Broadband generation of accelerating polygon beams with large curvature ratio and small focused spot using all-dielectric metasurfaces
Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs)...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 11; no. 6; pp. 1203 - 1210 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.02.2022
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 2192-8614 2192-8606 2192-8614 |
DOI | 10.1515/nanoph-2021-0787 |
Cover
Abstract | Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at
= 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging. |
---|---|
AbstractList | Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at
= 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging. Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging. Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500-850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500-850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging. Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging. Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging. |
Author | Zhang, Dawei Kanwal, Saima Chen, Lei Chen, Jian Lu, Yongzheng Chen, Xu Wen, Jing |
Author_xml | – sequence: 1 givenname: Lei surname: Chen fullname: Chen, Lei email: leichen@st.usst.edu.cn organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China – sequence: 2 givenname: Saima surname: Kanwal fullname: Kanwal, Saima email: saimakanwal89@gmail.com organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China – sequence: 3 givenname: Yongzheng surname: Lu fullname: Lu, Yongzheng email: 1342776942@qq.com organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China – sequence: 4 givenname: Dawei surname: Zhang fullname: Zhang, Dawei email: dwzhang@usst.edu.cn organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China – sequence: 5 givenname: Xu surname: Chen fullname: Chen, Xu email: 191380026@st.usst.edu.cn organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China – sequence: 6 givenname: Jian orcidid: 0000-0001-6770-7383 surname: Chen fullname: Chen, Jian email: cj@usst.edu.cn organization: School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 7 givenname: Jing orcidid: 0000-0003-3558-2322 surname: Wen fullname: Wen, Jing email: jwen@usst.edu.cn organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39635067$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpnhWyxIZNwK_4sUJQ8ahUiQ2srRvHyWSU2IPttJo_wO_G86C0lcCb2NfnfLq-Oc-rEx-8q6qXBL8lDWneefBhs6oppqTGUskn1RklmtZKEH5yb39aXaS0xmVpzYgWz6pTpgVrsJBn1a-PMUDXgu_Q4LyLkMfgUegRWOum_dkPaBOm7VDqrYM5odsxr9AEcXDILvEG8hId2jvRjpNmmCbUB7skV06bkNGSdpRSrruxUG2Oo0Wzy5CW2IN16UX1tIcpuYvj97z68fnT98uv9fW3L1eXH65r23CZa90SKbEmbc9Le4x3gmplWUt1KWCOudOYayWctSAVBal7xqgmuO0475xk59XVgdsFWJtNHGeIWxNgNPtCiIOBmEc7OSOg7VtCWmCUcqwVSGi7hgvFpMVW8cJ6f2BtlnZ2nXU-R5geQB_e-HFlhnBjCGkwoUoVwpsjIYafi0vZzGMqY5_Au7AkwwgXDcVMN0X6-pF0HZboy6wMFZwKrJTARfXqfkt3vfz530WADwIbQ0rR9XcSgs0uVeaQKrNLldmlqljEI4sd8z4m5VHj9D_jcT63MGUXOzfEZVs2fzv_l5UQQcqz2W-8Auod |
