Detection of Dairy Herd Management Issues Using Fatty Acid Profiles Predicted by Mid-Infrared Spectrometry

This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predic...

Full description

Saved in:
Bibliographic Details
Published inAnimals (Basel) Vol. 15; no. 11; p. 1575
Main Authors Franceschini, Sébastien, Fastré, Claire, Nickmilder, Charles, Santschi, Débora E., Warner, Daniel, Bahadi, Mazen, Bertozzi, Carlo, Veselko, Didier, Dehareng, Frédéric, Gengler, Nicolas, Soyeurt, Hélène
Format Journal Article Web Resource
LanguageEnglish
Published Switzerland MDPI AG 28.05.2025
MDPI
Subjects
Online AccessGet full text
ISSN2076-2615
0030-6835
2076-2615
DOI10.3390/ani15111575

Cover

Abstract This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predicted parameters, fatty acid profiles appear to be effective indicators of animal status and management practices. In this research, these profiles were summarized using 31 fatty acids or groups of fatty acids. The methodology consists of four steps: hierarchical clustering to detect patterns in a Belgian spectral dataset (N = 774,781), interpretation of the identified seven clusters, development of predictive models applied to a Canadian dataset (N = 670,165), and validation using management information collected from Canadian farms. The identified clusters revealed significant relationships with feeding management strategies and temporal evolutions, highlighting the potential to develop automated alert systems that assist farmers and advisors in herd monitoring.
AbstractList This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predicted parameters, fatty acid profiles appear to be effective indicators of animal status and management practices. In this research, these profiles were summarized using 31 fatty acids or groups of fatty acids. The methodology consists of four steps: hierarchical clustering to detect patterns in a Belgian spectral dataset (N = 774,781), interpretation of the identified seven clusters, development of predictive models applied to a Canadian dataset (N = 670,165), and validation using management information collected from Canadian farms. The identified clusters revealed significant relationships with feeding management strategies and temporal evolutions, highlighting the potential to develop automated alert systems that assist farmers and advisors in herd monitoring.
This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predicted parameters, fatty acid profiles appear to be effective indicators of animal status and management practices. In this research, these profiles were summarized using 31 fatty acids or groups of fatty acids. The methodology consists of four steps: hierarchical clustering to detect patterns in a Belgian spectral dataset ( = 774,781), interpretation of the identified seven clusters, development of predictive models applied to a Canadian dataset ( = 670,165), and validation using management information collected from Canadian farms. The identified clusters revealed significant relationships with feeding management strategies and temporal evolutions, highlighting the potential to develop automated alert systems that assist farmers and advisors in herd monitoring.
Farms generate increasing amounts of data each year. One example is the bulk tank milk composition, predicted through spectrometry, which is routinely measured for milk payment purposes. Among the different milk components, the fatty acid profile is of utmost importance because it is closely linked to animal status and farm management practices. This research aims to explore a novel application of these fatty acid profiles by developing a practical herd-monitoring tool for farmers and advisors. The methodology developed consists of an unsupervised learning method that identifies meaningful patterns in fatty acid profiles, combined with an expert-driven interpretation of those patterns. The analysis was performed using a Belgian bulk tank milk database. Seven distinct patterns were identified; among these, three were associated with good management practices, three indicated potential risks, and one highlighted a metabolic disorder probably related to management practices. Most of these patterns were also observed in a Canadian bulk tank milk dataset, demonstrating that the method is generalizable across different regions and farming conditions. Moreover, the probabilities associated with each pattern can serve as a reliable foundation for creating practical alerts to support on-farm decision making, thereby enhancing farm management and contributing positively to animal welfare. This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predicted parameters, fatty acid profiles appear to be effective indicators of animal status and management practices. In this research, these profiles were summarized using 31 fatty acids or groups of fatty acids. The methodology consists of four steps: hierarchical clustering to detect patterns in a Belgian spectral dataset ( N = 774,781), interpretation of the identified seven clusters, development of predictive models applied to a Canadian dataset ( N = 670,165), and validation using management information collected from Canadian farms. The identified clusters revealed significant relationships with feeding management strategies and temporal evolutions, highlighting the potential to develop automated alert systems that assist farmers and advisors in herd monitoring.
Farms generate increasing amounts of data each year. One example is the bulk tank milk composition, predicted through spectrometry, which is routinely measured for milk payment purposes. Among the different milk components, the fatty acid profile is of utmost importance because it is closely linked to animal status and farm management practices. This research aims to explore a novel application of these fatty acid profiles by developing a practical herd-monitoring tool for farmers and advisors. The methodology developed consists of an unsupervised learning method that identifies meaningful patterns in fatty acid profiles, combined with an expert-driven interpretation of those patterns. The analysis was performed using a Belgian bulk tank milk database. Seven distinct patterns were identified; among these, three were associated with good management practices, three indicated potential risks, and one highlighted a metabolic disorder probably related to management practices. Most of these patterns were also observed in a Canadian bulk tank milk dataset, demonstrating that the method is generalizable across different regions and farming conditions. Moreover, the probabilities associated with each pattern can serve as a reliable foundation for creating practical alerts to support on-farm decision making, thereby enhancing farm management and contributing positively to animal welfare.
This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predicted parameters, fatty acid profiles appear to be effective indicators of animal status and management practices. In this research, these profiles were summarized using 31 fatty acids or groups of fatty acids. The methodology consists of four steps: hierarchical clustering to detect patterns in a Belgian spectral dataset (N = 774,781), interpretation of the identified seven clusters, development of predictive models applied to a Canadian dataset (N = 670,165), and validation using management information collected from Canadian farms. The identified clusters revealed significant relationships with feeding management strategies and temporal evolutions, highlighting the potential to develop automated alert systems that assist farmers and advisors in herd monitoring.This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier Transform mid-infrared spectrometry every 1 to 3 days, and their compositions were predicted using machine learning models. Among the predicted parameters, fatty acid profiles appear to be effective indicators of animal status and management practices. In this research, these profiles were summarized using 31 fatty acids or groups of fatty acids. The methodology consists of four steps: hierarchical clustering to detect patterns in a Belgian spectral dataset (N = 774,781), interpretation of the identified seven clusters, development of predictive models applied to a Canadian dataset (N = 670,165), and validation using management information collected from Canadian farms. The identified clusters revealed significant relationships with feeding management strategies and temporal evolutions, highlighting the potential to develop automated alert systems that assist farmers and advisors in herd monitoring.
Audience Academic
Author Dehareng, Frédéric
Warner, Daniel
Bertozzi, Carlo
Veselko, Didier
Nickmilder, Charles
Soyeurt, Hélène
Santschi, Débora E.
Bahadi, Mazen
Gengler, Nicolas
Franceschini, Sébastien
Fastré, Claire
AuthorAffiliation 1 TERRA Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; sfranceschini@uliege.be (S.F.); claire.fastre@uliege.be (C.F.); charles.nickmilder@uliege.be (C.N.)
2 Lactanet, Saint-Anne-de-Bellevue, QC H9X 3R4, Canada
4 Comité du Lait, 4651 Herve, Belgium
3 Walloon Breeders Association, 5590 Ciney, Belgium
5 Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
AuthorAffiliation_xml – name: 2 Lactanet, Saint-Anne-de-Bellevue, QC H9X 3R4, Canada
– name: 1 TERRA Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; sfranceschini@uliege.be (S.F.); claire.fastre@uliege.be (C.F.); charles.nickmilder@uliege.be (C.N.)
– name: 4 Comité du Lait, 4651 Herve, Belgium
– name: 5 Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
– name: 3 Walloon Breeders Association, 5590 Ciney, Belgium
Author_xml – sequence: 1
  givenname: Sébastien
  orcidid: 0000-0001-6298-5149
  surname: Franceschini
  fullname: Franceschini, Sébastien
– sequence: 2
  givenname: Claire
  orcidid: 0009-0006-0498-1098
  surname: Fastré
  fullname: Fastré, Claire
– sequence: 3
  givenname: Charles
  orcidid: 0000-0001-5235-2145
  surname: Nickmilder
  fullname: Nickmilder, Charles
– sequence: 4
  givenname: Débora E.
  surname: Santschi
  fullname: Santschi, Débora E.
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0001-8576-6985
  surname: Warner
  fullname: Warner, Daniel
– sequence: 6
  givenname: Mazen
  orcidid: 0000-0001-7210-1861
  surname: Bahadi
  fullname: Bahadi, Mazen
– sequence: 7
  givenname: Carlo
  surname: Bertozzi
  fullname: Bertozzi, Carlo
– sequence: 8
  givenname: Didier
  surname: Veselko
  fullname: Veselko, Didier
– sequence: 9
  givenname: Frédéric
  orcidid: 0000-0002-6733-4334
  surname: Dehareng
  fullname: Dehareng, Frédéric
– sequence: 10
  givenname: Nicolas
  orcidid: 0000-0002-5981-5509
  surname: Gengler
  fullname: Gengler, Nicolas
– sequence: 11
  givenname: Hélène
  orcidid: 0000-0001-9883-9047
  surname: Soyeurt
  fullname: Soyeurt, Hélène
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40509041$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpiTuyxAUJbfFn7JzQqqV0pVZUopwtx54ErxJ7sbOV9t_j3S1li3AOntjPvDN5M6-roxADVNVbgs8Za_AnEzwRhBAhxYvqhGJZz2hNxNFBfFyd5bzEZUnBCvyqOuZY4AZzclItL2ECO_kYUOzQpfFpg64hOXRrgulhhDChRc5ryOhH9qFHV2aaNmhuvUN3KXZ-KDd3CZy3EzjUbtCtd7NF6JIph-j7qoinOMKUNm-ql50ZMpw97qfV_dWX-4vr2c23r4uL-c3MCi6nGbHEWNPSDoOgvLUSW4ExV13tsFOka0lra9twAG6laaywxlEiACvGW9qy02qxl3XRLPUq-dGkjY7G691BTL02afJ2AC0o5dAAxjUzXDncNKUYa8qbVF2RLlqf91qrdTuCs8WNZIZnos9vgv-p-_igSemINUQVBbZXGDz0UKq3Xj_QXeYuXg-lHatb0JTWSjPGMcEl68Nj3RR_Fe8nPfpsYRhMgLjOmlGiuGRK1QV9_w-6jOsUisFbStZKSCr_Ur0p3-1DF0u7diuq54oLrEgjt9T5f6jyOBi9LYO3_d3PE94d-vNkzJ_5KsDHPWBTzDlB94QQrLcDrA8GmP0GNOjf-g
Cites_doi 10.1016/j.tifs.2022.02.005
10.1038/s41598-021-02600-9
10.3168/jds.2007-0656
10.3168/jds.S0022-0302(06)72437-7
10.3168/jds.S0022-0302(06)72192-0
10.3168/jds.2016-12046
10.3168/jds.S0022-0302(06)72409-2
10.3402/fnr.v52i0.1821
10.1038/s41598-017-01120-9
10.3168/jds.S0022-0302(02)74079-4
10.3168/jds.2014-9148
10.1051/animres:2000117
10.3390/ani12091202
10.3168/jds.2022-21975
10.3168/jds.2010-3408
10.3168/jds.2014-8039
10.3390/ani11020533
10.1007/s00357-014-9161-z
10.18637/jss.v028.i05
10.3168/jds.S0022-0302(93)77727-9
10.1016/j.anifeedsci.2006.06.017
10.3390/rs15071890
10.3168/jds.S0022-0302(06)72343-8
10.1016/j.ymeth.2020.07.012
10.3168/jds.2016-10920
10.1016/S0301-6226(01)00196-8
10.3168/jds.S0022-0302(93)77508-6
10.3168/jds.2016-10998
10.3168/jds.2014-8764
10.1016/j.jpba.2020.113372
ContentType Journal Article
Web Resource
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
Q33
5PM
DOA
DOI 10.3390/ani15111575
DatabaseName CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed


Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Social Welfare & Social Work
Agriculture
DocumentTitleAlternate Détection des problèmes de gestion des troupeaux laitiers à l’aide des profils d’acides gras prédits par spectrométrie dans l’infrarouge moyen
EISSN 2076-2615
ExternalDocumentID oai_doaj_org_article_5224e9e0063a48d09970c3963a78fa9c
PMC12153918
oai_orbi_ulg_ac_be_2268_334010
A845081977
40509041
10_3390_ani15111575
Genre Journal Article
GeographicLocations Belgium
Canada
Quebec
GeographicLocations_xml – name: Quebec
– name: Canada
– name: Belgium
GroupedDBID 5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
CCPQU
CITATION
DIK
EAD
EAP
EPL
ESX
GROUPED_DOAJ
HYE
IAO
ITC
LK8
M48
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
RPM
TUS
ZBA
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
00M
23M
5GY
97F
AADQD
ACGFO
ACPRK
ADBBV
ADUOI
AFRAH
AFZYC
AIAGR
AOIJS
ATWCN
BCNDV
BKOMP
BSCAQ
C1A
DO4
ECC
ECR
EKAWT
EMF
EMG
EMH
EMK
EMR
ESE
ESN
EUK
HCSNT
HISYW
HOCAJ
ICQ
IEP
IKB
IOF
IPO
ISE
KQ8
PM3
Q33
RHO
RXW
TAE
WH7
X6Y
~8M
5PM
ID FETCH-LOGICAL-c547t-1c1acab2f0e524bc70c50048f6d0d81fb1bc6c94ee4c7a9c5cad215e0834b2b3
IEDL.DBID M48
ISSN 2076-2615
0030-6835
IngestDate Wed Aug 27 01:07:53 EDT 2025
Thu Aug 21 18:24:43 EDT 2025
Fri Jul 18 15:33:17 EDT 2025
Fri Sep 05 15:53:42 EDT 2025
Mon Jun 30 07:59:13 EDT 2025
Wed Jun 25 16:51:33 EDT 2025
Tue Jul 01 05:43:28 EDT 2025
Mon Jun 16 02:29:59 EDT 2025
Thu Aug 28 08:58:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords dairy cows
herd management
fatty acids
unsupervised hierarchical clustering
FT-MIR spectrometry
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-1c1acab2f0e524bc70c50048f6d0d81fb1bc6c94ee4c7a9c5cad215e0834b2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-105007666774
These authors contributed equally to this work.
ORCID 0000-0002-5981-5509
0009-0006-0498-1098
0000-0001-9883-9047
0000-0001-6298-5149
0000-0001-8576-6985
0000-0001-5235-2145
0000-0001-7210-1861
0000-0002-6733-4334
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ani15111575
PMID 40509041
PQID 3217685727
PQPubID 2032438
ParticipantIDs doaj_primary_oai_doaj_org_article_5224e9e0063a48d09970c3963a78fa9c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12153918
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_334010
proquest_miscellaneous_3218473886
proquest_journals_3217685727
gale_infotracmisc_A845081977
gale_infotracacademiconefile_A845081977
pubmed_primary_40509041
crossref_primary_10_3390_ani15111575
PublicationCentury 2000
PublicationDate 2025-05-28
PublicationDateYYYYMMDD 2025-05-28
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Animals (Basel)
PublicationTitleAlternate Animals (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Murtagh (ref_36) 2014; 31
Chilliard (ref_43) 2001; 70
Music (ref_34) 2022; 123
Grelet (ref_26) 2015; 98
ref_35
Mansbridge (ref_14) 1997; 50
ref_33
ref_10
ref_31
(ref_6) 2008; 52
ref_30
Grelet (ref_27) 2021; 186
ref_19
ref_39
Vlaeminck (ref_21) 2006; 89
Jensen (ref_2) 2002; 85
Jorjong (ref_12) 2014; 97
Chilliard (ref_3) 2000; 49
Craninx (ref_13) 2008; 91
Woolpert (ref_17) 2017; 100
Jenkins (ref_8) 1993; 76
Soyeurt (ref_15) 2011; 94
Vlaeminck (ref_9) 2006; 131
Josse (ref_32) 2008; 25
ref_25
Palmquist (ref_11) 1993; 76
ref_42
ref_41
ref_40
ref_1
Mann (ref_20) 2016; 99
Franceschini (ref_24) 2022; 105
Woolpert (ref_16) 2016; 99
ref_29
Liaw (ref_38) 2002; 2
ref_28
Bauman (ref_7) 2006; 89
Hammami (ref_18) 2015; 98
Vlaeminck (ref_22) 2006; 89
Kuhn (ref_37) 2008; 28
ref_5
ref_4
Soyeurt (ref_23) 2006; 89
References_xml – ident: ref_28
– volume: 123
  start-page: 334
  year: 2022
  ident: ref_34
  article-title: Data Deficits and Transparency: What Led to Canada’s ‘Buttergate’
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2022.02.005
– ident: ref_30
– ident: ref_5
  doi: 10.1038/s41598-021-02600-9
– volume: 91
  start-page: 2662
  year: 2008
  ident: ref_13
  article-title: Effect of Lactation Stage on the Odd- and Branched-Chain Milk Fatty Acids of Dairy Cattle Under Grazing and Indoor Conditions
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0656
– volume: 89
  start-page: 3954
  year: 2006
  ident: ref_22
  article-title: Milk Odd- and Branched-Chain Fatty Acids in Relation to the Rumen Fermentation Pattern
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72437-7
– volume: 89
  start-page: 1235
  year: 2006
  ident: ref_7
  article-title: Major Advances Associated with the Biosynthesis of Milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72192-0
– volume: 100
  start-page: 5097
  year: 2017
  ident: ref_17
  article-title: Management Practices, Physically Effective Fiber, and Ether Extract Are Related to Bulk Tank Milk de Novo Fatty Acid Concentration on Holstein Dairy Farms
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-12046
– volume: 89
  start-page: 3690
  year: 2006
  ident: ref_23
  article-title: Estimating Fatty Acid Content in Cow Milk Using Mid-Infrared Spectrometry
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72409-2
– ident: ref_39
– ident: ref_40
– volume: 52
  start-page: 1821
  year: 2008
  ident: ref_6
  article-title: Fatty Acids in Bovine Milk Fat
  publication-title: Food Nutr. Res.
  doi: 10.3402/fnr.v52i0.1821
– ident: ref_19
  doi: 10.1038/s41598-017-01120-9
– ident: ref_42
– ident: ref_1
– ident: ref_35
– volume: 85
  start-page: 295
  year: 2002
  ident: ref_2
  article-title: The Composition of Bovine Milk Lipids: January 1995 to December 2000
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(02)74079-4
– volume: 98
  start-page: 4956
  year: 2015
  ident: ref_18
  article-title: Genetic Analysis of Heat Stress Effects on Yield Traits, Udder Health, and Fatty Acids of Walloon Holstein Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-9148
– volume: 49
  start-page: 181
  year: 2000
  ident: ref_3
  article-title: Ruminant Milk Fat Plasticity:Nutritional Control of Saturated, Polyunsaturated, Trans and Conjugated Fatty Acids
  publication-title: Ann. Zootech.
  doi: 10.1051/animres:2000117
– ident: ref_4
  doi: 10.3390/ani12091202
– volume: 105
  start-page: 6760
  year: 2022
  ident: ref_24
  article-title: Can Unsupervised Learning Methods Applied to Milk Recording Big Data Provide New Insights into Dairy Cow Health?
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2022-21975
– volume: 94
  start-page: 1657
  year: 2011
  ident: ref_15
  article-title: Mid-Infrared Prediction of Bovine Milk Fatty Acids across Multiple Breeds, Production Systems, and Countries
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3408
– volume: 97
  start-page: 7054
  year: 2014
  ident: ref_12
  article-title: Milk Fatty Acids as Possible Biomarkers to Early Diagnose Elevated Concentrations of Blood Plasma Nonesterified Fatty Acids in Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8039
– ident: ref_25
– ident: ref_33
  doi: 10.3390/ani11020533
– ident: ref_31
– volume: 31
  start-page: 274
  year: 2014
  ident: ref_36
  article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
  publication-title: J. Classif.
  doi: 10.1007/s00357-014-9161-z
– volume: 50
  start-page: 95
  year: 1997
  ident: ref_14
  article-title: Nutritional Factors Affecting the Fatty Acid Composition of Bovine Milk Fat
  publication-title: Livest. Prod. Sci.
– volume: 28
  start-page: 1
  year: 2008
  ident: ref_37
  article-title: Building Predictive Models in R Using the Caret Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– volume: 76
  start-page: 3851
  year: 1993
  ident: ref_8
  article-title: Lipid Metabolism in the Rumen
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(93)77727-9
– volume: 131
  start-page: 389
  year: 2006
  ident: ref_9
  article-title: Factors Affecting Odd- and Branched-Chain Fatty Acids in Milk: A Review
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2006.06.017
– ident: ref_29
  doi: 10.3390/rs15071890
– volume: 25
  start-page: 1
  year: 2008
  ident: ref_32
  article-title: FactoMineR: An R Package for Multivariate Analysis
  publication-title: J. Stat. Softw.
– ident: ref_41
– volume: 89
  start-page: 2668
  year: 2006
  ident: ref_21
  article-title: Effect of Forage:Concentrate Ratio on Fatty Acid Composition of Rumen Bacteria Isolated From Ruminal and Duodenal Digesta
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72343-8
– volume: 186
  start-page: 97
  year: 2021
  ident: ref_27
  article-title: Large-Scale Phenotyping in Dairy Sector Using Milk MIR Spectra: Key Factors Affecting the Quality of Predictions
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.07.012
– volume: 99
  start-page: 5851
  year: 2016
  ident: ref_20
  article-title: Short Communication: Association of Milk Fatty Acids with Early Lactation Hyperketonemia and Elevated Concentration of Nonesterified Fatty Acids
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-10920
– volume: 70
  start-page: 31
  year: 2001
  ident: ref_43
  article-title: Effect of Different Types of Forages, Animal Fat or Marine Oils in Cow’s Diet on Milk Fat Secretion and Composition, Especially Conjugated Linoleic Acid (CLA) and Polyunsaturated Fatty Acids
  publication-title: Livest. Prod. Sci.
  doi: 10.1016/S0301-6226(01)00196-8
– volume: 76
  start-page: 1753
  year: 1993
  ident: ref_11
  article-title: Feed and Animal Factors Influencing Milk Fat Composition
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(93)77508-6
– volume: 99
  start-page: 8486
  year: 2016
  ident: ref_16
  article-title: Management, Nutrition, and Lactation Performance Are Related to Bulk Tank Milk de Novo Fatty Acid Concentration on Northeastern US Dairy Farms
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-10998
– volume: 98
  start-page: 2150
  year: 2015
  ident: ref_26
  article-title: Standardization of Milk Mid-Infrared Spectra from a European Dairy Network
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8764
– ident: ref_10
  doi: 10.1016/j.jpba.2020.113372
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_38
  article-title: Classification and Regression by randomForest
  publication-title: R News
RestrictionsOnAccess open access
SSID ssj0000753151
ssj0013789
Score 2.3302987
Snippet This article focuses on the creation of a monitoring tool using routinely collected data from milk payment analyses. Milk samples were analyzed through Fourier...
Farms generate increasing amounts of data each year. One example is the bulk tank milk composition, predicted through spectrometry, which is routinely measured...
SourceID doaj
pubmedcentral
liege
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1575
SubjectTerms Analysis
Animal production & animal husbandry
Animal welfare
Body fat
Breastfeeding & lactation
cow
Dairy cattle
dairy cows
Dairy industry
Decision-making
detection
disease
fatty acid
Fatty acids
Fermentation
Fourier transforms
FT-MIR spectrometry
herd management
Humidity
infrared
Infrared spectroscopy
Life sciences
Machine learning
Metabolism
Milk
Milk production
Nutrition
Productions animales & zootechnie
Proteins
Sciences du vivant
Scientific imaging
unsupervised hierarchical clustering
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIvgiflvvlAgHvliubZI2eVw9l1U48eGEw5eQT-xxdKXXFfa_v5m0t25F8MW3kKRtOpNpftNMfkPIscLtRed5XoQADkpZx9wyKKlSWRe9jSwRmJ59qVff-OcLcbGX6gtjwkZ64FFwJ4APeFABl1LDpceDnoVjMG1MI6NRDr--hSr2nKnLcXuOwVo2Hshj4NefmK6FCqSWEbMlKDH1777Hd69wq_pvaPPPoMm9VWj5kDyY4CNdjMN-RO6E7jG5932dfo4_IZenYUixVR1dR3pq2n5LV6H39HeUCx3z7dEUK0CXZhi2dOFaT7-O2buvoYCbN4BEqd3Ss9bnn7rYY5w6xWT1A_IbDP32KTlffjz_sMqnbAq5E7wZ8tKVxhlbxSKIilsHYhRov7H2hZdltKV1tVM8BO4aEKxwxgMeCIDRuK0se0YOunUXXhBaRxnhiloJ47kPjfEli4ob0TTGSasycnwrX_1z5MzQ4GugGvSeGjLyHmW_64JE16kC1K8n9et_qT8jb1FzGs0R1OLMdKoARooy0wvJBaKepsnI0awnmJGbNb9Luoen21b_qtJwUnlzBcNx2gYNUFXCa4BLWsDdbqeInqz-WjPw72opABJm5M2uGR-EkWxdWG9SHwAETMo6I8_HGbWTAEcynoKXGZGzuTYT0byla38kTnAkCWGqlC__h1APyf0K0xwXIq_kETkY-k14BdhrsK-Tmd0AoG4sIQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_nLoIv4rfVUyIc-GK5fiRt-iCy592yCrcccsLhS8inVo727HWF_e-dSbt7tyK-hSa7nc5XfkkmM4QcVHi8aCyLE-dggZIWPtY5tKq00sZb7fOQwPR0WSy-ss8X_GKPLDd3YTCscuMTg6O2rcE98sMcsHMhOEy3H65-xVg1Ck9XNyU01Fhawb4PKcbukCm4ZJ5MyPToZHn2ZbvrAhNkDnPccFEvh_X-oWpqeIApZ_jO1BQy-G_99PQSj7D_hUL_Dqa8NTvNH5D7I6yks0EPHpI91zwid7-1YdP8Mfl57PoQc9XQ1tNjVXdrunCdpTfRL3Sow0dDDAGdq75f05mpLT0bqnpfQwMPdQChUr2mp7WNPzW-w_h1ikXse8x70HfrJ-R8fnL-cRGPVRZiw1nZx6lJlVE684njGdOmTAxHu_aFTaxIvU61KUzFnGOmVJXhRlnACQ6wG9OZzp-SSdM27jmhhRceflFUXFlmXalsmvuKKV6WyghdReRgw195NeTSkLAGQTHIW2KIyBHyfjsEE2CHB233XY72JAE2Mlc5RFiKCYv3fxOTgzdRpfBAZUTeouQkmimIxajxtgFQijyTM8E4oqGyjMj-zkgwL7PT_S7IHt6ua_k7C-SE9uoSyDFSOwkQVsBnwFI1gX_bqIgcvcG1vNHdiLzZduOLMMKtce0qjAGgkAtRROTZoFFbDjBM0pOwNCJiR9d2WLTb09Q_Qq5wTB6SV6l48X-6XpJ7GRY2TniciX0y6buVewVoq9evRxP6A0qSKyo
  priority: 102
  providerName: ProQuest
Title Detection of Dairy Herd Management Issues Using Fatty Acid Profiles Predicted by Mid-Infrared Spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/40509041
https://www.proquest.com/docview/3217685727
https://www.proquest.com/docview/3218473886
http://orbi.ulg.ac.be/handle/2268/334010
https://pubmed.ncbi.nlm.nih.gov/PMC12153918
https://doaj.org/article/5224e9e0063a48d09970c3963a78fa9c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGKiReEN9kjMpIk3ghkA8ncR4Q6tiqAto00CZNvFj-hExVOrIU0f-eOyctyzTxUlm101zvI_5d7nxHyF6J4UVtWBhZCw5KnLtQpTAq41JpZ5RLfQHTo-N8dsY-n2fnW2TdjLNn4NWtrh32kzpr5m___Fp9AIN_jx4nuOzvZF3BvoVVY7I7ZOQDRZjD1-P8iy5al8KS7nzezWsGO5Iv3L95PI_mGLm-DXzezKG8tilNH5D7PZqkk078D8mWrR-Ru98X_l35Y3JxYFufalXThaMHsmpWdGYbQ_8lvdCu_R71qQN0Ktt2RSe6MvSka-Z9BQOM5QAwpWpFjyoTfqpdg2nrFHvXt1juoG1WT8jp9PD04yzsmyuEOmNFG8Y6llqqxEU2S5jSRaQzNGeXm8jw2KlY6VyXzFqmC1nqTEsD8MACZGMqUelTsl0vavuc0NxxB1fkZSYNM7aQJk5dyWRWFFJzVQZkb81fcdmV0BDgeqAYxDUxBGQfeb9ZgnWv_ReL5ofozUgAWmS2tAisJOMGj_1GOoWHiCy4AyoD8holJ1BfQCxa9ocMgFLkmZhwliEIKoqA7A5WglXpwfQbL3u4u6rE78ST48fLOZCjhbICkCuHvwEeagS_tlYRsdZhkYK7l_MMEGJAXm2m8UaY2FbbxdKvAXyQcp4H5FmnURsOMKzNE7E4IHygawMWDWfq6qcvEY41Q9Iy5jv_p-sFuZdgP-MoCxO-S7bbZmlfAshq1ZiM9g-PT76N_UsK-PzylY-9Uf0FxqMqRA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGKwQviG8CA4w0xAvR8uEkzsOEOrqqZWs1QZGmvVj-CgSNtLQpqH8c_xt3btqtCPG2Nyt2k-ud7-5n-3xHyF6Ox4vaMD-wFhYoYVr4KoZWHuZKF0YVsUtgOhyl_c_sw1lytkN-r-_CYFjl2iY6Q20mGvfI92PAzilPwN2-m_7wsWoUnq6uS2jIprSCOXApxpqLHcd2-QuWcPODQRfk_TqKekfj932_qTLg64RltR_qUGqpoiKwScSUzgKd4LwuUhMYHhYqVDrVObOW6UzmOtHSgJ-0gF2YilQMr71B2gz3T1qkfXg0Ov242eQBfxyDS13dC4zjPNiXVQkPMMNNsuUJXcGAjVtoX-CJ-b9A79-xm1ecYe8uudOgWNpZTbt7ZMdW98nN84nbo39AvnVt7UK8KjopaFeWsyXt25mhl8E2dFX2j7qQBdqTdb2kHV0aeroqIj6HBp4hASCmakmHpfEHVTHDcHn6aepK93y39Wz5kIyvg92PSKuaVPYJoWnBC_hFmifSMGMzacK4yJlMskxqrnKP7K35K6ar1B0CljwoBnFFDB45RN5vhmC-bfdgMvsiGvUVgFKZzS0COsm4wevGgY7BeMmMF0ClR96g5ARaBRCLls3lBqAUeSY6nCUIvrLMI7tbI0Gb9Vb3Wyd7-Loqxc_IkePaiwsgRwtlBSBmDn8DVsYBvG09RURjfObiUlU88mrTjR_CgLrKThZuDOCSmPPUI49XM2rDAYY5gQIWeoRvzbUtFm33VOVXl5occ5XEecif_p-ul-RWfzw8ESeD0fEzcjvCmspB4kd8l7Tq2cI-B6BXqxeNOlEirlmB_wBke2kH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGKhAviDuBAUYa4oWouTiJ8zChjq5qGasqGNLEi-UrBI2kpCmoP5F_xbGTditCvO3Nit3EPRefz_a5ILSf2-tFqYgfaA0blDA1voihlYe5kEYJE7sEpifTdPyJvDtLznbQ73UsjHWrXK-JbqFWlbRn5P0YsHNKEzC3fdO5RcyGozfzH76tIGVvWtflNHhXZkEduHRjXZDHsV79gu3c4mAyBN6_jKLR0enbsd9VHPBlQrLGD2XIJReRCXQSESGzQCZWxk2qAkVDI0IhU5kTrYnMeC4TyRXYTA04hohIxPDaa6iXgdGHfWDv8Gg6-7A58AHbHIN5bWME4zgP-rws4IHNdpNsWUVXPGBjInrn9vb8XwD4bz_OS4ZxdBvd6hAtHrQieAft6PIuuv65cuf199C3oW6cu1eJK4OHvKhXeKxrhS8cb3BbAhA79wU84k2zwgNZKDxrC4ovoGHvkwAcY7HCJ4XyJ6Wpres8_jh3ZXy-66Ze3UenV0HuB2i3rEr9COHUUAO_SPOEK6J0xlUYm5zwJMu4pCL30P6avmzepvFgsP2xbGCX2OChQ0v7zRCbe9s9qOovrFNlBoiV6FxbcMcJVTb0OJAxLGQ8owZm6aFXlnPMrhDAFsm7QAeYqaUZG1CSWCCWZR7a2xoJmi23ul873sPXRcF-Rm46rr08h-lIJjQD9Ezhb8AuOYC3rUWEdQvRgl2ojYdebLrth6xzXamrpRsDGCWmNPXQw1aiNhQgNj9QQEIP0S1Z2yLRdk9ZfHVpym3ekjgP6eP_z-s5ugGKzN5PpsdP0M3IllcOEj-ie2i3qZf6KWC-RjzrtAkjdsX6-wdPWW1L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Dairy+Herd+Management+Issues+Using+Fatty+Acid+Profiles+Predicted+by+Mid-Infrared+Spectrometry&rft.jtitle=Animals+%28Basel%29&rft.au=Franceschini+S%C3%A9bastien&rft.au=Fastr%C3%A9+Claire&rft.au=Nickmilder%2C+Charles&rft.au=Santschi%2C+D%C3%A9bora+E&rft.date=2025-05-28&rft.pub=MDPI+AG&rft.eissn=2076-2615&rft.volume=15&rft.issue=11&rft.spage=1575&rft_id=info:doi/10.3390%2Fani15111575&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon