FGF19 and its analog Aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis
FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma...
Saved in:
Published in | EMBO molecular medicine Vol. 16; no. 2; pp. 238 - 250 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.02.2024
Wiley Open Access Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1757-4684 1757-4676 1757-4684 |
DOI | 10.1038/s44321-023-00021-x |
Cover
Abstract | FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
Synopsis
FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis.
FGF19/FGF15 cooperate with MYC, giving rise to aggressive, fast-growing tumors.
Aldafermin retains oncogenic properties in the context of MYC overexpression.
The hormone and its analog promote carcinogenesis through deregulation of identical pathways.
FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. |
---|---|
AbstractList | FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis.
FGF19/FGF15 cooperate with MYC, giving rise to aggressive, fast-growing tumors.
Aldafermin retains oncogenic properties in the context of MYC overexpression.
The hormone and its analog promote carcinogenesis through deregulation of identical pathways.
FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. Synopsis FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. FGF19/FGF15 cooperate with MYC, giving rise to aggressive, fast-growing tumors. Aldafermin retains oncogenic properties in the context of MYC overexpression. The hormone and its analog promote carcinogenesis through deregulation of identical pathways. FGF19-analog Aldafermin, reportedly devoid of the hormone oncogenic properties, is envisioned as a therapeutic tool for the treatment of chronic liver diseases. Using pre-clinical mouse models, we found that FGF19 and Aldafermin cooperate with oncogenes implicated in liver carcinogenesis. Abstract FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone’s metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone’s oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver. |
Author | Chavey, Carine Rivière, Benjamin Guillou, Hervé Ursic-Bedoya, José Hibner, Urszula Assenat, Eric Desandré, Guillaume Marie, Pauline Gregoire, Damien Polizzi, Arnaud |
Author_xml | – sequence: 1 givenname: José orcidid: 0000-0003-0076-2059 surname: Ursic-Bedoya fullname: Ursic-Bedoya, José organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier – sequence: 2 givenname: Guillaume surname: Desandré fullname: Desandré, Guillaume organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS – sequence: 3 givenname: Carine surname: Chavey fullname: Chavey, Carine organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS – sequence: 4 givenname: Pauline orcidid: 0000-0003-0368-608X surname: Marie fullname: Marie, Pauline organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS – sequence: 5 givenname: Arnaud surname: Polizzi fullname: Polizzi, Arnaud organization: Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse – sequence: 6 givenname: Benjamin surname: Rivière fullname: Rivière, Benjamin organization: Department of Pathology, Gui de Chauliac Hospital, CHU Montpellier, University of Montpellier – sequence: 7 givenname: Hervé orcidid: 0000-0002-5363-9081 surname: Guillou fullname: Guillou, Hervé organization: Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse – sequence: 8 givenname: Eric surname: Assenat fullname: Assenat, Eric organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier – sequence: 9 givenname: Urszula orcidid: 0000-0002-5520-7311 surname: Hibner fullname: Hibner, Urszula organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS – sequence: 10 givenname: Damien orcidid: 0000-0002-1105-8115 surname: Gregoire fullname: Gregoire, Damien email: damien.gregoire@igmm.cnrs.fr organization: Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38228803$$D View this record in MEDLINE/PubMed https://hal.science/hal-04404913$$DView record in HAL |
BookMark | eNp9kktv1DAUhSNURB_wB1igLGER8DOxV2g0YtpKg9jAAgnJcuybjEeZeLCdofx7PE2L2i668tX1OZ-P7XtenIx-hKJ4i9FHjKj4FBmjBFeI0AohlKubF8UZbnhTsVqwkwf1aXEe4xahmtdYvCpOqSBECETPil-ryxWWpR5t6VLMqx58Xy4GqzsIOzeWxvs9BJ2g_OPSpvz6c1kmX7rRTgZK3fcBYnQHKDew18kbHYwbfQ8jRBdfFy87PUR4c7deFD9WX74vr6r1t8vr5WJdGc6aVOFGgIUOtwg3kgsuqeQUt5RyZhtsNW01gEY4X7QmuNOMICZakzXWNl3H6UVxPXOt11u1D26nw1_ltVO3DR96pUNyZgBVC9MSSolmrWS0baS0UuCadzWxvIU6sz7PrP3U7sAaGFPQwyPo453RbVTvDwojIRsmSCZ8mAmbJ76rxVode4gxxCSmB5y17-9OC_73BDGpnYsGhkGP4KeoiMRcSsTRMdi7h8H-k-__MgvELDDBxxigU8YlnZw_5nRDDqiOY6PmsVH5NdXt2KibbCVPrPf0Z010NsUsHnsIauunkAcoPuf6B1gt1A0 |
CitedBy_id | crossref_primary_10_1152_ajpendo_00156_2024 crossref_primary_10_1038_s41573_024_01125_w crossref_primary_10_1042_CS20241137 crossref_primary_10_1093_lifemeta_loae029 |
Cites_doi | 10.1053/j.gastro.2020.08.015 10.1016/S0002-9440(10)61177-7 10.1016/j.jhep.2017.01.027 10.3390/microorganisms8121942 10.1002/pro.3943 10.2337/db18-1305 10.1002/hep.30590 10.1053/j.gastro.2015.05.061 10.1089/10430349950017734 10.1016/j.cmet.2017.09.005 10.1002/hep.27198 10.1002/hep.30951 10.1038/ng.2256 10.1016/j.tem.2014.10.002 10.1038/nrd.2015.9 10.1038/s41586-021-03819-2 10.1074/jbc.M109.068783 10.1016/j.jhep.2019.08.017 10.1146/annurev-pharmtox-032322-093904 10.1016/j.devcel.2018.12.021 10.1038/ng.3252 10.1093/bioinformatics/btg1086 10.1038/s42255-019-0074-3 10.1038/s41388-018-0591-7 10.1016/j.pep.2022.106186 10.1016/j.cell.2023.03.014 10.1038/s41598-018-35496-z 10.1016/j.molmet.2022.101483 10.1158/0008-5472.CAN-14-0208 10.1053/j.gastro.2023.04.007 10.1038/ncomms15433 10.1002/wdev.176 10.1016/j.cell.2017.05.046 10.1371/journal.pone.0036713 10.1016/j.molmet.2013.10.002 10.1016/j.jhep.2018.10.035 10.1002/hep4.1209 10.1093/bioinformatics/btp616 10.1016/S2468-1253(22)00017-6 10.1159/000488541 10.1038/sj.gt.3300947 10.1186/1471-2407-12-56 10.1016/S0140-6736(18)30474-4 10.1002/hep4.1108 10.1016/j.ccr.2011.01.040 10.1016/j.jhep.2021.04.049 10.1158/0008-5472.CAN-08-3357 10.1002/ijc.29287 10.1158/2159-8290.CD-14-1029 10.1158/2159-8290.CD-19-0555 10.1073/pnas.2208844119 10.1038/s41598-017-17204-5 10.1097/HEP.0000000000000607 10.1101/789586 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Attribution - ShareAlike |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Attribution - ShareAlike |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s44321-023-00021-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1757-4684 |
EndPage | 250 |
ExternalDocumentID | oai_doaj_org_article_68cb2332a4b943b799d98165f62d5be6 PMC10897482 oai_HAL_hal_04404913v1 38228803 10_1038_s44321_023_00021_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: SIRIC Montpellier grantid: Cancer Grant INCa_Inserm_DGOS_12553 – fundername: ITMO Cancer grantid: EVA-Plan cancer INSERM HTE-201610 – fundername: Association Française pour l'Etude du Foie (AFEF) grantid: AAP_2021 funderid: http://dx.doi.org/10.13039/501100006678 – fundername: Fondation ARC pour la Recherche sur le Cancer (ARC) grantid: 2019 funderid: http://dx.doi.org/10.13039/501100004097 – fundername: Institut National Du Cancer (INCa) grantid: 2019-134 funderid: http://dx.doi.org/10.13039/501100006364 – fundername: Association Française pour l'Etude du Foie (AFEF) grantid: AAP_2021 – fundername: Fondation ARC pour la Recherche sur le Cancer (ARC) grantid: 2019 – fundername: Institut National Du Cancer (INCa) grantid: 2019-134 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAHHS AAJSJ AAZKR ABOCM ABUWG ACCFJ ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFKRA AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBLON EBS EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR KQ8 LH4 LK8 M48 M7P M~E NNB O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC RHF RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 AASML AAYXX CITATION NAO PHGZM PHGZT 31~ ADRAZ AFZJQ ALUQN CGR CUY CVF ECM EIF EJD GODZA H13 ITC LW6 NPM 7X8 PQGLB PUEGO 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c547t-178edef1b0179585939531b3354d71da3baeea01023621fa42048bc531dd7ff53 |
IEDL.DBID | M48 |
ISSN | 1757-4684 1757-4676 |
IngestDate | Wed Aug 27 01:31:29 EDT 2025 Thu Aug 21 18:35:01 EDT 2025 Fri Sep 12 12:27:55 EDT 2025 Fri Sep 05 05:50:51 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Tue Jul 01 01:53:05 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 21 02:42:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Aldafermin (NGM282) Hydrodynamic Injections FGF19-15 Liver Cancer Oncogenic Cooperation Oncogenic Cooperation Subject Categories Cancer Digestive System Metabolism |
Language | English |
License | 2024. The Author(s). Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-178edef1b0179585939531b3354d71da3baeea01023621fa42048bc531dd7ff53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0076-2059 0000-0002-5363-9081 0000-0002-5520-7311 0000-0003-0368-608X 0000-0002-1105-8115 0000-0002-3180-8243 0000-0002-5267-5638 0000-0003-1986-2770 0000-0002-8958-2793 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s44321-023-00021-x |
PMID | 38228803 |
PQID | 2915990506 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68cb2332a4b943b799d98165f62d5be6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897482 hal_primary_oai_HAL_hal_04404913v1 proquest_miscellaneous_2915990506 pubmed_primary_38228803 crossref_citationtrail_10_1038_s44321_023_00021_x crossref_primary_10_1038_s44321_023_00021_x springer_journals_10_1038_s44321_023_00021_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Wiley Open Access Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: Wiley Open Access – name: Springer Nature |
References | Kang, Haq, Sung, Choi, Hong, Eo, Jeong, Shin, Shim, Lee (CR24) 2019; 8 Hirschfield, Chazouillères, Drenth, Thorburn, Harrison, Landis, Mayo, Muir, Trotter, Leeming (CR20) 2019; 70 Ornitz, Itoh (CR34) 2015; 4 Harrison, Abdelmalek, Neff, Gunn, Guy, Alkhouri, Bashir, Freilich, Kohli, Khazanchi (CR17) 2022; 7 CR39 Zhou, Learned, Rossi, DePaoli, Tian, Ling (CR50) 2017; 1 Pettersen, Goddard, Huang, Meng, Couch, Croll, Morris, Ferrin (CR36) 2021; 30 Tao, Cui, Xu, Han (CR43) 2022; 119 Ji, Liu, Zhang, Chen, Wang, Zhang, Xiao, Li, Nian, Li (CR21) 2019; 48 Sawey, Chanrion, Cai, Wu, Zhang, Zender, Zhao, Busuttil, Yee, Stein (CR41) 2011; 19 Gadaleta, Scialpi, Peres, Cariello, Ko, Luo, Porru, Roda, Sabbà, Moschetta (CR13) 2018; 8 Gao, Lang, Zhao, Shay, Shull, Teng (CR14) 2019; 38 Schulze, Imbeaud, Letouzé, Alexandrov, Calderaro, Rebouissou, Couchy, Meiller, Shinde, Soysouvanh (CR42) 2015; 47 CR4 Kaposi-Novak, Libbrecht, Woo, Lee, Sears, Conner, Factor, Roskams, Thorgeirsson (CR25) 2009; 69 CR3 Degirolamo, Sabbà, Moschetta (CR9) 2016; 15 French, Lin, Wang, Adams, Shek, Hötzel, Bolon, Ferrando, Blackmore, Schroeder (CR11) 2012; 7 Jin, Yang, Geng, Xu (CR22) 2023; 63 Harrison, Rossi, Paredes, Trotter, Bashir, Guy, Banerjee, Jaros, Owers, Baxter (CR19) 2020; 71 Choi, Cheong, Yoo, Kim (CR7) 2023; 201 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko (CR23) 2021; 596 Rebouissou, Nault (CR38) 2020; 72 Pinyol, Torrecilla, Wang, Montironi, Piqué-Gili, Torres-Martin, Wei-Qiang, Willoughby, Ramadori, Andreu-Oller (CR37) 2021; 75 Zhou, Wang, Phung, Lindhout, Mondal, Hsu, Yang, Humphrey, Ding, Arora (CR53) 2014; 74 Zucman-Rossi, Villanueva, Nault, Llovet (CR55) 2015; 149 Wu, Ge, Lemon, Vonderfecht, Weiszmann, Hecht, Gupte, Hager, Wang, Lindberg (CR47) 2010; 285 Hagel, Miduturu, Sheets, Rubin, Weng, Stransky, Bifulco, Kim, Hodous, Brooijmans (CR16) 2015; 5 Harrison, Rinella, Abdelmalek, Trotter, Paredes, Arnold, Kugelmas, Bashir, Jaros, Ling (CR18) 2018; 391 Marcelin, Jo, Li, Schwartz, Zhang, Dun, Lyu, Blouet, Chang, Chua (CR29) 2014; 3 Ally, Balasundaram, Carlsen, Chuah, Clarke, Dhalla, Holt, Jones, Lee, Ma (CR2) 2017; 169 Lan, Morgan, Rahmouni, Sonoda, Fu, Burgess, Holland, Kliewer, Mangelsdorf (CR27) 2017; 26 BouSaba, Torres, Dilmaghani, Harmsen, Ling, Camilleri (CR5) 2023; 165 Owen, Mangelsdorf, Kliewer (CR35) 2015; 26 Liu, Song, Liu (CR28) 1999; 6 Ye, Godzik (CR48) 2003; 19 Gadaleta, Moschetta (CR12) 2019; 1 Uriarte, Latasa, Carotti, Fernandez-Barrena, Garcia-Irigoyen, Elizalde, Urtasun, Vespasiani-Gentilucci, Morini, De Mingo (CR44) 2015; 136 Ursic-Bedoya, Chavey, Desandré, Meunier, Dupuy, Gonzalez-Dopeso Reyes, Tordjmann, Assénat, Hibner, Gregoire (CR45) 2022; 60 Zhang, Budker, Wolff (CR49) 1999; 10 Nicholes, Guillet, Tomlinson, Hillan, Wright, Frantz, Pham, Dillard-Telm, Tsai, Stephan (CR33) 2002; 160 Robinson, McCarthy, Smyth (CR40) 2010; 26 Zhou, Luo, Chen, Yang, Learned, DePaoli, Tian, Ling (CR51) 2017; 66 Zhou, Wang, Phung, Lindhout, Mondal, Hsu, Yang, Humphrey, Ding, Arora (CR52) 2014; 74 Chen, Du, Dang, Li, Qian, Feng, Qiao, Fan, Nie, Wu (CR6) 2020; 71 Wang, Zhu, Jia, Wang, Kubota, Fujiwara, Gordillo, Lewis, Zhu, Sharma (CR46) 2023; 186 Choi, Cheong, Yoo, Park, Lee, Kim (CR8) 2020; 8 Molina-Sánchez, Ruiz de Galarreta, Yao, Lindblad, Bresnahan, Bitterman, Martin, Rubenstein, Nie, Golas (CR32) 2020; 159 Kim, Sarker, Meyer, Yau, Macarulla, Park, Choo, Hollebecque, Sung, Lim (CR26) 2019; 9 Guichard, Amaddeo, Imbeaud, Ladeiro, Pelletier, Maad, Calderaro, Bioulac-Sage, Letexier, Degos (CR15) 2012; 44 Ahn, Jang, Shim, Kim, Hong, Sung, Baek, Haq, Ansari, Lee (CR1) 2014; 60 Mayo, Wigg, Leggett, Arnold, Thompson, Weltman, Carey, Muir, Ling, Rossi (CR30) 2018; 2 Zhou, Yang, Learned, Tian, Ling (CR54) 2017; 8 Miura, Mitsuhashi, Shimizu, Kimura, Yoshidome, Otsuka, Kato, Shida, Okamura, Miyazaki (CR31) 2012; 12 DePaoli, Zhou, Kaplan, Hunt, Adams, Marc Learned, Tian, Ling (CR10) 2019; 68 I Uriarte (21_CR44) 2015; 136 SA Harrison (21_CR17) 2022; 7 G Marcelin (21_CR29) 2014; 3 J Chen (21_CR6) 2020; 71 MD Robinson (21_CR40) 2010; 26 K Nicholes (21_CR33) 2002; 160 M Zhou (21_CR50) 2017; 1 M Zhou (21_CR53) 2014; 74 21_CR4 21_CR3 Z Wang (21_CR46) 2023; 186 M Zhou (21_CR51) 2017; 66 EF Pettersen (21_CR36) 2021; 30 HJ Choi (21_CR8) 2020; 8 MJ Mayo (21_CR30) 2018; 2 SA Harrison (21_CR18) 2018; 391 S Rebouissou (21_CR38) 2020; 72 J Jumper (21_CR23) 2021; 596 X Wu (21_CR47) 2010; 285 M Zhou (21_CR54) 2017; 8 GM Hirschfield (21_CR20) 2019; 70 RD Kim (21_CR26) 2019; 9 F Liu (21_CR28) 1999; 6 Y Ye (21_CR48) 2003; 19 A Ally (21_CR2) 2017; 169 P Molina-Sánchez (21_CR32) 2020; 159 M Hagel (21_CR16) 2015; 5 C Degirolamo (21_CR9) 2016; 15 G Zhang (21_CR49) 1999; 10 L Jin (21_CR22) 2023; 63 J Zucman-Rossi (21_CR55) 2015; 149 J BouSaba (21_CR5) 2023; 165 AM DePaoli (21_CR10) 2019; 68 K Schulze (21_CR42) 2015; 47 SA Harrison (21_CR19) 2020; 71 HJ Kang (21_CR24) 2019; 8 ET Sawey (21_CR41) 2011; 19 C Guichard (21_CR15) 2012; 44 SM Ahn (21_CR1) 2014; 60 DM Ornitz (21_CR34) 2015; 4 R Pinyol (21_CR37) 2021; 75 HJ Choi (21_CR7) 2023; 201 J Ursic-Bedoya (21_CR45) 2022; 60 RM Gadaleta (21_CR12) 2019; 1 S Ji (21_CR21) 2019; 48 Z Tao (21_CR43) 2022; 119 M Zhou (21_CR52) 2014; 74 P Kaposi-Novak (21_CR25) 2009; 69 BM Owen (21_CR35) 2015; 26 T Lan (21_CR27) 2017; 26 L Gao (21_CR14) 2019; 38 21_CR39 DM French (21_CR11) 2012; 7 RM Gadaleta (21_CR13) 2018; 8 S Miura (21_CR31) 2012; 12 |
References_xml | – volume: 159 start-page: 2203.e14 year: 2020 end-page: 2220.e14 ident: CR32 article-title: Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.08.015 – volume: 160 start-page: 2295 year: 2002 end-page: 2307 ident: CR33 article-title: A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)61177-7 – volume: 66 start-page: 1182 year: 2017 end-page: 1192 ident: CR51 article-title: Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15 publication-title: J Hepatol doi: 10.1016/j.jhep.2017.01.027 – ident: CR4 – ident: CR39 – volume: 8 start-page: 1 year: 2020 end-page: 12 ident: CR8 article-title: Soluble expression of hfgf19 without fusion protein through synonymous codon substitutions and dsbc co-expression in publication-title: Microorganisms doi: 10.3390/microorganisms8121942 – volume: 30 start-page: 70 year: 2021 end-page: 82 ident: CR36 article-title: UCSF ChimeraX: structure visualization for researchers, educators, and developers publication-title: Protein Sci doi: 10.1002/pro.3943 – volume: 68 start-page: 1315 year: 2019 end-page: 1328 ident: CR10 article-title: FGF19 analog as a surgical factor mimetic that contributes to metabolic effects beyond glucose homeostasis publication-title: Diabetes doi: 10.2337/db18-1305 – volume: 71 start-page: 1198 year: 2020 end-page: 1212 ident: CR19 article-title: NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.30590 – volume: 149 start-page: 1226 year: 2015 end-page: 1239 ident: CR55 article-title: Genetic landscape and biomarkers of hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.05.061 – volume: 10 start-page: 1735 year: 1999 end-page: 1737 ident: CR49 article-title: High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA publication-title: Hum Gene Ther doi: 10.1089/10430349950017734 – volume: 26 start-page: 709.e3 year: 2017 end-page: 718.e3 ident: CR27 article-title: FGF19, FGF21, and an FGFR1/β-klotho-activating antibody act on the nervous system to regulate body weight and glycemia publication-title: Cell Metab doi: 10.1016/j.cmet.2017.09.005 – volume: 60 start-page: 1972 year: 2014 end-page: 1982 ident: CR1 article-title: Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification publication-title: Hepatology doi: 10.1002/hep.27198 – volume: 71 start-page: 1712 year: 2020 end-page: 1731 ident: CR6 article-title: Fibroblast growth factor 19-mediated up-regulation of SYR-related high-mobility group box 18 promotes hepatocellular carcinoma metastasis by transactivating fibroblast growth factor receptor 4 and Fms-related tyrosine kinase 4 publication-title: Hepatology doi: 10.1002/hep.30951 – volume: 44 start-page: 694 year: 2012 end-page: 698 ident: CR15 article-title: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma publication-title: Nat Genet doi: 10.1038/ng.2256 – volume: 26 start-page: 22 year: 2015 end-page: 29 ident: CR35 article-title: Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2014.10.002 – volume: 15 start-page: 51 year: 2016 end-page: 69 ident: CR9 article-title: Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2015.9 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR23 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 285 start-page: 5165 year: 2010 end-page: 5170 ident: CR47 article-title: FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation publication-title: J Biol Chem doi: 10.1074/jbc.M109.068783 – volume: 72 start-page: 215 year: 2020 end-page: 229 ident: CR38 article-title: Advances in molecular classification and precision oncology in hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2019.08.017 – volume: 63 start-page: 359 year: 2023 end-page: 382 ident: CR22 article-title: Fibroblast growth factor-based pharmacotherapies for the treatment of obesity-related metabolic complications publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-032322-093904 – volume: 48 start-page: 460.e9 year: 2019 end-page: 474.e9 ident: CR21 article-title: FGF15 activates hippo signaling to suppress bile acid metabolism and liver tumorigenesis publication-title: Dev Cell doi: 10.1016/j.devcel.2018.12.021 – volume: 47 start-page: 505 year: 2015 end-page: 511 ident: CR42 article-title: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets publication-title: Nat Genet doi: 10.1038/ng.3252 – volume: 19 start-page: ii246 year: 2003 end-page: ii255 ident: CR48 article-title: Flexible structure alignment by chaining aligned fragment pairs allowing twists publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1086 – volume: 1 start-page: 588 year: 2019 end-page: 594 ident: CR12 article-title: Metabolic messengers: fibroblast growth factor 15/19 publication-title: Nat Metab doi: 10.1038/s42255-019-0074-3 – volume: 38 start-page: 2394 year: 2019 end-page: 2404 ident: CR14 article-title: FGF19 amplification reveals an oncogenic dependency upon autocrine FGF19/FGFR4 signaling in head and neck squamous cell carcinoma publication-title: Oncogene doi: 10.1038/s41388-018-0591-7 – volume: 201 start-page: 106186 year: 2023 ident: CR7 article-title: One-step metal affinity purification of recombinant hFGF19 without using tags publication-title: Protein Expr Purif doi: 10.1016/j.pep.2022.106186 – volume: 186 start-page: 1968.e20 year: 2023 end-page: 1984.e20 ident: CR46 article-title: Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease publication-title: Cell doi: 10.1016/j.cell.2023.03.014 – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: CR13 article-title: Suppression of hepatic bile acid synthesis by a non-tumorigenic FGF19 analogue protects mice from fibrosis and hepatocarcinogenesis publication-title: Sci Rep doi: 10.1038/s41598-018-35496-z – volume: 60 start-page: 101483 year: 2022 ident: CR45 article-title: Fibroblast growth factor 19 stimulates water intake publication-title: Mol Metab doi: 10.1016/j.molmet.2022.101483 – volume: 74 start-page: 3306 year: 2014 end-page: 3316 ident: CR52 article-title: Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0208 – volume: 165 start-page: 499.e4 year: 2023 end-page: 501.e4 ident: CR5 article-title: Effects of FGF19 analogue aldafermin in patients with bile acid diarrhea: a randomized, placebo-control trial publication-title: Gastroenterology doi: 10.1053/j.gastro.2023.04.007 – volume: 8 start-page: 1 year: 2017 end-page: 16 ident: CR54 article-title: Non-cell-autonomous activation of IL-6/STAT3 signaling mediates FGF19-driven hepatocarcinogenesis publication-title: Nat Commun doi: 10.1038/ncomms15433 – volume: 4 start-page: 215 year: 2015 end-page: 266 ident: CR34 article-title: The fibroblast growth factor signaling pathway publication-title: Wiley Interdiscip Rev Dev Biol doi: 10.1002/wdev.176 – volume: 169 start-page: 1327.e23 year: 2017 end-page: 1341.e23 ident: CR2 article-title: Comprehensive and integrative genomic characterization of hepatocellular carcinoma publication-title: Cell doi: 10.1016/j.cell.2017.05.046 – volume: 7 start-page: 1 year: 2012 end-page: 12 ident: CR11 article-title: Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models publication-title: PLoS ONE doi: 10.1371/journal.pone.0036713 – volume: 3 start-page: 19 year: 2014 end-page: 28 ident: CR29 article-title: Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism publication-title: Mol Metab doi: 10.1016/j.molmet.2013.10.002 – volume: 70 start-page: 483 year: 2019 end-page: 493 ident: CR20 article-title: Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial publication-title: J Hepatol doi: 10.1016/j.jhep.2018.10.035 – volume: 2 start-page: 1037 year: 2018 end-page: 1050 ident: CR30 article-title: NGM 282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double‐blind, placebo‐controlled trial publication-title: Hepatol Commun doi: 10.1002/hep4.1209 – volume: 74 start-page: 3306 year: 2014 end-page: 3316 ident: CR53 article-title: Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0208 – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR40 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 7 start-page: 603 year: 2022 end-page: 616 ident: CR17 article-title: Aldafermin in patients with non-alcoholic steatohepatitis (ALPINE 2/3): a randomised, double-blind, placebo-controlled, phase 2b trial publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(22)00017-6 – volume: 8 start-page: 12 year: 2019 end-page: 23 ident: CR24 article-title: Characterization of hepatocellular carcinoma patients with FGF19 amplification assessed by fluorescence in situ hybridization: a large cohort study publication-title: Liver Cancer doi: 10.1159/000488541 – ident: CR3 – volume: 6 start-page: 1258 year: 1999 end-page: 1266 ident: CR28 article-title: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA publication-title: Gene Ther doi: 10.1038/sj.gt.3300947 – volume: 12 year: 2012 ident: CR31 article-title: Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma publication-title: BMC Cancer doi: 10.1186/1471-2407-12-56 – volume: 391 start-page: 1174 year: 2018 end-page: 1185 ident: CR18 article-title: NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(18)30474-4 – volume: 1 start-page: 1024 year: 2017 end-page: 1042 ident: CR50 article-title: Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice publication-title: Hepatol Commun doi: 10.1002/hep4.1108 – volume: 19 start-page: 347 year: 2011 end-page: 358 ident: CR41 article-title: Identification of a therapeutic strategy targeting amplified FGF19 supplement publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.01.040 – volume: 75 start-page: 865 year: 2021 end-page: 878 ident: CR37 article-title: Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis publication-title: J Hepatol doi: 10.1016/j.jhep.2021.04.049 – volume: 69 start-page: 2775 year: 2009 end-page: 2782 ident: CR25 article-title: Central role of c-Myc during malignant conversion in human hepatocarcinogenesis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3357 – volume: 136 start-page: 2469 year: 2015 end-page: 2475 ident: CR44 article-title: Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development publication-title: Int J Cancer doi: 10.1002/ijc.29287 – volume: 5 start-page: 424 year: 2015 end-page: 437 ident: CR16 article-title: First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-14-1029 – volume: 9 start-page: 1696 year: 2019 end-page: 1707 ident: CR26 article-title: First-in-human phase i study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0555 – volume: 119 start-page: e2208844119 year: 2022 ident: CR43 article-title: FGFR redundancy limits the efficacy of FGFR4-selective inhibitors in hepatocellular carcinoma publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2208844119 – volume: 7 start-page: 603 year: 2022 ident: 21_CR17 publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(22)00017-6 – volume: 285 start-page: 5165 year: 2010 ident: 21_CR47 publication-title: J Biol Chem doi: 10.1074/jbc.M109.068783 – volume: 6 start-page: 1258 year: 1999 ident: 21_CR28 publication-title: Gene Ther doi: 10.1038/sj.gt.3300947 – volume: 66 start-page: 1182 year: 2017 ident: 21_CR51 publication-title: J Hepatol doi: 10.1016/j.jhep.2017.01.027 – volume: 19 start-page: ii246 year: 2003 ident: 21_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1086 – volume: 8 start-page: 1 year: 2018 ident: 21_CR13 publication-title: Sci Rep doi: 10.1038/s41598-018-35496-z – volume: 7 start-page: 1 year: 2012 ident: 21_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0036713 – volume: 3 start-page: 19 year: 2014 ident: 21_CR29 publication-title: Mol Metab doi: 10.1016/j.molmet.2013.10.002 – volume: 69 start-page: 2775 year: 2009 ident: 21_CR25 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3357 – volume: 1 start-page: 588 year: 2019 ident: 21_CR12 publication-title: Nat Metab doi: 10.1038/s42255-019-0074-3 – volume: 26 start-page: 22 year: 2015 ident: 21_CR35 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2014.10.002 – ident: 21_CR4 doi: 10.1038/s41598-017-17204-5 – volume: 8 start-page: 12 year: 2019 ident: 21_CR24 publication-title: Liver Cancer doi: 10.1159/000488541 – volume: 72 start-page: 215 year: 2020 ident: 21_CR38 publication-title: J Hepatol doi: 10.1016/j.jhep.2019.08.017 – volume: 186 start-page: 1968.e20 year: 2023 ident: 21_CR46 publication-title: Cell doi: 10.1016/j.cell.2023.03.014 – volume: 391 start-page: 1174 year: 2018 ident: 21_CR18 publication-title: Lancet doi: 10.1016/S0140-6736(18)30474-4 – volume: 15 start-page: 51 year: 2016 ident: 21_CR9 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2015.9 – volume: 75 start-page: 865 year: 2021 ident: 21_CR37 publication-title: J Hepatol doi: 10.1016/j.jhep.2021.04.049 – volume: 4 start-page: 215 year: 2015 ident: 21_CR34 publication-title: Wiley Interdiscip Rev Dev Biol doi: 10.1002/wdev.176 – volume: 74 start-page: 3306 year: 2014 ident: 21_CR52 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0208 – volume: 8 start-page: 1 year: 2020 ident: 21_CR8 publication-title: Microorganisms doi: 10.3390/microorganisms8121942 – volume: 160 start-page: 2295 year: 2002 ident: 21_CR33 publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)61177-7 – ident: 21_CR39 doi: 10.1097/HEP.0000000000000607 – volume: 9 start-page: 1696 year: 2019 ident: 21_CR26 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0555 – volume: 165 start-page: 499.e4 year: 2023 ident: 21_CR5 publication-title: Gastroenterology doi: 10.1053/j.gastro.2023.04.007 – volume: 5 start-page: 424 year: 2015 ident: 21_CR16 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-14-1029 – volume: 596 start-page: 583 year: 2021 ident: 21_CR23 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 60 start-page: 101483 year: 2022 ident: 21_CR45 publication-title: Mol Metab doi: 10.1016/j.molmet.2022.101483 – volume: 68 start-page: 1315 year: 2019 ident: 21_CR10 publication-title: Diabetes doi: 10.2337/db18-1305 – volume: 119 start-page: e2208844119 year: 2022 ident: 21_CR43 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2208844119 – volume: 2 start-page: 1037 year: 2018 ident: 21_CR30 publication-title: Hepatol Commun doi: 10.1002/hep4.1209 – volume: 63 start-page: 359 year: 2023 ident: 21_CR22 publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-032322-093904 – volume: 60 start-page: 1972 year: 2014 ident: 21_CR1 publication-title: Hepatology doi: 10.1002/hep.27198 – ident: 21_CR3 doi: 10.1101/789586 – volume: 26 start-page: 709.e3 year: 2017 ident: 21_CR27 publication-title: Cell Metab doi: 10.1016/j.cmet.2017.09.005 – volume: 30 start-page: 70 year: 2021 ident: 21_CR36 publication-title: Protein Sci doi: 10.1002/pro.3943 – volume: 48 start-page: 460.e9 year: 2019 ident: 21_CR21 publication-title: Dev Cell doi: 10.1016/j.devcel.2018.12.021 – volume: 71 start-page: 1712 year: 2020 ident: 21_CR6 publication-title: Hepatology doi: 10.1002/hep.30951 – volume: 12 year: 2012 ident: 21_CR31 publication-title: BMC Cancer doi: 10.1186/1471-2407-12-56 – volume: 1 start-page: 1024 year: 2017 ident: 21_CR50 publication-title: Hepatol Commun doi: 10.1002/hep4.1108 – volume: 10 start-page: 1735 year: 1999 ident: 21_CR49 publication-title: Hum Gene Ther doi: 10.1089/10430349950017734 – volume: 74 start-page: 3306 year: 2014 ident: 21_CR53 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0208 – volume: 47 start-page: 505 year: 2015 ident: 21_CR42 publication-title: Nat Genet doi: 10.1038/ng.3252 – volume: 169 start-page: 1327.e23 year: 2017 ident: 21_CR2 publication-title: Cell doi: 10.1016/j.cell.2017.05.046 – volume: 44 start-page: 694 year: 2012 ident: 21_CR15 publication-title: Nat Genet doi: 10.1038/ng.2256 – volume: 159 start-page: 2203.e14 year: 2020 ident: 21_CR32 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.08.015 – volume: 8 start-page: 1 year: 2017 ident: 21_CR54 publication-title: Nat Commun doi: 10.1038/ncomms15433 – volume: 70 start-page: 483 year: 2019 ident: 21_CR20 publication-title: J Hepatol doi: 10.1016/j.jhep.2018.10.035 – volume: 136 start-page: 2469 year: 2015 ident: 21_CR44 publication-title: Int J Cancer doi: 10.1002/ijc.29287 – volume: 71 start-page: 1198 year: 2020 ident: 21_CR19 publication-title: Hepatology doi: 10.1002/hep.30590 – volume: 201 start-page: 106186 year: 2023 ident: 21_CR7 publication-title: Protein Expr Purif doi: 10.1016/j.pep.2022.106186 – volume: 38 start-page: 2394 year: 2019 ident: 21_CR14 publication-title: Oncogene doi: 10.1038/s41388-018-0591-7 – volume: 26 start-page: 139 year: 2010 ident: 21_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 19 start-page: 347 year: 2011 ident: 21_CR41 publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.01.040 – volume: 149 start-page: 1226 year: 2015 ident: 21_CR55 publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.05.061 |
SSID | ssj0065618 |
Score | 2.4116702 |
Snippet | FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of... Abstract FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis.... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 238 |
SubjectTerms | Aldafermin (NGM282) Animals Biomedical and Life Sciences Biomedicine Cancer Carcinoma, Hepatocellular - drug therapy Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - metabolism EMBO03 EMBO12 EMBO21 FGF19-15 Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Hormones Humans Hydrodynamic Injections Life Sciences Liver Cancer Liver Neoplasms - drug therapy Liver Neoplasms - metabolism Mice Molecular Medicine Oncogenic Cooperation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6koPRFtLYab4ylbxqauSUzj2txXaTtUwsVhGFu6S6UpDSp1H_vmUl2MRbqi3lJSCYnYc49c_IdhA5c5WktvMotc5CgMAs6R5jNPYPcI3BuqE3VFqfl4px_uxAXf7T6ijVhAzzwMHGHpXSWMkYNtwpIVUp5JUkp6pJ6YUMC2y5UsU6mBhsMQQqR4y8yBZOHHeeMQtpMWfyLGo7uJm4oofWDc1nGWsj7geb9esm_Fk2TL5o_Q0_HIBLPhpd_jh6FZgc9HtpK_tpBT07GBfMX6Mf865wobBqPV30H-_itBs-uvKlTFQx2bXsdcZUDjl9k8cn3I9y3GBJ1YDk2lykbB4OIl-C2evB7N0C3vYwGctXtovP5l7OjRT42VMid4FWfk0oGH2pioxqKiHSmQAUtY4L7injDrAnBRJQ5cGukNjyi-loHY7yv6lqwPbTVtE14hTARTklXel46x4GtxlVOwgjpYaNMZYis51e7EW08Nr240mnVm0k98ETDs3Tiib7L0MfNPdcD1saDoz9Htm1GRpzsdAKkR4_So_8lPRnaB6ZPaCxmxzqei724uSLsJ8nQh7VMaFC-uKJimtDedpoqiAZVIQog9HKQkQ0tBqEXGEeWITmRnsnDplea1TIBfJNCQponaYY-rQVNj6ale2BGXv-PGXmDtinEbbEwnYi3aKu_uQ3vIO7q7fukYr8B1S0l3w priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7LiuKL6HrZrhei-KbFya1NHsfBcRDXJxdWEEJunRlY2mXalfXfe5K2A3Vlwb60pKdpybk3J18QeutKTyvhVW6ZgwSFWdA5wmzuGeQegXNDbaq2-FaszviXc3F-gOi4FiYV7SdIy2Smx-qwDy3njELiS1lcBw1XEDfekSUTUaoXxWK0vhCeEDksjpkx-Y_nJg4o4fSDW9nEKsibIebNSsm_pkuTF1o-RA-G8BHP-w9-hA5CfYTu9htK_j5C906HqfLH6Ofy85IobGqPt10L5_iXBs8vvKlS_Qt2TXMZEZUDjv9i8emPBe4aDCk6MBubdcrDwRTiDTisDjzeDvpt1tE0btsn6Gz56ftilQ9bKeRO8LLLSSmDDxWxUQFFxDhToHyWMcF9Sbxh1oRgIr4cODRSGR7xfK0DGu_LqhLsKTqsmzocI0yEU9IVnhfOcWCocaWTQCE9HJSpDJFxfLUbcMbjdhcXOs13M6l7nmh4l0480dcZerd_5rJH2biV-mNk254yImSnhma31oPE6EI6SxmjhlsFIlgq5ZUkhagK6oUNRYbeANMnfazmX3Vsi7twc0XYL5Kh16NMaFC7OJdi6tBctZoqiAPVTMygo2e9jOz7YhB0gVlkGZIT6Zm8bHqn3m4StDeZSUjwJM3Q-1HQ9GBU2ltG5OT_yJ-j-xRis1h8TsQLdNjtrsJLiK06-yop0x_L_xwD priority: 102 providerName: Springer Nature |
Title | FGF19 and its analog Aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis |
URI | https://link.springer.com/article/10.1038/s44321-023-00021-x https://www.ncbi.nlm.nih.gov/pubmed/38228803 https://www.proquest.com/docview/2915990506 https://hal.science/hal-04404913 https://pubmed.ncbi.nlm.nih.gov/PMC10897482 https://doaj.org/article/68cb2332a4b943b799d98165f62d5be6 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ri9NAcDnvUPwier7io6ziN43XfSTZ_SDSK1dL8Q5RCxWEZR9JWyiJNjm5-_fObtJCvePAfEnYbCYwj52ZndkZhN7YzNEicTI2zIKDwgzIHGEmdgx8j5xzTU3ItjhLx1M-mSWzPbRpd9QhsL7WtfP9pKbr1fuL35cfQeA_tEfGxVHNOaPgFFPmz0jDE9iUByFe5FP5-DaqAKZL2O8DjZnFPBW8O0RzPYwdRRXq-YP6Wfhsyaum6NWMyn_CqkFbje6je52ZiQctXzxAe3l5iG63jScvD9Gd0y6k_hD9HH0aEYl16fCyqeHud3PwYOV0EfJksK0AI76gBPZ7tvj0xxA3FQZXHpgC63nw12HJxAtQbA1oxjXAreZ-CV3Wj9B0dPJ9OI67lguxTXjWxCQTucsLYrygJr4WmgQhNYwl3GXEaWZ0nmtfhw4UHyk093V_jYU5zmVFkbDHaL-syvwpwiSxUtjU8dRaDoTXNrMCZggHF2UyQmSDX2W7euS-LcZKhbg4E6qliYJ_qUATdRGht9tvfrXVOG6cfezJtp3pK2mHgWo9V51gqlRYQxmjmhsJrJpJ6aQgaVKk1CUmTyP0Goi-A2M8-Kz8mO_WzSVhf0iEXm14QoF4-piLLvPqvFZUgr0o-0kfAD1peWQLi4FxBssni5DY4Z6dn-2-KZeLUAKc9AU4goJG6N2G0dRGdm7AyLP_wt9zdJeCCedz1EnyAu036_P8JZhgjemhW9ks66GDwWDybQL345OzL19hdJgOe2Fboxck7y-2nSzz |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYlZZeXsnU376qNvW2h0c2WHrOyLMuSvqyFDgZCNyeBYpfELdu_35FiB7KOwvxiIx_LRuduHX1C6L0rPC2FV33LHCQozILOEWb7nkHuETg31KZqi5N8fMYn5-J8D9FuLUwq2k-QlslMd9VhR2vOGYXEl7K4DhquIG7clxEIs4f2h8PJ90lnfyFAIbJdHjNg8h9P7righNQPjmUR6yBvBpk3ayX_mjBNfmj0AB20ASQebj75IdoL1SG6s9lS8vchujtrJ8sfoZ-jLyOisKk8XjZrOMf_NHh44U2ZKmCwq-vLiKkccPwbi2c_jnFTY0jSgd3YzFMmDsYQL8BlNeDzVtBvPY_Gcbl-jM5Gn0-Px_12M4W-E7xo-qSQwYeS2KiCIqKcKVA_y5jgviDeMGtCMBFhDlwaKQ2PiL7WAY33RVkK9gT1qroKzxAmwinpcs9z5ziw1LjCSaCQHg7KVIZIN77atUjjccOLC51mvJnUG55oeJdOPNG_MvRh-8zlBmfjVupPkW1byoiRnRrq1Vy3MqNz6SxljBpuFQhhoZRXkuSizKkXNuQZegdM3-ljPJzq2Bb34eaKsGuSobedTGhQvDibYqpQX601VRAJqoEYQEdPNzKy7YtB2AWGkWVI7kjPzst271TLRQL3JgMJKZ6kGfrYCZpuzcr6lhF5_n_kb9C98elsqqdfT769QPcpRGqxFJ2Il6jXrK7CK4i0Gvu6Va0_DfQgTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGEBMvE4xbuBrEGxTqW2I_lkIpsE08MGlISJZvaStNSdVk0_j3HLtJpTI0ibwkck6cyOceH39G6LUrPC2FVwPLHCQozILOEWYHnkHuETg31KZqi-N8esK_norTHZT3a2FS0X6CtExmuq8Oe99wzigkvpTFddBwdflu6csb6KYElxiTrnE-7i0whChEdgtkhkz-49ktJ5Sw-sG1zGMl5NUw82q15F9TpskTTe6g_S6ExKP1R99FO6E6QLfWm0r-PkB7R910-T30a_J5QhQ2lceLtoFz_FODR2felKkGBru6XkZU5YDj_1h89HOM2xpDmg4Mx2aWcnEwh3gOTqsFr7eCfutZNI-L5j46mXz6MZ4Ouu0UBk7woh2QQgYfSmKjEoqIc6ZAAS1jgvuCeMOsCcFEjDlwaqQ0PGL6Wgc03hdlKdgDtFvVVXiEMBFOSZd7njvHganGFU4ChfRwUKYyRPrx1a7DGo9bXpzpNOfNpF7zRMO7dOKJvszQm80zyzXSxrXUHyLbNpQRJTs11KuZ7qRG59JZyhg13CoQw0IpryTJRZlTL2zIM_QKmL7Vx3R0qGNb3ImbK8IuSIZe9jKhQfXifIqpQn3eaKogFlRDMYSOHq5lZNMXg8ALTCPLkNySnq2Xbd-pFvME702GEpI8STP0thc03RmW5poRefx_5C_Q3vePE3345fjbE3SbQqgWa9GJeIp229V5eAahVmufJ736A180H_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FGF19+and+its+analog+Aldafermin+cooperate+with+MYC+to+induce+aggressive+hepatocarcinogenesis&rft.jtitle=EMBO+molecular+medicine&rft.au=Ursic-Bedoya%2C+Jos%C3%A9&rft.au=Desandr%C3%A9%2C+Guillaume&rft.au=Chavey%2C+Carine&rft.au=Marie%2C+Pauline&rft.date=2024-02-15&rft.issn=1757-4684&rft.eissn=1757-4684&rft.volume=16&rft.issue=2&rft.spage=238&rft.epage=250&rft_id=info:doi/10.1038%2Fs44321-023-00021-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s44321_023_00021_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4684&client=summon |