CitedBy_id | crossref_primary_10_1364_OE_532157 crossref_primary_10_3390_photonics12010043 crossref_primary_10_1364_OE_502528 crossref_primary_10_1002_lpor_202300731 crossref_primary_10_3788_LOP232183 crossref_primary_10_1142_S0218863523400143 crossref_primary_10_1364_PRJ_519876 crossref_primary_10_1007_s11433_023_2349_5 crossref_primary_10_1109_OJAP_2023_3342712 crossref_primary_10_1364_OME_537065 |
Cites_doi | 10.1364/OL.24.000584 10.1364/OE.19.016455 10.1002/lpor.202000487 10.1021/acs.nanolett.8b04571 10.1038/s41598-018-27895-z 10.1364/OL.44.003398 10.1364/OL.38.002218 10.1038/s41565-020-0768-4 10.1364/OL.36.002883 10.1364/OL.37.005003 10.1364/OL.35.004118 10.1126/science.aat8196 10.1126/science.aba9779 10.1002/lpor.201900045 10.1021/acsphotonics.8b01036 10.1002/adom.202001284 10.1021/acsphotonics.0c00354 10.1063/1.4937584 10.1002/lpor.201800081 10.1088/0256-307X/32/1/014205 10.1002/adma.201804680 10.1002/adom.201900493 10.1103/PhysRevLett.109.193901 10.1515/nanoph-2020-0227 10.1038/s41377-020-0287-y 10.1038/s41467-020-20278-x 10.1021/acsnano.0c07770 10.1038/nmeth.2922 10.1002/adom.202000868 10.3390/nano10081439 10.1126/science.aaf6644 10.7567/1882-0786/ab34c4 10.1103/PhysRevLett.99.213901 10.1364/OL.36.004119 10.1038/natrevmats.2017.10 10.1364/PRJ.390202 10.1038/srep40785 10.1038/s41565-017-0052-4 10.1002/adma.201602721 10.1002/adom.201900503 10.1126/science.aat9042 10.1002/adom.201500068 10.1103/PhysRevA.99.043839 10.1186/s43074-020-00016-8 10.1038/s41566-021-00793-z 10.3390/nano10030490 10.1038/s41598-018-35006-1 10.1186/s43593-021-00007-7 |
ContentType | Journal Article |
Copyright | 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston. 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1515/nanoph-2021-0787 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 1210 |
ExternalDocumentID | oai_doaj_org_article_6abfb11ba3224098a7abd546837c0c84 PMC11501288 39635067 10_1515_nanoph_2021_0787 10_1515_nanoph_2021_07871161203 |
Genre | Journal Article |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c547t-9b177091bf4cce34d6298c3b29f4c0404e904986ecca782a79f332910bd44de73 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:08:40 EDT 2025 Thu Aug 21 18:35:26 EDT 2025 Fri Sep 05 08:39:29 EDT 2025 Fri Jul 25 04:43:32 EDT 2025 Wed Feb 19 02:03:18 EST 2025 Tue Jul 01 00:41:52 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Sat Sep 06 17:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | small focused spot large curvature ratio accelerating beam polygon beam metasurface |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-9b177091bf4cce34d6298c3b29f4c0404e904986ecca782a79f332910bd44de73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3558-2322 0000-0001-6770-7383 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2021-0787 |
PMID | 39635067 |
PQID | 2642608860 |
PQPubID | 2038884 |
PageCount | 08 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6abfb11ba3224098a7abd546837c0c84 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501288 proquest_miscellaneous_3146520395 proquest_journals_2642608860 pubmed_primary_39635067 crossref_primary_10_1515_nanoph_2021_0787 crossref_citationtrail_10_1515_nanoph_2021_0787 walterdegruyter_journals_10_1515_nanoph_2021_07871161203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Feb |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-Feb |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2022 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2022120716182441705_j_nanoph-2021-0787_ref_003 2022120716182441705_j_nanoph-2021-0787_ref_025 2022120716182441705_j_nanoph-2021-0787_ref_047 2022120716182441705_j_nanoph-2021-0787_ref_004 2022120716182441705_j_nanoph-2021-0787_ref_026 2022120716182441705_j_nanoph-2021-0787_ref_048 2022120716182441705_j_nanoph-2021-0787_ref_001 2022120716182441705_j_nanoph-2021-0787_ref_023 2022120716182441705_j_nanoph-2021-0787_ref_045 2022120716182441705_j_nanoph-2021-0787_ref_002 2022120716182441705_j_nanoph-2021-0787_ref_024 2022120716182441705_j_nanoph-2021-0787_ref_046 2022120716182441705_j_nanoph-2021-0787_ref_021 2022120716182441705_j_nanoph-2021-0787_ref_043 2022120716182441705_j_nanoph-2021-0787_ref_022 2022120716182441705_j_nanoph-2021-0787_ref_044 2022120716182441705_j_nanoph-2021-0787_ref_041 2022120716182441705_j_nanoph-2021-0787_ref_020 2022120716182441705_j_nanoph-2021-0787_ref_042 2022120716182441705_j_nanoph-2021-0787_ref_009 2022120716182441705_j_nanoph-2021-0787_ref_007 2022120716182441705_j_nanoph-2021-0787_ref_029 2022120716182441705_j_nanoph-2021-0787_ref_008 2022120716182441705_j_nanoph-2021-0787_ref_005 2022120716182441705_j_nanoph-2021-0787_ref_027 2022120716182441705_j_nanoph-2021-0787_ref_006 2022120716182441705_j_nanoph-2021-0787_ref_028 2022120716182441705_j_nanoph-2021-0787_ref_040 2022120716182441705_j_nanoph-2021-0787_ref_014 2022120716182441705_j_nanoph-2021-0787_ref_036 2022120716182441705_j_nanoph-2021-0787_ref_015 2022120716182441705_j_nanoph-2021-0787_ref_037 2022120716182441705_j_nanoph-2021-0787_ref_012 2022120716182441705_j_nanoph-2021-0787_ref_034 2022120716182441705_j_nanoph-2021-0787_ref_013 2022120716182441705_j_nanoph-2021-0787_ref_035 2022120716182441705_j_nanoph-2021-0787_ref_010 2022120716182441705_j_nanoph-2021-0787_ref_032 2022120716182441705_j_nanoph-2021-0787_ref_011 2022120716182441705_j_nanoph-2021-0787_ref_033 2022120716182441705_j_nanoph-2021-0787_ref_030 2022120716182441705_j_nanoph-2021-0787_ref_031 2022120716182441705_j_nanoph-2021-0787_ref_018 2022120716182441705_j_nanoph-2021-0787_ref_019 2022120716182441705_j_nanoph-2021-0787_ref_016 2022120716182441705_j_nanoph-2021-0787_ref_038 2022120716182441705_j_nanoph-2021-0787_ref_017 2022120716182441705_j_nanoph-2021-0787_ref_039 |
References_xml | – ident: 2022120716182441705_j_nanoph-2021-0787_ref_043 doi: 10.1364/OL.24.000584 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_002 doi: 10.1364/OE.19.016455 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_030 doi: 10.1002/lpor.202000487 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_035 doi: 10.1021/acs.nanolett.8b04571 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_039 doi: 10.1038/s41598-018-27895-z – ident: 2022120716182441705_j_nanoph-2021-0787_ref_011 doi: 10.1364/OL.44.003398 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_004 doi: 10.1364/OL.38.002218 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_023 doi: 10.1038/s41565-020-0768-4 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_006 doi: 10.1364/OL.36.002883 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_005 doi: 10.1364/OL.37.005003 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_007 doi: 10.1364/OL.35.004118 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_020 doi: 10.1126/science.aat8196 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_021 doi: 10.1126/science.aba9779 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_026 doi: 10.1002/lpor.201900045 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_012 doi: 10.1021/acsphotonics.8b01036 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_028 doi: 10.1002/adom.202001284 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_032 doi: 10.1021/acsphotonics.0c00354 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_009 doi: 10.1063/1.4937584 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_037 doi: 10.1002/lpor.201800081 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_008 doi: 10.1088/0256-307X/32/1/014205 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_013 doi: 10.1002/adma.201804680 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_036 doi: 10.1002/adom.201900493 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_003 doi: 10.1103/PhysRevLett.109.193901 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_038 doi: 10.1515/nanoph-2020-0227 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_031 doi: 10.1038/s41377-020-0287-y – ident: 2022120716182441705_j_nanoph-2021-0787_ref_046 doi: 10.1038/s41467-020-20278-x – ident: 2022120716182441705_j_nanoph-2021-0787_ref_034 doi: 10.1021/acsnano.0c07770 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_041 doi: 10.1038/nmeth.2922 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_027 doi: 10.1002/adom.202000868 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_017 doi: 10.3390/nano10081439 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_018 doi: 10.1126/science.aaf6644 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_016 doi: 10.7567/1882-0786/ab34c4 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_001 doi: 10.1103/PhysRevLett.99.213901 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_040 doi: 10.1364/OL.36.004119 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_025 doi: 10.1038/natrevmats.2017.10 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_033 doi: 10.1364/PRJ.390202 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_047 doi: 10.1038/srep40785 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_014 doi: 10.1038/s41565-017-0052-4 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_045 doi: 10.1002/adma.201602721 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_029 doi: 10.1002/adom.201900503 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_019 doi: 10.1126/science.aat9042 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_042 doi: 10.1002/adom.201500068 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_010 doi: 10.1103/PhysRevA.99.043839 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_024 doi: 10.1186/s43074-020-00016-8 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_022 doi: 10.1038/s41566-021-00793-z – ident: 2022120716182441705_j_nanoph-2021-0787_ref_015 doi: 10.3390/nano10030490 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_044 doi: 10.1038/s41598-018-35006-1 – ident: 2022120716182441705_j_nanoph-2021-0787_ref_048 doi: 10.1186/s43593-021-00007-7 |
SSID | ssj0000993196 |
Score | 2.2428353 |
Snippet | Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and... |
SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1203 |
SubjectTerms | accelerating beam Broadband Channels Curvature Fourier transforms large curvature ratio Lenses Medical imaging metasurface Metasurfaces Micromanipulation Miniaturization Plasmonics polygon beam Polygons small focused spot Spatial light modulators |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVTTHG3IcyEg0FNFm40fsEhCnEwUVJ11n2Y6TW5RNVptE6P4Av5sZJ7vs8mxIFydORp5vMt_YkzEhr7PSq4KJMnXei5QXSqfWe5VWVnAHLi7wKcv3k7y84h-vxfXBVl-YEzaVB54GbiGtq9xy6SxD56OVLawrBZcQWPnMq1gJNNPZQTD1ZeI9iK15XRJ89qK1bbe5AVDkED4XmEF34Idiuf7fccxfUyVPv8Zl7DLU2_F22C2bRm90cZ-czjSSvp3Ef0DuhPYhuTdTSjobbP-IfIMw25bOtiWtY4Fp1APtKgpDBQ4Hz9uabrrmtoZ2F-y6pzg1SxvMEKd-xCnbcRto7EnxOf3aNg2tOj_28CqIigeKyfM1hea0XE376qw8XYcBpx8rzPl6TK4uPnx-f5nOWy-kXvBiSDVWpQIq4SoO4jBeylwrz1yuoQHsngcNoYWSCADgGLbQFWM5UA9Xcl6Ggj0hJ23XhmeEghPmqkKdCMkdHAXTFnxgnlVSKukSstgpwvi5Ljluj9EYjE9AdWZSnUHVGVRdQt7se2ymmhx_ufcd6nZ_H1bTjg2AMTNjzPwLYwk53yHDzCbeG2CSEAsqJbOEvNpfBuPEFRfbhm7sDQM_JPKMaZGQpxOQ9pIw-PQJ4AoJUUcQOxL1-Eq7uokFwJHFA69Q0PUnNP4Q708DsgSKDxKd_Y9xeU7u5vg3SExiPycnw3YML4CjDe5lNMfvB-Q-Ew priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLiUNwQKMhIXDtHuxnbinBAglooDJyr1FvmVdKVssmwSof6B_u7OOE7K8mhu68TJbGbs-eaRGULeLa2RGRM21saImGcyj5UxMi6V4BpUnONjlu_39PSMfzsX58Hh1oW0ymlP9Bu1bQ36yBeguAF6S5kuP-x-xtg1CqOroYXGXXJvlYCuxS_F119nHwugH5Qw7C8HQCaGuVOkErT4olFNu7sAMUnAoM4wp-43zeQL-P8Ldf6dPHn8ywe2rav2w2U_BVK9flo_JMcBWNKPoyQ8Indc85g8CCCThiXcPSFXYHgrq1VjaeVLTiNnaFtSeHmggvB3U9FdW19WMK6d2nYUnbW0xpxxagZ04g57R_1MivfptqquadmaoYNHgZ3cU0ynrygMx3YzdtrZGLp1PTokS8wCe0rO1l9-fD6NQzOG2Aie9XGOdaoAXOiSAzmM2zTJpWE6yWEAdgLucjA2ZIoiAahDZXnJWAJgRFvOrcvYM3LUtI17QSioZS5L5I9IuYYjY7kCrZgsyzSVqY7IYmJEYUKlcmyYURdosQDripF1BbKuQNZF5P08YzdW6bjl2k_I2_k6rK_tB9p9VYTlWqRKl3q10ooh5MmlypS2gqdgzpulkTwiJ5NkFGHRd8WNiEbk7XwalivGYFTj2qErGGgmkSxZLiLyfBSkmRIGm6EA9BAReSBiB6Qenmk2F74kOOJ6QBoSpv4hjTfk_e-FrAD0A0Uvb_9Lr8j9BL_88AnrJ-So3w_uNeCxXr_xi-4ax6w3dA priority: 102 providerName: ProQuest |
Title | Broadband generation of accelerating polygon beams with large curvature ratio and small focused spot using all-dielectric metasurfaces |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2021-0787 https://www.ncbi.nlm.nih.gov/pubmed/39635067 https://www.proquest.com/docview/2642608860 https://www.proquest.com/docview/3146520395 https://pubmed.ncbi.nlm.nih.gov/PMC11501288 https://doaj.org/article/6abfb11ba3224098a7abd546837c0c84 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoe-FS3hAokZG4cAjdje3EOSBEUZeKQ4UQK_UW2Y6TLsomSx6C_QP8bmac7FYLCyK3OHEy8sxkvvFMZgh5OcmMjJnIAm2MCHgsk0AZI4NcCa7BxFk-ZPleRhdz_vFKXN38Hj0uYLvXtcN-UvOmfP3j2_otKPwb171nKk4rVdWra-B3CJ4xCOABOXLRIkzkG8H-1wELobxhtzmANYEEwzTGLfc9ZMdOuXL--zDon6mUx99dmDuzRdOvu01Y1Vmr2V1yPMJM-m6Qi3vklq3ukzsj5KSjQrcPyE9ww1WmVZXRwhWgRj7ROqewlGCQ8Lwq6Kou1wWMa6uWLcWtW1piBjk1PW7p9o2lbibF57RLVZY0r03fwqtgaTuKyfUFheEgWwx9dxaGLm2H25M55oQ9JPPZ-Zf3F8HYmiEwgsddkGDVKoAaOudADuNZFCbSMB0mMADfBW4TcD1khAICGETFSc5YCNBEZ5xnNmaPyGFVV_YJoWCkucyRPyLiGo6YJQpsZDjJo0hG2iOnG0akZqxbju0zyhT9F2BdOrAuRdalyDqPvNrOWA01O_5x7xnydnsfVtt2A3VTpKPyppHSuZ5OtWIIgBKpYqUzwSNw7s3ESO6Rk41kpBsJTgFpgq8oZTTxyIvtZVBejMioytZ9mzKwUyKcsER45PEgSFtKGHwaBWAJj8gdEdshdfdKtbh2BcIR5QPukDD1N2m8Ie9vCzIFFwAoevofND8jt0P8GcTlsJ-Qw67p7XOAaJ32yYGcffDJ0dn55afPvtvo8J02-m4_7RdrzUHS |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoBLyxvTAosEBw5WEu_aXh8Q4hVSWnpqpd6WfdmNlNghtlXlD_Bz-I3M-JESHr3VN6-9zjgzO_PNzniGkJdDa0TMQutrY0KfxyLxlTHCT1XINZg4x9ss3-Nocsq_nIVnW-Rn_y0MplX2OrFR1LYwuEc-AMMN0FuIaPh28d3HrlEYXe1baLRicehWF-CylW8OPgJ_XwXB-NPJh4nfdRXwTcjjyk-w4BJYSZ1yYxzjNgoSYZgOEhgAkeYuAdQsInw3MJ8qTlLGArCq2nJuXczguTfITc4YwxRCMf683tMBtIUSjf3sADj5QGsfGQXUMMhVXizOQSwDcOBjzOH7zRI2DQP-hXL_TtbcuWgC6dZly3pV9YHbxh6O75CdDsjSd63k3SVbLr9HdjtQSzuVUd4nP8DRV1ar3NKsKXGNkkCLlAKzwOTheZ7RRTFbZTCunZqXFDeH6Qxz1KmpcdO4XjrazKT4nHKuZjOaFqYu4afAL68opu9nFIZ9O207-0wNnbsKN0BTzDp7QE6vhU0PyXZe5O4xoQADuEiRP2HENRwxSxRY4WCYRpGItEcGPSOk6SqjY4OOmUQPCVgnW9ZJZJ1E1nnk9XrGoq0KcsW975G36_uwnnczUCwz2akHGSmd6tFIK4YQKxEqVtqGPBIsNkMjuEf2e8mQnZIp5eWS8MiL9WVQDxjzUbkr6lIysIRhMGRJ6JFHrSCtKWGgfENAKx4RGyK2QermlXx63pQgRz8CkI2AqX9I4yV5__tDRuBkAEVPrn6l5-TW5OTrkTw6OD7cI7cD_OqkSZbfJ9vVsnZPAQtW-lmzACn5dt0r_he2dXOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWXQlxWd4QWMBIXDhEbWPHcY7LQikPLUiw0t4sv5KtlCZVkwjtH-B3M5OkgcLCgd7qxO3I30zmm_FkTMiLqbMyYbELjbVxyBOZhtpaGWY65gZcnOd9le-pWJzx9-fx-R452b4Lg2WVzueb9rLpO6ROXGVbTJSNvQbAA09KXVbrC4A4gmAYdG6ydtk1ciCEFKDsB8eLt18-jakWIEGoaMMm5VXTd5xS17v_KsL5Z93k4bduT3sU-BfXNL9FDgdOSY97JbhN9nx5h9wc-CUdrLe-S75DzK2d0aWjeddtGkGhVUZh3cD74Pcyp-uquMxh3Hi9qinmaWmB5eLUtpi_bTeedjMp_k690kVBM1i8Gv4KQuSGYiV9TmE4dMv-kJ2lpSvfYC4ywwKwe-Rs_ubrySIczmEIbcyTJkyxRRXwCpNxEIdxJ6JUWmaiFAbgIcB9CnGGFKgNQDh0kmaMRcBDjOPc-YTdJ_tlVfqHhIJH5jJDTGLBDXwSlmpwiNE0Q-xMQCZbIJQdmpTjWRmFwmAFoFM9dAqhUwhdQF6OM9Z9g45_3PsKsR3vw9ba3UC1ydVgqUpok5nZzGiGbCeVOtHGxVxAJG-nVvKAHG01Qw32XiuglRAYSimmAXk-XgZLxe0XXfqqrRUDpxRHU5bGAXnQK9IoCYPnYAzEISByR8V2RN29Ui4vum7gSOmBZEiY-ps2_hTvbwsyA74PEj36_6nPyPXPr-fq47vTD4_JjQjfDelK2o_IfrNp_RNgbI15OljkD5gCQrI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+generation+of+accelerating+polygon+beams+with+large+curvature+ratio+and+small+focused+spot+using+all-dielectric+metasurfaces&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Chen%2C+Lei&rft.au=Kanwal%2C+Saima&rft.au=Lu%2C+Yongzheng&rft.au=Zhang%2C+Dawei&rft.date=2022-02-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=11&rft.issue=6&rft.spage=1203&rft_id=info:doi/10.1515%2Fnanoph-2021-0787&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |