Machine Learning Algorithms of Remote Sensing Data Processing for Mapping Changes in Land Cover Types over Central Apennines, Italy
This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018–2024). The operational workflow included satellite ima...
Saved in:
| Published in | Journal of imaging Vol. 11; no. 5; p. 153 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
12.05.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-433X 2313-433X |
| DOI | 10.3390/jimaging11050153 |
Cover
| Abstract | This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018–2024). The operational workflow included satellite image processing which were classified into raster maps with automatically detected 10 classes of land cover types over the tested study. The approach was implemented by using a set of modules in Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). To classify remote sensing (RS) data, two types of approaches were carried out. The first is unsupervised classification based on the MaxLike approach and clustering which extracted Digital Numbers (DN) of landscape feature based on the spectral reflectance of signals, and the second is supervised classification performed using several methods of Machine Learning (ML), technically realised in GRASS GIS scripting software. The latter included four ML algorithms embedded from the Python’s Scikit-Learn library. These classifiers have been implemented to detect subtle changes in land cover types as derived from the satellite images showing different vegetation conditions in spring and autumn periods in central Apennines, northern Italy. |
|---|---|
| AbstractList | This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018-2024). The operational workflow included satellite image processing which were classified into raster maps with automatically detected 10 classes of land cover types over the tested study. The approach was implemented by using a set of modules in Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). To classify remote sensing (RS) data, two types of approaches were carried out. The first is unsupervised classification based on the MaxLike approach and clustering which extracted Digital Numbers (DN) of landscape feature based on the spectral reflectance of signals, and the second is supervised classification performed using several methods of Machine Learning (ML), technically realised in GRASS GIS scripting software. The latter included four ML algorithms embedded from the Python's Scikit-Learn library. These classifiers have been implemented to detect subtle changes in land cover types as derived from the satellite images showing different vegetation conditions in spring and autumn periods in central Apennines, northern Italy.This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018-2024). The operational workflow included satellite image processing which were classified into raster maps with automatically detected 10 classes of land cover types over the tested study. The approach was implemented by using a set of modules in Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). To classify remote sensing (RS) data, two types of approaches were carried out. The first is unsupervised classification based on the MaxLike approach and clustering which extracted Digital Numbers (DN) of landscape feature based on the spectral reflectance of signals, and the second is supervised classification performed using several methods of Machine Learning (ML), technically realised in GRASS GIS scripting software. The latter included four ML algorithms embedded from the Python's Scikit-Learn library. These classifiers have been implemented to detect subtle changes in land cover types as derived from the satellite images showing different vegetation conditions in spring and autumn periods in central Apennines, northern Italy. This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images in six-year period (2018-2024). The operational workflow included satellite image processing which were classified into raster maps with automatically detected 10 classes of land cover types over the tested study. The approach was implemented by using a set of modules in Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). To classify remote sensing (RS) data, two types of approaches were carried out. The first is unsupervised classification based on the MaxLike approach and clustering which extracted Digital Numbers (DN) of landscape feature based on the spectral reflectance of signals, and the second is supervised classification performed using several methods of Machine Learning (ML), technically realised in GRASS GIS scripting software. The latter included four ML algorithms embedded from the Python's Scikit-Learn library. These classifiers have been implemented to detect subtle changes in land cover types as derived from the satellite images showing different vegetation conditions in spring and autumn periods in central Apennines, northern Italy. |
| Audience | Academic |
| Author | Lemenkova, Polina |
| AuthorAffiliation | Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy; polina.lemenkova2@unibo.it ; Tel.: +39-3446928732 |
| AuthorAffiliation_xml | – name: Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy; polina.lemenkova2@unibo.it ; Tel.: +39-3446928732 |
| Author_xml | – sequence: 1 givenname: Polina orcidid: 0000-0002-5759-1089 surname: Lemenkova fullname: Lemenkova, Polina |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40423010$$D View this record in MEDLINE/PubMed https://hal.science/hal-05064288$$DView record in HAL |
| BookMark | eNqFUkuP0zAQjtAidln2zglZ4gISXfzI84Sq8thKXYGgB27WxBmnqVI72GlRz_xxnGZZthUSsiyPx998M_5mnkZnxhqMoueMXgtR0LfrZgN1Y2rGaEJZIh5FF1wwMYmF-H72wD6PrrxfU0pZwcMunkTnMY25oIxeRL9uQa0ag2SB4ExgI9O2tq7pVxtPrCZfcWN7JN_Q-OHxPfRAvjir0B_u2jpyC1032LMVmBo9aQxZgKnIzO7QkeW-C76DOUPTO2jJtEMTUqF_Q-Y9tPtn0WMNrceru_MyWn78sJzdTBafP81n08VEJXHWT_KyVFBlWYwJh6oseIYZh0TrIsl5nmpeqJxqnZc6STKdAtJEJaUSaYxFqkBcRvORtrKwlp0L8rm9tNDIg8O6WoLrG9WipDqoxWLUmmMsoMorRpUAzDVTWSgjcLGRa2s62P-Etr0nZFQO7ZGn7Qkx78aYbltusFKjGkeFHL-YZiVru5OMM8aKjAaG1yPD6iTuZrqQgy9kSmOe5zsWsK_usjn7Y4u-l5vGK2xbMGi3XgoeaHmRHgp7eQJd260zoRUHFOVpTvlfVA1BocZoG4pUA6mc5jHPClawAXX9D1RYFW4aFQZYN8F_FPDioSr33_ozogFAR4By1nuH-v9K_wYMevq2 |
| Cites_doi | 10.1007/978-981-99-5245-8_17 10.1080/01431169508954465 10.1109/ICCCNT61001.2024.10725490 10.1016/j.landurbplan.2023.104973 10.1016/j.jrurstud.2006.10.001 10.1080/20964471.2018.1433790 10.3390/rs17071304 10.1111/jvs.13175 10.3390/ijgi10050342 10.1080/17445647.2012.744705 10.1080/12538078.2005.10515513 10.1088/1748-9326/11/6/064020 10.1080/09654313.2022.2135367 10.1016/j.foreco.2016.10.028 10.3390/atmos13071050 10.3390/jmse12050709 10.1080/01431161.2020.1714778 10.3390/rs17050822 10.3390/rs9090967 10.3390/geosciences15030104 10.1016/j.ecoinf.2016.11.008 10.2139/ssrn.5103925 10.1016/j.futures.2024.103358 10.1016/j.agee.2023.108798 10.3390/rs16122222 10.2747/1548-1603.41.3.207 10.1109/IGARSS46834.2022.9883577 10.1109/ICCAMS60113.2023.10525710 10.1109/CONIT51480.2021.9498434 10.1016/j.landurbplan.2021.104240 10.3390/land12111995 10.1016/j.foreco.2021.119655 10.3390/data7060074 10.1080/17445647.2022.2137065 10.3390/rs16193596 10.3390/su17083480 10.3390/app142412020 10.1080/13921657.2005.10512400 10.1007/978-1-4020-2562-4 10.1080/17445647.2017.1376228 10.3390/earth5030024 10.1016/j.exco.2025.100180 10.1080/19475705.2019.1578271 10.1109/ICECCME52200.2021.9591110 10.1016/j.rse.2022.113266 10.1016/j.foreco.2016.10.033 10.1007/s10980-006-9056-4 10.1109/JSTARS.2015.2492363 10.1080/01431161.2024.2307945 10.1109/ICCIT48885.2019.9038562 10.1080/17445647.2018.1480976 10.3390/asi6040061 10.3390/land14040828 10.1080/17445647.2020.1832926 10.1080/17445647.2017.1415989 10.1111/jvs.13235 10.1080/01431160110075811 10.1080/10106049.2022.2041107 10.1002/ldr.1032 10.1080/15481603.2019.1587891 10.1080/17445647.2015.1044040 10.1080/17445647.2012.668771 10.1016/j.landurbplan.2011.09.005 10.1007/s12210-018-0681-z 10.1016/S0378-1127(00)00378-9 10.1080/03949370.2021.1967458 10.1016/j.catena.2016.02.024 10.3390/land11020192 10.1109/TENSYMP54529.2022.9864505 10.1080/22797254.2022.2042397 10.3390/ijerph20032049 10.1080/17445647.2016.1245633 10.3390/rs17091510 10.1080/01431160120522 10.1080/11250000409356589 10.3390/rs17071163 10.3390/jmse12081279 10.1016/j.ecoinf.2022.101922 10.1080/11250000109356382 10.1080/14702541.2013.781209 10.3390/app15094653 10.1080/13504509.2016.1193778 10.3390/rs17071296 10.3390/f15061055 10.1080/20964471.2017.1397899 10.3390/w16081141 10.3390/analytics2030040 10.1109/IGARSS.2015.7326131 10.1016/j.envsoft.2020.104946 10.1080/13504509.2011.561050 10.1109/ICDACAI65086.2024.00150 10.1111/jvs.12939 10.1016/j.asr.2024.03.027 10.1080/12538078.2005.10515512 10.1111/jvs.12598 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution 2025 by the author. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: 2025 by the author. 2025 |
| DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC BXJBU IHQJB VOOES 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/jimaging11050153 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Environmental Sciences |
| EISSN | 2313-433X |
| ExternalDocumentID | oai_doaj_org_article_0f00114eff2e43ad8d10c3ae8f1c7bbc 10.3390/jimaging11050153 PMC12111970 oai:HAL:hal-05064288v1 A842791912 40423010 10_3390_jimaging11050153 |
| Genre | Journal Article |
| GeographicLocations | Italy Apennines |
| GeographicLocations_xml | – name: Italy – name: Apennines |
| GrantInformation_xml | – fundername: Multidisciplinary Digital Publishing Institute (Switzerland) grantid: 100% APC discount from the Editorial Board of the J. Imaging. |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHR ITC KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 1XC BXJBU IHQJB VOOES 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c547t-8bbcad774e52adb927e72a5ff958286f29c80ff8bf557f6ae05c5bc364e96ca3 |
| IEDL.DBID | UNPAY |
| ISSN | 2313-433X |
| IngestDate | Fri Oct 03 12:41:26 EDT 2025 Sun Oct 26 04:01:42 EDT 2025 Tue Sep 30 17:04:50 EDT 2025 Tue Oct 14 20:36:40 EDT 2025 Fri Sep 05 16:00:05 EDT 2025 Fri Jul 25 09:47:07 EDT 2025 Mon Oct 20 22:42:29 EDT 2025 Mon Oct 20 16:53:27 EDT 2025 Sat May 31 02:14:21 EDT 2025 Thu Oct 16 04:36:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | environmental monitoring GRASS GIS ecosystem multispectral image geoinformatics Landsat ecological conservation time series satellite data machine learning Italy |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c547t-8bbcad774e52adb927e72a5ff958286f29c80ff8bf557f6ae05c5bc364e96ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5759-1089 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/jimaging11050153 |
| PMID | 40423010 |
| PQID | 3212026802 |
| PQPubID | 2059558 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0f00114eff2e43ad8d10c3ae8f1c7bbc unpaywall_primary_10_3390_jimaging11050153 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12111970 hal_primary_oai_HAL_hal_05064288v1 proquest_miscellaneous_3212129653 proquest_journals_3212026802 gale_infotracmisc_A842791912 gale_infotracacademiconefile_A842791912 pubmed_primary_40423010 crossref_primary_10_3390_jimaging11050153 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-12 |
| PublicationDateYYYYMMDD | 2025-05-12 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Journal of imaging |
| PublicationTitleAlternate | J Imaging |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_92 ref_91 ref_90 Brunori (ref_10) 2007; 23 ref_12 ref_99 Kuemmerle (ref_15) 2016; 11 ref_97 ref_96 ref_95 ref_18 Falcucci (ref_16) 2007; 22 Ameztegui (ref_17) 2021; 216 Pedregosa (ref_98) 2011; 12 Diogo (ref_11) 2021; 136 Savelli (ref_49) 2012; 8 Ahmed (ref_93) 2016; 9 Lelli (ref_20) 2018; 29 Baldo (ref_26) 2023; 73 Vacchiano (ref_1) 2017; 388 Lanorte (ref_38) 2019; 10 Segadelli (ref_48) 2017; 13 Mario (ref_50) 2023; 19 Bruschi (ref_42) 2012; 8 Glaser (ref_22) 2024; 361 McRoberts (ref_55) 2022; 55 Marsico (ref_56) 2017; 13 Efthimiou (ref_82) 2022; 37 Corbane (ref_88) 2017; 1 Panini (ref_44) 2020; 16 Dezio (ref_62) 2023; 31 ref_72 Civile (ref_43) 2017; 13 ref_71 ref_70 Canullo (ref_46) 2005; 152 ref_79 ref_78 ref_77 Leone (ref_41) 1995; 16 ref_76 ref_75 ref_73 Lindh (ref_25) 2023; 3 Leone (ref_35) 2001; 22 Alessi (ref_23) 2023; 34 ref_81 Esch (ref_87) 2018; 2 ref_80 ref_89 Vitali (ref_8) 2018; 29 ref_86 Bracchetti (ref_30) 2012; 104 Viciani (ref_85) 2016; 12 Salvati (ref_52) 2017; 24 Avanzi (ref_40) 2020; 41 ref_58 ref_57 Jarnagin (ref_60) 2004; 41 Zhu (ref_27) 2022; 282 ref_59 Bruelheide (ref_24) 2024; 35 Lasanta (ref_3) 2017; 149 ref_69 ref_68 ref_67 ref_66 ref_65 ref_64 Agnoletti (ref_14) 2022; 503 ref_63 Lemenkova (ref_28) 2024; 5 Buthelezi (ref_61) 2024; 45 Bukovec (ref_84) 2011; 18 Bonfiglio (ref_36) 2002; 23 Meriggi (ref_54) 2001; 68 Spinetti (ref_39) 2019; 56 Vaitkus (ref_83) 2005; 15 ref_34 ref_32 ref_31 Mariani (ref_51) 2018; 14 Mareggi (ref_9) 2024; 158 Lelli (ref_21) 2021; 32 Bengtsson (ref_2) 2000; 132 Bebi (ref_5) 2017; 388 Arnaez (ref_13) 2011; 22 Franchini (ref_53) 2022; 34 Amici (ref_19) 2017; 37 Sebastiani (ref_7) 2024; 36 Parvin (ref_33) 2024; 74 ref_101 Anselmetto (ref_29) 2024; 243 Salvati (ref_37) 2013; 129 Petriccione (ref_45) 2005; 152 Florenzano (ref_47) 2004; 71 Lemenkova (ref_74) 2023; 2 Lemenkova (ref_100) 2025; 7 ref_4 ref_6 |
| References_xml | – ident: ref_6 doi: 10.1007/978-981-99-5245-8_17 – volume: 16 start-page: 1087 year: 1995 ident: ref_41 article-title: The application of satellite remote sensing for soil studies in upland areas of Southern Italy publication-title: Int. J. Remote Sens. doi: 10.1080/01431169508954465 – ident: ref_94 doi: 10.1109/ICCCNT61001.2024.10725490 – volume: 243 start-page: 104973 year: 2024 ident: ref_29 article-title: Global change in the European Alps: A century of post-abandonment natural reforestation at the landscape scale publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2023.104973 – volume: 23 start-page: 183 year: 2007 ident: ref_10 article-title: Differentiating countryside: Social representations and governance patterns in rural areas with high social density: The case of Chianti, Italy publication-title: J. Rural Stud. doi: 10.1016/j.jrurstud.2006.10.001 – volume: 2 start-page: 36 year: 2018 ident: ref_87 article-title: Exploiting big earth data from space—First experiences with the timescan processing chain publication-title: Big Earth Data doi: 10.1080/20964471.2018.1433790 – ident: ref_65 – ident: ref_59 doi: 10.3390/rs17071304 – volume: 34 start-page: e13175 year: 2023 ident: ref_23 article-title: Probabilistic and preferential sampling approaches offer integrated perspectives of Italian forest diversity publication-title: J. Veg. Sci. doi: 10.1111/jvs.13175 – ident: ref_80 doi: 10.3390/ijgi10050342 – volume: 8 start-page: 445 year: 2012 ident: ref_42 article-title: Geomorphological features of the Rio della Rocca valley (northern Apennines, Italy) publication-title: J. Maps doi: 10.1080/17445647.2012.744705 – volume: 152 start-page: 545 year: 2005 ident: ref_45 article-title: Short-term changes in key plant communities of Central Apennines (Italy) publication-title: Acta Bot. Gall. doi: 10.1080/12538078.2005.10515513 – volume: 11 start-page: 064020 year: 2016 ident: ref_15 article-title: Hotspots of land use change in Europe publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/6/064020 – volume: 31 start-page: 1799 year: 2023 ident: ref_62 article-title: How to support cultural heritage-led development in Italian inner areas: A multi-methodological evaluation approach publication-title: Eur. Plan. Stud. doi: 10.1080/09654313.2022.2135367 – volume: 388 start-page: 43 year: 2017 ident: ref_5 article-title: Changes of forest cover and disturbance regimes in the mountain forests of the Alps publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.10.028 – ident: ref_86 doi: 10.3390/atmos13071050 – ident: ref_34 doi: 10.3390/jmse12050709 – volume: 41 start-page: 4174 year: 2020 ident: ref_40 article-title: Comparing MODIS snow products Collection 5 with Collection 6 over Italian Central Apennines publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1714778 – ident: ref_99 doi: 10.3390/rs17050822 – ident: ref_71 doi: 10.3390/rs9090967 – ident: ref_101 doi: 10.3390/geosciences15030104 – volume: 37 start-page: 38 year: 2017 ident: ref_19 article-title: Long-term patterns of change in a vanishing cultural landscape: A GIS-based assessment publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2016.11.008 – ident: ref_12 doi: 10.2139/ssrn.5103925 – volume: 158 start-page: 103358 year: 2024 ident: ref_9 article-title: Dare to imagine. Explorative scenarios for re-shaping human-nature relationships in an inner periphery in the Italian Apennines publication-title: Futures doi: 10.1016/j.futures.2024.103358 – volume: 361 start-page: 108798 year: 2024 ident: ref_22 article-title: Pronounced turnover of vascular plant species in Central European arable fields over 90 years publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2023.108798 – volume: 36 start-page: 101329 year: 2024 ident: ref_7 article-title: Monitoring ink disease epidemics in chestnut and cork oak forests in central Italy with remote sensing publication-title: Remote Sens. Appl. Soc. Environ. – ident: ref_67 doi: 10.3390/rs16122222 – volume: 41 start-page: 207 year: 2004 ident: ref_60 article-title: Regional and Global Patterns of Population, Land Use, and Land Cover Change: An Overview of Stressors and Impacts publication-title: Giscience Remote Sens. doi: 10.2747/1548-1603.41.3.207 – ident: ref_97 doi: 10.1109/IGARSS46834.2022.9883577 – ident: ref_91 doi: 10.1109/ICCAMS60113.2023.10525710 – ident: ref_63 doi: 10.1109/CONIT51480.2021.9498434 – volume: 216 start-page: 104240 year: 2021 ident: ref_17 article-title: Forest expansion in mountain protected areas: Trends and consequences for the landscape publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2021.104240 – ident: ref_69 doi: 10.3390/land12111995 – volume: 503 start-page: 119655 year: 2022 ident: ref_14 article-title: Cultural values and forest dynamics: The Italian forests in the last 150 years publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2021.119655 – ident: ref_4 doi: 10.3390/data7060074 – volume: 19 start-page: 2137065 year: 2023 ident: ref_50 article-title: Landslides and predisposing factors of the Southern Apennines, Italy publication-title: J. Maps doi: 10.1080/17445647.2022.2137065 – ident: ref_70 doi: 10.3390/rs16193596 – ident: ref_78 doi: 10.3390/su17083480 – ident: ref_68 doi: 10.3390/app142412020 – volume: 15 start-page: 183 year: 2005 ident: ref_83 article-title: Land Cover Changes in the Lithuanian Coastal Zone During 1975–2000 publication-title: Acta Zool. Litu. doi: 10.1080/13921657.2005.10512400 – ident: ref_18 doi: 10.1007/978-1-4020-2562-4 – volume: 13 start-page: 737 year: 2017 ident: ref_48 article-title: Hydrogeological mapping of heterogeneous and multi-layered ophiolitic aquifers (Mountain Prinzera, northern Apennines, Italy) publication-title: J. Maps doi: 10.1080/17445647.2017.1376228 – volume: 5 start-page: 420 year: 2024 ident: ref_28 article-title: Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data publication-title: Earth doi: 10.3390/earth5030024 – volume: 7 start-page: 100180 year: 2025 ident: ref_100 article-title: Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python publication-title: Examples Counterexamples doi: 10.1016/j.exco.2025.100180 – volume: 10 start-page: 1563 year: 2019 ident: ref_38 article-title: Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy) publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2019.1578271 – ident: ref_64 doi: 10.1109/ICECCME52200.2021.9591110 – volume: 282 start-page: 113266 year: 2022 ident: ref_27 article-title: Remote sensing of land change: A multifaceted perspective publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113266 – volume: 388 start-page: 57 year: 2017 ident: ref_1 article-title: Forest dynamics and disturbance regimes in the Italian Apennines publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.10.033 – volume: 22 start-page: 617 year: 2007 ident: ref_16 article-title: Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation publication-title: Landsc. Ecol. doi: 10.1007/s10980-006-9056-4 – volume: 9 start-page: 3489 year: 2016 ident: ref_93 article-title: Extending Airborne Lidar-Derived Estimates of Forest Canopy Cover and Height Over Large Areas Using kNN With Landsat Time Series Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2492363 – volume: 45 start-page: 1339 year: 2024 ident: ref_61 article-title: Assessing the extent of land degradation in the eThekwini municipality using land cover change and soil organic carbon publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2024.2307945 – ident: ref_95 doi: 10.1109/ICCIT48885.2019.9038562 – volume: 14 start-page: 392 year: 2018 ident: ref_51 article-title: Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): Evolution of a Holocene landscape publication-title: J. Maps doi: 10.1080/17445647.2018.1480976 – ident: ref_77 doi: 10.3390/asi6040061 – ident: ref_57 doi: 10.3390/land14040828 – volume: 16 start-page: 805 year: 2020 ident: ref_44 article-title: Geology of the High Sillaro Valley (Northern Apennines of Italy) publication-title: J. Maps doi: 10.1080/17445647.2020.1832926 – volume: 13 start-page: 961 year: 2017 ident: ref_56 article-title: Flooding scenario for four Italian coastal plains using three relative sea level rise models publication-title: J. Maps doi: 10.1080/17445647.2017.1415989 – volume: 35 start-page: e13235 year: 2024 ident: ref_24 article-title: ReSurveyEurope: A database of resurveyed vegetation plots in Europe publication-title: J. Veg. Sci. doi: 10.1111/jvs.13235 – ident: ref_90 – volume: 23 start-page: 4181 year: 2002 ident: ref_36 article-title: Interfacing NOAA/ANHRR NDVI and soil truth maps for monitoring vegetation phenology at a local scale in a heterogeneous landscape of Southern Italy publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110075811 – volume: 37 start-page: 10871 year: 2022 ident: ref_82 article-title: Developing a high-resolution land use/land cover map by upgrading CORINE’s agricultural components using detailed national and pan-European datasets publication-title: Geocarto Int. doi: 10.1080/10106049.2022.2041107 – volume: 22 start-page: 537 year: 2011 ident: ref_13 article-title: Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo publication-title: Land Degrad. Dev. doi: 10.1002/ldr.1032 – volume: 56 start-page: 940 year: 2019 ident: ref_39 article-title: Landslide susceptibility mapping by remote sensing and geomorphological data: Case studies on the Sorrentina Peninsula (Southern Italy) publication-title: Giscience Remote Sens. doi: 10.1080/15481603.2019.1587891 – volume: 12 start-page: 492 year: 2016 ident: ref_85 article-title: Detailed Natura 2000 and CORINE Biotopes habitat maps of the island of Elba (Tuscan Archipelago, Italy) publication-title: J. Maps doi: 10.1080/17445647.2015.1044040 – volume: 8 start-page: 113 year: 2012 ident: ref_49 article-title: Geomorphological map of the Montelago area (North Marche Apennines, central Italy): Constrains for two relict lakes publication-title: J. Maps doi: 10.1080/17445647.2012.668771 – volume: 104 start-page: 157 year: 2012 ident: ref_30 article-title: Land-cover changes in a remote area of central Apennines (Italy) and management directions publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2011.09.005 – volume: 29 start-page: 355 year: 2018 ident: ref_20 article-title: Are available vegetation data suitable for assessing plant diversity? A study case in the Foreste Casentinesi National Park (Italy) publication-title: Rend. Lincei Sci. Fis. Nat. doi: 10.1007/s12210-018-0681-z – volume: 132 start-page: 39 year: 2000 ident: ref_2 article-title: Biodiversity, disturbances, ecosystem function and management of European forests publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(00)00378-9 – volume: 34 start-page: 497 year: 2022 ident: ref_53 article-title: First assessment of ectoparasite prevalence in Apennine populations of Eurasian red squirrel: Does habitat fragmentation affect parasite presence? publication-title: Ethol. Ecol. Evol. doi: 10.1080/03949370.2021.1967458 – volume: 149 start-page: 810 year: 2017 ident: ref_3 article-title: Space–time process and drivers of land abandonment in Europe publication-title: Catena doi: 10.1016/j.catena.2016.02.024 – ident: ref_66 – ident: ref_79 doi: 10.3390/land11020192 – ident: ref_96 doi: 10.1109/TENSYMP54529.2022.9864505 – volume: 55 start-page: 199 year: 2022 ident: ref_55 article-title: Effects of lidar coverage and field plot data numerosity on forest growing stock volume estimation publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2022.2042397 – ident: ref_81 doi: 10.3390/ijerph20032049 – volume: 13 start-page: 7 year: 2017 ident: ref_43 article-title: Geology of the Pergola–Melandro basin area, Southern Apennines, Italy publication-title: J. Maps doi: 10.1080/17445647.2016.1245633 – ident: ref_73 doi: 10.3390/rs17091510 – volume: 22 start-page: 2311 year: 2001 ident: ref_35 article-title: Statistical analysis of soil colour and spectroradiometric data for hyperspectral remote sensing of soil properties (example in a southern Italy Mediterranean ecosystem) publication-title: Int. J. Remote Sens. doi: 10.1080/01431160120522 – volume: 3 start-page: 110 year: 2023 ident: ref_25 article-title: Geotechnical Properties of Soil Stabilized with Blended Binders for Sustainable Road Base Applications publication-title: Constr. Mater. – volume: 71 start-page: 317 year: 2004 ident: ref_47 article-title: Birds as indicators of recent environmental changes in the Apennines (Foreste Casentinesi National Park, central Italy) publication-title: Ital. J. Zool. doi: 10.1080/11250000409356589 – ident: ref_76 doi: 10.3390/rs17071163 – ident: ref_31 doi: 10.3390/jmse12081279 – volume: 73 start-page: 101922 year: 2023 ident: ref_26 article-title: Remote sensing analysis on primary productivity and forest cover dynamics: A Western Ghats India case study publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101922 – volume: 68 start-page: 47 year: 2001 ident: ref_54 article-title: Habitat requirements of wild boars in the northern Apennines (N Italy): A multi-level approach publication-title: Ital. J. Zool. doi: 10.1080/11250000109356382 – volume: 129 start-page: 85 year: 2013 ident: ref_37 article-title: Desertification Risk, Long-Term Land-Use Changes and Environmental Resilience: A Case Study in Basilicata, Italy publication-title: Scott. Geogr. J. doi: 10.1080/14702541.2013.781209 – ident: ref_75 doi: 10.3390/app15094653 – volume: 24 start-page: 27 year: 2017 ident: ref_52 article-title: Land-cover changes and sustainable development in a rural cultural landscape of central Italy: Classical trends and counter-intuitive results publication-title: Int. J. Sustain. Dev. World Ecol. doi: 10.1080/13504509.2016.1193778 – volume: 12 start-page: 2825 year: 2011 ident: ref_98 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_58 doi: 10.3390/rs17071296 – ident: ref_72 doi: 10.3390/f15061055 – volume: 1 start-page: 118 year: 2017 ident: ref_88 article-title: Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping publication-title: Big Earth Data doi: 10.1080/20964471.2017.1397899 – ident: ref_32 doi: 10.3390/w16081141 – volume: 2 start-page: 745 year: 2023 ident: ref_74 article-title: Image Segmentation of the Sudd Wetlands in South Sudan for Environmental Analytics by GRASS GIS Scripts publication-title: Analytics doi: 10.3390/analytics2030040 – ident: ref_92 doi: 10.1109/IGARSS.2015.7326131 – volume: 136 start-page: 104946 year: 2021 ident: ref_11 article-title: Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: An application for the EU publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2020.104946 – volume: 18 start-page: 341 year: 2011 ident: ref_84 article-title: Corine land cover changes during the period 1990–2000 in the most important areas for birds in Croatia publication-title: Int. J. Sustain. Dev. World Ecol. doi: 10.1080/13504509.2011.561050 – ident: ref_89 doi: 10.1109/ICDACAI65086.2024.00150 – volume: 32 start-page: e12939 year: 2021 ident: ref_21 article-title: Long-term changes in Italian mountain forests detected by resurvey of historical vegetation data publication-title: J. Veg. Sci. doi: 10.1111/jvs.12939 – volume: 74 start-page: 17 year: 2024 ident: ref_33 article-title: Multi-spectral remote sensing and GIS-based analysis for decadal land use land cover changes and future prediction using random forest tree and artificial neural network publication-title: Adv. Space Res. doi: 10.1016/j.asr.2024.03.027 – volume: 152 start-page: 529 year: 2005 ident: ref_46 article-title: Spatial patterns of plant species, guilds and biological types in the regenerative phase of a beech coppice (Torricchio Mountain Nature Reserve, Apennines, Italy) publication-title: Acta Bot. Gall. doi: 10.1080/12538078.2005.10515512 – volume: 29 start-page: 189 year: 2018 ident: ref_8 article-title: Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy) publication-title: J. Veg. Sci. doi: 10.1111/jvs.12598 |
| SSID | ssj0001920199 |
| Score | 2.3008423 |
| Snippet | This work presents the use of remote sensing data for land cover mapping with a case of Central Apennines, Italy. The data include 8 Landsat 8-9 Operational... |
| SourceID | doaj unpaywall pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 153 |
| SubjectTerms | 20th century Algorithms Automation Biodiversity Biodiversity and Ecology Case studies Classification Climate change Clustering Computer Science Data analysis Data processing Earth Sciences ecological conservation Ecology, environment ecosystem Ecosystems Environmental monitoring Environmental Sciences Environmental studies Geographic information systems geoinformatics Health aspects Humanities and Social Sciences Image Processing Land cover Land use planning Life Sciences Machine learning Mapping Methods Remote sensing Reproducibility satellite data Satellite imagery Sciences of the Universe Signal and Image Processing Software Soil erosion Spectral reflectance Support systems time series Trends Workflow |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgF-CAxndgIIOQEIhoqR1_5BgGU0ErBxjSbpHt2G2nLq3WdGhn_nHeS7KoYYddOFRKY8dx3nu2fy95_j1C3iJ_iAnaxzbhNk5LnsRWshCPvOSY10HY5lX25Lsc_0q_nYiTrVRfGBPW0gO3gttPQrPf04fAfMpNqctR4rjxOoycstbh7JvobMuZOm1xC_yy9rskB79-_3R-1qT9geVOwBLIB-tQQ9ffT8q3ZxgTeR1wXo-bvLOpVubyt1ksthalw11yv0OTNG-f4gG55auH5N4Wx-Aj8mfShEt62jGpTmm-mC7P5_XsbE2Xgf7woCxPf2IgOxR-NrWh3e4B_A-Ylk4MkjhMabsTYU3nFT0yVUkPMPyToicLLeFh96qY5iuMmYFJ9CP9CuD-8jE5PvxyfDCOu8wLsROpqmMNgjUlIEMvmCltxpRXzIgQMvzKJgPLnE5C0DYIoYI0PhFOWMdl6jPpDH9Cdqpl5Z8RKj3jIdVl5sH1UTDelTOAMlQSeKmsNBF5f6WGYtXyaxTgl6DKin9VFpFPqKe-HjJjNyfAXorOXoqb7CUi71DLBY5fEIkz3TYE6C4yYRW5TpnKwItlEdkb1IRx5wbFb8BOBp0Z50cFnktE49bpixG0cWVGRTc5rAsOcAFcX51AG6_7YmweA94qv9y0dQCKSXzqp63V9bdKMZYJ_OiI6IE9DvoyLKnms4Y6HAn9QAdw6YfedG-U-_P_IfcX5C7D1MlIfMv2yE59vvEvAc_V9lUzdP8CGBtKbw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe27gF44GN8BQYyCAmBiJbaceI8INSNTQWtFRpD2ltkO3Zb1KVlbUF75h_nLnG6hUnwlsaOa_vO92Gff0fIK8QPUU7aUEdch3HBo1AnzIVdm3DM6yB0tZU9GCb9b_HnU3G6QYbNXRgMq2xkYiWoi5nBPfJdDjIW_AUZsQ_zHyFmjcLT1SaFhvKpFYr3FcTYJtliiIzVIVt7B8Mvx5e7LhkovCyrzys5-Pu73ydnVTogUIMCVCNv6acKxn8trDfHGCt53RC9Hk95Y1XO1cUvNZ1eUVaHd8ltb2XSXs0W98iGLbfJnSaDA_ULepvcugJHeJ_8HlSRlZZ60NUR7U1HMAfL8dmCzhw9tkBXS79izDsUflRLRf1FA_wN5i8dKMR7GNH60sKCTkp6pMqC7mOkKEWnF1rCR7-rTHtzDK8BefuOfgI_4OIBOTk8ONnvhz5JQ2hEnC5DqbVRBRiRVjBV6IylNmVKOJfhgVziWGZk5JzUTojUJcpGwghteBLbLDGKPySdclbax4QmlnEXyyKz4CWlIBpSo8AgSSPHi1QnKiBvGsrk8xqKIwcXBqmY_03FgOwh6db1EES7ejE7H-V-TeaRq64SW-eYjbkqZNGNDFdWuq5JYVgBeY2Ez3Gpw5QY5W8sQHcRNCvvyZilGTi8LCA7rZqwRE2r-CWwTqsz_d5Rju8iUXmA8mcX2mg4K_dyZJFfcn1AXqyLsXmMjSvtbFXXAastwVE_qhlx_Vcxhj2Byx0Q2WLRVl_aJeVkXKGMI_Yf0AA-fbvm5v_O-5N_D-IpuckwfzKi37Id0lmer-wzMOqW-rlfqX8AR3RNNg priority: 102 providerName: ProQuest |
| Title | Machine Learning Algorithms of Remote Sensing Data Processing for Mapping Changes in Land Cover Types over Central Apennines, Italy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40423010 https://www.proquest.com/docview/3212026802 https://www.proquest.com/docview/3212129653 https://hal.science/hal-05064288 https://pubmed.ncbi.nlm.nih.gov/PMC12111970 https://doi.org/10.3390/jimaging11050153 https://doaj.org/article/0f00114eff2e43ad8d10c3ae8f1c7bbc |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: ADMLS dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: RPM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: 8FG dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdo-wA88A0rjMogJAQiI43jxHnMxkpBazWNTSpPke3YbUeXVmsKGq_849wlWdVsSMBbGzuO7Tuf7-y73xHyCvFDpBXGUS5Tjp8y11GBZ52uCRjmdeCqOMoeDIP-if95xEfVeQfGwmzc3zMwx9-fTs-KbD2wS3HYuViDtAIOWneTtE6Gh_HXIndcl2Hgz6i8hfzja7VdpwDnX4vgxgQ9IK-rl9e9JG-usoW8-CFns40tqHe3xENaFsiF6HnybWeVqx398wqu47-M7h65U-mhNC4Z5z65YbIH5PYGOuFD8mtQOFoaWmGwjmk8G8_Pp_nkbEnnlh4ZILOhX9AFHgo_yFzSKu4A_4M2TAcS4R_GtIxhWNJpRg9kltI9dBylaANDS_izOmSm8QK9bUD8vqOfwCy4eESOe_vHe32nytngaO6HuSOU0jIFndJwT6Yq8kITepJbG-H9XGC9SAvXWqEs56ENpHG55kqzwDdRoCV7TJrZPDNbhAbGY9YXaWTAaApBUoRagn4SupaloQpkm7y5JGmyKJE5ErBocF6Tq_PaJrtI83U9xNQuHgAxkmqJJq4tIouNtZ7xmUxF2nU1k0bYrg5hWG3yGjkmwZUPU6JlFcAA3UUMrSQWvhdGYP96bbJdqwkrVteKXwLP1TrTjw8SfObywiAU37vQxiVLJpVYWSYMFA0wmoULbbxYF2Pz6CqXmfmqrANKXICjflJy8PpTPnpBgQXeJqLG27W-1Euy6aQAHUcoQKABvPp2vQz-Ou9P_6fyM3LLw-TKCI3rbZNmfr4yz0Hjy1WHNETvY4e0dveHh0ed4tykUwmA363RV0g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELb6OBQOPMproYBBIARi1Y29z0OF0pcSmlSoBKk3y-u1k6B0E5qEKmd-F_-NmV1v2qUSnHpL1o5je2a_mbHnQcgbzB8iTazd1OOp62fcc9OQGbehQ451HYK0OMruHoetb_7n0-B0hfyuYmHQrbLCxAKos7HCM_JtDhgL9kLssU-THy5WjcLb1aqEhrSlFbKdIsWYDew40osLMOGmO-19oPdbxg4Penst11YZcFXgRzM3TlMlM9CCdMBkliYs0hGTgTEJ3iiFhiUq9oyJUxMEkQml9gIVpIqHvk5CJTkMu0rWfe4nYPut7x4cfzm5PORJQL4mSXk9ynnibX8fnhXVh0DqBiCJeU0cFlUDlrJhdYCumdf13uvumxvzfCIXF3I0uiIbD--RO1appc2SC--TFZ1vkrtVwQhq8WOT3L6S_fAB-dUtHDk1tTle-7Q56sOWzwZnUzo29EQDG2n6FV3soXFfziS1cQ34HbRt2pWYXqJPyxiJKR3mtCPzjO6hYypFGxtGwo_2EJs2J-jNA_D-kbbB7Fg8JL2boNYjspaPc_2E0FAzbvw4SzQYZREgUaQk6D-RZ3gWpaF0yPuKMmJSZv4QYDEhFcXfVHTILpJu2Q9zdhcPxud9YSFAeKaIXNbGMO1zmcVZw1Nc6tg0VATLcsg7JLxAZIEtUdIGSMB0MUeXaMY-ixKwr5lDtmo9ARFUrfk1sE5tMq1mR-AzLygMzvhnA8aoOEtY2JqKy5fMIa-WzTg8uuLlejwv-4CSGOKqH5eMuPwrH72swMJ3SFxj0dpc6i35cFAkNcdUg0AD-OmHJTf_d9-f_nsRL8lGq9ftiE77-OgZucWwdDMm3mVbZG12PtfPQZ-cpS_sW0uJuGGc-AODX4tW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELbaInE8cJRroYBBIARilY29h_cBodAQEppUCIrUN8vrtZOgdBOahCrP_Cr-HTN7pF0qwVPfkrXj2J7ZOeyZbwh5jvghygrjJh5PXD_lnpuEzLpNE3Ks6xAk-VH2YD_sfvM_HQaHG-R3lQuDYZWVTMwFdTrVeEbe4CBjwV8QHmvYMizic7vzbvbDxQpSeNNaldMoWGTPrE7AfZu_7bWB1i8Y63w42O26ZYUBVwd-tHBFkmiVggVkAqbSJGaRiZgKrI3xNim0LNbCs1YkNggiGyrjBTpINA99E4dacRh2k1yKEMQdk9Q7H0-Pd2LQrHFcXIxyHnuN7-OjvO4Q6NsAdDCvKcK8XsBaK2yOMCjzvMV7PnDzyjKbqdWJmkzOaMXOTXK9NGdpq-C_W2TDZNvkRlUqgpaSY5tcO4N7eJv8GuQhnIaW6K5D2poMYYMXo6M5nVr6xQADGfoVg-uhsa0WipYZDfgd7Gw6UAgsMaRFdsScjjPaV1lKdzEklaJ3DSPhx_L4mrZmGMcDgv0N7YHDsbpDDi6CVnfJVjbNzH1CQ8O49UUaG3DHIpBBkVZg-USe5WmUhMohryrKyFmB-SHBV0Iqyr-p6JD3SLp1P0Trzh9Mj4eyfPmlZ_OcZWMtMz5XqUibnubKCNvUESzLIS-R8BJlCmyJVmVqBEwX0blkS_gsisGzZg7ZqfUEWaBrzc-AdWqT6bb6Ep95Qe5qip9NGKPiLFkKrLk8fb0c8nTdjMNjEF5mpsuiD5iHIa76XsGI67_yMb4KfHuHiBqL1uZSb8nGoxzOHEEGgQbw09drbv7vvj_49yKekMsgHWS_t7_3kFxlWLMZEXfZDtlaHC_NIzAkF8nj_JWlRF6wiPgDxiqI8A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdY9wA88A0rDGQQEgKRkdqx4zyGwVTQOiHYpPIU2Y7ddnRptaag8co_zl2SVc2GBLy1sePYvjv7zr77HSHPET9Ee-UCE3ITRDkPAyOZD3pOcszrIEx1lD04kP2j6ONQDJvzDoyFWbu_52COvzmenFTZemCXErBz8Q2yKQVo3R2yeXTwKf1a5Y7rcQz8Gda3kH98rbXrVOD8qyV4Y4wekJfVy8tekleXxVyf_dDT6doWtHezxkNaVMiF6HnybWdZmh378wKu47-M7ha50eihNK0Z5za54oo75PoaOuFd8mtQOVo62mCwjmg6Hc1OJ-X4ZEFnnn52QGZHv6ALPBS-06WmTdwB_gdtmA40wj-MaB3DsKCTgu7rIqe76DhK0QaGlvBnc8hM0zl628Dy-5p-ALPg7B453Ht_uNsPmpwNgRVRXAbKGKtz0CmdYDo3CYtdzLTwPsH7OelZYlXovTJeiNhL7UJhhbFcRi6RVvP7pFPMCrdFqHSM-0jliQOjKYaVIrYa9JM49DyPjdRd8vKcpNm8RubIwKLBec0uzmuXvEWar-ohpnb1AIiRNSKahb6KLHbeMxdxnau8F1qunfI9G8OwuuQFckyGkg9TYnUTwADdRQytLFURixOwf1mXbLdqgsTaVvEz4LlWZ_rpfobPQlEZhOp7D9o4Z8msWVYWGQdFA4xmFUIbT1fF2Dy6yhVutqzrgBIncdQPag5efSpCLyiwwLtEtXi71Zd2STEZV6DjCAUINIBXX63E4K_z_vB_Kj8i1xgmV0ZoXLZNOuXp0j0Gja80Txph_w0G9VPT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+of+Remote+Sensing+Data+Processing+for+Mapping+Changes+in+Land+Cover+Types+over+Central+Apennines%2C+Italy&rft.jtitle=Journal+of+imaging&rft.au=Lemenkova%2C+Polina&rft.date=2025-05-12&rft.pub=MDPI+AG&rft.issn=2313-433X&rft.eissn=2313-433X&rft.volume=11&rft.issue=5&rft_id=info:doi/10.3390%2Fjimaging11050153&rft.externalDocID=A842791912 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |