A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis
Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processin...
Saved in:
| Published in | Computers in biology and medicine Vol. 63; pp. 196 - 207 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.08.2015
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2015.05.018 |
Cover
| Abstract | Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. |
|---|---|
| AbstractList | Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness.Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. Abstract Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. |
| Author | Raja, Chandrasekaran Gangatharan, Narayanan |
| Author_xml | – sequence: 1 givenname: Chandrasekaran surname: Raja fullname: Raja, Chandrasekaran email: rajachandru82@yahoo.co.in organization: Department of ECE, Anjalai Ammal Mahalingam Engineering College, Kovilvenni 614403, India – sequence: 2 givenname: Narayanan surname: Gangatharan fullname: Gangatharan, Narayanan organization: Department of ECE, R.M.K. College of Engineering and Technology, Puduvoyal 601206, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26093787$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNklFrFDEQx4NU7LX6FWTBF1_2nCSbbOJD8VqqFQo-VMG3kE2yZ87dzZnsKtdPb9ZrKRwIBwPJw2_-M_OfOUMnQxgcQgWGJQbM322WJvTbxofe2SUBzJaQA4tnaIFFLUtgtDpBCwAMZSUIO0VnKW0AoAIKL9Ap4SBpLeoFer8qbnZN9La4-6NjX6y6dYh-_NEXbYhF2I6-9_d-WBfrTk-5qC6s1-shJJ9eouet7pJ79fCeo28fr79e3ZS3Xz59vlrdloZV9VgSbnnVUFGLllmpiQVT1S3FtSWCWioqrjlmgjjRNBQLsI4bLanRwjWacEnP0du97jaGX5NLo-p9Mq7r9ODClBSuKy6EJPIINMvVpJJYZPTNAboJUxzyIDNFGDAOkKnXD9TUZK_VNvpex516NDADF3vAxJBSdK0yftSjD8MYte8UBjVvTG3U08bUvDEFOf71IQ4EHmsckXq5T3XZ_d_eRZWMd4Nx1kdnRmWDP0bk4kDEdH7wRnc_3c6lJ1NUIgrU3XxT80lhln-Sfc8CH_4vcFwPfwFr6t8x |
| CODEN | CBMDAW |
| CitedBy_id | crossref_primary_10_1007_s42452_019_1467_3 crossref_primary_10_1142_S0129065718500223 crossref_primary_10_1016_j_compbiomed_2016_02_011 crossref_primary_10_3390_electronics11111763 crossref_primary_10_1142_S0219467820500230 crossref_primary_10_1007_s11042_024_19974_3 crossref_primary_10_4239_wjd_v13_i10_822 crossref_primary_10_3389_fopht_2024_1368081 crossref_primary_10_1038_srep41545 crossref_primary_10_1016_j_bspc_2017_10_009 crossref_primary_10_1097_IJG_0000000000002015 crossref_primary_10_46632_psr_1_1_4 crossref_primary_10_1097_APO_0000000000000395 crossref_primary_10_46632_eae_1_1_7 crossref_primary_10_1007_s13748_023_00304_x crossref_primary_10_1016_j_asoc_2022_109432 crossref_primary_10_1155_2018_5278196 crossref_primary_10_1016_j_compmedimag_2019_101657 crossref_primary_10_1109_ACCESS_2024_3477420 crossref_primary_10_46632_dmfar_1_2_1 crossref_primary_10_1167_tvst_10_7_20 crossref_primary_10_46632_ces_1_1_2 crossref_primary_10_1016_j_engappai_2023_107449 crossref_primary_10_3390_ijms24032814 crossref_primary_10_1016_j_bspc_2019_101677 crossref_primary_10_1016_j_bspc_2023_105625 crossref_primary_10_1167_tvst_9_2_55 crossref_primary_10_1007_s00371_022_02489_z crossref_primary_10_1016_j_ajo_2021_12_008 crossref_primary_10_1186_s12938_020_00767_2 crossref_primary_10_55452_1998_6688_2024_21_3_37_47 crossref_primary_10_1007_s11042_018_6429_z crossref_primary_10_1186_s40064_016_3175_4 |
| Cites_doi | 10.1142/S0219519413500115 10.1167/iovs.12-9483d 10.1097/IJG.0b013e3181c4ac5b 10.1109/ICIT.2004.1490800 10.1016/S1672-6529(11)60020-6 10.1007/978-3-642-15381-5_28 10.1109/TEVC.2009.2011992 10.1016/j.amc.2006.09.098 10.1016/j.orl.2008.12.008 10.1007/978-81-322-2220-0_26 10.1016/j.compbiomed.2013.01.020 10.3844/jcssp.2014.1758.1765 10.1109/MHS.1995.494215 10.1109/ICIE.2009.59 10.1016/j.asoc.2011.01.037 10.1145/2330163.2330175 10.1111/j.1755-3768.1992.tb04126.x 10.1109/97.923042 10.1109/ICEC.1998.699326 10.1016/j.eswa.2005.09.024 10.1023/A:1009715923555 10.1016/j.amc.2010.12.053 10.14257/ijgdc.2013.6.6.10 10.1109/TSMCB.2009.2015956 10.1167/iovs.05-1489 10.1016/j.asoc.2007.10.007 10.1016/j.survophthal.2008.08.003 10.1016/j.media.2009.12.006 10.1016/j.compbiolchem.2007.10.001 10.1007/s10384-014-0303-y 10.1016/j.knosys.2012.02.010 10.1016/j.pnsc.2008.06.007 10.1038/44831 10.1145/1143997.1144007 10.1109/ICNN.1995.488968 10.1109/SMCIA.2008.5045944 10.1109/ICCA.2007.4376340 10.1109/78.678504 10.1109/LGRS.2011.2155617 10.1006/acha.2000.0343 10.1136/bjo.2005.081224 10.1109/CEC.1999.785511 10.1109/ICIP.2005.1529782 10.1007/s11633-014-0858-6 10.1017/S0962492900002518 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Aug 2015 |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Aug 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO |
| DOI | 10.1016/j.compbiomed.2015.05.018 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Proquest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | Engineering Research Database Research Library Prep MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 207 |
| ExternalDocumentID | 3731399951 26093787 10_1016_j_compbiomed_2015_05_018 S001048251500195X 1_s2_0_S001048251500195X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ SV3 T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO |
| ID | FETCH-LOGICAL-c547t-26d64b3878f5d9a2d0c47f317d283d3846a61582e8bb3180de6ca93ca8eba2693 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Tue Oct 07 11:09:30 EDT 2025 Wed Oct 01 17:07:46 EDT 2025 Tue Oct 07 06:35:44 EDT 2025 Thu Apr 03 07:00:46 EDT 2025 Wed Oct 01 06:03:07 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Fri Feb 23 02:24:54 EST 2024 Sun Feb 23 10:19:15 EST 2025 Tue Oct 14 19:33:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Glaucoma Feature extraction Hyper analytic wavelet transform Hybrid PSO–GSO Support Vector Machines |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c547t-26d64b3878f5d9a2d0c47f317d283d3846a61582e8bb3180de6ca93ca8eba2693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26093787 |
| PQID | 1692505600 |
| PQPubID | 1226355 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1746889299 proquest_miscellaneous_1693724918 proquest_journals_1692505600 pubmed_primary_26093787 crossref_citationtrail_10_1016_j_compbiomed_2015_05_018 crossref_primary_10_1016_j_compbiomed_2015_05_018 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_05_018 elsevier_clinicalkeyesjournals_1_s2_0_S001048251500195X elsevier_clinicalkey_doi_10_1016_j_compbiomed_2015_05_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | C. Grosan, A. Abraham et al., A hybrid algorithm based on particle swarm optimization and group search optimization, in: Seventh International Conference on Natural Computation, Shanghai, 2011. Firoiu, Nafornita (bib17) 2011; 8 Cheng, Yao (bib42) 2011; 5 Boggs, Tolle (bib49) 1995; 4 Nakisa, Nazri (bib30) 2014; 10 Sherlock, Monro (bib54) 1998; 46 H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol. 90 (3) 2006 262–267. George, Ve Ramesh (bib4) 2010; 19 in press. Vajaranant, Wu (bib3) 2012; 53 Abdulhamit, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput. Biol. Med. 43 (2013) 576–586. S. Pasupuleti, R. Battiti, The gregarious particle swarm optimizer, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, New York, 2006, pp. 67–74. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE: Nagoya 1995, pp. 39–43. Viswanathan, Buldyrev (bib46) 1999; 401 Thangaraj, Pant (bib44) 2011; 217 Hassiba TaIbi, Mohamed Batouche, Hybrid particle swam with differential evolution for multimodal image registration, in: IEEE International Conference on Industrial Technology, vol. 3, 2004, pp. 1562–1572. Ke Huang, Selin Aviyente, Statistical partitioning of wavelet subbands for texture classification, in: IEEE International Conference on Image Processing, vol. 1, Michigan State University, East Lansing, USA, 2005, pp. I-441–I-444. Bowd, Zangwill (bib9) 2006; 47 M.A. Esseghir, Gilles Goncalves, Yahya Slimani, Adaptive particle swarm optimizer for feature selection, in: Intelligent Data Engineering and automated learning, vol. 6283, 2010. C.S. Yang, L.Y. Chuang, et al., Chaotic maps in binary particle swarm optimization for feature selection, in: Proceedings of IEEE conference on Soft Computing in Industrial Applications, 2008, pp. 107–112. Zhan, Yat-Sen (bib39) 2009; 39 Liu, Wang (bib27) 2011; 8 C. Raja, N. Gangatharan, Incorporating phase information for efficient glaucoma diagnosis through hyper analytic wavelet transform, in: Proceedings of Fourth International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, vol. 2, 2014, pp. 325–339. Y. Mallikarjun, Two molecular mechanisms causing glaucoma found, The Hindu, July 11, 2013, p. 15. Krishnan, Acharya (bib18) 2012; 33 Futa, Shimizu (bib6) 1992; 70 Hai Shen, Yunlong Zhu et al., An improved group search optimizer for mechanical design optimization problems, Prog. Nat. Sci. 19 (1) (2009) 91–97. Selesnick (bib50) 2001; 8 Nickabadi, Ebadzadeh (bib31) 2011; 11 Sharma, Sample (bib8) 2008; 53 Zeng, Li (bib40) 2012; 2 C. Raja, N. Gangatharan, Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnosis, Int. J. Autom. Comput. (2015) Maberley, Walker (bib10) 2003; 168 Huang, Dun (bib28) 2008; 8 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948. B. Yang, Y. Chen et al., A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems, in: Proceedings of the IEEE International Conference on Control and Automation, 2007, pp. 166–170. Bock, Meier (bib11) 2010; 14 M.B. Shields, Optic Nerve, Retina, and Choroid, Shields Textbook of Glaucoma, 6th ed, 2005, pp. 216–217. Kang, Jun (bib7) 2014; 58 J. Tang, X. Zhao, Particle swarm optimization with adaptive mutation, in: Proceedings of the International Conference on Information Engineering, 2009, pp. 234–237 2009. Zhang, Ning (bib43) 2009; 37 Krishnan, Faust (bib12) 2013; 13 Vaidyanathan (bib53) 1993 Kingsbury (bib14) 2001; 10 Eberhart, Shi (bib34) 2000 Y.H. Shi, R.C. Eberhart, Experimental study of particle swarm optimization, in: SCI2000 Conference, Orlando, 2000. Burges (bib52) 1998; 2 J. Kennedy, W. Spears, Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, in: IEEE Congress on Evolutionary Computation, vol. 78–83, 1998, pp. 226–233. Bing Xue, Mengjie Zhang, Will N. Browne, Multi-objective particle swarm optimisation (PSO) for feature selection, in: GECCO׳12 2012 Philadelphia, Pennsylvania, USA. Raja, Gangatharan (bib13) 2013; 97 Dong ping Tian, A review of convergence analysis of particle swarm optimization international. J. Grid Distrib. Comput. 6 (6) (2013) 117–128. Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the Congress on Evolutionary Computation, vol. 3, 1999. Shelokar, Siarry (bib48) 2007; 188 J. Riget, J.S. Vesterstrom, A Diversity-Guided Particle Swarm Optimizer, The ARPSO, Vesterstrøm, 2002. Shen, Shi (bib55) 2007; 32 Chuang, Tsai, Yang (bib38) 2011; 38 Jie, Chaozan, Bo (bib41) 2012; 2 Huang, Wang (bib29) 2005; 31 Wu, Saunders (bib26) 2009; 13 Raja (10.1016/j.compbiomed.2015.05.018_bib13) 2013; 97 Bock (10.1016/j.compbiomed.2015.05.018_bib11) 2010; 14 Vaidyanathan (10.1016/j.compbiomed.2015.05.018_bib53) 1993 Sharma (10.1016/j.compbiomed.2015.05.018_bib8) 2008; 53 Wu (10.1016/j.compbiomed.2015.05.018_bib26) 2009; 13 Huang (10.1016/j.compbiomed.2015.05.018_bib29) 2005; 31 10.1016/j.compbiomed.2015.05.018_bib1 10.1016/j.compbiomed.2015.05.018_bib2 10.1016/j.compbiomed.2015.05.018_bib58 10.1016/j.compbiomed.2015.05.018_bib15 10.1016/j.compbiomed.2015.05.018_bib56 Nakisa (10.1016/j.compbiomed.2015.05.018_bib30) 2014; 10 10.1016/j.compbiomed.2015.05.018_bib57 10.1016/j.compbiomed.2015.05.018_bib5 Bowd (10.1016/j.compbiomed.2015.05.018_bib9) 2006; 47 Liu (10.1016/j.compbiomed.2015.05.018_bib27) 2011; 8 10.1016/j.compbiomed.2015.05.018_bib51 Cheng (10.1016/j.compbiomed.2015.05.018_bib42) 2011; 5 Shelokar (10.1016/j.compbiomed.2015.05.018_bib48) 2007; 188 Zhan (10.1016/j.compbiomed.2015.05.018_bib39) 2009; 39 Huang (10.1016/j.compbiomed.2015.05.018_bib28) 2008; 8 Kang (10.1016/j.compbiomed.2015.05.018_bib7) 2014; 58 10.1016/j.compbiomed.2015.05.018_bib19 10.1016/j.compbiomed.2015.05.018_bib16 Krishnan (10.1016/j.compbiomed.2015.05.018_bib18) 2012; 33 Thangaraj (10.1016/j.compbiomed.2015.05.018_bib44) 2011; 217 10.1016/j.compbiomed.2015.05.018_bib21 10.1016/j.compbiomed.2015.05.018_bib22 10.1016/j.compbiomed.2015.05.018_bib20 10.1016/j.compbiomed.2015.05.018_bib25 10.1016/j.compbiomed.2015.05.018_bib23 Nickabadi (10.1016/j.compbiomed.2015.05.018_bib31) 2011; 11 10.1016/j.compbiomed.2015.05.018_bib24 Zhang (10.1016/j.compbiomed.2015.05.018_bib43) 2009; 37 Viswanathan (10.1016/j.compbiomed.2015.05.018_bib46) 1999; 401 Firoiu (10.1016/j.compbiomed.2015.05.018_bib17) 2011; 8 Futa (10.1016/j.compbiomed.2015.05.018_bib6) 1992; 70 Sherlock (10.1016/j.compbiomed.2015.05.018_bib54) 1998; 46 Selesnick (10.1016/j.compbiomed.2015.05.018_bib50) 2001; 8 Vajaranant (10.1016/j.compbiomed.2015.05.018_bib3) 2012; 53 Kingsbury (10.1016/j.compbiomed.2015.05.018_bib14) 2001; 10 George (10.1016/j.compbiomed.2015.05.018_bib4) 2010; 19 10.1016/j.compbiomed.2015.05.018_bib32 Krishnan (10.1016/j.compbiomed.2015.05.018_bib12) 2013; 13 10.1016/j.compbiomed.2015.05.018_bib33 Zeng (10.1016/j.compbiomed.2015.05.018_bib40) 2012; 2 10.1016/j.compbiomed.2015.05.018_bib36 10.1016/j.compbiomed.2015.05.018_bib37 10.1016/j.compbiomed.2015.05.018_bib35 Jie (10.1016/j.compbiomed.2015.05.018_bib41) 2012; 2 Eberhart (10.1016/j.compbiomed.2015.05.018_bib34) 2000 Shen (10.1016/j.compbiomed.2015.05.018_bib55) 2007; 32 Boggs (10.1016/j.compbiomed.2015.05.018_bib49) 1995; 4 Burges (10.1016/j.compbiomed.2015.05.018_bib52) 1998; 2 Chuang (10.1016/j.compbiomed.2015.05.018_bib38) 2011; 38 10.1016/j.compbiomed.2015.05.018_bib47 10.1016/j.compbiomed.2015.05.018_bib45 Maberley (10.1016/j.compbiomed.2015.05.018_bib10) 2003; 168 |
| References_xml | – volume: 5 start-page: 33 year: 2011 end-page: 38 ident: bib42 article-title: Particle swarm optimizer with time-varying parameters based on a novel operator publication-title: Int. J. Appl. Math. Inf. Sci. – reference: J. Riget, J.S. Vesterstrom, A Diversity-Guided Particle Swarm Optimizer, The ARPSO, Vesterstrøm, 2002. – reference: Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the Congress on Evolutionary Computation, vol. 3, 1999. – reference: M.A. Esseghir, Gilles Goncalves, Yahya Slimani, Adaptive particle swarm optimizer for feature selection, in: Intelligent Data Engineering and automated learning, vol. 6283, 2010. – volume: 4 start-page: 1 year: 1995 end-page: 52 ident: bib49 article-title: Sequential quadratic programming publication-title: Acta Numer. – reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE: Nagoya 1995, pp. 39–43. – volume: 31 start-page: 231 year: 2005 end-page: 240 ident: bib29 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Expert Syst. Appl. – volume: 217 start-page: 5208 year: 2011 end-page: 5226 ident: bib44 article-title: Particle swarm optimization publication-title: Appl. Math. Comput. – volume: 37 start-page: 117 year: 2009 end-page: 122 ident: bib43 article-title: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization publication-title: Oper. Res. Lett. – volume: 53 start-page: 2464 year: 2012 end-page: 2466 ident: bib3 article-title: A 40-year forecast of the demographic shift in primary open-angle glaucoma in the United States publication-title: Investig. Ophthalmol. Vis. Sci., Special Issue – volume: 13 start-page: 1 year: 2013 end-page: 21 ident: bib12 article-title: Automated glaucoma detection using hybrid feature extraction in retinal fundus images publication-title: J. Mech. Med. Biol. – volume: 8 start-page: 191 year: 2011 end-page: 200 ident: bib27 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. – reference: C.S. Yang, L.Y. Chuang, et al., Chaotic maps in binary particle swarm optimization for feature selection, in: Proceedings of IEEE conference on Soft Computing in Industrial Applications, 2008, pp. 107–112. – reference: S. Pasupuleti, R. Battiti, The gregarious particle swarm optimizer, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, New York, 2006, pp. 67–74. – volume: 2 start-page: 443 year: 2012 end-page: 458 ident: bib40 article-title: Particle swarm-group search algorithm and its application to spatial structural design with discrete variables publication-title: Int. J. Optim. Civil Eng. – reference: C. Raja, N. Gangatharan, Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnosis, Int. J. Autom. Comput. (2015), – reference: J. Kennedy, W. Spears, Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, in: IEEE Congress on Evolutionary Computation, vol. 78–83, 1998, pp. 226–233. – volume: 2 start-page: 112 year: 2012 end-page: 115 ident: bib41 article-title: An improved particle swarm optimization based on repulsion factor publication-title: Open J. Appl. Sci. – volume: 14 start-page: 471 year: 2010 end-page: 481 ident: bib11 article-title: Glaucoma risk index publication-title: Med. Image Anal. – reference: Abdulhamit, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput. Biol. Med. 43 (2013) 576–586. – volume: 47 start-page: 2889 year: 2006 end-page: 2895 ident: bib9 article-title: Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 168 start-page: 160 year: 2003 end-page: 164 ident: bib10 article-title: Screening for diabetic retinopathy in James Bay, Ontario publication-title: Can. Med. Assoc. J. – volume: 188 start-page: 129 year: 2007 end-page: 142 ident: bib48 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948. – reference: Bing Xue, Mengjie Zhang, Will N. Browne, Multi-objective particle swarm optimisation (PSO) for feature selection, in: GECCO׳12 2012 Philadelphia, Pennsylvania, USA. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib52 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. – volume: 10 start-page: 1758 year: 2014 end-page: 1765 ident: bib30 article-title: A survey publication-title: J. Comput. Sci. – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: bib39 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. on Syst. Man Cybern.—Part B: Cybern. – volume: 53 start-page: S17 year: 2008 end-page: S32 ident: bib8 article-title: Diagnostic tools for glaucoma detection and management publication-title: Surv. Ophthalmol. – reference: Dong ping Tian, A review of convergence analysis of particle swarm optimization international. J. Grid Distrib. Comput. 6 (6) (2013) 117–128. – volume: 38 start-page: 699 year: 2011 end-page: 707 ident: bib38 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst. Appl. – volume: 46 start-page: 1716 year: 1998 end-page: 1720 ident: bib54 article-title: On the space of Orthonormal Wavelets publication-title: IEEE Trans. Signal Process. – reference: B. Yang, Y. Chen et al., A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems, in: Proceedings of the IEEE International Conference on Control and Automation, 2007, pp. 166–170. – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: bib31 article-title: A novel particle swarm optimization algorithm for adaptive inertia weight publication-title: Appl. Soft Comput. – reference: Hassiba TaIbi, Mohamed Batouche, Hybrid particle swam with differential evolution for multimodal image registration, in: IEEE International Conference on Industrial Technology, vol. 3, 2004, pp. 1562–1572. – year: 1993 ident: bib53 publication-title: Multirate Systems and Filter Banks – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: bib28 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. – volume: 8 start-page: 170 year: 2001 end-page: 173 ident: bib50 article-title: Hilbert transform pairs of wavelet bases publication-title: IEEE Signal Process. Lett. – volume: 32 start-page: 53 year: 2007 end-page: 60 ident: bib55 article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data publication-title: Comput. Biol. Chem. – reference: M.B. Shields, Optic Nerve, Retina, and Choroid, Shields Textbook of Glaucoma, 6th ed, 2005, pp. 216–217. – volume: 33 start-page: 73 year: 2012 end-page: 82 ident: bib18 article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features publication-title: Knowl. Based Syst. – volume: 13 start-page: 973 year: 2009 end-page: 990 ident: bib26 article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior publication-title: IEEE Trans. Evol. Comput. – reference: Y.H. Shi, R.C. Eberhart, Experimental study of particle swarm optimization, in: SCI2000 Conference, Orlando, 2000. – volume: 97 start-page: 159 year: 2013 end-page: 171 ident: bib13 article-title: Glaucoma detection in fundal retinal images using trispectrum and complex wavelet-based features publication-title: Eur. J. Sci. Res. – reference: Y. Mallikarjun, Two molecular mechanisms causing glaucoma found, The Hindu, July 11, 2013, p. 15. – volume: 19 start-page: 391 year: 2010 end-page: 397 ident: bib4 article-title: Glaucoma in India publication-title: J. Glaucoma – reference: C. Grosan, A. Abraham et al., A hybrid algorithm based on particle swarm optimization and group search optimization, in: Seventh International Conference on Natural Computation, Shanghai, 2011. – volume: 8 start-page: 1065 year: 2011 end-page: 1069 ident: bib17 article-title: Bayesian hyperanalytic denoising of sonar images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 84 year: 2000 end-page: 88 ident: bib34 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: IEEE Congress Evol. Comput. – volume: 10 start-page: 234 year: 2001 end-page: 253 ident: bib14 article-title: Complex wavelet transform for shift invariant analysis and filtering of Signals publication-title: J. Appl. Comput. Harmon. Anal. – reference: Ke Huang, Selin Aviyente, Statistical partitioning of wavelet subbands for texture classification, in: IEEE International Conference on Image Processing, vol. 1, Michigan State University, East Lansing, USA, 2005, pp. I-441–I-444. – reference: J. Tang, X. Zhao, Particle swarm optimization with adaptive mutation, in: Proceedings of the International Conference on Information Engineering, 2009, pp. 234–237 2009. – reference: , in press. – volume: 70 start-page: 214 year: 1992 end-page: 219 ident: bib6 article-title: Clinical features of capsular glaucoma in comparison with primary open-angle glaucoma in Japan publication-title: Acta Ophthalmol. – volume: 58 start-page: 205 year: 2014 end-page: 211 ident: bib7 article-title: Clinical features and glaucoma according to optic disc size in a South Korean population publication-title: Jpn. J. Ophthalmol. – reference: Hai Shen, Yunlong Zhu et al., An improved group search optimizer for mechanical design optimization problems, Prog. Nat. Sci. 19 (1) (2009) 91–97. – reference: C. Raja, N. Gangatharan, Incorporating phase information for efficient glaucoma diagnosis through hyper analytic wavelet transform, in: Proceedings of Fourth International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, vol. 2, 2014, pp. 325–339. – reference: H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol. 90 (3) 2006 262–267. – volume: 401 start-page: 911 year: 1999 end-page: 914 ident: bib46 article-title: Optimizing the success of random searches publication-title: Nature – volume: 13 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2015.05.018_bib12 article-title: Automated glaucoma detection using hybrid feature extraction in retinal fundus images publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519413500115 – start-page: 84 year: 2000 ident: 10.1016/j.compbiomed.2015.05.018_bib34 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: IEEE Congress Evol. Comput. – volume: 53 start-page: 2464 issue: 5 year: 2012 ident: 10.1016/j.compbiomed.2015.05.018_bib3 article-title: A 40-year forecast of the demographic shift in primary open-angle glaucoma in the United States publication-title: Investig. Ophthalmol. Vis. Sci., Special Issue doi: 10.1167/iovs.12-9483d – volume: 19 start-page: 391 issue: 6 year: 2010 ident: 10.1016/j.compbiomed.2015.05.018_bib4 article-title: Glaucoma in India publication-title: J. Glaucoma doi: 10.1097/IJG.0b013e3181c4ac5b – ident: 10.1016/j.compbiomed.2015.05.018_bib56 doi: 10.1109/ICIT.2004.1490800 – ident: 10.1016/j.compbiomed.2015.05.018_bib1 – volume: 8 start-page: 191 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2015.05.018_bib27 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(11)60020-6 – ident: 10.1016/j.compbiomed.2015.05.018_bib5 – ident: 10.1016/j.compbiomed.2015.05.018_bib24 doi: 10.1007/978-3-642-15381-5_28 – volume: 13 start-page: 973 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2015.05.018_bib26 article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2011992 – volume: 188 start-page: 129 year: 2007 ident: 10.1016/j.compbiomed.2015.05.018_bib48 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.098 – volume: 37 start-page: 117 year: 2009 ident: 10.1016/j.compbiomed.2015.05.018_bib43 article-title: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2008.12.008 – ident: 10.1016/j.compbiomed.2015.05.018_bib15 doi: 10.1007/978-81-322-2220-0_26 – ident: 10.1016/j.compbiomed.2015.05.018_bib19 doi: 10.1016/j.compbiomed.2013.01.020 – volume: 10 start-page: 1758 issue: 9 year: 2014 ident: 10.1016/j.compbiomed.2015.05.018_bib30 article-title: A survey publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2014.1758.1765 – ident: 10.1016/j.compbiomed.2015.05.018_bib21 doi: 10.1109/MHS.1995.494215 – volume: 5 start-page: 33 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2015.05.018_bib42 article-title: Particle swarm optimizer with time-varying parameters based on a novel operator publication-title: Int. J. Appl. Math. Inf. Sci. – ident: 10.1016/j.compbiomed.2015.05.018_bib37 doi: 10.1109/ICIE.2009.59 – volume: 11 start-page: 3658 year: 2011 ident: 10.1016/j.compbiomed.2015.05.018_bib31 article-title: A novel particle swarm optimization algorithm for adaptive inertia weight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.037 – volume: 2 start-page: 443 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2015.05.018_bib40 article-title: Particle swarm-group search algorithm and its application to spatial structural design with discrete variables publication-title: Int. J. Optim. Civil Eng. – volume: 168 start-page: 160 issue: 2 year: 2003 ident: 10.1016/j.compbiomed.2015.05.018_bib10 article-title: Screening for diabetic retinopathy in James Bay, Ontario publication-title: Can. Med. Assoc. J. – ident: 10.1016/j.compbiomed.2015.05.018_bib22 doi: 10.1145/2330163.2330175 – volume: 70 start-page: 214 year: 1992 ident: 10.1016/j.compbiomed.2015.05.018_bib6 article-title: Clinical features of capsular glaucoma in comparison with primary open-angle glaucoma in Japan publication-title: Acta Ophthalmol. doi: 10.1111/j.1755-3768.1992.tb04126.x – volume: 8 start-page: 170 issue: 6 year: 2001 ident: 10.1016/j.compbiomed.2015.05.018_bib50 article-title: Hilbert transform pairs of wavelet bases publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.923042 – ident: 10.1016/j.compbiomed.2015.05.018_bib23 doi: 10.1109/ICEC.1998.699326 – volume: 31 start-page: 231 year: 2005 ident: 10.1016/j.compbiomed.2015.05.018_bib29 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.compbiomed.2015.05.018_bib52 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 217 start-page: 5208 issue: 12 year: 2011 ident: 10.1016/j.compbiomed.2015.05.018_bib44 article-title: Particle swarm optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.12.053 – ident: 10.1016/j.compbiomed.2015.05.018_bib32 doi: 10.14257/ijgdc.2013.6.6.10 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.compbiomed.2015.05.018_bib39 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. on Syst. Man Cybern.—Part B: Cybern. doi: 10.1109/TSMCB.2009.2015956 – ident: 10.1016/j.compbiomed.2015.05.018_bib35 – volume: 47 start-page: 2889 issue: 7 year: 2006 ident: 10.1016/j.compbiomed.2015.05.018_bib9 article-title: Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.05-1489 – volume: 8 start-page: 1381 year: 2008 ident: 10.1016/j.compbiomed.2015.05.018_bib28 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – volume: 2 start-page: 112 issue: 4B year: 2012 ident: 10.1016/j.compbiomed.2015.05.018_bib41 article-title: An improved particle swarm optimization based on repulsion factor publication-title: Open J. Appl. Sci. – volume: 53 start-page: S17 issue: 1 year: 2008 ident: 10.1016/j.compbiomed.2015.05.018_bib8 article-title: Diagnostic tools for glaucoma detection and management publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2008.08.003 – volume: 14 start-page: 471 year: 2010 ident: 10.1016/j.compbiomed.2015.05.018_bib11 article-title: Glaucoma risk index publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.12.006 – volume: 32 start-page: 53 year: 2007 ident: 10.1016/j.compbiomed.2015.05.018_bib55 article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2007.10.001 – volume: 58 start-page: 205 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2015.05.018_bib7 article-title: Clinical features and glaucoma according to optic disc size in a South Korean population publication-title: Jpn. J. Ophthalmol. doi: 10.1007/s10384-014-0303-y – volume: 97 start-page: 159 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2015.05.018_bib13 article-title: Glaucoma detection in fundal retinal images using trispectrum and complex wavelet-based features publication-title: Eur. J. Sci. Res. – volume: 33 start-page: 73 year: 2012 ident: 10.1016/j.compbiomed.2015.05.018_bib18 article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.02.010 – ident: 10.1016/j.compbiomed.2015.05.018_bib25 doi: 10.1016/j.pnsc.2008.06.007 – volume: 401 start-page: 911 issue: 6756 year: 1999 ident: 10.1016/j.compbiomed.2015.05.018_bib46 article-title: Optimizing the success of random searches publication-title: Nature doi: 10.1038/44831 – ident: 10.1016/j.compbiomed.2015.05.018_bib58 doi: 10.1145/1143997.1144007 – ident: 10.1016/j.compbiomed.2015.05.018_bib20 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.compbiomed.2015.05.018_bib33 doi: 10.1109/SMCIA.2008.5045944 – ident: 10.1016/j.compbiomed.2015.05.018_bib45 doi: 10.1109/ICCA.2007.4376340 – volume: 46 start-page: 1716 issue: 6 year: 1998 ident: 10.1016/j.compbiomed.2015.05.018_bib54 article-title: On the space of Orthonormal Wavelets publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.678504 – volume: 8 start-page: 1065 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2015.05.018_bib17 article-title: Bayesian hyperanalytic denoising of sonar images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2155617 – volume: 38 start-page: 699 issue: 10 year: 2011 ident: 10.1016/j.compbiomed.2015.05.018_bib38 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst. Appl. – volume: 10 start-page: 234 issue: 3 year: 2001 ident: 10.1016/j.compbiomed.2015.05.018_bib14 article-title: Complex wavelet transform for shift invariant analysis and filtering of Signals publication-title: J. Appl. Comput. Harmon. Anal. doi: 10.1006/acha.2000.0343 – ident: 10.1016/j.compbiomed.2015.05.018_bib2 doi: 10.1136/bjo.2005.081224 – ident: 10.1016/j.compbiomed.2015.05.018_bib47 – year: 1993 ident: 10.1016/j.compbiomed.2015.05.018_bib53 – ident: 10.1016/j.compbiomed.2015.05.018_bib57 doi: 10.1109/CEC.1999.785511 – ident: 10.1016/j.compbiomed.2015.05.018_bib51 doi: 10.1109/ICIP.2005.1529782 – ident: 10.1016/j.compbiomed.2015.05.018_bib16 doi: 10.1007/s11633-014-0858-6 – ident: 10.1016/j.compbiomed.2015.05.018_bib36 – volume: 4 start-page: 1 year: 1995 ident: 10.1016/j.compbiomed.2015.05.018_bib49 article-title: Sequential quadratic programming publication-title: Acta Numer. doi: 10.1017/S0962492900002518 |
| SSID | ssj0004030 |
| Score | 2.2633963 |
| Snippet | Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early... Abstract Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 196 |
| SubjectTerms | Atoms & subatomic particles Automation Classification Data mining Diabetic retinopathy Diagnosis, Computer-Assisted - methods Feature extraction Female Fundus Oculi Glaucoma Glaucoma - diagnosis Humans Hybrid PSO–GSO Hyper analytic wavelet transform Hypotheses Image Processing, Computer-Assisted - methods Internal Medicine Male Mathematical functions Multiculturalism & pluralism Mutation Optimization algorithms Other Population Support Vector Machine Support Vector Machines Velocity Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBalh7FLafejTZsODXr1ItuyfqynEFbCoLt0gdyEbMmtS-OUOKG0h_7te7LkhLEFAoUcHFvPFs_Se9_D3ychdBELC6_a5FDkxCaimohIF0xEkLuF1iUcSidwvv7FxhP6c5pN99Co08I4WmWI_T6mt9E6nBkEbw4eq8ppfKGUcMrLrFW9TZ2CnXK3i8G31w3Ng5LUy1Ag3rjWgc3jOV6Otu1l7o7klfk1PMW2FLUNgrap6OoQHQQMiYe-m0doz9Yf0Lvr8JX8I_o-xONnp8TCN096McPDh9v5olrezTAgVDyHIDGrXiBlYYDOK-icxsYT7qrmE5pc_fg9Gkdhj4SoyChfRgkzjOap4KLMjNSJIQXlJYACA7jBpIAuNGAWkViR5zB9ibGs0DIttLC5TphMP6P9el7bE4QJtUZCAZaUkLfhmiZaSKZLG-caYInoId65RRVhAXG3j8WD6phi92rjUOUcqgj8YrCM15aPfhGNHWxk53nViUQhrCmI9DvY8v_Z2ibMz0bFqkkUUf-MoR66XFv-NQx3fG6_GyJq8ygmW5hJSA99XV-GSey-zOjazldtm5RDIexusbUNp0wIQLOyh4798Fs7E4pSuIHgp2_q_hl67_55emMf7S8XK3sOkGuZf2nn1B8q3yjG priority: 102 providerName: Elsevier |
| Title | A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001048251500195X https://www.clinicalkey.es/playcontent/1-s2.0-S001048251500195X https://dx.doi.org/10.1016/j.compbiomed.2015.05.018 https://www.ncbi.nlm.nih.gov/pubmed/26093787 https://www.proquest.com/docview/1692505600 https://www.proquest.com/docview/1693724918 https://www.proquest.com/docview/1746889299 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trYR4QXxTGJUn8RpwvvwBmlA3rSugVYgxqW-WEzswtLZjbYW2h_3tnGMnfaGoUhVVSi5xr_bd7-L73QG8iYXFv9oUGOTEJso0FZEumYjQdwutK_wqHcH5dMxG59nnST7ZgXHDhXFplY1NrA21mZfuHfm7mMnaW1P68ep35LpGud3VpoWGDq0VzEFdYmwXuomrjNWB7uHx-Ou3NVOSpp6UgtYnw-Ao5Pb4jC-XxO1J7y7lK_cVPcUmh7UJkNaOafgQHgRESQZ-CjyCHTt7DPdOw575E3g_IKMbx8siZ3_09ZQMLn_g71r-nBLEq2SOJmN6cYsOjCCQXuHgNDE-_e5i8RTOh8ffj0ZR6JgQlXnGl1HCDMuKVHBR5UbqxNAy4xVCBIMowqSINTQiGJFYURS4mKmxrNQyLbWwhU6YTJ9BZzaf2RdAaGaNxHAsqdCL4zlNtZBMVzYuNIIU0QPeqEWVoZy462pxqZq8sV9qrVDlFKoofmKUjFvJK19SYwsZ2WheNZRRNHIK7f4WsvxfsnYRVutCxWqRKKrO6mJFjsub1zzKSQ8-tJIBkHigseVz95opotaPaqdxD_bb07ik3T6Nntn5qr4m5RgWu1tsvIZnTAjEtrIHz_30a5WJISreQPCX_x_AK7jvRuuzGfegs7xe2deIsJZFH3bf3sV45BOORzE86UN38OnLaNwPC-oviKQoKg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NmwS8IL4pDDASPEY4iePYoAkV2NSxtUJsk_pmnNiBobUdS6tp_HH8bZxjJ32hqC-T8hApucS62Pf7XXwfAK9iYfFTmwKdnNhETFMR6ZKLCLFbaF3hqXQJzsMRH5ywz-NsvAF_2lwYF1bZ2sTGUJtZ6f6Rv4m5bNCa0vfnvyLXNcrtrrYtNHRorWB2mhJjIbHjwF5dogtX7-x_wu_9Okn2do8_DqLQZSAqM5bPo4QbzopU5KLKjNSJoSXLK4RVg8hrUsRnjagvEiuKAhcANZaXWqalFrbQCXfFmBACtljKJDp_Wx92R1--LjMzaeqTYNDaMXTGQiyRjzBzQeM-yd6FmGW-gqhYBZCrCHADhHt34HZgsKTvp9xd2LDTe3BjGPbo78PbPhlcuTwwcnSpLyakf_Yd9Tj_MSHIj8kMTdTk9DcCJkHivsDBaWJ8uN9p_QBOrkV3D2FzOpvax0Aos0ai-5dUyBrwmqZaSK4rGxcaSZHoQd6qRZWhfLnronGm2ji1n2qpUOUUqigeMUrGneS5L-GxhoxsNa_aFFU0qgpxZg3Z_F-ytg7WoVaxqhNF1VFTHMnlDmdN3ua4B-86yUCAPLFZ873b7RRRy1d1y6YHL7vLaELcvpCe2tmiuSfN0Q13j1h5T864EMilZQ8e-enXKRNdYnyAyJ_8fwAv4ObgeHioDvdHB0_hlhu5j6Tchs35xcI-Q3Y3L56HJUTg23Wv2r_fwmBR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB5CAqEvJem5OVoVmkcT-dKREMrSdNk0B4U0sG-qbMk5yO4m8S4h_Wn9dR1ZtvelW_Yl4AeDPbYYj-b7xpoZAXwOhcVPbTIMckITJJqKQOdMBIjdQusCT6UrcD49Y_2L5PsgHSzBn6YWxqVVNj6xctRmnLt_5LshkxVaU7pb1GkRPw57X-7uA7eDlFtpbbbT8CZybJ8eMXwrD44O8VvvRFHv28-v_aDeYSDI04RPgogZlmSx4KJIjdSRoXnCC4RUg6hrYsRmjYgvIiuyDI2fGstyLeNcC5vpiLlGTOj-V3gcS5dOyAd8VpNJY1_-gn4uwTCsziLyuWUuXdyX17vkstT3DhXzoHEe9a0gsLcGL2vuSrre2NZhyY5eweppvTr_Gva6pP_kKsDI-aN-GJLu7SVqbXI1JMiMyRid0_D6N0IlQco-xcFpYnyi33X5Bi6eRXNvYXk0Htn3QGhijcTALyqQL-A1TbWQTBc2zDTSIdEB3qhF5XXjcrd_xq1qMtRu1EyhyilUUTxClAxbyTvfvGMBGdloXjXFqehOFSLMArL8X7K2rP1CqUJVRoqq86otkqsaTquKzUEH9lvJmvp4SrPge7caE1GzV7UTpgOf2svoPNyKkB7Z8bS6J-YYgLtHzL2HJ0wIZNGyA--8-bXKxGAYHyD4xv8H8BFWca6qk6Oz40144QbuUyi3YHnyMLXbSOsm2Ydq_hD49dwT9i8zoV3r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Swarm+Algorithm+for+optimizing+glaucoma+diagnosis&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Raja%2C+Chandrasekaran&rft.au=Gangatharan%2C+Narayanan&rft.date=2015-08-01&rft.issn=0010-4825&rft.volume=63&rft.spage=196&rft.epage=207&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2015_05_018 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00072%2Fcov150h.gif |