inc |
| References | Reva B, Antipin Y, Sander C. 2007. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 8:R232. Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27:861-874. Szabo C, Masiello A, Ryan JF, The BIC Consortium, Brody L. 2000. The breast cancer information core: database design, structure and scope. Hum Mutat 16:123-131. Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV. 2004. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41:492-507. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev S. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7:248-249. Thusberg J, Vihinen M. 2009. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30:703-714. Karchin R. 2009. Next generation tools for the annotation of human SNPs. Brief Bioinform 10:35-52. Ng PC, Henikoff S. 2002. Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436-446. Jordan DM, Ramensky VE, Sunyaev SR. 2010. Human allelic variation: perspective from protein function, structure, and evolution. Curr Opin Struct Biol 20:342-350. Greenblatt MS, Brody LC, Foulkes WD, Genuardi M, Hofstra RM, Olivier M, Plon S, Sijmons RH, Sinilnikova O, Spurdle AB. 2008. Locus-specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes. Hum Mutat 29:1273-1281. Agresti A. 2002. Categorical data analysis, 2nd ed. Hoboken, NJ: John Wiley and Sons. Kryukov GV, Pennacchio LA, Sunyaev SR. 2007. Most rare missense alleles are deleterious in humans: implication for complex disease and association studies. Am J Hum Genet 80:727-739. Greenblatt MS, Beaudet JG, Gump JR, Godin KS, Trombley L, Koh J, Bond JP. 2003. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Oncogene 22:1150-1163. Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, Raevaara T, Ollila S, Nystrom M, Grimm AJ, Christodoulou J, Oetting WS, Greenblatt MS. 2007. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat 28:683-693. Balasubramanian S, Xia Y, Freinkman E, Gerstein M. 2005. Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res 33:1710-1721. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. 2002. The IARC TP53 database: new online mutation analysis and recommendation to users. Hum Mutat 19:607-614. Hogg RV, Tanis EA. 2006. Probability and statistical inference, 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall. Karchin R, Mukesh A, Sali A, Couch F, Beattie MS. 2008. Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios. Cancer Inform 6:203-216. Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB, IARC Unclassified Genetic Variants Working Group. 2008. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327-1336. Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900. Bao L, Cui Y. 2005. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 21:2185-2190. Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome Res 11:863-874. Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61-80. Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21:3940-3941. Reva BA, Antipin YA, Sander C. 2010. Functional impact of protein mutations: evolutionary information score and application to cancer genomics. Nucleic Acids Res (in press). Chun S, Fay JC. 2009. Identification of deleterious mutations within three human genomes. Genome Res 19:1553-1561. Goldgar DE, Easton DF, Deffenbaugh AM, Monterio AN, Tavtigian SV, Couch FJ, Breast Cancer Information Core (BIC) Steering Committee. 2004. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75:535-544. Chao EC, Velasquez JL, Witherspoon MS, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert G, Anton-Culver H, Lynch H, Lipkin SM. 2008. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat 29:852-860. Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188:415-431. Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. 2010. Small-sample precision of ROC-related estimates. Bioinformatics 26:822-830. Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. 2006. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317-1325. 2004; 41 2002; 19 2006; 34 2002; 30 2010 2002; 12 2006; 7 2005; 21 2006 2008; 6 2002 2007; 28 2004; 75 2010; 20 2009; 30 2010; 26 2009; 10 2000; 16 1986; 188 2008; 29 2006; 27 2007; 8 2007; 80 2001; 11 2009; 19 2010; 7 2005; 33 2003; 22 Hogg (10.1002/humu.21490-BIB14|cit14) 2006 Sing (10.1002/humu.21490-BIB28|cit28) 2005; 21 Agresti (10.1002/humu.21490-BIB3|cit3) 2002 Bao (10.1002/humu.21490-BIB5|cit5) 2005; 21 Thusberg (10.1002/humu.21490-BIB31|cit31) 2009; 30 Mathe (10.1002/humu.21490-BIB19|cit19) 2006; 34 Schneider (10.1002/humu.21490-BIB27|cit27) 1986; 188 Jordan (10.1002/humu.21490-BIB15|cit15) 2010; 20 Ramensky (10.1002/humu.21490-BIB24|cit24) 2002; 30 Ng (10.1002/humu.21490-BIB21|cit21) 2002; 12 Karchin (10.1002/humu.21490-BIB17|cit17) 2008; 6 Szabo (10.1002/humu.21490-BIB29|cit29) 2000; 16 Reva (10.1002/humu.21490-BIB26|cit26) 2010 Abkevich (10.1002/humu.21490-BIB1|cit1) 2004; 41 Tavtigian (10.1002/humu.21490-BIB30|cit30) 2008; 29 Greenblatt (10.1002/humu.21490-BIB11|cit11) 2008; 29 Adzhubei (10.1002/humu.21490-BIB2|cit2) 2010; 7 Chan (10.1002/humu.21490-BIB6|cit6) 2007; 28 Chao (10.1002/humu.21490-BIB7|cit7) 2008; 29 Goldgar (10.1002/humu.21490-BIB12|cit12) 2004; 75 Fawcett (10.1002/humu.21490-BIB9|cit9) 2006; 27 Karchin (10.1002/humu.21490-BIB16|cit16) 2009; 10 Balasubramanian (10.1002/humu.21490-BIB4|cit4) 2005; 33 Kryukov (10.1002/humu.21490-BIB18|cit18) 2007; 80 Olivier (10.1002/humu.21490-BIB23|cit23) 2002; 19 Ng (10.1002/humu.21490-BIB20|cit20) 2001; 11 Reva (10.1002/humu.21490-BIB25|cit25) 2007; 8 Hanczar (10.1002/humu.21490-BIB13|cit13) 2010; 26 Greenblatt (10.1002/humu.21490-BIB10|cit10) 2003; 22 Ng (10.1002/humu.21490-BIB22|cit22) 2006; 7 Chun (10.1002/humu.21490-BIB8|cit8) 2009; 19 21618348 - Hum Mutat. 2011 Jun;32(6):v |
| References_xml | – reference: Szabo C, Masiello A, Ryan JF, The BIC Consortium, Brody L. 2000. The breast cancer information core: database design, structure and scope. Hum Mutat 16:123-131. – reference: Bao L, Cui Y. 2005. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 21:2185-2190. – reference: Reva B, Antipin Y, Sander C. 2007. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 8:R232. – reference: Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900. – reference: Kryukov GV, Pennacchio LA, Sunyaev SR. 2007. Most rare missense alleles are deleterious in humans: implication for complex disease and association studies. Am J Hum Genet 80:727-739. – reference: Ng PC, Henikoff S. 2002. Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436-446. – reference: Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev S. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7:248-249. – reference: Chun S, Fay JC. 2009. Identification of deleterious mutations within three human genomes. Genome Res 19:1553-1561. – reference: Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB, IARC Unclassified Genetic Variants Working Group. 2008. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327-1336. – reference: Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. 2010. Small-sample precision of ROC-related estimates. Bioinformatics 26:822-830. – reference: Agresti A. 2002. Categorical data analysis, 2nd ed. Hoboken, NJ: John Wiley and Sons. – reference: Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27:861-874. – reference: Hogg RV, Tanis EA. 2006. Probability and statistical inference, 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall. – reference: Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61-80. – reference: Reva BA, Antipin YA, Sander C. 2010. Functional impact of protein mutations: evolutionary information score and application to cancer genomics. Nucleic Acids Res (in press). – reference: Thusberg J, Vihinen M. 2009. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30:703-714. – reference: Balasubramanian S, Xia Y, Freinkman E, Gerstein M. 2005. Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res 33:1710-1721. – reference: Greenblatt MS, Brody LC, Foulkes WD, Genuardi M, Hofstra RM, Olivier M, Plon S, Sijmons RH, Sinilnikova O, Spurdle AB. 2008. Locus-specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes. Hum Mutat 29:1273-1281. – reference: Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21:3940-3941. – reference: Karchin R, Mukesh A, Sali A, Couch F, Beattie MS. 2008. Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios. Cancer Inform 6:203-216. – reference: Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188:415-431. – reference: Goldgar DE, Easton DF, Deffenbaugh AM, Monterio AN, Tavtigian SV, Couch FJ, Breast Cancer Information Core (BIC) Steering Committee. 2004. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75:535-544. – reference: Karchin R. 2009. Next generation tools for the annotation of human SNPs. Brief Bioinform 10:35-52. – reference: Chao EC, Velasquez JL, Witherspoon MS, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert G, Anton-Culver H, Lynch H, Lipkin SM. 2008. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat 29:852-860. – reference: Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV. 2004. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41:492-507. – reference: Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. 2002. The IARC TP53 database: new online mutation analysis and recommendation to users. Hum Mutat 19:607-614. – reference: Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. 2006. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317-1325. – reference: Greenblatt MS, Beaudet JG, Gump JR, Godin KS, Trombley L, Koh J, Bond JP. 2003. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Oncogene 22:1150-1163. – reference: Jordan DM, Ramensky VE, Sunyaev SR. 2010. Human allelic variation: perspective from protein function, structure, and evolution. Curr Opin Struct Biol 20:342-350. – reference: Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome Res 11:863-874. – reference: Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, Raevaara T, Ollila S, Nystrom M, Grimm AJ, Christodoulou J, Oetting WS, Greenblatt MS. 2007. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat 28:683-693. – volume: 6 start-page: 203 year: 2008 end-page: 216 article-title: Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios publication-title: Cancer Inform – year: 2010 article-title: Functional impact of protein mutations: evolutionary information score and application to cancer genomics publication-title: Nucleic Acids Res – volume: 22 start-page: 1150 year: 2003 end-page: 1163 article-title: Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease‐associated mutations to predict the functional consequences of allelic variants publication-title: Oncogene – volume: 11 start-page: 863 year: 2001 end-page: 874 article-title: Predicting deleterious amino acid substitutions publication-title: Genome Res – volume: 33 start-page: 1710 year: 2005 end-page: 1721 article-title: Sequence variation in G‐protein‐coupled receptors: analysis of single nucleotide polymorphisms publication-title: Nucleic Acids Res – volume: 20 start-page: 342 year: 2010 end-page: 350 article-title: Human allelic variation: perspective from protein function, structure, and evolution publication-title: Curr Opin Struct Biol – volume: 12 start-page: 436 year: 2002 end-page: 446 article-title: Accounting for human polymorphisms predicted to affect protein function publication-title: Genome Res – volume: 7 start-page: 61 year: 2006 end-page: 80 article-title: Predicting the effects of amino acid substitutions on protein function publication-title: Annu Rev Genomics Hum Genet – volume: 7 start-page: 248 year: 2010 end-page: 249 article-title: A method and server for predicting damaging missense mutations publication-title: Nat Methods – volume: 19 start-page: 607 year: 2002 end-page: 614 article-title: The IARC TP53 database: new online mutation analysis and recommendation to users publication-title: Hum Mutat – volume: 28 start-page: 683 year: 2007 end-page: 693 article-title: Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR) publication-title: Hum Mutat – volume: 21 start-page: 2185 year: 2005 end-page: 2190 article-title: Prediction of the phenotypic effects of non‐synonymous single nucleotide polymorphisms using structural and evolutionary information publication-title: Bioinformatics – volume: 75 start-page: 535 year: 2004 end-page: 544 article-title: Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2 publication-title: Am J Hum Genet – volume: 30 start-page: 3894 year: 2002 end-page: 3900 article-title: Human non‐synonymous SNPs: server and survey publication-title: Nucleic Acids Res – volume: 29 start-page: 1327 year: 2008 end-page: 1336 article-title: In silico analysis of missense substitutions using sequence‐alignment based methods publication-title: Hum Mutat – volume: 29 start-page: 1273 year: 2008 end-page: 1281 article-title: Locus‐specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes publication-title: Hum Mutat – volume: 41 start-page: 492 year: 2004 end-page: 507 article-title: Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation publication-title: J Med Genet – volume: 188 start-page: 415 year: 1986 end-page: 431 article-title: Information content of binding sites on nucleotide sequences publication-title: J Mol Biol – volume: 29 start-page: 852 year: 2008 end-page: 860 article-title: Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms‐mismatch repair (MAPP‐MMR) publication-title: Hum Mutat – volume: 10 start-page: 35 year: 2009 end-page: 52 article-title: Next generation tools for the annotation of human SNPs publication-title: Brief Bioinform – year: 2002 – year: 2006 – volume: 8 start-page: R232 year: 2007 article-title: Determinants of protein function revealed by combinatorial entropy optimization publication-title: Genome Biol – volume: 30 start-page: 703 year: 2009 end-page: 714 article-title: Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods publication-title: Hum Mutat – volume: 26 start-page: 822 year: 2010 end-page: 830 article-title: Small‐sample precision of ROC‐related estimates publication-title: Bioinformatics – volume: 27 start-page: 861 year: 2006 end-page: 874 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett – volume: 34 start-page: 1317 year: 2006 end-page: 1325 article-title: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods publication-title: Nucleic Acids Res – volume: 21 start-page: 3940 year: 2005 end-page: 3941 article-title: ROCR: visualizing classifier performance in R publication-title: Bioinformatics – volume: 19 start-page: 1553 year: 2009 end-page: 1561 article-title: Identification of deleterious mutations within three human genomes publication-title: Genome Res – volume: 80 start-page: 727 year: 2007 end-page: 739 article-title: Most rare missense alleles are deleterious in humans: implication for complex disease and association studies publication-title: Am J Hum Genet – volume: 16 start-page: 123 year: 2000 end-page: 131 article-title: The breast cancer information core: database design, structure and scope publication-title: Hum Mutat – volume: 21 start-page: 2185 year: 2005 ident: 10.1002/humu.21490-BIB5|cit5 article-title: Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti365 – volume: 29 start-page: 852 year: 2008 ident: 10.1002/humu.21490-BIB7|cit7 article-title: Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR) publication-title: Hum Mutat doi: 10.1002/humu.20735 – volume: 22 start-page: 1150 year: 2003 ident: 10.1002/humu.21490-BIB10|cit10 article-title: Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants publication-title: Oncogene doi: 10.1038/sj.onc.1206101 – volume: 29 start-page: 1273 year: 2008 ident: 10.1002/humu.21490-BIB11|cit11 article-title: Locus-specific databases and recommendations to strengthen their contributions to the classification of variants in cancer susceptibility genes publication-title: Hum Mutat doi: 10.1002/humu.20889 – volume: 7 start-page: 61 year: 2006 ident: 10.1002/humu.21490-BIB22|cit22 article-title: Predicting the effects of amino acid substitutions on protein function publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev.genom.7.080505.115630 – volume: 11 start-page: 863 year: 2001 ident: 10.1002/humu.21490-BIB20|cit20 article-title: Predicting deleterious amino acid substitutions publication-title: Genome Res doi: 10.1101/gr.176601 – volume: 34 start-page: 1317 year: 2006 ident: 10.1002/humu.21490-BIB19|cit19 article-title: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj518 – volume: 30 start-page: 703 year: 2009 ident: 10.1002/humu.21490-BIB31|cit31 article-title: Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods publication-title: Hum Mutat doi: 10.1002/humu.20938 – volume: 19 start-page: 1553 year: 2009 ident: 10.1002/humu.21490-BIB8|cit8 article-title: Identification of deleterious mutations within three human genomes publication-title: Genome Res doi: 10.1101/gr.092619.109 – volume: 26 start-page: 822 year: 2010 ident: 10.1002/humu.21490-BIB13|cit13 article-title: Small-sample precision of ROC-related estimates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq037 – volume: 27 start-page: 861 year: 2006 ident: 10.1002/humu.21490-BIB9|cit9 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 19 start-page: 607 year: 2002 ident: 10.1002/humu.21490-BIB23|cit23 article-title: The IARC TP53 database: new online mutation analysis and recommendation to users publication-title: Hum Mutat doi: 10.1002/humu.10081 – volume: 75 start-page: 535 year: 2004 ident: 10.1002/humu.21490-BIB12|cit12 article-title: Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2 publication-title: Am J Hum Genet doi: 10.1086/424388 – volume: 16 start-page: 123 year: 2000 ident: 10.1002/humu.21490-BIB29|cit29 article-title: The breast cancer information core: database design, structure and scope publication-title: Hum Mutat doi: 10.1002/1098-1004(200008)16:2<123::AID-HUMU4>3.0.CO;2-Y – volume: 7 start-page: 248 year: 2010 ident: 10.1002/humu.21490-BIB2|cit2 article-title: A method and server for predicting damaging missense mutations publication-title: Nat Methods doi: 10.1038/nmeth0410-248 – volume-title: Categorical data analysis year: 2002 ident: 10.1002/humu.21490-BIB3|cit3 doi: 10.1002/0471249688 – volume: 80 start-page: 727 year: 2007 ident: 10.1002/humu.21490-BIB18|cit18 article-title: Most rare missense alleles are deleterious in humans: implication for complex disease and association studies publication-title: Am J Hum Genet doi: 10.1086/513473 – volume: 10 start-page: 35 year: 2009 ident: 10.1002/humu.21490-BIB16|cit16 article-title: Next generation tools for the annotation of human SNPs publication-title: Brief Bioinform doi: 10.1093/bib/bbn047 – volume: 28 start-page: 683 year: 2007 ident: 10.1002/humu.21490-BIB6|cit6 article-title: Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR) publication-title: Hum Mutat doi: 10.1002/humu.20492 – volume-title: Probability and statistical inference year: 2006 ident: 10.1002/humu.21490-BIB14|cit14 – volume: 20 start-page: 342 year: 2010 ident: 10.1002/humu.21490-BIB15|cit15 article-title: Human allelic variation: perspective from protein function, structure, and evolution publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2010.03.006 – volume: 30 start-page: 3894 year: 2002 ident: 10.1002/humu.21490-BIB24|cit24 article-title: Human non-synonymous SNPs: server and survey publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf493 – volume: 8 start-page: R232 year: 2007 ident: 10.1002/humu.21490-BIB25|cit25 article-title: Determinants of protein function revealed by combinatorial entropy optimization publication-title: Genome Biol doi: 10.1186/gb-2007-8-11-r232 – year: 2010 ident: 10.1002/humu.21490-BIB26|cit26 article-title: Functional impact of protein mutations: evolutionary information score and application to cancer genomics publication-title: Nucleic Acids Res – volume: 21 start-page: 3940 year: 2005 ident: 10.1002/humu.21490-BIB28|cit28 article-title: ROCR: visualizing classifier performance in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 29 start-page: 1327 year: 2008 ident: 10.1002/humu.21490-BIB30|cit30 article-title: In silico analysis of missense substitutions using sequence-alignment based methods publication-title: Hum Mutat doi: 10.1002/humu.20892 – volume: 33 start-page: 1710 year: 2005 ident: 10.1002/humu.21490-BIB4|cit4 article-title: Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms publication-title: Nucleic Acids Res doi: 10.1093/nar/gki311 – volume: 12 start-page: 436 year: 2002 ident: 10.1002/humu.21490-BIB21|cit21 article-title: Accounting for human polymorphisms predicted to affect protein function publication-title: Genome Res doi: 10.1101/gr.212802 – volume: 41 start-page: 492 year: 2004 ident: 10.1002/humu.21490-BIB1|cit1 article-title: Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation publication-title: J Med Genet doi: 10.1136/jmg.2003.015867 – volume: 188 start-page: 415 year: 1986 ident: 10.1002/humu.21490-BIB27|cit27 article-title: Information content of binding sites on nucleotide sequences publication-title: J Mol Biol doi: 10.1016/0022-2836(86)90165-8 – volume: 6 start-page: 203 year: 2008 ident: 10.1002/humu.21490-BIB17|cit17 article-title: Classifying variants of undetermined significance in BRCA2 with protein likelihood ratios publication-title: Cancer Inform doi: 10.4137/CIN.S618 – reference: 21618348 - Hum Mutat. 2011 Jun;32(6):v |
| SSID | ssj0008553 |
| Score | 2.4443636 |
| Snippet | Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm‐generated sequence alignments or... Multiple algorithms are used to predict the impact of missense mutations on protein structure and function using algorithm-generated sequence alignments or... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 661 |
| SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Algorithms Align-GVGD BRCA1 BRCA1 protein BRCA1 Protein - genetics BRCA1 Protein - metabolism Computational Biology Evolution Genes, Tumor Suppressor Humans Missense mutation MLH1 MLH1 protein MSH2 MSH2 protein multiple sequence alignment Mutation, Missense - genetics MutL Protein Homolog 1 MutS Homolog 2 Protein - genetics MutS Homolog 2 Protein - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleotide sequence p53 protein PolyPhen-2 Protein structure Sequence Alignment - methods Sequence Analysis, Protein SIFT TP53 Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Xvar |
| Title | Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed |
| URI | https://api.istex.fr/ark:/67375/WNG-TRF7W8RV-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.21490 https://www.ncbi.nlm.nih.gov/pubmed/21480434 https://www.proquest.com/docview/1766828961 https://www.proquest.com/docview/1017967710 https://www.proquest.com/docview/868995555 https://pubmed.ncbi.nlm.nih.gov/PMC4154965 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1059-7794 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1004 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008553 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFD4sK4ovXtZbdJURRVBIt5lMbuCLiLUIXaRs3X2RYTIz2ZZuU2kbUH-958y0qdVV0DyFzElIZs6Z-c4l3wA878Za6EjxUKW8CEWWpWGui26YpbqKEN8bU1EccnCc9kfiw1lytgevN__CeH6INuBGluHmazJwVS6PtqSh42bWdDgCfHLYozh1_tRwyx2VJ4mvrk8KhJCFaLlJ-dH21p3V6Ap17NfLoObvFZM_I1m3FPVuwufNR_gKlGmnWZUd_f0Xfsf__cpbcGONUdkbr1S3Yc_WB3DV71r57QCuDdb5-Dsw_bigcxpcNq_YjJL79dKyWeMz_IyWTR9tRLTP_I67S4YNJWoIQ_DJ1MX5fDFZjWdM1YZtKrvx8uTcFSow6_ckNndh1Ht38rYfrrdvCDWRyIVlIUwkjKhKnCeiMtOq4taSB4WYlFdxRL6kRv_PWG6yru3GBvFQhTcVVaHyNL4H-_W8tg-AqYRrLuLcVBnit8oUlP0T2iqltMWnBvByM4xSr7nNaYuNC-lZmbmkfpSuHwN41sp-8Ywel0q9cNrQiqjFlGrgskSeHr-XJ8NedpoPP0kewOFGXeTa_JeSWDfJlU2jAJ62zTgIlI1RtZ03S-nmwjRDhBcA-4NMnqK5JHgEcN8rYPs--JZ5V8QigGxHNVsB4g3fbaknY8cfLoiWL8VnvnKa95dekP3RYOTOHv6L8CO47kPvFKw6hP3VorGPEbutyifORn8A3FBCvw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbQrjheOJYrsIARCAmkdBPHuR4RohTYVqhq2X2zHNvZVt2mqG0k4NczY6cphQUJ8hTFkyixx_Y3R74h5HkQKa5CyXyZsNznaZr4mcoDP01UGQK-17pEP2R_kPTG_MNpfNrk5uC_MI4fonW44cyw6zVOcHRIH21ZQyf1vO4wQPhgse_zBAwVxETDLXtUFscuvz7OAUTmvGUnZUfbe3f2o33s2q8Xgc3fcyZ_xrJ2M-recBVXV5bDEHNQZp16XXTU918YHv_7O2-S6w1Mpa-dXt0il0x1QC67wpXfDsiVfhOSv01mn5Z4juNLFyWdY3y_Whk6r12Qn-LO6RyOAPipK7q7otBQgJJQwJ9Unp8tltP1ZE5lpekmuRsuT89srgI1riyxvkPG3bejNz2_qeDgK-SR84uc65BrXhawVIRFqmTJjEEjCmApK6MQzUkFJqA2TKeBCSINkKiEm_Iyl1kS3SV71aIy9wmVMVOMR5kuU4Bwpc4xAMiVkVIqA0_1yMvNOArV0JtjlY1z4YiZmcB-FLYfPfKslf3iSD0ulHph1aEVkcsZpsGlsTgZvBOjYTc9yYafBfPI4UZfRLMCrAQSb6I1m4Qeedo2wyBgQEZWZlGvhF0OkxRAnkfoH2SyBGZMDIdH7jkNbN8H3jILeMQ9ku7oZiuA1OG7LdV0YinEOTLzJfDMV1b1_tILojfuj-3Zg38RfkKu9kb9Y3H8fvDxIbnmPPHouzoke-tlbR4BlFsXj-2E_QHm6Ebg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJiZeuAwYYQOMQEggpWsS5_aIGKVcWk3VyvZmOb6sVdd0ahtp8Os5x05TCgMJ8hTFJ1FiH9vfueQ7hLxsR5LJQIS-SMLcZ2ma-JnM236aSBMAvlfKoB-y10-6Q_bpLD6rc3PwXxjHD9E43HBm2PUaJ7i-VOZwzRo6qqZVKwSEDxb7NovzDDP6jgZr9qgsjl1-fZwDiMxZw04aHq7v3diPtrFrr64Dm7_nTP6MZe1m1LnjKq4uLIch5qBMWtWyaMnvvzA8_vd33iW3a5hK3zq9ukdu6HKX3HSFK7_tkp1eHZK_TybHczzH8aUzQ6cY3y8Xmk4rF-SnuHM6hyMAfuqK7i4oNBSgJBTwJxUX57P5eDmaUlEqukruhsvjc5urQLUrS6wekGHn_cm7rl9XcPAl8sj5Rc5UwBQzBSwVQZFKYUKt0YgCWBqaKEBzUoIJqHSo0rZuRwogkYGbcpOLLIkekq1yVupHhIo4lCGLMmVSgHBG5RgAZFILIaSGp3rk9WocuazpzbHKxgV3xMwhx37kth898qKRvXSkHtdKvbLq0IiI-QTT4NKYn_Y_8JNBJz3NBl956JGDlb7wegVYcCTeRGs2CTzyvGmGQcCAjCj1rFpwuxwmKYA8j9A_yGQJzJgYDo_sOQ1s3gfeMmuziHkk3dDNRgCpwzdbyvHIUogzZOZL4JlvrOr9pRd4d9gb2rPH_yL8jOwcH3X4l4_9z_vklnPEo-vqgGwt55V-AkhuWTy18_UHMRFGZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+missense+mutation+functionality+depends+on+both+the+algorithm+and+sequence+alignment+employed&rft.jtitle=Human+mutation&rft.au=Hicks%2C+Stephanie&rft.au=Wheeler%2C+David+A&rft.au=Plon%2C+Sharon+E&rft.au=Kimmel%2C+Marek&rft.date=2011-06-01&rft.issn=1098-1004&rft.eissn=1098-1004&rft.volume=32&rft.issue=6&rft.spage=661&rft_id=info:doi/10.1002%2Fhumu.21490&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon |