Broadband generation of accelerating polygon beams with large curvature ratio and small focused spot using all-dielectric metasurfaces

Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs)...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 11; no. 6; pp. 1203 - 1210
Main Authors Chen, Lei, Kanwal, Saima, Lu, Yongzheng, Zhang, Dawei, Chen, Xu, Chen, Jian, Wen, Jing
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.02.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2192-8614
2192-8606
2192-8614
DOI10.1515/nanoph-2021-0787

Cover

Abstract Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at  = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.
AbstractList Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at  = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.
Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.
Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500-850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500-850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.
Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ  = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.
Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and needle-like field distributions. Various approaches have been proposed to generate polygon beams, such as using spatial light modulators (SLMs) or plasmonic metasurfaces. However, SLMs impede the miniaturization of the optical system and both approaches are subject to low efficiencies and demand an extra physical lens with a long focal length for Fourier transform, which limits the quality and the diverse variability of polygon beams. In this article, we demonstrate the generation of high-quality accelerating polygon beams in broadband spectra of 500–850 nm by utilizing dielectric metasurfaces. These metasurfaces integrate the functionality of the Fourier transform lens to enable the resulting beams with a large curvature ratio for the self-accelerating channels and a relatively small size for the autofocus region. The curvature ratio of the beam at λ = 633 nm is 31 times higher than the previously reported plasmonic-based method. While the size of the focused spot is 2.35 µm, which is reduced by nearly 15 times. The proposed beam generator provides ample opportunities for applications such as particle micromanipulation, beam shaping, laser fabrication, and biomedical imaging.
Author Zhang, Dawei
Kanwal, Saima
Chen, Lei
Chen, Jian
Lu, Yongzheng
Chen, Xu
Wen, Jing
Author_xml – sequence: 1
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  email: leichen@st.usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China
– sequence: 2
  givenname: Saima
  surname: Kanwal
  fullname: Kanwal, Saima
  email: saimakanwal89@gmail.com
  organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China
– sequence: 3
  givenname: Yongzheng
  surname: Lu
  fullname: Lu, Yongzheng
  email: 1342776942@qq.com
  organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China
– sequence: 4
  givenname: Dawei
  surname: Zhang
  fullname: Zhang, Dawei
  email: dwzhang@usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China
– sequence: 5
  givenname: Xu
  surname: Chen
  fullname: Chen, Xu
  email: 191380026@st.usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China
– sequence: 6
  givenname: Jian
  orcidid: 0000-0001-6770-7383
  surname: Chen
  fullname: Chen, Jian
  email: cj@usst.edu.cn
  organization: School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 7
  givenname: Jing
  orcidid: 0000-0003-3558-2322
  surname: Wen
  fullname: Wen, Jing
  email: jwen@usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai, 200093, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39635067$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpnhWyxIZNwK_4sUJQ8ahUiQ2srRvHyWSU2IPttJo_wO_G86C0lcCb2NfnfLq-Oc-rEx-8q6qXBL8lDWneefBhs6oppqTGUskn1RklmtZKEH5yb39aXaS0xmVpzYgWz6pTpgVrsJBn1a-PMUDXgu_Q4LyLkMfgUegRWOum_dkPaBOm7VDqrYM5odsxr9AEcXDILvEG8hId2jvRjpNmmCbUB7skV06bkNGSdpRSrruxUG2Oo0Wzy5CW2IN16UX1tIcpuYvj97z68fnT98uv9fW3L1eXH65r23CZa90SKbEmbc9Le4x3gmplWUt1KWCOudOYayWctSAVBal7xqgmuO0475xk59XVgdsFWJtNHGeIWxNgNPtCiIOBmEc7OSOg7VtCWmCUcqwVSGi7hgvFpMVW8cJ6f2BtlnZ2nXU-R5geQB_e-HFlhnBjCGkwoUoVwpsjIYafi0vZzGMqY5_Au7AkwwgXDcVMN0X6-pF0HZboy6wMFZwKrJTARfXqfkt3vfz530WADwIbQ0rR9XcSgs0uVeaQKrNLldmlqljEI4sd8z4m5VHj9D_jcT63MGUXOzfEZVs2fzv_l5UQQcqz2W-8Auod
CitedBy_id crossref_primary_10_1364_OE_532157
crossref_primary_10_3390_photonics12010043
crossref_primary_10_1364_OE_502528
crossref_primary_10_1002_lpor_202300731
crossref_primary_10_3788_LOP232183
crossref_primary_10_1142_S0218863523400143
crossref_primary_10_1364_PRJ_519876
crossref_primary_10_1007_s11433_023_2349_5
crossref_primary_10_1109_OJAP_2023_3342712
crossref_primary_10_1364_OME_537065
Cites_doi 10.1364/OL.24.000584
10.1364/OE.19.016455
10.1002/lpor.202000487
10.1021/acs.nanolett.8b04571
10.1038/s41598-018-27895-z
10.1364/OL.44.003398
10.1364/OL.38.002218
10.1038/s41565-020-0768-4
10.1364/OL.36.002883
10.1364/OL.37.005003
10.1364/OL.35.004118
10.1126/science.aat8196
10.1126/science.aba9779
10.1002/lpor.201900045
10.1021/acsphotonics.8b01036
10.1002/adom.202001284
10.1021/acsphotonics.0c00354
10.1063/1.4937584
10.1002/lpor.201800081
10.1088/0256-307X/32/1/014205
10.1002/adma.201804680
10.1002/adom.201900493
10.1103/PhysRevLett.109.193901
10.1515/nanoph-2020-0227
10.1038/s41377-020-0287-y
10.1038/s41467-020-20278-x
10.1021/acsnano.0c07770
10.1038/nmeth.2922
10.1002/adom.202000868
10.3390/nano10081439
10.1126/science.aaf6644
10.7567/1882-0786/ab34c4
10.1103/PhysRevLett.99.213901
10.1364/OL.36.004119
10.1038/natrevmats.2017.10
10.1364/PRJ.390202
10.1038/srep40785
10.1038/s41565-017-0052-4
10.1002/adma.201602721
10.1002/adom.201900503
10.1126/science.aat9042
10.1002/adom.201500068
10.1103/PhysRevA.99.043839
10.1186/s43074-020-00016-8
10.1038/s41566-021-00793-z
10.3390/nano10030490
10.1038/s41598-018-35006-1
10.1186/s43593-021-00007-7
ContentType Journal Article
Copyright 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston.
2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Lei Chen et al., published by De Gruyter, Berlin/Boston 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston 2022 Lei Chen et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2021-0787
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 1210
ExternalDocumentID oai_doaj_org_article_6abfb11ba3224098a7abd546837c0c84
PMC11501288
39635067
10_1515_nanoph_2021_0787
10_1515_nanoph_2021_07871161203
Genre Journal Article
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c547t-9b177091bf4cce34d6298c3b29f4c0404e904986ecca782a79f332910bd44de73
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:08:40 EDT 2025
Thu Aug 21 18:35:26 EDT 2025
Fri Sep 05 08:39:29 EDT 2025
Fri Jul 25 04:43:32 EDT 2025
Wed Feb 19 02:03:18 EST 2025
Tue Jul 01 00:41:52 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Sat Sep 06 17:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords small focused spot
large curvature ratio
accelerating beam
polygon beam
metasurface
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2022 Lei Chen et al., published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-9b177091bf4cce34d6298c3b29f4c0404e904986ecca782a79f332910bd44de73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3558-2322
0000-0001-6770-7383
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2021-0787
PMID 39635067
PQID 2642608860
PQPubID 2038884
PageCount 08
ParticipantIDs doaj_primary_oai_doaj_org_article_6abfb11ba3224098a7abd546837c0c84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501288
proquest_miscellaneous_3146520395
proquest_journals_2642608860
pubmed_primary_39635067
crossref_primary_10_1515_nanoph_2021_0787
crossref_citationtrail_10_1515_nanoph_2021_0787
walterdegruyter_journals_10_1515_nanoph_2021_07871161203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Feb
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-Feb
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2022120716182441705_j_nanoph-2021-0787_ref_003
2022120716182441705_j_nanoph-2021-0787_ref_025
2022120716182441705_j_nanoph-2021-0787_ref_047
2022120716182441705_j_nanoph-2021-0787_ref_004
2022120716182441705_j_nanoph-2021-0787_ref_026
2022120716182441705_j_nanoph-2021-0787_ref_048
2022120716182441705_j_nanoph-2021-0787_ref_001
2022120716182441705_j_nanoph-2021-0787_ref_023
2022120716182441705_j_nanoph-2021-0787_ref_045
2022120716182441705_j_nanoph-2021-0787_ref_002
2022120716182441705_j_nanoph-2021-0787_ref_024
2022120716182441705_j_nanoph-2021-0787_ref_046
2022120716182441705_j_nanoph-2021-0787_ref_021
2022120716182441705_j_nanoph-2021-0787_ref_043
2022120716182441705_j_nanoph-2021-0787_ref_022
2022120716182441705_j_nanoph-2021-0787_ref_044
2022120716182441705_j_nanoph-2021-0787_ref_041
2022120716182441705_j_nanoph-2021-0787_ref_020
2022120716182441705_j_nanoph-2021-0787_ref_042
2022120716182441705_j_nanoph-2021-0787_ref_009
2022120716182441705_j_nanoph-2021-0787_ref_007
2022120716182441705_j_nanoph-2021-0787_ref_029
2022120716182441705_j_nanoph-2021-0787_ref_008
2022120716182441705_j_nanoph-2021-0787_ref_005
2022120716182441705_j_nanoph-2021-0787_ref_027
2022120716182441705_j_nanoph-2021-0787_ref_006
2022120716182441705_j_nanoph-2021-0787_ref_028
2022120716182441705_j_nanoph-2021-0787_ref_040
2022120716182441705_j_nanoph-2021-0787_ref_014
2022120716182441705_j_nanoph-2021-0787_ref_036
2022120716182441705_j_nanoph-2021-0787_ref_015
2022120716182441705_j_nanoph-2021-0787_ref_037
2022120716182441705_j_nanoph-2021-0787_ref_012
2022120716182441705_j_nanoph-2021-0787_ref_034
2022120716182441705_j_nanoph-2021-0787_ref_013
2022120716182441705_j_nanoph-2021-0787_ref_035
2022120716182441705_j_nanoph-2021-0787_ref_010
2022120716182441705_j_nanoph-2021-0787_ref_032
2022120716182441705_j_nanoph-2021-0787_ref_011
2022120716182441705_j_nanoph-2021-0787_ref_033
2022120716182441705_j_nanoph-2021-0787_ref_030
2022120716182441705_j_nanoph-2021-0787_ref_031
2022120716182441705_j_nanoph-2021-0787_ref_018
2022120716182441705_j_nanoph-2021-0787_ref_019
2022120716182441705_j_nanoph-2021-0787_ref_016
2022120716182441705_j_nanoph-2021-0787_ref_038
2022120716182441705_j_nanoph-2021-0787_ref_017
2022120716182441705_j_nanoph-2021-0787_ref_039
References_xml – ident: 2022120716182441705_j_nanoph-2021-0787_ref_043
  doi: 10.1364/OL.24.000584
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_002
  doi: 10.1364/OE.19.016455
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_030
  doi: 10.1002/lpor.202000487
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_035
  doi: 10.1021/acs.nanolett.8b04571
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_039
  doi: 10.1038/s41598-018-27895-z
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_011
  doi: 10.1364/OL.44.003398
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_004
  doi: 10.1364/OL.38.002218
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_023
  doi: 10.1038/s41565-020-0768-4
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_006
  doi: 10.1364/OL.36.002883
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_005
  doi: 10.1364/OL.37.005003
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_007
  doi: 10.1364/OL.35.004118
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_020
  doi: 10.1126/science.aat8196
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_021
  doi: 10.1126/science.aba9779
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_026
  doi: 10.1002/lpor.201900045
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_012
  doi: 10.1021/acsphotonics.8b01036
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_028
  doi: 10.1002/adom.202001284
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_032
  doi: 10.1021/acsphotonics.0c00354
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_009
  doi: 10.1063/1.4937584
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_037
  doi: 10.1002/lpor.201800081
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_008
  doi: 10.1088/0256-307X/32/1/014205
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_013
  doi: 10.1002/adma.201804680
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_036
  doi: 10.1002/adom.201900493
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_003
  doi: 10.1103/PhysRevLett.109.193901
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_038
  doi: 10.1515/nanoph-2020-0227
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_031
  doi: 10.1038/s41377-020-0287-y
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_046
  doi: 10.1038/s41467-020-20278-x
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_034
  doi: 10.1021/acsnano.0c07770
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_041
  doi: 10.1038/nmeth.2922
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_027
  doi: 10.1002/adom.202000868
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_017
  doi: 10.3390/nano10081439
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_018
  doi: 10.1126/science.aaf6644
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_016
  doi: 10.7567/1882-0786/ab34c4
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_001
  doi: 10.1103/PhysRevLett.99.213901
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_040
  doi: 10.1364/OL.36.004119
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_025
  doi: 10.1038/natrevmats.2017.10
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_033
  doi: 10.1364/PRJ.390202
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_047
  doi: 10.1038/srep40785
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_014
  doi: 10.1038/s41565-017-0052-4
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_045
  doi: 10.1002/adma.201602721
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_029
  doi: 10.1002/adom.201900503
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_019
  doi: 10.1126/science.aat9042
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_042
  doi: 10.1002/adom.201500068
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_010
  doi: 10.1103/PhysRevA.99.043839
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_024
  doi: 10.1186/s43074-020-00016-8
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_022
  doi: 10.1038/s41566-021-00793-z
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_015
  doi: 10.3390/nano10030490
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_044
  doi: 10.1038/s41598-018-35006-1
– ident: 2022120716182441705_j_nanoph-2021-0787_ref_048
  doi: 10.1186/s43593-021-00007-7
SSID ssj0000993196
Score 2.2428353
Snippet Self-accelerating polygon beams have drawn growing emphasis in optics owing to their exceptional characteristics of multiple self-accelerating channels and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1203
SubjectTerms accelerating beam
Broadband
Channels
Curvature
Fourier transforms
large curvature ratio
Lenses
Medical imaging
metasurface
Metasurfaces
Micromanipulation
Miniaturization
Plasmonics
polygon beam
Polygons
small focused spot
Spatial light modulators
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVTTHG3IcyEg0FNFm40fsEhCnEwUVJ11n2Y6TW5RNVptE6P4Av5sZJ7vs8mxIFydORp5vMt_YkzEhr7PSq4KJMnXei5QXSqfWe5VWVnAHLi7wKcv3k7y84h-vxfXBVl-YEzaVB54GbiGtq9xy6SxD56OVLawrBZcQWPnMq1gJNNPZQTD1ZeI9iK15XRJ89qK1bbe5AVDkED4XmEF34Idiuf7fccxfUyVPv8Zl7DLU2_F22C2bRm90cZ-czjSSvp3Ef0DuhPYhuTdTSjobbP-IfIMw25bOtiWtY4Fp1APtKgpDBQ4Hz9uabrrmtoZ2F-y6pzg1SxvMEKd-xCnbcRto7EnxOf3aNg2tOj_28CqIigeKyfM1hea0XE376qw8XYcBpx8rzPl6TK4uPnx-f5nOWy-kXvBiSDVWpQIq4SoO4jBeylwrz1yuoQHsngcNoYWSCADgGLbQFWM5UA9Xcl6Ggj0hJ23XhmeEghPmqkKdCMkdHAXTFnxgnlVSKukSstgpwvi5Ljluj9EYjE9AdWZSnUHVGVRdQt7se2ymmhx_ufcd6nZ_H1bTjg2AMTNjzPwLYwk53yHDzCbeG2CSEAsqJbOEvNpfBuPEFRfbhm7sDQM_JPKMaZGQpxOQ9pIw-PQJ4AoJUUcQOxL1-Eq7uokFwJHFA69Q0PUnNP4Q708DsgSKDxKd_Y9xeU7u5vg3SExiPycnw3YML4CjDe5lNMfvB-Q-Ew
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLiUNwQKMhIXDtHuxnbinBAglooDJyr1FvmVdKVssmwSof6B_u7OOE7K8mhu68TJbGbs-eaRGULeLa2RGRM21saImGcyj5UxMi6V4BpUnONjlu_39PSMfzsX58Hh1oW0ymlP9Bu1bQ36yBeguAF6S5kuP-x-xtg1CqOroYXGXXJvlYCuxS_F119nHwugH5Qw7C8HQCaGuVOkErT4olFNu7sAMUnAoM4wp-43zeQL-P8Ldf6dPHn8ywe2rav2w2U_BVK9flo_JMcBWNKPoyQ8Indc85g8CCCThiXcPSFXYHgrq1VjaeVLTiNnaFtSeHmggvB3U9FdW19WMK6d2nYUnbW0xpxxagZ04g57R_1MivfptqquadmaoYNHgZ3cU0ynrygMx3YzdtrZGLp1PTokS8wCe0rO1l9-fD6NQzOG2Aie9XGOdaoAXOiSAzmM2zTJpWE6yWEAdgLucjA2ZIoiAahDZXnJWAJgRFvOrcvYM3LUtI17QSioZS5L5I9IuYYjY7kCrZgsyzSVqY7IYmJEYUKlcmyYURdosQDripF1BbKuQNZF5P08YzdW6bjl2k_I2_k6rK_tB9p9VYTlWqRKl3q10ooh5MmlypS2gqdgzpulkTwiJ5NkFGHRd8WNiEbk7XwalivGYFTj2qErGGgmkSxZLiLyfBSkmRIGm6EA9BAReSBiB6Qenmk2F74kOOJ6QBoSpv4hjTfk_e-FrAD0A0Uvb_9Lr8j9BL_88AnrJ-So3w_uNeCxXr_xi-4ax6w3dA
  priority: 102
  providerName: ProQuest
Title Broadband generation of accelerating polygon beams with large curvature ratio and small focused spot using all-dielectric metasurfaces
URI https://www.degruyter.com/doi/10.1515/nanoph-2021-0787
https://www.ncbi.nlm.nih.gov/pubmed/39635067
https://www.proquest.com/docview/2642608860
https://www.proquest.com/docview/3146520395
https://pubmed.ncbi.nlm.nih.gov/PMC11501288
https://doaj.org/article/6abfb11ba3224098a7abd546837c0c84
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoe-FS3hAokZG4cAjdje3EOSBEUZeKQ4UQK_UW2Y6TLsomSx6C_QP8bmac7FYLCyK3OHEy8sxkvvFMZgh5OcmMjJnIAm2MCHgsk0AZI4NcCa7BxFk-ZPleRhdz_vFKXN38Hj0uYLvXtcN-UvOmfP3j2_otKPwb171nKk4rVdWra-B3CJ4xCOABOXLRIkzkG8H-1wELobxhtzmANYEEwzTGLfc9ZMdOuXL--zDon6mUx99dmDuzRdOvu01Y1Vmr2V1yPMJM-m6Qi3vklq3ukzsj5KSjQrcPyE9ww1WmVZXRwhWgRj7ROqewlGCQ8Lwq6Kou1wWMa6uWLcWtW1piBjk1PW7p9o2lbibF57RLVZY0r03fwqtgaTuKyfUFheEgWwx9dxaGLm2H25M55oQ9JPPZ-Zf3F8HYmiEwgsddkGDVKoAaOudADuNZFCbSMB0mMADfBW4TcD1khAICGETFSc5YCNBEZ5xnNmaPyGFVV_YJoWCkucyRPyLiGo6YJQpsZDjJo0hG2iOnG0akZqxbju0zyhT9F2BdOrAuRdalyDqPvNrOWA01O_5x7xnydnsfVtt2A3VTpKPyppHSuZ5OtWIIgBKpYqUzwSNw7s3ESO6Rk41kpBsJTgFpgq8oZTTxyIvtZVBejMioytZ9mzKwUyKcsER45PEgSFtKGHwaBWAJj8gdEdshdfdKtbh2BcIR5QPukDD1N2m8Ie9vCzIFFwAoevofND8jt0P8GcTlsJ-Qw67p7XOAaJ32yYGcffDJ0dn55afPvtvo8J02-m4_7RdrzUHS
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoBLyxvTAosEBw5WEu_aXh8Q4hVSWnpqpd6WfdmNlNghtlXlD_Bz-I3M-JESHr3VN6-9zjgzO_PNzniGkJdDa0TMQutrY0KfxyLxlTHCT1XINZg4x9ss3-Nocsq_nIVnW-Rn_y0MplX2OrFR1LYwuEc-AMMN0FuIaPh28d3HrlEYXe1baLRicehWF-CylW8OPgJ_XwXB-NPJh4nfdRXwTcjjyk-w4BJYSZ1yYxzjNgoSYZgOEhgAkeYuAdQsInw3MJ8qTlLGArCq2nJuXczguTfITc4YwxRCMf683tMBtIUSjf3sADj5QGsfGQXUMMhVXizOQSwDcOBjzOH7zRI2DQP-hXL_TtbcuWgC6dZly3pV9YHbxh6O75CdDsjSd63k3SVbLr9HdjtQSzuVUd4nP8DRV1ar3NKsKXGNkkCLlAKzwOTheZ7RRTFbZTCunZqXFDeH6Qxz1KmpcdO4XjrazKT4nHKuZjOaFqYu4afAL68opu9nFIZ9O207-0wNnbsKN0BTzDp7QE6vhU0PyXZe5O4xoQADuEiRP2HENRwxSxRY4WCYRpGItEcGPSOk6SqjY4OOmUQPCVgnW9ZJZJ1E1nnk9XrGoq0KcsW975G36_uwnnczUCwz2akHGSmd6tFIK4YQKxEqVtqGPBIsNkMjuEf2e8mQnZIp5eWS8MiL9WVQDxjzUbkr6lIysIRhMGRJ6JFHrSCtKWGgfENAKx4RGyK2QermlXx63pQgRz8CkI2AqX9I4yV5__tDRuBkAEVPrn6l5-TW5OTrkTw6OD7cI7cD_OqkSZbfJ9vVsnZPAQtW-lmzACn5dt0r_he2dXOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWXQlxWd4QWMBIXDhEbWPHcY7LQikPLUiw0t4sv5KtlCZVkwjtH-B3M5OkgcLCgd7qxO3I30zmm_FkTMiLqbMyYbELjbVxyBOZhtpaGWY65gZcnOd9le-pWJzx9-fx-R452b4Lg2WVzueb9rLpO6ROXGVbTJSNvQbAA09KXVbrC4A4gmAYdG6ydtk1ciCEFKDsB8eLt18-jakWIEGoaMMm5VXTd5xS17v_KsL5Z93k4bduT3sU-BfXNL9FDgdOSY97JbhN9nx5h9wc-CUdrLe-S75DzK2d0aWjeddtGkGhVUZh3cD74Pcyp-uquMxh3Hi9qinmaWmB5eLUtpi_bTeedjMp_k690kVBM1i8Gv4KQuSGYiV9TmE4dMv-kJ2lpSvfYC4ywwKwe-Rs_ubrySIczmEIbcyTJkyxRRXwCpNxEIdxJ6JUWmaiFAbgIcB9CnGGFKgNQDh0kmaMRcBDjOPc-YTdJ_tlVfqHhIJH5jJDTGLBDXwSlmpwiNE0Q-xMQCZbIJQdmpTjWRmFwmAFoFM9dAqhUwhdQF6OM9Z9g45_3PsKsR3vw9ba3UC1ydVgqUpok5nZzGiGbCeVOtHGxVxAJG-nVvKAHG01Qw32XiuglRAYSimmAXk-XgZLxe0XXfqqrRUDpxRHU5bGAXnQK9IoCYPnYAzEISByR8V2RN29Ui4vum7gSOmBZEiY-ps2_hTvbwsyA74PEj36_6nPyPXPr-fq47vTD4_JjQjfDelK2o_IfrNp_RNgbI15OljkD5gCQrI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+generation+of+accelerating+polygon+beams+with+large+curvature+ratio+and+small+focused+spot+using+all-dielectric+metasurfaces&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Chen%2C+Lei&rft.au=Kanwal%2C+Saima&rft.au=Lu%2C+Yongzheng&rft.au=Zhang%2C+Dawei&rft.date=2022-02-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=11&rft.issue=6&rft.spage=1203&rft_id=info:doi/10.1515%2Fnanoph-2021-0787&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon