A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis

Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processin...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 63; pp. 196 - 207
Main Authors Raja, Chandrasekaran, Gangatharan, Narayanan
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2015.05.018

Cover

Abstract Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness.
AbstractList Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness.
Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness.Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness.
Abstract Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness.
Author Raja, Chandrasekaran
Gangatharan, Narayanan
Author_xml – sequence: 1
  givenname: Chandrasekaran
  surname: Raja
  fullname: Raja, Chandrasekaran
  email: rajachandru82@yahoo.co.in
  organization: Department of ECE, Anjalai Ammal Mahalingam Engineering College, Kovilvenni 614403, India
– sequence: 2
  givenname: Narayanan
  surname: Gangatharan
  fullname: Gangatharan, Narayanan
  organization: Department of ECE, R.M.K. College of Engineering and Technology, Puduvoyal 601206, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26093787$$D View this record in MEDLINE/PubMed
BookMark eNqNklFrFDEQx4NU7LX6FWTBF1_2nCSbbOJD8VqqFQo-VMG3kE2yZ87dzZnsKtdPb9ZrKRwIBwPJw2_-M_OfOUMnQxgcQgWGJQbM322WJvTbxofe2SUBzJaQA4tnaIFFLUtgtDpBCwAMZSUIO0VnKW0AoAIKL9Ap4SBpLeoFer8qbnZN9La4-6NjX6y6dYh-_NEXbYhF2I6-9_d-WBfrTk-5qC6s1-shJJ9eouet7pJ79fCeo28fr79e3ZS3Xz59vlrdloZV9VgSbnnVUFGLllmpiQVT1S3FtSWCWioqrjlmgjjRNBQLsI4bLanRwjWacEnP0du97jaGX5NLo-p9Mq7r9ODClBSuKy6EJPIINMvVpJJYZPTNAboJUxzyIDNFGDAOkKnXD9TUZK_VNvpex516NDADF3vAxJBSdK0yftSjD8MYte8UBjVvTG3U08bUvDEFOf71IQ4EHmsckXq5T3XZ_d_eRZWMd4Nx1kdnRmWDP0bk4kDEdH7wRnc_3c6lJ1NUIgrU3XxT80lhln-Sfc8CH_4vcFwPfwFr6t8x
CODEN CBMDAW
CitedBy_id crossref_primary_10_1007_s42452_019_1467_3
crossref_primary_10_1142_S0129065718500223
crossref_primary_10_1016_j_compbiomed_2016_02_011
crossref_primary_10_3390_electronics11111763
crossref_primary_10_1142_S0219467820500230
crossref_primary_10_1007_s11042_024_19974_3
crossref_primary_10_4239_wjd_v13_i10_822
crossref_primary_10_3389_fopht_2024_1368081
crossref_primary_10_1038_srep41545
crossref_primary_10_1016_j_bspc_2017_10_009
crossref_primary_10_1097_IJG_0000000000002015
crossref_primary_10_46632_psr_1_1_4
crossref_primary_10_1097_APO_0000000000000395
crossref_primary_10_46632_eae_1_1_7
crossref_primary_10_1007_s13748_023_00304_x
crossref_primary_10_1016_j_asoc_2022_109432
crossref_primary_10_1155_2018_5278196
crossref_primary_10_1016_j_compmedimag_2019_101657
crossref_primary_10_1109_ACCESS_2024_3477420
crossref_primary_10_46632_dmfar_1_2_1
crossref_primary_10_1167_tvst_10_7_20
crossref_primary_10_46632_ces_1_1_2
crossref_primary_10_1016_j_engappai_2023_107449
crossref_primary_10_3390_ijms24032814
crossref_primary_10_1016_j_bspc_2019_101677
crossref_primary_10_1016_j_bspc_2023_105625
crossref_primary_10_1167_tvst_9_2_55
crossref_primary_10_1007_s00371_022_02489_z
crossref_primary_10_1016_j_ajo_2021_12_008
crossref_primary_10_1186_s12938_020_00767_2
crossref_primary_10_55452_1998_6688_2024_21_3_37_47
crossref_primary_10_1007_s11042_018_6429_z
crossref_primary_10_1186_s40064_016_3175_4
Cites_doi 10.1142/S0219519413500115
10.1167/iovs.12-9483d
10.1097/IJG.0b013e3181c4ac5b
10.1109/ICIT.2004.1490800
10.1016/S1672-6529(11)60020-6
10.1007/978-3-642-15381-5_28
10.1109/TEVC.2009.2011992
10.1016/j.amc.2006.09.098
10.1016/j.orl.2008.12.008
10.1007/978-81-322-2220-0_26
10.1016/j.compbiomed.2013.01.020
10.3844/jcssp.2014.1758.1765
10.1109/MHS.1995.494215
10.1109/ICIE.2009.59
10.1016/j.asoc.2011.01.037
10.1145/2330163.2330175
10.1111/j.1755-3768.1992.tb04126.x
10.1109/97.923042
10.1109/ICEC.1998.699326
10.1016/j.eswa.2005.09.024
10.1023/A:1009715923555
10.1016/j.amc.2010.12.053
10.14257/ijgdc.2013.6.6.10
10.1109/TSMCB.2009.2015956
10.1167/iovs.05-1489
10.1016/j.asoc.2007.10.007
10.1016/j.survophthal.2008.08.003
10.1016/j.media.2009.12.006
10.1016/j.compbiolchem.2007.10.001
10.1007/s10384-014-0303-y
10.1016/j.knosys.2012.02.010
10.1016/j.pnsc.2008.06.007
10.1038/44831
10.1145/1143997.1144007
10.1109/ICNN.1995.488968
10.1109/SMCIA.2008.5045944
10.1109/ICCA.2007.4376340
10.1109/78.678504
10.1109/LGRS.2011.2155617
10.1006/acha.2000.0343
10.1136/bjo.2005.081224
10.1109/CEC.1999.785511
10.1109/ICIP.2005.1529782
10.1007/s11633-014-0858-6
10.1017/S0962492900002518
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Aug 2015
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Aug 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
DOI 10.1016/j.compbiomed.2015.05.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Proquest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
Research Library Prep

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 207
ExternalDocumentID 3731399951
26093787
10_1016_j_compbiomed_2015_05_018
S001048251500195X
1_s2_0_S001048251500195X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
ID FETCH-LOGICAL-c547t-26d64b3878f5d9a2d0c47f317d283d3846a61582e8bb3180de6ca93ca8eba2693
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Tue Oct 07 11:09:30 EDT 2025
Wed Oct 01 17:07:46 EDT 2025
Tue Oct 07 06:35:44 EDT 2025
Thu Apr 03 07:00:46 EDT 2025
Wed Oct 01 06:03:07 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Fri Feb 23 02:24:54 EST 2024
Sun Feb 23 10:19:15 EST 2025
Tue Oct 14 19:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Glaucoma
Feature extraction
Hyper analytic wavelet transform
Hybrid PSO–GSO
Support Vector Machines
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-26d64b3878f5d9a2d0c47f317d283d3846a61582e8bb3180de6ca93ca8eba2693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26093787
PQID 1692505600
PQPubID 1226355
PageCount 12
ParticipantIDs proquest_miscellaneous_1746889299
proquest_miscellaneous_1693724918
proquest_journals_1692505600
pubmed_primary_26093787
crossref_citationtrail_10_1016_j_compbiomed_2015_05_018
crossref_primary_10_1016_j_compbiomed_2015_05_018
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_05_018
elsevier_clinicalkeyesjournals_1_s2_0_S001048251500195X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2015_05_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References C. Grosan, A. Abraham et al., A hybrid algorithm based on particle swarm optimization and group search optimization, in: Seventh International Conference on Natural Computation, Shanghai, 2011.
Firoiu, Nafornita (bib17) 2011; 8
Cheng, Yao (bib42) 2011; 5
Boggs, Tolle (bib49) 1995; 4
Nakisa, Nazri (bib30) 2014; 10
Sherlock, Monro (bib54) 1998; 46
H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol. 90 (3) 2006 262–267.
George, Ve Ramesh (bib4) 2010; 19
in press.
Vajaranant, Wu (bib3) 2012; 53
Abdulhamit, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput. Biol. Med. 43 (2013) 576–586.
S. Pasupuleti, R. Battiti, The gregarious particle swarm optimizer, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, New York, 2006, pp. 67–74.
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE: Nagoya 1995, pp. 39–43.
Viswanathan, Buldyrev (bib46) 1999; 401
Thangaraj, Pant (bib44) 2011; 217
Hassiba TaIbi, Mohamed Batouche, Hybrid particle swam with differential evolution for multimodal image registration, in: IEEE International Conference on Industrial Technology, vol. 3, 2004, pp. 1562–1572.
Ke Huang, Selin Aviyente, Statistical partitioning of wavelet subbands for texture classification, in: IEEE International Conference on Image Processing, vol. 1, Michigan State University, East Lansing, USA, 2005, pp. I-441–I-444.
Bowd, Zangwill (bib9) 2006; 47
M.A. Esseghir, Gilles Goncalves, Yahya Slimani, Adaptive particle swarm optimizer for feature selection, in: Intelligent Data Engineering and automated learning, vol. 6283, 2010.
C.S. Yang, L.Y. Chuang, et al., Chaotic maps in binary particle swarm optimization for feature selection, in: Proceedings of IEEE conference on Soft Computing in Industrial Applications, 2008, pp. 107–112.
Zhan, Yat-Sen (bib39) 2009; 39
Liu, Wang (bib27) 2011; 8
C. Raja, N. Gangatharan, Incorporating phase information for efficient glaucoma diagnosis through hyper analytic wavelet transform, in: Proceedings of Fourth International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, vol. 2, 2014, pp. 325–339.
Y. Mallikarjun, Two molecular mechanisms causing glaucoma found, The Hindu, July 11, 2013, p. 15.
Krishnan, Acharya (bib18) 2012; 33
Futa, Shimizu (bib6) 1992; 70
Hai Shen, Yunlong Zhu et al., An improved group search optimizer for mechanical design optimization problems, Prog. Nat. Sci. 19 (1) (2009) 91–97.
Selesnick (bib50) 2001; 8
Nickabadi, Ebadzadeh (bib31) 2011; 11
Sharma, Sample (bib8) 2008; 53
Zeng, Li (bib40) 2012; 2
C. Raja, N. Gangatharan, Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnosis, Int. J. Autom. Comput. (2015)
Maberley, Walker (bib10) 2003; 168
Huang, Dun (bib28) 2008; 8
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948.
B. Yang, Y. Chen et al., A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems, in: Proceedings of the IEEE International Conference on Control and Automation, 2007, pp. 166–170.
Bock, Meier (bib11) 2010; 14
M.B. Shields, Optic Nerve, Retina, and Choroid, Shields Textbook of Glaucoma, 6th ed, 2005, pp. 216–217.
Kang, Jun (bib7) 2014; 58
J. Tang, X. Zhao, Particle swarm optimization with adaptive mutation, in: Proceedings of the International Conference on Information Engineering, 2009, pp. 234–237 2009.
Zhang, Ning (bib43) 2009; 37
Krishnan, Faust (bib12) 2013; 13
Vaidyanathan (bib53) 1993
Kingsbury (bib14) 2001; 10
Eberhart, Shi (bib34) 2000
Y.H. Shi, R.C. Eberhart, Experimental study of particle swarm optimization, in: SCI2000 Conference, Orlando, 2000.
Burges (bib52) 1998; 2
J. Kennedy, W. Spears, Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, in: IEEE Congress on Evolutionary Computation, vol. 78–83, 1998, pp. 226–233.
Bing Xue, Mengjie Zhang, Will N. Browne, Multi-objective particle swarm optimisation (PSO) for feature selection, in: GECCO׳12 2012 Philadelphia, Pennsylvania, USA.
Raja, Gangatharan (bib13) 2013; 97
Dong ping Tian, A review of convergence analysis of particle swarm optimization international. J. Grid Distrib. Comput. 6 (6) (2013) 117–128.
Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the Congress on Evolutionary Computation, vol. 3, 1999.
Shelokar, Siarry (bib48) 2007; 188
J. Riget, J.S. Vesterstrom, A Diversity-Guided Particle Swarm Optimizer, The ARPSO, Vesterstrøm, 2002.
Shen, Shi (bib55) 2007; 32
Chuang, Tsai, Yang (bib38) 2011; 38
Jie, Chaozan, Bo (bib41) 2012; 2
Huang, Wang (bib29) 2005; 31
Wu, Saunders (bib26) 2009; 13
Raja (10.1016/j.compbiomed.2015.05.018_bib13) 2013; 97
Bock (10.1016/j.compbiomed.2015.05.018_bib11) 2010; 14
Vaidyanathan (10.1016/j.compbiomed.2015.05.018_bib53) 1993
Sharma (10.1016/j.compbiomed.2015.05.018_bib8) 2008; 53
Wu (10.1016/j.compbiomed.2015.05.018_bib26) 2009; 13
Huang (10.1016/j.compbiomed.2015.05.018_bib29) 2005; 31
10.1016/j.compbiomed.2015.05.018_bib1
10.1016/j.compbiomed.2015.05.018_bib2
10.1016/j.compbiomed.2015.05.018_bib58
10.1016/j.compbiomed.2015.05.018_bib15
10.1016/j.compbiomed.2015.05.018_bib56
Nakisa (10.1016/j.compbiomed.2015.05.018_bib30) 2014; 10
10.1016/j.compbiomed.2015.05.018_bib57
10.1016/j.compbiomed.2015.05.018_bib5
Bowd (10.1016/j.compbiomed.2015.05.018_bib9) 2006; 47
Liu (10.1016/j.compbiomed.2015.05.018_bib27) 2011; 8
10.1016/j.compbiomed.2015.05.018_bib51
Cheng (10.1016/j.compbiomed.2015.05.018_bib42) 2011; 5
Shelokar (10.1016/j.compbiomed.2015.05.018_bib48) 2007; 188
Zhan (10.1016/j.compbiomed.2015.05.018_bib39) 2009; 39
Huang (10.1016/j.compbiomed.2015.05.018_bib28) 2008; 8
Kang (10.1016/j.compbiomed.2015.05.018_bib7) 2014; 58
10.1016/j.compbiomed.2015.05.018_bib19
10.1016/j.compbiomed.2015.05.018_bib16
Krishnan (10.1016/j.compbiomed.2015.05.018_bib18) 2012; 33
Thangaraj (10.1016/j.compbiomed.2015.05.018_bib44) 2011; 217
10.1016/j.compbiomed.2015.05.018_bib21
10.1016/j.compbiomed.2015.05.018_bib22
10.1016/j.compbiomed.2015.05.018_bib20
10.1016/j.compbiomed.2015.05.018_bib25
10.1016/j.compbiomed.2015.05.018_bib23
Nickabadi (10.1016/j.compbiomed.2015.05.018_bib31) 2011; 11
10.1016/j.compbiomed.2015.05.018_bib24
Zhang (10.1016/j.compbiomed.2015.05.018_bib43) 2009; 37
Viswanathan (10.1016/j.compbiomed.2015.05.018_bib46) 1999; 401
Firoiu (10.1016/j.compbiomed.2015.05.018_bib17) 2011; 8
Futa (10.1016/j.compbiomed.2015.05.018_bib6) 1992; 70
Sherlock (10.1016/j.compbiomed.2015.05.018_bib54) 1998; 46
Selesnick (10.1016/j.compbiomed.2015.05.018_bib50) 2001; 8
Vajaranant (10.1016/j.compbiomed.2015.05.018_bib3) 2012; 53
Kingsbury (10.1016/j.compbiomed.2015.05.018_bib14) 2001; 10
George (10.1016/j.compbiomed.2015.05.018_bib4) 2010; 19
10.1016/j.compbiomed.2015.05.018_bib32
Krishnan (10.1016/j.compbiomed.2015.05.018_bib12) 2013; 13
10.1016/j.compbiomed.2015.05.018_bib33
Zeng (10.1016/j.compbiomed.2015.05.018_bib40) 2012; 2
10.1016/j.compbiomed.2015.05.018_bib36
10.1016/j.compbiomed.2015.05.018_bib37
10.1016/j.compbiomed.2015.05.018_bib35
Jie (10.1016/j.compbiomed.2015.05.018_bib41) 2012; 2
Eberhart (10.1016/j.compbiomed.2015.05.018_bib34) 2000
Shen (10.1016/j.compbiomed.2015.05.018_bib55) 2007; 32
Boggs (10.1016/j.compbiomed.2015.05.018_bib49) 1995; 4
Burges (10.1016/j.compbiomed.2015.05.018_bib52) 1998; 2
Chuang (10.1016/j.compbiomed.2015.05.018_bib38) 2011; 38
10.1016/j.compbiomed.2015.05.018_bib47
10.1016/j.compbiomed.2015.05.018_bib45
Maberley (10.1016/j.compbiomed.2015.05.018_bib10) 2003; 168
References_xml – volume: 5
  start-page: 33
  year: 2011
  end-page: 38
  ident: bib42
  article-title: Particle swarm optimizer with time-varying parameters based on a novel operator
  publication-title: Int. J. Appl. Math. Inf. Sci.
– reference: J. Riget, J.S. Vesterstrom, A Diversity-Guided Particle Swarm Optimizer, The ARPSO, Vesterstrøm, 2002.
– reference: Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the Congress on Evolutionary Computation, vol. 3, 1999.
– reference: M.A. Esseghir, Gilles Goncalves, Yahya Slimani, Adaptive particle swarm optimizer for feature selection, in: Intelligent Data Engineering and automated learning, vol. 6283, 2010.
– volume: 4
  start-page: 1
  year: 1995
  end-page: 52
  ident: bib49
  article-title: Sequential quadratic programming
  publication-title: Acta Numer.
– reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE: Nagoya 1995, pp. 39–43.
– volume: 31
  start-page: 231
  year: 2005
  end-page: 240
  ident: bib29
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Syst. Appl.
– volume: 217
  start-page: 5208
  year: 2011
  end-page: 5226
  ident: bib44
  article-title: Particle swarm optimization
  publication-title: Appl. Math. Comput.
– volume: 37
  start-page: 117
  year: 2009
  end-page: 122
  ident: bib43
  article-title: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization
  publication-title: Oper. Res. Lett.
– volume: 53
  start-page: 2464
  year: 2012
  end-page: 2466
  ident: bib3
  article-title: A 40-year forecast of the demographic shift in primary open-angle glaucoma in the United States
  publication-title: Investig. Ophthalmol. Vis. Sci., Special Issue
– volume: 13
  start-page: 1
  year: 2013
  end-page: 21
  ident: bib12
  article-title: Automated glaucoma detection using hybrid feature extraction in retinal fundus images
  publication-title: J. Mech. Med. Biol.
– volume: 8
  start-page: 191
  year: 2011
  end-page: 200
  ident: bib27
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
– reference: C.S. Yang, L.Y. Chuang, et al., Chaotic maps in binary particle swarm optimization for feature selection, in: Proceedings of IEEE conference on Soft Computing in Industrial Applications, 2008, pp. 107–112.
– reference: S. Pasupuleti, R. Battiti, The gregarious particle swarm optimizer, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, New York, 2006, pp. 67–74.
– volume: 2
  start-page: 443
  year: 2012
  end-page: 458
  ident: bib40
  article-title: Particle swarm-group search algorithm and its application to spatial structural design with discrete variables
  publication-title: Int. J. Optim. Civil Eng.
– reference: C. Raja, N. Gangatharan, Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnosis, Int. J. Autom. Comput. (2015),
– reference: J. Kennedy, W. Spears, Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, in: IEEE Congress on Evolutionary Computation, vol. 78–83, 1998, pp. 226–233.
– volume: 2
  start-page: 112
  year: 2012
  end-page: 115
  ident: bib41
  article-title: An improved particle swarm optimization based on repulsion factor
  publication-title: Open J. Appl. Sci.
– volume: 14
  start-page: 471
  year: 2010
  end-page: 481
  ident: bib11
  article-title: Glaucoma risk index
  publication-title: Med. Image Anal.
– reference: Abdulhamit, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput. Biol. Med. 43 (2013) 576–586.
– volume: 47
  start-page: 2889
  year: 2006
  end-page: 2895
  ident: bib9
  article-title: Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 168
  start-page: 160
  year: 2003
  end-page: 164
  ident: bib10
  article-title: Screening for diabetic retinopathy in James Bay, Ontario
  publication-title: Can. Med. Assoc. J.
– volume: 188
  start-page: 129
  year: 2007
  end-page: 142
  ident: bib48
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948.
– reference: Bing Xue, Mengjie Zhang, Will N. Browne, Multi-objective particle swarm optimisation (PSO) for feature selection, in: GECCO׳12 2012 Philadelphia, Pennsylvania, USA.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib52
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
– volume: 10
  start-page: 1758
  year: 2014
  end-page: 1765
  ident: bib30
  article-title: A survey
  publication-title: J. Comput. Sci.
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: bib39
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. on Syst. Man Cybern.—Part B: Cybern.
– volume: 53
  start-page: S17
  year: 2008
  end-page: S32
  ident: bib8
  article-title: Diagnostic tools for glaucoma detection and management
  publication-title: Surv. Ophthalmol.
– reference: Dong ping Tian, A review of convergence analysis of particle swarm optimization international. J. Grid Distrib. Comput. 6 (6) (2013) 117–128.
– volume: 38
  start-page: 699
  year: 2011
  end-page: 707
  ident: bib38
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 1716
  year: 1998
  end-page: 1720
  ident: bib54
  article-title: On the space of Orthonormal Wavelets
  publication-title: IEEE Trans. Signal Process.
– reference: B. Yang, Y. Chen et al., A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems, in: Proceedings of the IEEE International Conference on Control and Automation, 2007, pp. 166–170.
– volume: 11
  start-page: 3658
  year: 2011
  end-page: 3670
  ident: bib31
  article-title: A novel particle swarm optimization algorithm for adaptive inertia weight
  publication-title: Appl. Soft Comput.
– reference: Hassiba TaIbi, Mohamed Batouche, Hybrid particle swam with differential evolution for multimodal image registration, in: IEEE International Conference on Industrial Technology, vol. 3, 2004, pp. 1562–1572.
– year: 1993
  ident: bib53
  publication-title: Multirate Systems and Filter Banks
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: bib28
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 170
  year: 2001
  end-page: 173
  ident: bib50
  article-title: Hilbert transform pairs of wavelet bases
  publication-title: IEEE Signal Process. Lett.
– volume: 32
  start-page: 53
  year: 2007
  end-page: 60
  ident: bib55
  article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
  publication-title: Comput. Biol. Chem.
– reference: M.B. Shields, Optic Nerve, Retina, and Choroid, Shields Textbook of Glaucoma, 6th ed, 2005, pp. 216–217.
– volume: 33
  start-page: 73
  year: 2012
  end-page: 82
  ident: bib18
  article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
  publication-title: Knowl. Based Syst.
– volume: 13
  start-page: 973
  year: 2009
  end-page: 990
  ident: bib26
  article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y.H. Shi, R.C. Eberhart, Experimental study of particle swarm optimization, in: SCI2000 Conference, Orlando, 2000.
– volume: 97
  start-page: 159
  year: 2013
  end-page: 171
  ident: bib13
  article-title: Glaucoma detection in fundal retinal images using trispectrum and complex wavelet-based features
  publication-title: Eur. J. Sci. Res.
– reference: Y. Mallikarjun, Two molecular mechanisms causing glaucoma found, The Hindu, July 11, 2013, p. 15.
– volume: 19
  start-page: 391
  year: 2010
  end-page: 397
  ident: bib4
  article-title: Glaucoma in India
  publication-title: J. Glaucoma
– reference: C. Grosan, A. Abraham et al., A hybrid algorithm based on particle swarm optimization and group search optimization, in: Seventh International Conference on Natural Computation, Shanghai, 2011.
– volume: 8
  start-page: 1065
  year: 2011
  end-page: 1069
  ident: bib17
  article-title: Bayesian hyperanalytic denoising of sonar images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 84
  year: 2000
  end-page: 88
  ident: bib34
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: IEEE Congress Evol. Comput.
– volume: 10
  start-page: 234
  year: 2001
  end-page: 253
  ident: bib14
  article-title: Complex wavelet transform for shift invariant analysis and filtering of Signals
  publication-title: J. Appl. Comput. Harmon. Anal.
– reference: Ke Huang, Selin Aviyente, Statistical partitioning of wavelet subbands for texture classification, in: IEEE International Conference on Image Processing, vol. 1, Michigan State University, East Lansing, USA, 2005, pp. I-441–I-444.
– reference: J. Tang, X. Zhao, Particle swarm optimization with adaptive mutation, in: Proceedings of the International Conference on Information Engineering, 2009, pp. 234–237 2009.
– reference: , in press.
– volume: 70
  start-page: 214
  year: 1992
  end-page: 219
  ident: bib6
  article-title: Clinical features of capsular glaucoma in comparison with primary open-angle glaucoma in Japan
  publication-title: Acta Ophthalmol.
– volume: 58
  start-page: 205
  year: 2014
  end-page: 211
  ident: bib7
  article-title: Clinical features and glaucoma according to optic disc size in a South Korean population
  publication-title: Jpn. J. Ophthalmol.
– reference: Hai Shen, Yunlong Zhu et al., An improved group search optimizer for mechanical design optimization problems, Prog. Nat. Sci. 19 (1) (2009) 91–97.
– reference: C. Raja, N. Gangatharan, Incorporating phase information for efficient glaucoma diagnosis through hyper analytic wavelet transform, in: Proceedings of Fourth International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, vol. 2, 2014, pp. 325–339.
– reference: H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol. 90 (3) 2006 262–267.
– volume: 401
  start-page: 911
  year: 1999
  end-page: 914
  ident: bib46
  article-title: Optimizing the success of random searches
  publication-title: Nature
– volume: 13
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2015.05.018_bib12
  article-title: Automated glaucoma detection using hybrid feature extraction in retinal fundus images
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519413500115
– start-page: 84
  year: 2000
  ident: 10.1016/j.compbiomed.2015.05.018_bib34
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: IEEE Congress Evol. Comput.
– volume: 53
  start-page: 2464
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiomed.2015.05.018_bib3
  article-title: A 40-year forecast of the demographic shift in primary open-angle glaucoma in the United States
  publication-title: Investig. Ophthalmol. Vis. Sci., Special Issue
  doi: 10.1167/iovs.12-9483d
– volume: 19
  start-page: 391
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2015.05.018_bib4
  article-title: Glaucoma in India
  publication-title: J. Glaucoma
  doi: 10.1097/IJG.0b013e3181c4ac5b
– ident: 10.1016/j.compbiomed.2015.05.018_bib56
  doi: 10.1109/ICIT.2004.1490800
– ident: 10.1016/j.compbiomed.2015.05.018_bib1
– volume: 8
  start-page: 191
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2015.05.018_bib27
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(11)60020-6
– ident: 10.1016/j.compbiomed.2015.05.018_bib5
– ident: 10.1016/j.compbiomed.2015.05.018_bib24
  doi: 10.1007/978-3-642-15381-5_28
– volume: 13
  start-page: 973
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2015.05.018_bib26
  article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2011992
– volume: 188
  start-page: 129
  year: 2007
  ident: 10.1016/j.compbiomed.2015.05.018_bib48
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.098
– volume: 37
  start-page: 117
  year: 2009
  ident: 10.1016/j.compbiomed.2015.05.018_bib43
  article-title: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2008.12.008
– ident: 10.1016/j.compbiomed.2015.05.018_bib15
  doi: 10.1007/978-81-322-2220-0_26
– ident: 10.1016/j.compbiomed.2015.05.018_bib19
  doi: 10.1016/j.compbiomed.2013.01.020
– volume: 10
  start-page: 1758
  issue: 9
  year: 2014
  ident: 10.1016/j.compbiomed.2015.05.018_bib30
  article-title: A survey
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2014.1758.1765
– ident: 10.1016/j.compbiomed.2015.05.018_bib21
  doi: 10.1109/MHS.1995.494215
– volume: 5
  start-page: 33
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2015.05.018_bib42
  article-title: Particle swarm optimizer with time-varying parameters based on a novel operator
  publication-title: Int. J. Appl. Math. Inf. Sci.
– ident: 10.1016/j.compbiomed.2015.05.018_bib37
  doi: 10.1109/ICIE.2009.59
– volume: 11
  start-page: 3658
  year: 2011
  ident: 10.1016/j.compbiomed.2015.05.018_bib31
  article-title: A novel particle swarm optimization algorithm for adaptive inertia weight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.01.037
– volume: 2
  start-page: 443
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2015.05.018_bib40
  article-title: Particle swarm-group search algorithm and its application to spatial structural design with discrete variables
  publication-title: Int. J. Optim. Civil Eng.
– volume: 168
  start-page: 160
  issue: 2
  year: 2003
  ident: 10.1016/j.compbiomed.2015.05.018_bib10
  article-title: Screening for diabetic retinopathy in James Bay, Ontario
  publication-title: Can. Med. Assoc. J.
– ident: 10.1016/j.compbiomed.2015.05.018_bib22
  doi: 10.1145/2330163.2330175
– volume: 70
  start-page: 214
  year: 1992
  ident: 10.1016/j.compbiomed.2015.05.018_bib6
  article-title: Clinical features of capsular glaucoma in comparison with primary open-angle glaucoma in Japan
  publication-title: Acta Ophthalmol.
  doi: 10.1111/j.1755-3768.1992.tb04126.x
– volume: 8
  start-page: 170
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiomed.2015.05.018_bib50
  article-title: Hilbert transform pairs of wavelet bases
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.923042
– ident: 10.1016/j.compbiomed.2015.05.018_bib23
  doi: 10.1109/ICEC.1998.699326
– volume: 31
  start-page: 231
  year: 2005
  ident: 10.1016/j.compbiomed.2015.05.018_bib29
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.compbiomed.2015.05.018_bib52
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 217
  start-page: 5208
  issue: 12
  year: 2011
  ident: 10.1016/j.compbiomed.2015.05.018_bib44
  article-title: Particle swarm optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.12.053
– ident: 10.1016/j.compbiomed.2015.05.018_bib32
  doi: 10.14257/ijgdc.2013.6.6.10
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.compbiomed.2015.05.018_bib39
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. on Syst. Man Cybern.—Part B: Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– ident: 10.1016/j.compbiomed.2015.05.018_bib35
– volume: 47
  start-page: 2889
  issue: 7
  year: 2006
  ident: 10.1016/j.compbiomed.2015.05.018_bib9
  article-title: Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.05-1489
– volume: 8
  start-page: 1381
  year: 2008
  ident: 10.1016/j.compbiomed.2015.05.018_bib28
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.007
– volume: 2
  start-page: 112
  issue: 4B
  year: 2012
  ident: 10.1016/j.compbiomed.2015.05.018_bib41
  article-title: An improved particle swarm optimization based on repulsion factor
  publication-title: Open J. Appl. Sci.
– volume: 53
  start-page: S17
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2015.05.018_bib8
  article-title: Diagnostic tools for glaucoma detection and management
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2008.08.003
– volume: 14
  start-page: 471
  year: 2010
  ident: 10.1016/j.compbiomed.2015.05.018_bib11
  article-title: Glaucoma risk index
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.12.006
– volume: 32
  start-page: 53
  year: 2007
  ident: 10.1016/j.compbiomed.2015.05.018_bib55
  article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.10.001
– volume: 58
  start-page: 205
  issue: 2
  year: 2014
  ident: 10.1016/j.compbiomed.2015.05.018_bib7
  article-title: Clinical features and glaucoma according to optic disc size in a South Korean population
  publication-title: Jpn. J. Ophthalmol.
  doi: 10.1007/s10384-014-0303-y
– volume: 97
  start-page: 159
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2015.05.018_bib13
  article-title: Glaucoma detection in fundal retinal images using trispectrum and complex wavelet-based features
  publication-title: Eur. J. Sci. Res.
– volume: 33
  start-page: 73
  year: 2012
  ident: 10.1016/j.compbiomed.2015.05.018_bib18
  article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.02.010
– ident: 10.1016/j.compbiomed.2015.05.018_bib25
  doi: 10.1016/j.pnsc.2008.06.007
– volume: 401
  start-page: 911
  issue: 6756
  year: 1999
  ident: 10.1016/j.compbiomed.2015.05.018_bib46
  article-title: Optimizing the success of random searches
  publication-title: Nature
  doi: 10.1038/44831
– ident: 10.1016/j.compbiomed.2015.05.018_bib58
  doi: 10.1145/1143997.1144007
– ident: 10.1016/j.compbiomed.2015.05.018_bib20
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.compbiomed.2015.05.018_bib33
  doi: 10.1109/SMCIA.2008.5045944
– ident: 10.1016/j.compbiomed.2015.05.018_bib45
  doi: 10.1109/ICCA.2007.4376340
– volume: 46
  start-page: 1716
  issue: 6
  year: 1998
  ident: 10.1016/j.compbiomed.2015.05.018_bib54
  article-title: On the space of Orthonormal Wavelets
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.678504
– volume: 8
  start-page: 1065
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2015.05.018_bib17
  article-title: Bayesian hyperanalytic denoising of sonar images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2155617
– volume: 38
  start-page: 699
  issue: 10
  year: 2011
  ident: 10.1016/j.compbiomed.2015.05.018_bib38
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 234
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2015.05.018_bib14
  article-title: Complex wavelet transform for shift invariant analysis and filtering of Signals
  publication-title: J. Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.2000.0343
– ident: 10.1016/j.compbiomed.2015.05.018_bib2
  doi: 10.1136/bjo.2005.081224
– ident: 10.1016/j.compbiomed.2015.05.018_bib47
– year: 1993
  ident: 10.1016/j.compbiomed.2015.05.018_bib53
– ident: 10.1016/j.compbiomed.2015.05.018_bib57
  doi: 10.1109/CEC.1999.785511
– ident: 10.1016/j.compbiomed.2015.05.018_bib51
  doi: 10.1109/ICIP.2005.1529782
– ident: 10.1016/j.compbiomed.2015.05.018_bib16
  doi: 10.1007/s11633-014-0858-6
– ident: 10.1016/j.compbiomed.2015.05.018_bib36
– volume: 4
  start-page: 1
  year: 1995
  ident: 10.1016/j.compbiomed.2015.05.018_bib49
  article-title: Sequential quadratic programming
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002518
SSID ssj0004030
Score 2.2633963
Snippet Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early...
Abstract Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Atoms & subatomic particles
Automation
Classification
Data mining
Diabetic retinopathy
Diagnosis, Computer-Assisted - methods
Feature extraction
Female
Fundus Oculi
Glaucoma
Glaucoma - diagnosis
Humans
Hybrid PSO–GSO
Hyper analytic wavelet transform
Hypotheses
Image Processing, Computer-Assisted - methods
Internal Medicine
Male
Mathematical functions
Multiculturalism & pluralism
Mutation
Optimization algorithms
Other
Population
Support Vector Machine
Support Vector Machines
Velocity
Wavelet transforms
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBalh7FLafejTZsODXr1ItuyfqynEFbCoLt0gdyEbMmtS-OUOKG0h_7te7LkhLEFAoUcHFvPFs_Se9_D3ychdBELC6_a5FDkxCaimohIF0xEkLuF1iUcSidwvv7FxhP6c5pN99Co08I4WmWI_T6mt9E6nBkEbw4eq8ppfKGUcMrLrFW9TZ2CnXK3i8G31w3Ng5LUy1Ag3rjWgc3jOV6Otu1l7o7klfk1PMW2FLUNgrap6OoQHQQMiYe-m0doz9Yf0Lvr8JX8I_o-xONnp8TCN096McPDh9v5olrezTAgVDyHIDGrXiBlYYDOK-icxsYT7qrmE5pc_fg9Gkdhj4SoyChfRgkzjOap4KLMjNSJIQXlJYACA7jBpIAuNGAWkViR5zB9ibGs0DIttLC5TphMP6P9el7bE4QJtUZCAZaUkLfhmiZaSKZLG-caYInoId65RRVhAXG3j8WD6phi92rjUOUcqgj8YrCM15aPfhGNHWxk53nViUQhrCmI9DvY8v_Z2ibMz0bFqkkUUf-MoR66XFv-NQx3fG6_GyJq8ygmW5hJSA99XV-GSey-zOjazldtm5RDIexusbUNp0wIQLOyh4798Fs7E4pSuIHgp2_q_hl67_55emMf7S8XK3sOkGuZf2nn1B8q3yjG
  priority: 102
  providerName: Elsevier
Title A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048251500195X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048251500195X
https://dx.doi.org/10.1016/j.compbiomed.2015.05.018
https://www.ncbi.nlm.nih.gov/pubmed/26093787
https://www.proquest.com/docview/1692505600
https://www.proquest.com/docview/1693724918
https://www.proquest.com/docview/1746889299
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trYR4QXxTGJUn8RpwvvwBmlA3rSugVYgxqW-WEzswtLZjbYW2h_3tnGMnfaGoUhVVSi5xr_bd7-L73QG8iYXFv9oUGOTEJso0FZEumYjQdwutK_wqHcH5dMxG59nnST7ZgXHDhXFplY1NrA21mZfuHfm7mMnaW1P68ep35LpGud3VpoWGDq0VzEFdYmwXuomrjNWB7uHx-Ou3NVOSpp6UgtYnw-Ao5Pb4jC-XxO1J7y7lK_cVPcUmh7UJkNaOafgQHgRESQZ-CjyCHTt7DPdOw575E3g_IKMbx8siZ3_09ZQMLn_g71r-nBLEq2SOJmN6cYsOjCCQXuHgNDE-_e5i8RTOh8ffj0ZR6JgQlXnGl1HCDMuKVHBR5UbqxNAy4xVCBIMowqSINTQiGJFYURS4mKmxrNQyLbWwhU6YTJ9BZzaf2RdAaGaNxHAsqdCL4zlNtZBMVzYuNIIU0QPeqEWVoZy462pxqZq8sV9qrVDlFKoofmKUjFvJK19SYwsZ2WheNZRRNHIK7f4WsvxfsnYRVutCxWqRKKrO6mJFjsub1zzKSQ8-tJIBkHigseVz95opotaPaqdxD_bb07ik3T6Nntn5qr4m5RgWu1tsvIZnTAjEtrIHz_30a5WJISreQPCX_x_AK7jvRuuzGfegs7xe2deIsJZFH3bf3sV45BOORzE86UN38OnLaNwPC-oviKQoKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NmwS8IL4pDDASPEY4iePYoAkV2NSxtUJsk_pmnNiBobUdS6tp_HH8bZxjJ32hqC-T8hApucS62Pf7XXwfAK9iYfFTmwKdnNhETFMR6ZKLCLFbaF3hqXQJzsMRH5ywz-NsvAF_2lwYF1bZ2sTGUJtZ6f6Rv4m5bNCa0vfnvyLXNcrtrrYtNHRorWB2mhJjIbHjwF5dogtX7-x_wu_9Okn2do8_DqLQZSAqM5bPo4QbzopU5KLKjNSJoSXLK4RVg8hrUsRnjagvEiuKAhcANZaXWqalFrbQCXfFmBACtljKJDp_Wx92R1--LjMzaeqTYNDaMXTGQiyRjzBzQeM-yd6FmGW-gqhYBZCrCHADhHt34HZgsKTvp9xd2LDTe3BjGPbo78PbPhlcuTwwcnSpLyakf_Yd9Tj_MSHIj8kMTdTk9DcCJkHivsDBaWJ8uN9p_QBOrkV3D2FzOpvax0Aos0ai-5dUyBrwmqZaSK4rGxcaSZHoQd6qRZWhfLnronGm2ji1n2qpUOUUqigeMUrGneS5L-GxhoxsNa_aFFU0qgpxZg3Z_F-ytg7WoVaxqhNF1VFTHMnlDmdN3ua4B-86yUCAPLFZ873b7RRRy1d1y6YHL7vLaELcvpCe2tmiuSfN0Q13j1h5T864EMilZQ8e-enXKRNdYnyAyJ_8fwAv4ObgeHioDvdHB0_hlhu5j6Tchs35xcI-Q3Y3L56HJUTg23Wv2r_fwmBR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB5CAqEvJem5OVoVmkcT-dKREMrSdNk0B4U0sG-qbMk5yO4m8S4h_Wn9dR1ZtvelW_Yl4AeDPbYYj-b7xpoZAXwOhcVPbTIMckITJJqKQOdMBIjdQusCT6UrcD49Y_2L5PsgHSzBn6YWxqVVNj6xctRmnLt_5LshkxVaU7pb1GkRPw57X-7uA7eDlFtpbbbT8CZybJ8eMXwrD44O8VvvRFHv28-v_aDeYSDI04RPgogZlmSx4KJIjdSRoXnCC4RUg6hrYsRmjYgvIiuyDI2fGstyLeNcC5vpiLlGTOj-V3gcS5dOyAd8VpNJY1_-gn4uwTCsziLyuWUuXdyX17vkstT3DhXzoHEe9a0gsLcGL2vuSrre2NZhyY5eweppvTr_Gva6pP_kKsDI-aN-GJLu7SVqbXI1JMiMyRid0_D6N0IlQco-xcFpYnyi33X5Bi6eRXNvYXk0Htn3QGhijcTALyqQL-A1TbWQTBc2zDTSIdEB3qhF5XXjcrd_xq1qMtRu1EyhyilUUTxClAxbyTvfvGMBGdloXjXFqehOFSLMArL8X7K2rP1CqUJVRoqq86otkqsaTquKzUEH9lvJmvp4SrPge7caE1GzV7UTpgOf2svoPNyKkB7Z8bS6J-YYgLtHzL2HJ0wIZNGyA--8-bXKxGAYHyD4xv8H8BFWca6qk6Oz40144QbuUyi3YHnyMLXbSOsm2Ydq_hD49dwT9i8zoV3r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Swarm+Algorithm+for+optimizing+glaucoma+diagnosis&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Raja%2C+Chandrasekaran&rft.au=Gangatharan%2C+Narayanan&rft.date=2015-08-01&rft.issn=0010-4825&rft.volume=63&rft.spage=196&rft.epage=207&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2015_05_018
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00072%2Fcov150h.gif