FGF19 and its analog Aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis

FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 16; no. 2; pp. 238 - 250
Main Authors Ursic-Bedoya, José, Desandré, Guillaume, Chavey, Carine, Marie, Pauline, Polizzi, Arnaud, Rivière, Benjamin, Guillou, Hervé, Assenat, Eric, Hibner, Urszula, Gregoire, Damien
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.02.2024
Wiley Open Access
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4684
1757-4676
1757-4684
DOI10.1038/s44321-023-00021-x

Cover

Abstract FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. Synopsis FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. FGF19/FGF15 cooperate with MYC, giving rise to aggressive, fast-growing tumors. Aldafermin retains oncogenic properties in the context of MYC overexpression. The hormone and its analog promote carcinogenesis through deregulation of identical pathways. FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis.
AbstractList FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. FGF19/FGF15 cooperate with MYC, giving rise to aggressive, fast-growing tumors. Aldafermin retains oncogenic properties in the context of MYC overexpression. The hormone and its analog promote carcinogenesis through deregulation of identical pathways. FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis.
FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. Synopsis FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. FGF19/FGF15 cooperate with MYC, giving rise to aggressive, fast-growing tumors. Aldafermin retains oncogenic properties in the context of MYC overexpression. The hormone and its analog promote carcinogenesis through deregulation of identical pathways. FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis.
Abstract FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
Author Chavey, Carine
Rivière, Benjamin
Guillou, Hervé
Ursic-Bedoya, José
Hibner, Urszula
Assenat, Eric
Desandré, Guillaume
Marie, Pauline
Gregoire, Damien
Polizzi, Arnaud
Author_xml – sequence: 1
  givenname: José
  orcidid: 0000-0003-0076-2059
  surname: Ursic-Bedoya
  fullname: Ursic-Bedoya, José
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier
– sequence: 2
  givenname: Guillaume
  surname: Desandré
  fullname: Desandré, Guillaume
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS
– sequence: 3
  givenname: Carine
  surname: Chavey
  fullname: Chavey, Carine
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS
– sequence: 4
  givenname: Pauline
  orcidid: 0000-0003-0368-608X
  surname: Marie
  fullname: Marie, Pauline
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS
– sequence: 5
  givenname: Arnaud
  surname: Polizzi
  fullname: Polizzi, Arnaud
  organization: Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse
– sequence: 6
  givenname: Benjamin
  surname: Rivière
  fullname: Rivière, Benjamin
  organization: Department of Pathology, Gui de Chauliac Hospital, CHU Montpellier, University of Montpellier
– sequence: 7
  givenname: Hervé
  orcidid: 0000-0002-5363-9081
  surname: Guillou
  fullname: Guillou, Hervé
  organization: Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse
– sequence: 8
  givenname: Eric
  surname: Assenat
  fullname: Assenat, Eric
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier
– sequence: 9
  givenname: Urszula
  orcidid: 0000-0002-5520-7311
  surname: Hibner
  fullname: Hibner, Urszula
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS
– sequence: 10
  givenname: Damien
  orcidid: 0000-0002-1105-8115
  surname: Gregoire
  fullname: Gregoire, Damien
  email: damien.gregoire@igmm.cnrs.fr
  organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38228803$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04404913$$DView record in HAL
BookMark eNp9kktv1DAUhSNURB_wB1igLGER8DOxV2g0YtpKg9jAAgnJcuybjEeZeLCdofx7PE2L2i668tX1OZ-P7XtenIx-hKJ4i9FHjKj4FBmjBFeI0AohlKubF8UZbnhTsVqwkwf1aXEe4xahmtdYvCpOqSBECETPil-ryxWWpR5t6VLMqx58Xy4GqzsIOzeWxvs9BJ2g_OPSpvz6c1kmX7rRTgZK3fcBYnQHKDew18kbHYwbfQ8jRBdfFy87PUR4c7deFD9WX74vr6r1t8vr5WJdGc6aVOFGgIUOtwg3kgsuqeQUt5RyZhtsNW01gEY4X7QmuNOMICZakzXWNl3H6UVxPXOt11u1D26nw1_ltVO3DR96pUNyZgBVC9MSSolmrWS0baS0UuCadzWxvIU6sz7PrP3U7sAaGFPQwyPo453RbVTvDwojIRsmSCZ8mAmbJ76rxVode4gxxCSmB5y17-9OC_73BDGpnYsGhkGP4KeoiMRcSsTRMdi7h8H-k-__MgvELDDBxxigU8YlnZw_5nRDDqiOY6PmsVH5NdXt2KibbCVPrPf0Z010NsUsHnsIauunkAcoPuf6B1gt1A0
CitedBy_id crossref_primary_10_1152_ajpendo_00156_2024
crossref_primary_10_1038_s41573_024_01125_w
crossref_primary_10_1042_CS20241137
crossref_primary_10_1093_lifemeta_loae029
Cites_doi 10.1053/j.gastro.2020.08.015
10.1016/S0002-9440(10)61177-7
10.1016/j.jhep.2017.01.027
10.3390/microorganisms8121942
10.1002/pro.3943
10.2337/db18-1305
10.1002/hep.30590
10.1053/j.gastro.2015.05.061
10.1089/10430349950017734
10.1016/j.cmet.2017.09.005
10.1002/hep.27198
10.1002/hep.30951
10.1038/ng.2256
10.1016/j.tem.2014.10.002
10.1038/nrd.2015.9
10.1038/s41586-021-03819-2
10.1074/jbc.M109.068783
10.1016/j.jhep.2019.08.017
10.1146/annurev-pharmtox-032322-093904
10.1016/j.devcel.2018.12.021
10.1038/ng.3252
10.1093/bioinformatics/btg1086
10.1038/s42255-019-0074-3
10.1038/s41388-018-0591-7
10.1016/j.pep.2022.106186
10.1016/j.cell.2023.03.014
10.1038/s41598-018-35496-z
10.1016/j.molmet.2022.101483
10.1158/0008-5472.CAN-14-0208
10.1053/j.gastro.2023.04.007
10.1038/ncomms15433
10.1002/wdev.176
10.1016/j.cell.2017.05.046
10.1371/journal.pone.0036713
10.1016/j.molmet.2013.10.002
10.1016/j.jhep.2018.10.035
10.1002/hep4.1209
10.1093/bioinformatics/btp616
10.1016/S2468-1253(22)00017-6
10.1159/000488541
10.1038/sj.gt.3300947
10.1186/1471-2407-12-56
10.1016/S0140-6736(18)30474-4
10.1002/hep4.1108
10.1016/j.ccr.2011.01.040
10.1016/j.jhep.2021.04.049
10.1158/0008-5472.CAN-08-3357
10.1002/ijc.29287
10.1158/2159-8290.CD-14-1029
10.1158/2159-8290.CD-19-0555
10.1073/pnas.2208844119
10.1038/s41598-017-17204-5
10.1097/HEP.0000000000000607
10.1101/789586
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Attribution - ShareAlike
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Attribution - ShareAlike
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s44321-023-00021-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1757-4684
EndPage 250
ExternalDocumentID oai_doaj_org_article_68cb2332a4b943b799d98165f62d5be6
PMC10897482
oai_HAL_hal_04404913v1
38228803
10_1038_s44321_023_00021_x
Genre Journal Article
GrantInformation_xml – fundername: SIRIC Montpellier
  grantid: Cancer Grant INCa_Inserm_DGOS_12553
– fundername: ITMO Cancer
  grantid: EVA-Plan cancer INSERM HTE-201610
– fundername: Association Française pour l'Etude du Foie (AFEF)
  grantid: AAP_2021
  funderid: http://dx.doi.org/10.13039/501100006678
– fundername: Fondation ARC pour la Recherche sur le Cancer (ARC)
  grantid: 2019
  funderid: http://dx.doi.org/10.13039/501100004097
– fundername: Institut National Du Cancer (INCa)
  grantid: 2019-134
  funderid: http://dx.doi.org/10.13039/501100006364
– fundername: Association Française pour l'Etude du Foie (AFEF)
  grantid: AAP_2021
– fundername: Fondation ARC pour la Recherche sur le Cancer (ARC)
  grantid: 2019
– fundername: Institut National Du Cancer (INCa)
  grantid: 2019-134
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAHHS
AAJSJ
AAZKR
ABOCM
ABUWG
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBLON
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
KQ8
LH4
LK8
M48
M7P
M~E
NNB
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
RHF
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
AASML
AAYXX
CITATION
NAO
PHGZM
PHGZT
31~
ADRAZ
AFZJQ
ALUQN
CGR
CUY
CVF
ECM
EIF
EJD
GODZA
H13
ITC
LW6
NPM
7X8
PQGLB
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c547t-178edef1b0179585939531b3354d71da3baeea01023621fa42048bc531dd7ff53
IEDL.DBID M48
ISSN 1757-4684
1757-4676
IngestDate Wed Aug 27 01:31:29 EDT 2025
Thu Aug 21 18:35:01 EDT 2025
Fri Sep 12 12:27:55 EDT 2025
Fri Sep 05 05:50:51 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Tue Jul 01 01:53:05 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 21 02:42:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Aldafermin (NGM282)
Hydrodynamic Injections
FGF19-15
Liver Cancer
Oncogenic Cooperation
Oncogenic Cooperation Subject Categories Cancer
Digestive System
Metabolism
Language English
License 2024. The Author(s).
Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-178edef1b0179585939531b3354d71da3baeea01023621fa42048bc531dd7ff53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0076-2059
0000-0002-5363-9081
0000-0002-5520-7311
0000-0003-0368-608X
0000-0002-1105-8115
0000-0002-3180-8243
0000-0002-5267-5638
0000-0003-1986-2770
0000-0002-8958-2793
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s44321-023-00021-x
PMID 38228803
PQID 2915990506
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_68cb2332a4b943b799d98165f62d5be6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897482
hal_primary_oai_HAL_hal_04404913v1
proquest_miscellaneous_2915990506
pubmed_primary_38228803
crossref_citationtrail_10_1038_s44321_023_00021_x
crossref_primary_10_1038_s44321_023_00021_x
springer_journals_10_1038_s44321_023_00021_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2024
Publisher Nature Publishing Group UK
Wiley Open Access
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: Wiley Open Access
– name: Springer Nature
References Kang, Haq, Sung, Choi, Hong, Eo, Jeong, Shin, Shim, Lee (CR24) 2019; 8
Hirschfield, Chazouillères, Drenth, Thorburn, Harrison, Landis, Mayo, Muir, Trotter, Leeming (CR20) 2019; 70
Ornitz, Itoh (CR34) 2015; 4
Harrison, Abdelmalek, Neff, Gunn, Guy, Alkhouri, Bashir, Freilich, Kohli, Khazanchi (CR17) 2022; 7
CR39
Zhou, Learned, Rossi, DePaoli, Tian, Ling (CR50) 2017; 1
Pettersen, Goddard, Huang, Meng, Couch, Croll, Morris, Ferrin (CR36) 2021; 30
Tao, Cui, Xu, Han (CR43) 2022; 119
Ji, Liu, Zhang, Chen, Wang, Zhang, Xiao, Li, Nian, Li (CR21) 2019; 48
Sawey, Chanrion, Cai, Wu, Zhang, Zender, Zhao, Busuttil, Yee, Stein (CR41) 2011; 19
Gadaleta, Scialpi, Peres, Cariello, Ko, Luo, Porru, Roda, Sabbà, Moschetta (CR13) 2018; 8
Gao, Lang, Zhao, Shay, Shull, Teng (CR14) 2019; 38
Schulze, Imbeaud, Letouzé, Alexandrov, Calderaro, Rebouissou, Couchy, Meiller, Shinde, Soysouvanh (CR42) 2015; 47
CR4
Kaposi-Novak, Libbrecht, Woo, Lee, Sears, Conner, Factor, Roskams, Thorgeirsson (CR25) 2009; 69
CR3
Degirolamo, Sabbà, Moschetta (CR9) 2016; 15
French, Lin, Wang, Adams, Shek, Hötzel, Bolon, Ferrando, Blackmore, Schroeder (CR11) 2012; 7
Jin, Yang, Geng, Xu (CR22) 2023; 63
Harrison, Rossi, Paredes, Trotter, Bashir, Guy, Banerjee, Jaros, Owers, Baxter (CR19) 2020; 71
Choi, Cheong, Yoo, Kim (CR7) 2023; 201
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko (CR23) 2021; 596
Rebouissou, Nault (CR38) 2020; 72
Pinyol, Torrecilla, Wang, Montironi, Piqué-Gili, Torres-Martin, Wei-Qiang, Willoughby, Ramadori, Andreu-Oller (CR37) 2021; 75
Zhou, Wang, Phung, Lindhout, Mondal, Hsu, Yang, Humphrey, Ding, Arora (CR53) 2014; 74
Zucman-Rossi, Villanueva, Nault, Llovet (CR55) 2015; 149
Wu, Ge, Lemon, Vonderfecht, Weiszmann, Hecht, Gupte, Hager, Wang, Lindberg (CR47) 2010; 285
Hagel, Miduturu, Sheets, Rubin, Weng, Stransky, Bifulco, Kim, Hodous, Brooijmans (CR16) 2015; 5
Harrison, Rinella, Abdelmalek, Trotter, Paredes, Arnold, Kugelmas, Bashir, Jaros, Ling (CR18) 2018; 391
Marcelin, Jo, Li, Schwartz, Zhang, Dun, Lyu, Blouet, Chang, Chua (CR29) 2014; 3
Ally, Balasundaram, Carlsen, Chuah, Clarke, Dhalla, Holt, Jones, Lee, Ma (CR2) 2017; 169
Lan, Morgan, Rahmouni, Sonoda, Fu, Burgess, Holland, Kliewer, Mangelsdorf (CR27) 2017; 26
BouSaba, Torres, Dilmaghani, Harmsen, Ling, Camilleri (CR5) 2023; 165
Owen, Mangelsdorf, Kliewer (CR35) 2015; 26
Liu, Song, Liu (CR28) 1999; 6
Ye, Godzik (CR48) 2003; 19
Gadaleta, Moschetta (CR12) 2019; 1
Uriarte, Latasa, Carotti, Fernandez-Barrena, Garcia-Irigoyen, Elizalde, Urtasun, Vespasiani-Gentilucci, Morini, De Mingo (CR44) 2015; 136
Ursic-Bedoya, Chavey, Desandré, Meunier, Dupuy, Gonzalez-Dopeso Reyes, Tordjmann, Assénat, Hibner, Gregoire (CR45) 2022; 60
Zhang, Budker, Wolff (CR49) 1999; 10
Nicholes, Guillet, Tomlinson, Hillan, Wright, Frantz, Pham, Dillard-Telm, Tsai, Stephan (CR33) 2002; 160
Robinson, McCarthy, Smyth (CR40) 2010; 26
Zhou, Luo, Chen, Yang, Learned, DePaoli, Tian, Ling (CR51) 2017; 66
Zhou, Wang, Phung, Lindhout, Mondal, Hsu, Yang, Humphrey, Ding, Arora (CR52) 2014; 74
Chen, Du, Dang, Li, Qian, Feng, Qiao, Fan, Nie, Wu (CR6) 2020; 71
Wang, Zhu, Jia, Wang, Kubota, Fujiwara, Gordillo, Lewis, Zhu, Sharma (CR46) 2023; 186
Choi, Cheong, Yoo, Park, Lee, Kim (CR8) 2020; 8
Molina-Sánchez, Ruiz de Galarreta, Yao, Lindblad, Bresnahan, Bitterman, Martin, Rubenstein, Nie, Golas (CR32) 2020; 159
Kim, Sarker, Meyer, Yau, Macarulla, Park, Choo, Hollebecque, Sung, Lim (CR26) 2019; 9
Guichard, Amaddeo, Imbeaud, Ladeiro, Pelletier, Maad, Calderaro, Bioulac-Sage, Letexier, Degos (CR15) 2012; 44
Ahn, Jang, Shim, Kim, Hong, Sung, Baek, Haq, Ansari, Lee (CR1) 2014; 60
Mayo, Wigg, Leggett, Arnold, Thompson, Weltman, Carey, Muir, Ling, Rossi (CR30) 2018; 2
Zhou, Yang, Learned, Tian, Ling (CR54) 2017; 8
Miura, Mitsuhashi, Shimizu, Kimura, Yoshidome, Otsuka, Kato, Shida, Okamura, Miyazaki (CR31) 2012; 12
DePaoli, Zhou, Kaplan, Hunt, Adams, Marc Learned, Tian, Ling (CR10) 2019; 68
I Uriarte (21_CR44) 2015; 136
SA Harrison (21_CR17) 2022; 7
G Marcelin (21_CR29) 2014; 3
J Chen (21_CR6) 2020; 71
MD Robinson (21_CR40) 2010; 26
K Nicholes (21_CR33) 2002; 160
M Zhou (21_CR50) 2017; 1
M Zhou (21_CR53) 2014; 74
21_CR4
21_CR3
Z Wang (21_CR46) 2023; 186
M Zhou (21_CR51) 2017; 66
EF Pettersen (21_CR36) 2021; 30
HJ Choi (21_CR8) 2020; 8
MJ Mayo (21_CR30) 2018; 2
SA Harrison (21_CR18) 2018; 391
S Rebouissou (21_CR38) 2020; 72
J Jumper (21_CR23) 2021; 596
X Wu (21_CR47) 2010; 285
M Zhou (21_CR54) 2017; 8
GM Hirschfield (21_CR20) 2019; 70
RD Kim (21_CR26) 2019; 9
F Liu (21_CR28) 1999; 6
Y Ye (21_CR48) 2003; 19
A Ally (21_CR2) 2017; 169
P Molina-Sánchez (21_CR32) 2020; 159
M Hagel (21_CR16) 2015; 5
C Degirolamo (21_CR9) 2016; 15
G Zhang (21_CR49) 1999; 10
L Jin (21_CR22) 2023; 63
J Zucman-Rossi (21_CR55) 2015; 149
J BouSaba (21_CR5) 2023; 165
AM DePaoli (21_CR10) 2019; 68
K Schulze (21_CR42) 2015; 47
SA Harrison (21_CR19) 2020; 71
HJ Kang (21_CR24) 2019; 8
ET Sawey (21_CR41) 2011; 19
C Guichard (21_CR15) 2012; 44
SM Ahn (21_CR1) 2014; 60
DM Ornitz (21_CR34) 2015; 4
R Pinyol (21_CR37) 2021; 75
HJ Choi (21_CR7) 2023; 201
J Ursic-Bedoya (21_CR45) 2022; 60
RM Gadaleta (21_CR12) 2019; 1
S Ji (21_CR21) 2019; 48
Z Tao (21_CR43) 2022; 119
M Zhou (21_CR52) 2014; 74
P Kaposi-Novak (21_CR25) 2009; 69
BM Owen (21_CR35) 2015; 26
T Lan (21_CR27) 2017; 26
L Gao (21_CR14) 2019; 38
21_CR39
DM French (21_CR11) 2012; 7
RM Gadaleta (21_CR13) 2018; 8
S Miura (21_CR31) 2012; 12
References_xml – volume: 159
  start-page: 2203.e14
  year: 2020
  end-page: 2220.e14
  ident: CR32
  article-title: Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.08.015
– volume: 160
  start-page: 2295
  year: 2002
  end-page: 2307
  ident: CR33
  article-title: A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)61177-7
– volume: 66
  start-page: 1182
  year: 2017
  end-page: 1192
  ident: CR51
  article-title: Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.01.027
– ident: CR4
– ident: CR39
– volume: 8
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR8
  article-title: Soluble expression of hfgf19 without fusion protein through synonymous codon substitutions and dsbc co-expression in
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8121942
– volume: 30
  start-page: 70
  year: 2021
  end-page: 82
  ident: CR36
  article-title: UCSF ChimeraX: structure visualization for researchers, educators, and developers
  publication-title: Protein Sci
  doi: 10.1002/pro.3943
– volume: 68
  start-page: 1315
  year: 2019
  end-page: 1328
  ident: CR10
  article-title: FGF19 analog as a surgical factor mimetic that contributes to metabolic effects beyond glucose homeostasis
  publication-title: Diabetes
  doi: 10.2337/db18-1305
– volume: 71
  start-page: 1198
  year: 2020
  end-page: 1212
  ident: CR19
  article-title: NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.30590
– volume: 149
  start-page: 1226
  year: 2015
  end-page: 1239
  ident: CR55
  article-title: Genetic landscape and biomarkers of hepatocellular carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.05.061
– volume: 10
  start-page: 1735
  year: 1999
  end-page: 1737
  ident: CR49
  article-title: High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA
  publication-title: Hum Gene Ther
  doi: 10.1089/10430349950017734
– volume: 26
  start-page: 709.e3
  year: 2017
  end-page: 718.e3
  ident: CR27
  article-title: FGF19, FGF21, and an FGFR1/β-klotho-activating antibody act on the nervous system to regulate body weight and glycemia
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2017.09.005
– volume: 60
  start-page: 1972
  year: 2014
  end-page: 1982
  ident: CR1
  article-title: Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification
  publication-title: Hepatology
  doi: 10.1002/hep.27198
– volume: 71
  start-page: 1712
  year: 2020
  end-page: 1731
  ident: CR6
  article-title: Fibroblast growth factor 19-mediated up-regulation of SYR-related high-mobility group box 18 promotes hepatocellular carcinoma metastasis by transactivating fibroblast growth factor receptor 4 and Fms-related tyrosine kinase 4
  publication-title: Hepatology
  doi: 10.1002/hep.30951
– volume: 44
  start-page: 694
  year: 2012
  end-page: 698
  ident: CR15
  article-title: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma
  publication-title: Nat Genet
  doi: 10.1038/ng.2256
– volume: 26
  start-page: 22
  year: 2015
  end-page: 29
  ident: CR35
  article-title: Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2014.10.002
– volume: 15
  start-page: 51
  year: 2016
  end-page: 69
  ident: CR9
  article-title: Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2015.9
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: CR23
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 285
  start-page: 5165
  year: 2010
  end-page: 5170
  ident: CR47
  article-title: FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.068783
– volume: 72
  start-page: 215
  year: 2020
  end-page: 229
  ident: CR38
  article-title: Advances in molecular classification and precision oncology in hepatocellular carcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2019.08.017
– volume: 63
  start-page: 359
  year: 2023
  end-page: 382
  ident: CR22
  article-title: Fibroblast growth factor-based pharmacotherapies for the treatment of obesity-related metabolic complications
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-032322-093904
– volume: 48
  start-page: 460.e9
  year: 2019
  end-page: 474.e9
  ident: CR21
  article-title: FGF15 activates hippo signaling to suppress bile acid metabolism and liver tumorigenesis
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2018.12.021
– volume: 47
  start-page: 505
  year: 2015
  end-page: 511
  ident: CR42
  article-title: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets
  publication-title: Nat Genet
  doi: 10.1038/ng.3252
– volume: 19
  start-page: ii246
  year: 2003
  end-page: ii255
  ident: CR48
  article-title: Flexible structure alignment by chaining aligned fragment pairs allowing twists
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1086
– volume: 1
  start-page: 588
  year: 2019
  end-page: 594
  ident: CR12
  article-title: Metabolic messengers: fibroblast growth factor 15/19
  publication-title: Nat Metab
  doi: 10.1038/s42255-019-0074-3
– volume: 38
  start-page: 2394
  year: 2019
  end-page: 2404
  ident: CR14
  article-title: FGF19 amplification reveals an oncogenic dependency upon autocrine FGF19/FGFR4 signaling in head and neck squamous cell carcinoma
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0591-7
– volume: 201
  start-page: 106186
  year: 2023
  ident: CR7
  article-title: One-step metal affinity purification of recombinant hFGF19 without using tags
  publication-title: Protein Expr Purif
  doi: 10.1016/j.pep.2022.106186
– volume: 186
  start-page: 1968.e20
  year: 2023
  end-page: 1984.e20
  ident: CR46
  article-title: Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease
  publication-title: Cell
  doi: 10.1016/j.cell.2023.03.014
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR13
  article-title: Suppression of hepatic bile acid synthesis by a non-tumorigenic FGF19 analogue protects mice from fibrosis and hepatocarcinogenesis
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-35496-z
– volume: 60
  start-page: 101483
  year: 2022
  ident: CR45
  article-title: Fibroblast growth factor 19 stimulates water intake
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2022.101483
– volume: 74
  start-page: 3306
  year: 2014
  end-page: 3316
  ident: CR52
  article-title: Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0208
– volume: 165
  start-page: 499.e4
  year: 2023
  end-page: 501.e4
  ident: CR5
  article-title: Effects of FGF19 analogue aldafermin in patients with bile acid diarrhea: a randomized, placebo-control trial
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2023.04.007
– volume: 8
  start-page: 1
  year: 2017
  end-page: 16
  ident: CR54
  article-title: Non-cell-autonomous activation of IL-6/STAT3 signaling mediates FGF19-driven hepatocarcinogenesis
  publication-title: Nat Commun
  doi: 10.1038/ncomms15433
– volume: 4
  start-page: 215
  year: 2015
  end-page: 266
  ident: CR34
  article-title: The fibroblast growth factor signaling pathway
  publication-title: Wiley Interdiscip Rev Dev Biol
  doi: 10.1002/wdev.176
– volume: 169
  start-page: 1327.e23
  year: 2017
  end-page: 1341.e23
  ident: CR2
  article-title: Comprehensive and integrative genomic characterization of hepatocellular carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.046
– volume: 7
  start-page: 1
  year: 2012
  end-page: 12
  ident: CR11
  article-title: Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036713
– volume: 3
  start-page: 19
  year: 2014
  end-page: 28
  ident: CR29
  article-title: Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2013.10.002
– volume: 70
  start-page: 483
  year: 2019
  end-page: 493
  ident: CR20
  article-title: Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.10.035
– volume: 2
  start-page: 1037
  year: 2018
  end-page: 1050
  ident: CR30
  article-title: NGM 282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double‐blind, placebo‐controlled trial
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1209
– volume: 74
  start-page: 3306
  year: 2014
  end-page: 3316
  ident: CR53
  article-title: Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0208
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: CR40
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 7
  start-page: 603
  year: 2022
  end-page: 616
  ident: CR17
  article-title: Aldafermin in patients with non-alcoholic steatohepatitis (ALPINE 2/3): a randomised, double-blind, placebo-controlled, phase 2b trial
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(22)00017-6
– volume: 8
  start-page: 12
  year: 2019
  end-page: 23
  ident: CR24
  article-title: Characterization of hepatocellular carcinoma patients with FGF19 amplification assessed by fluorescence in situ hybridization: a large cohort study
  publication-title: Liver Cancer
  doi: 10.1159/000488541
– ident: CR3
– volume: 6
  start-page: 1258
  year: 1999
  end-page: 1266
  ident: CR28
  article-title: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3300947
– volume: 12
  year: 2012
  ident: CR31
  article-title: Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-12-56
– volume: 391
  start-page: 1174
  year: 2018
  end-page: 1185
  ident: CR18
  article-title: NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30474-4
– volume: 1
  start-page: 1024
  year: 2017
  end-page: 1042
  ident: CR50
  article-title: Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1108
– volume: 19
  start-page: 347
  year: 2011
  end-page: 358
  ident: CR41
  article-title: Identification of a therapeutic strategy targeting amplified FGF19 supplement
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.01.040
– volume: 75
  start-page: 865
  year: 2021
  end-page: 878
  ident: CR37
  article-title: Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2021.04.049
– volume: 69
  start-page: 2775
  year: 2009
  end-page: 2782
  ident: CR25
  article-title: Central role of c-Myc during malignant conversion in human hepatocarcinogenesis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-3357
– volume: 136
  start-page: 2469
  year: 2015
  end-page: 2475
  ident: CR44
  article-title: Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29287
– volume: 5
  start-page: 424
  year: 2015
  end-page: 437
  ident: CR16
  article-title: First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-14-1029
– volume: 9
  start-page: 1696
  year: 2019
  end-page: 1707
  ident: CR26
  article-title: First-in-human phase i study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-19-0555
– volume: 119
  start-page: e2208844119
  year: 2022
  ident: CR43
  article-title: FGFR redundancy limits the efficacy of FGFR4-selective inhibitors in hepatocellular carcinoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2208844119
– volume: 7
  start-page: 603
  year: 2022
  ident: 21_CR17
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(22)00017-6
– volume: 285
  start-page: 5165
  year: 2010
  ident: 21_CR47
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.068783
– volume: 6
  start-page: 1258
  year: 1999
  ident: 21_CR28
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3300947
– volume: 66
  start-page: 1182
  year: 2017
  ident: 21_CR51
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.01.027
– volume: 19
  start-page: ii246
  year: 2003
  ident: 21_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1086
– volume: 8
  start-page: 1
  year: 2018
  ident: 21_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-35496-z
– volume: 7
  start-page: 1
  year: 2012
  ident: 21_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036713
– volume: 3
  start-page: 19
  year: 2014
  ident: 21_CR29
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2013.10.002
– volume: 69
  start-page: 2775
  year: 2009
  ident: 21_CR25
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-3357
– volume: 1
  start-page: 588
  year: 2019
  ident: 21_CR12
  publication-title: Nat Metab
  doi: 10.1038/s42255-019-0074-3
– volume: 26
  start-page: 22
  year: 2015
  ident: 21_CR35
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2014.10.002
– ident: 21_CR4
  doi: 10.1038/s41598-017-17204-5
– volume: 8
  start-page: 12
  year: 2019
  ident: 21_CR24
  publication-title: Liver Cancer
  doi: 10.1159/000488541
– volume: 72
  start-page: 215
  year: 2020
  ident: 21_CR38
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2019.08.017
– volume: 186
  start-page: 1968.e20
  year: 2023
  ident: 21_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2023.03.014
– volume: 391
  start-page: 1174
  year: 2018
  ident: 21_CR18
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30474-4
– volume: 15
  start-page: 51
  year: 2016
  ident: 21_CR9
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2015.9
– volume: 75
  start-page: 865
  year: 2021
  ident: 21_CR37
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2021.04.049
– volume: 4
  start-page: 215
  year: 2015
  ident: 21_CR34
  publication-title: Wiley Interdiscip Rev Dev Biol
  doi: 10.1002/wdev.176
– volume: 74
  start-page: 3306
  year: 2014
  ident: 21_CR52
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0208
– volume: 8
  start-page: 1
  year: 2020
  ident: 21_CR8
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8121942
– volume: 160
  start-page: 2295
  year: 2002
  ident: 21_CR33
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)61177-7
– ident: 21_CR39
  doi: 10.1097/HEP.0000000000000607
– volume: 9
  start-page: 1696
  year: 2019
  ident: 21_CR26
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-19-0555
– volume: 165
  start-page: 499.e4
  year: 2023
  ident: 21_CR5
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2023.04.007
– volume: 5
  start-page: 424
  year: 2015
  ident: 21_CR16
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-14-1029
– volume: 596
  start-page: 583
  year: 2021
  ident: 21_CR23
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 60
  start-page: 101483
  year: 2022
  ident: 21_CR45
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2022.101483
– volume: 68
  start-page: 1315
  year: 2019
  ident: 21_CR10
  publication-title: Diabetes
  doi: 10.2337/db18-1305
– volume: 119
  start-page: e2208844119
  year: 2022
  ident: 21_CR43
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2208844119
– volume: 2
  start-page: 1037
  year: 2018
  ident: 21_CR30
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1209
– volume: 63
  start-page: 359
  year: 2023
  ident: 21_CR22
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-032322-093904
– volume: 60
  start-page: 1972
  year: 2014
  ident: 21_CR1
  publication-title: Hepatology
  doi: 10.1002/hep.27198
– ident: 21_CR3
  doi: 10.1101/789586
– volume: 26
  start-page: 709.e3
  year: 2017
  ident: 21_CR27
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2017.09.005
– volume: 30
  start-page: 70
  year: 2021
  ident: 21_CR36
  publication-title: Protein Sci
  doi: 10.1002/pro.3943
– volume: 48
  start-page: 460.e9
  year: 2019
  ident: 21_CR21
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2018.12.021
– volume: 71
  start-page: 1712
  year: 2020
  ident: 21_CR6
  publication-title: Hepatology
  doi: 10.1002/hep.30951
– volume: 12
  year: 2012
  ident: 21_CR31
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-12-56
– volume: 1
  start-page: 1024
  year: 2017
  ident: 21_CR50
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1108
– volume: 10
  start-page: 1735
  year: 1999
  ident: 21_CR49
  publication-title: Hum Gene Ther
  doi: 10.1089/10430349950017734
– volume: 74
  start-page: 3306
  year: 2014
  ident: 21_CR53
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0208
– volume: 47
  start-page: 505
  year: 2015
  ident: 21_CR42
  publication-title: Nat Genet
  doi: 10.1038/ng.3252
– volume: 169
  start-page: 1327.e23
  year: 2017
  ident: 21_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.046
– volume: 44
  start-page: 694
  year: 2012
  ident: 21_CR15
  publication-title: Nat Genet
  doi: 10.1038/ng.2256
– volume: 159
  start-page: 2203.e14
  year: 2020
  ident: 21_CR32
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.08.015
– volume: 8
  start-page: 1
  year: 2017
  ident: 21_CR54
  publication-title: Nat Commun
  doi: 10.1038/ncomms15433
– volume: 70
  start-page: 483
  year: 2019
  ident: 21_CR20
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.10.035
– volume: 136
  start-page: 2469
  year: 2015
  ident: 21_CR44
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29287
– volume: 71
  start-page: 1198
  year: 2020
  ident: 21_CR19
  publication-title: Hepatology
  doi: 10.1002/hep.30590
– volume: 201
  start-page: 106186
  year: 2023
  ident: 21_CR7
  publication-title: Protein Expr Purif
  doi: 10.1016/j.pep.2022.106186
– volume: 38
  start-page: 2394
  year: 2019
  ident: 21_CR14
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0591-7
– volume: 26
  start-page: 139
  year: 2010
  ident: 21_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 19
  start-page: 347
  year: 2011
  ident: 21_CR41
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.01.040
– volume: 149
  start-page: 1226
  year: 2015
  ident: 21_CR55
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.05.061
SSID ssj0065618
Score 2.4116702
Snippet FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of...
Abstract FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis....
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 238
SubjectTerms Aldafermin (NGM282)
Animals
Biomedical and Life Sciences
Biomedicine
Cancer
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
EMBO03
EMBO12
EMBO21
FGF19-15
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
Hormones
Humans
Hydrodynamic Injections
Life Sciences
Liver Cancer
Liver Neoplasms - drug therapy
Liver Neoplasms - metabolism
Mice
Molecular Medicine
Oncogenic Cooperation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6koPRFtLYab4ylbxqauSUzj2txXaTtUwsVhGFu6S6UpDSp1H_vmUl2MRbqi3lJSCYnYc49c_IdhA5c5WktvMotc5CgMAs6R5jNPYPcI3BuqE3VFqfl4px_uxAXf7T6ijVhAzzwMHGHpXSWMkYNtwpIVUp5JUkp6pJ6YUMC2y5UsU6mBhsMQQqR4y8yBZOHHeeMQtpMWfyLGo7uJm4oofWDc1nGWsj7geb9esm_Fk2TL5o_Q0_HIBLPhpd_jh6FZgc9HtpK_tpBT07GBfMX6Mf865wobBqPV30H-_itBs-uvKlTFQx2bXsdcZUDjl9k8cn3I9y3GBJ1YDk2lykbB4OIl-C2evB7N0C3vYwGctXtovP5l7OjRT42VMid4FWfk0oGH2pioxqKiHSmQAUtY4L7injDrAnBRJQ5cGukNjyi-loHY7yv6lqwPbTVtE14hTARTklXel46x4GtxlVOwgjpYaNMZYis51e7EW08Nr240mnVm0k98ETDs3Tiib7L0MfNPdcD1saDoz9Htm1GRpzsdAKkR4_So_8lPRnaB6ZPaCxmxzqei724uSLsJ8nQh7VMaFC-uKJimtDedpoqiAZVIQog9HKQkQ0tBqEXGEeWITmRnsnDplea1TIBfJNCQponaYY-rQVNj6ale2BGXv-PGXmDtinEbbEwnYi3aKu_uQ3vIO7q7fukYr8B1S0l3w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7LiuKL6HrZrhei-KbFya1NHsfBcRDXJxdWEEJunRlY2mXalfXfe5K2A3Vlwb60pKdpybk3J18QeutKTyvhVW6ZgwSFWdA5wmzuGeQegXNDbaq2-FaszviXc3F-gOi4FiYV7SdIy2Smx-qwDy3njELiS1lcBw1XEDfekSUTUaoXxWK0vhCeEDksjpkx-Y_nJg4o4fSDW9nEKsibIebNSsm_pkuTF1o-RA-G8BHP-w9-hA5CfYTu9htK_j5C906HqfLH6Ofy85IobGqPt10L5_iXBs8vvKlS_Qt2TXMZEZUDjv9i8emPBe4aDCk6MBubdcrDwRTiDTisDjzeDvpt1tE0btsn6Gz56ftilQ9bKeRO8LLLSSmDDxWxUQFFxDhToHyWMcF9Sbxh1oRgIr4cODRSGR7xfK0DGu_LqhLsKTqsmzocI0yEU9IVnhfOcWCocaWTQCE9HJSpDJFxfLUbcMbjdhcXOs13M6l7nmh4l0480dcZerd_5rJH2biV-mNk254yImSnhma31oPE6EI6SxmjhlsFIlgq5ZUkhagK6oUNRYbeANMnfazmX3Vsi7twc0XYL5Kh16NMaFC7OJdi6tBctZoqiAPVTMygo2e9jOz7YhB0gVlkGZIT6Zm8bHqn3m4StDeZSUjwJM3Q-1HQ9GBU2ltG5OT_yJ-j-xRis1h8TsQLdNjtrsJLiK06-yop0x_L_xwD
  priority: 102
  providerName: Springer Nature
Title FGF19 and its analog Aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis
URI https://link.springer.com/article/10.1038/s44321-023-00021-x
https://www.ncbi.nlm.nih.gov/pubmed/38228803
https://www.proquest.com/docview/2915990506
https://hal.science/hal-04404913
https://pubmed.ncbi.nlm.nih.gov/PMC10897482
https://doaj.org/article/68cb2332a4b943b799d98165f62d5be6
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ri9NAcDnvUPwier7io6ziN43XfSTZ_SDSK1dL8Q5RCxWEZR9JWyiJNjm5-_fObtJCvePAfEnYbCYwj52ZndkZhN7YzNEicTI2zIKDwgzIHGEmdgx8j5xzTU3ItjhLx1M-mSWzPbRpd9QhsL7WtfP9pKbr1fuL35cfQeA_tEfGxVHNOaPgFFPmz0jDE9iUByFe5FP5-DaqAKZL2O8DjZnFPBW8O0RzPYwdRRXq-YP6Wfhsyaum6NWMyn_CqkFbje6je52ZiQctXzxAe3l5iG63jScvD9Gd0y6k_hD9HH0aEYl16fCyqeHud3PwYOV0EfJksK0AI76gBPZ7tvj0xxA3FQZXHpgC63nw12HJxAtQbA1oxjXAreZ-CV3Wj9B0dPJ9OI67lguxTXjWxCQTucsLYrygJr4WmgQhNYwl3GXEaWZ0nmtfhw4UHyk093V_jYU5zmVFkbDHaL-syvwpwiSxUtjU8dRaDoTXNrMCZggHF2UyQmSDX2W7euS-LcZKhbg4E6qliYJ_qUATdRGht9tvfrXVOG6cfezJtp3pK2mHgWo9V51gqlRYQxmjmhsJrJpJ6aQgaVKk1CUmTyP0Goi-A2M8-Kz8mO_WzSVhf0iEXm14QoF4-piLLvPqvFZUgr0o-0kfAD1peWQLi4FxBssni5DY4Z6dn-2-KZeLUAKc9AU4goJG6N2G0dRGdm7AyLP_wt9zdJeCCedz1EnyAu036_P8JZhgjemhW9ks66GDwWDybQL345OzL19hdJgOe2Fboxck7y-2nSzz
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYlZZeXsnU376qNvW2h0c2WHrOyLMuSvqyFDgZCNyeBYpfELdu_35FiB7KOwvxiIx_LRuduHX1C6L0rPC2FV33LHCQozILOEWb7nkHuETg31KZqi5N8fMYn5-J8D9FuLUwq2k-QlslMd9VhR2vOGYXEl7K4DhquIG7clxEIs4f2h8PJ90lnfyFAIbJdHjNg8h9P7righNQPjmUR6yBvBpk3ayX_mjBNfmj0AB20ASQebj75IdoL1SG6s9lS8vchujtrJ8sfoZ-jLyOisKk8XjZrOMf_NHh44U2ZKmCwq-vLiKkccPwbi2c_jnFTY0jSgd3YzFMmDsYQL8BlNeDzVtBvPY_Gcbl-jM5Gn0-Px_12M4W-E7xo-qSQwYeS2KiCIqKcKVA_y5jgviDeMGtCMBFhDlwaKQ2PiL7WAY33RVkK9gT1qroKzxAmwinpcs9z5ziw1LjCSaCQHg7KVIZIN77atUjjccOLC51mvJnUG55oeJdOPNG_MvRh-8zlBmfjVupPkW1byoiRnRrq1Vy3MqNz6SxljBpuFQhhoZRXkuSizKkXNuQZegdM3-ljPJzq2Bb34eaKsGuSobedTGhQvDibYqpQX601VRAJqoEYQEdPNzKy7YtB2AWGkWVI7kjPzst271TLRQL3JgMJKZ6kGfrYCZpuzcr6lhF5_n_kb9C98elsqqdfT769QPcpRGqxFJ2Il6jXrK7CK4i0Gvu6Va0_DfQgTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGEBMvE4xbuBrEGxTqW2I_lkIpsE08MGlISJZvaStNSdVk0_j3HLtJpTI0ibwkck6cyOceH39G6LUrPC2FVwPLHCQozILOEWYHnkHuETg31KZqi-N8esK_norTHZT3a2FS0X6CtExmuq8Oe99wzigkvpTFddBwdflu6csb6KYElxiTrnE-7i0whChEdgtkhkz-49ktJ5Sw-sG1zGMl5NUw82q15F9TpskTTe6g_S6ExKP1R99FO6E6QLfWm0r-PkB7R910-T30a_J5QhQ2lceLtoFz_FODR2felKkGBru6XkZU5YDj_1h89HOM2xpDmg4Mx2aWcnEwh3gOTqsFr7eCfutZNI-L5j46mXz6MZ4Ouu0UBk7woh2QQgYfSmKjEoqIc6ZAAS1jgvuCeMOsCcFEjDlwaqQ0PGL6Wgc03hdlKdgDtFvVVXiEMBFOSZd7njvHganGFU4ChfRwUKYyRPrx1a7DGo9bXpzpNOfNpF7zRMO7dOKJvszQm80zyzXSxrXUHyLbNpQRJTs11KuZ7qRG59JZyhg13CoQw0IpryTJRZlTL2zIM_QKmL7Vx3R0qGNb3ImbK8IuSIZe9jKhQfXifIqpQn3eaKogFlRDMYSOHq5lZNMXg8ALTCPLkNySnq2Xbd-pFvME702GEpI8STP0thc03RmW5poRefx_5C_Q3vePE3345fjbE3SbQqgWa9GJeIp229V5eAahVmufJ736A180H_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FGF19+and+its+analog+Aldafermin+cooperate+with+MYC+to+induce+aggressive+hepatocarcinogenesis&rft.jtitle=EMBO+molecular+medicine&rft.au=Ursic-Bedoya%2C+Jos%C3%A9&rft.au=Desandr%C3%A9%2C+Guillaume&rft.au=Chavey%2C+Carine&rft.au=Marie%2C+Pauline&rft.date=2024-02-15&rft.issn=1757-4684&rft.eissn=1757-4684&rft.volume=16&rft.issue=2&rft.spage=238&rft.epage=250&rft_id=info:doi/10.1038%2Fs44321-023-00021-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s44321_023_00021_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4684&client=summon