CG‐SENSE revisited: Results from the first ISMRM reproducibility challenge

Purpose The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al. Methods The task of the...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 85; no. 4; pp. 1821 - 1839
Main Authors Maier, Oliver, Baete, Steven Hubert, Fyrdahl, Alexander, Hammernik, Kerstin, Harrevelt, Seb, Kasper, Lars, Karakuzu, Agah, Loecher, Michael, Patzig, Franz, Tian, Ye, Wang, Ke, Gallichan, Daniel, Uecker, Martin, Knoll, Florian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28569

Cover

Abstract Purpose The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al. Methods The task of the challenge was to reconstruct radially acquired multicoil k‐space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python). Results Visually, differences between submissions were small. Pixel‐wise differences originated from image orientation, assumed field‐of‐view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics. Discussion and Conclusion While the description level of the published algorithm enabled participants to reproduce CG‐SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground‐truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG‐SENSE presented here, as a benchmark for methods comparison.
AbstractList Purpose The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al. Methods The task of the challenge was to reconstruct radially acquired multicoil k‐space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python). Results Visually, differences between submissions were small. Pixel‐wise differences originated from image orientation, assumed field‐of‐view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics. Discussion and Conclusion While the description level of the published algorithm enabled participants to reproduce CG‐SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground‐truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG‐SENSE presented here, as a benchmark for methods comparison.
The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python). Visually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics. While the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison.
PurposeThe aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al.MethodsThe task of the challenge was to reconstruct radially acquired multicoil k‐space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).ResultsVisually, differences between submissions were small. Pixel‐wise differences originated from image orientation, assumed field‐of‐view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.Discussion and ConclusionWhile the description level of the published algorithm enabled participants to reproduce CG‐SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground‐truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG‐SENSE presented here, as a benchmark for methods comparison.
The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).PURPOSEThe aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).Visually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.RESULTSVisually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.While the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison.DISCUSSION AND CONCLUSIONWhile the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison.
Author Wang, Ke
Uecker, Martin
Maier, Oliver
Hammernik, Kerstin
Loecher, Michael
Kasper, Lars
Karakuzu, Agah
Baete, Steven Hubert
Patzig, Franz
Gallichan, Daniel
Knoll, Florian
Harrevelt, Seb
Tian, Ye
Fyrdahl, Alexander
AuthorAffiliation 17 German Centre for Cardiovascular Research (DZHK), Berlin, Germany
2 Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
9 Techna Institute, University Health Network, Toronto, ON, Canada
6 Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
7 Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
19 Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
1 Institute of Medical Engineering, Graz University of Technology, Graz, Austria
13 Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
10 NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
16 Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
5 Institute of Computer Graphics and Vision, Graz
AuthorAffiliation_xml – name: 2 Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
– name: 9 Techna Institute, University Health Network, Toronto, ON, Canada
– name: 11 Department of Radiology, Stanford University, Stanford, CA, USA
– name: 19 Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
– name: 3 Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
– name: 1 Institute of Medical Engineering, Graz University of Technology, Graz, Austria
– name: 13 Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
– name: 14 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
– name: 16 Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
– name: 6 Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
– name: 8 Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
– name: 4 Department of Computing, Imperial College London, London, UK
– name: 18 Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
– name: 12 Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
– name: 10 NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
– name: 17 German Centre for Cardiovascular Research (DZHK), Berlin, Germany
– name: 5 Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
– name: 7 Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
– name: 15 Cardiff University Brain Research Imaging Centre, Cardiff, UK
Author_xml – sequence: 1
  givenname: Oliver
  orcidid: 0000-0002-7800-0022
  surname: Maier
  fullname: Maier, Oliver
  organization: Graz University of Technology
– sequence: 2
  givenname: Steven Hubert
  orcidid: 0000-0003-3361-3789
  surname: Baete
  fullname: Baete, Steven Hubert
  organization: New York University School of Medicine
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0003-0237-7699
  surname: Fyrdahl
  fullname: Fyrdahl, Alexander
  organization: Karolinska University Hospital, and Karolinska Institutet
– sequence: 4
  givenname: Kerstin
  orcidid: 0000-0002-2734-1409
  surname: Hammernik
  fullname: Hammernik, Kerstin
  organization: Graz University of Technology
– sequence: 5
  givenname: Seb
  surname: Harrevelt
  fullname: Harrevelt, Seb
  organization: Eindhoven University of Technology
– sequence: 6
  givenname: Lars
  orcidid: 0000-0001-7667-603X
  surname: Kasper
  fullname: Kasper, Lars
  organization: University Health Network
– sequence: 7
  givenname: Agah
  surname: Karakuzu
  fullname: Karakuzu, Agah
  organization: Institute of Biomedical Engineering, Polytechnique Montréal
– sequence: 8
  givenname: Michael
  orcidid: 0000-0002-6533-1113
  surname: Loecher
  fullname: Loecher, Michael
  organization: Stanford University
– sequence: 9
  givenname: Franz
  surname: Patzig
  fullname: Patzig, Franz
  organization: ETH Zurich and University of Zurich
– sequence: 10
  givenname: Ye
  orcidid: 0000-0002-8559-4404
  surname: Tian
  fullname: Tian, Ye
  organization: University of Southern California
– sequence: 11
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: University of California
– sequence: 12
  givenname: Daniel
  surname: Gallichan
  fullname: Gallichan, Daniel
  organization: Cardiff University Brain Research Imaging Centre
– sequence: 13
  givenname: Martin
  orcidid: 0000-0002-8850-809X
  surname: Uecker
  fullname: Uecker, Martin
  organization: University of Göttingen
– sequence: 14
  givenname: Florian
  orcidid: 0000-0001-5357-8656
  surname: Knoll
  fullname: Knoll, Florian
  email: florian.knoll@nyumc.org
  organization: New York University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33179826$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:145128565$$DView record from Swedish Publication Index
BookMark eNp9ks1uEzEUhS1URNPCghdAI7EBpGnt8c_YXSChKJRKKUgNrC2Px2lcPONgexplxyPwjDwJbidUtAJWtu79zr1Hxz4Ae73vDQDPETxCEFbHXeiOKk6ZeAQmiFZVWVFB9sAE1gSWGAmyDw5ivIIQClGTJ2AfY1QLXrEJmE9Pf37_sZh9XMyKYK5ttMm0J8WFiYNLsVgG3xVpZYqlDTEVZ4vzi_PMrYNvB20b62zaFnqlnDP9pXkKHi-Vi-bZ7jwEX97PPk8_lPNPp2fTd_NSU1KLkjONKwzrFkFFVNtobrRuFOJtjUVLCaMtg5SLRijCMOZQZAIhTKmCuaTxIXgzzh36tdpu8na5DrZTYSsRlDeRyByJvI0kw-UIx41ZD80d6ZWVu9LXfDOSMMZqlPm3I587nWm16VNQ7p7sfqe3K3npryWvIOK3C1_tBgT_bTAxyc5GbZxTvfFDlBVhEHKIEcnoywfolR9Cn7PLVI0ZQgLTTL3409Gdld-vmIHjEdDBxxjMUmqbVLL-xqB1fw3l9QPF_wLcTd9YZ7b_BmX-G6PiF1yRzD0
CitedBy_id crossref_primary_10_1002_mrm_29292
crossref_primary_10_1016_j_media_2022_102538
crossref_primary_10_1002_mrm_30041
crossref_primary_10_1002_mrm_30375
crossref_primary_10_1002_mrm_29366
crossref_primary_10_1002_mrm_29883
crossref_primary_10_1016_j_neuroimage_2022_119623
crossref_primary_10_1109_TCI_2023_3240081
crossref_primary_10_1002_nbm_5268
crossref_primary_10_2463_mrms_mp_2021_0103
crossref_primary_10_1002_mrm_29384
crossref_primary_10_1109_TMI_2021_3075856
crossref_primary_10_1016_j_neuroimage_2021_118738
crossref_primary_10_1109_ACCESS_2025_3552853
crossref_primary_10_1002_mrm_29645
crossref_primary_10_1007_s10334_025_01236_4
crossref_primary_10_1016_j_mri_2023_10_008
crossref_primary_10_1038_s41597_022_01571_4
crossref_primary_10_1002_hbm_25407
crossref_primary_10_3934_mbe_2023712
Cites_doi 10.1109/TAU.1970.1162132
10.3389/fncom.2015.00030
10.1038/s41567-018-0342-2
10.1109/TMI.2019.2954121
10.1109/TMI.2005.848376
10.3390/jimaging4030051
10.1090/conm/180/2003
10.1002/mrm.21691
10.1137/0914086
10.1007/978-3-030-43020-7_68
10.1002/mrm.22453
10.1002/mrm.1241
10.1080/00401706.1979.10489751
10.1038/533452a
10.1109/MCSE.2010.113
10.1109/TSP.2002.807005
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.24751
10.1126/science.1213847
10.1109/TMI.1985.4307723
10.1109/TIP.2003.819861
10.1109/42.97598
10.1137/141000671
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1109/ICASSP.1998.681704
10.1090/S0025-5718-1965-0178586-1
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
ADTOC
UNPAY
DOI 10.1002/mrm.28569
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1839
ExternalDocumentID 10.1002/mrm.28569
oai_swepub_ki_se_466671
PMC8201869
33179826
10_1002_mrm_28569
MRM28569
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH (NIBIB)
  funderid: R01EB024532; P41EB017183; R21EB027241; U24EB029240
– fundername: Austrian Academy of Sciences, DOC‐Fellowship
  funderid: 24966
– fundername: NIBIB NIH HHS
  grantid: R01 EB024532
– fundername: NIBIB NIH HHS
  grantid: U24 EB029240
– fundername: NIBIB NIH HHS
  grantid: R21 EB027241
– fundername: NIBIB NIH HHS
  grantid: P41 EB017183
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c5479-86c32307d10a4adbc8eccba18d739d5465d60589b9a4633809c8e11355a09a4c3
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:45:05 EDT 2025
Mon Oct 20 03:26:08 EDT 2025
Thu Aug 21 13:55:41 EDT 2025
Thu Jul 10 22:04:26 EDT 2025
Tue Oct 07 06:17:57 EDT 2025
Thu Apr 03 07:09:35 EDT 2025
Wed Oct 01 05:05:34 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Thu Sep 25 07:34:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CG-SENSE
image reconstruction
nonuniform sampling
MRI
reproducibility
NUFFT
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5479-86c32307d10a4adbc8eccba18d739d5465d60589b9a4633809c8e11355a09a4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3361-3789
0000-0002-2734-1409
0000-0001-5357-8656
0000-0002-8559-4404
0000-0002-8850-809X
0000-0002-7800-0022
0000-0002-6533-1113
0000-0001-7667-603X
0000-0003-0237-7699
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28569
PMID 33179826
PQID 2473611935
PQPubID 1016391
PageCount 19
ParticipantIDs unpaywall_primary_10_1002_mrm_28569
swepub_primary_oai_swepub_ki_se_466671
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8201869
proquest_miscellaneous_2460080314
proquest_journals_2473611935
pubmed_primary_33179826
crossref_citationtrail_10_1002_mrm_28569
crossref_primary_10_1002_mrm_28569
wiley_primary_10_1002_mrm_28569_MRM28569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2011; 334
2019; 5
1985; 4
1991; 10
2000; 43
2020; 39
2008
1999; 42
1994
1992
2020; 1134
2015; 9
2001; 46
2003; 51
1970; 18
1965; 19
2010; 63
2005; 24
1977
1993; 14
2018; 4
2017; 59
2001
2004; 13
2007; 8
2019
1998; 3
2015
2016; 533
1998; 1
2014
2008; 60
1979; 21
2014; 71
2018; 15
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
Sonnenburg S (e_1_2_8_30_1) 2007; 8
e_1_2_8_27_1
Tikhonov AN (e_1_2_8_11_1) 1977
e_1_2_8_2_1
Hansen PC (e_1_2_8_26_1) 1998; 1
e_1_2_8_5_1
e_1_2_8_4_1
Block KT (e_1_2_8_18_1) 2008
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Claerbout JF (e_1_2_8_3_1) 1992
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Knopp T (e_1_2_8_32_1) 2019; 5
References_xml – volume: 15
  start-page: 113
  year: 2018
  end-page: 119
  article-title: Open is not enough
  publication-title: Nat Phys
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 4
  start-page: 200
  year: 1985
  end-page: 207
  article-title: A fast sinc function gridding algorithm for fourier inversion in computer tomography
  publication-title: IEEE Trans Med Imaging
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 5
  start-page: 1
  year: 2019
  end-page: 9
  article-title: MPIReco.jl: Julia package for image reconstruction in MPI
  publication-title: Int J Magn Particle Imaging
– volume: 14
  start-page: 1487
  year: 1993
  end-page: 1503
  article-title: The use of the L‐curve in the regularization of discrete ill‐posed problems
  publication-title: SIAM J Sci Comput
– volume: 4
  start-page: 51
  year: 2018
  article-title: Python non‐uniform fast Fourier transform (PyNUFFT): an accelerated non‐Cartesian MRI package on a heterogeneous platform (CPU/GPU)
  publication-title: J Imaging
– start-page: 4819
  year: 2019
– volume: 39
  start-page: 1646
  year: 2020
  end-page: 1654
  article-title: Accelerating non‐Cartesian MRI reconstruction convergence using k‐space preconditioning
  publication-title: IEEE Trans Med Imaging
– volume: 1
  start-page: 175
  year: 1998
  end-page: 208
  article-title: Rank deficient and discrete ill posed problems: numerical aspects of linear inversion
  publication-title: Soc Industrial Appl Math
– volume: 1134
  start-page: 519
  year: 2020
  end-page: 524
– start-page: 2486
  year: 2015
– volume: 51
  start-page: 560
  year: 2003
  end-page: 574
  article-title: Nonuniform fast Fourier transforms using min‐max interpolation
  publication-title: IEEE Trans Signal Process
– start-page: 767
  year: 2001
– volume: 533
  start-page: 452
  year: 2016
  end-page: 454
  article-title: 1,500 scientists lift the lid on reproducibility
  publication-title: Nature
– volume: 21
  start-page: 215
  year: 1979
  end-page: 223
  article-title: Generalized cross‐validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– volume: 9
  start-page: 30
  year: 2015
  article-title: A long journey into reproducible computational neuroscience
  publication-title: Front Comput Neurosci
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 8
  start-page: 2443
  year: 2007
  end-page: 2466
  article-title: The need for open source software in machine learning
  publication-title: J Mach Learn Res
– volume: 63
  start-page: 1456
  year: 2010
  end-page: 1462
  article-title: Nonlinear inverse reconstruction for real‐time MRI of the human heart using undersampled radial FLASH
  publication-title: Magn Reson Med
– year: 1977
– volume: 60
  start-page: 674
  year: 2008
  end-page: 682
  article-title: Image reconstruction by regularized nonlinear inversion–joint estimation of coil sensitivities and image content
  publication-title: Magn Reson Med
– year: 1994
– start-page: 4297
  year: 2014
– volume: 24
  start-page: 799
  year: 2005
  end-page: 808
  article-title: Rapid gridding reconstruction with a minimal oversampling ratio
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 3
  start-page: 1381
  year: 1998
  end-page: 1384
– volume: 12
  start-page: 8
  year: 2010
  end-page: 13
  article-title: Reproducible Research
  publication-title: Computing in Science & Engineering
– start-page: 601
  year: 1992
  end-page: 604
  article-title: Electronic documents give reproducible research a new meaning
  publication-title: SEG Technical Program Expanded Abstracts
– year: 2008
– start-page: 3639
  year: 2015
– volume: 18
  start-page: 451
  year: 1970
  end-page: 455
  article-title: A linear filtering approach to the computation of discrete Fourier transform
  publication-title: IEEE Trans Audio Electroacoustics
– volume: 334
  start-page: 1226
  year: 2011
  end-page: 1227
  article-title: Reproducible research in computational science
  publication-title: Science (80‐)
– volume: 10
  start-page: 473
  year: 1991
  end-page: 478
  article-title: Selection of a convolution function for Fourier inversion using gridding (computerised tomography application)
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 297
  year: 1965
  end-page: 301
  article-title: An algorithm for the machine calculation of complex fourier series
  publication-title: Math Comput
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– ident: e_1_2_8_29_1
  doi: 10.1109/TAU.1970.1162132
– ident: e_1_2_8_37_1
– ident: e_1_2_8_7_1
  doi: 10.3389/fncom.2015.00030
– ident: e_1_2_8_8_1
  doi: 10.1038/s41567-018-0342-2
– ident: e_1_2_8_17_1
– ident: e_1_2_8_13_1
  doi: 10.1109/TMI.2019.2954121
– ident: e_1_2_8_39_1
– ident: e_1_2_8_14_1
  doi: 10.1109/TMI.2005.848376
– ident: e_1_2_8_33_1
– ident: e_1_2_8_38_1
  doi: 10.3390/jimaging4030051
– ident: e_1_2_8_12_1
  doi: 10.1090/conm/180/2003
– start-page: 601
  year: 1992
  ident: e_1_2_8_3_1
  article-title: Electronic documents give reproducible research a new meaning
  publication-title: SEG Technical Program Expanded Abstracts
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.21691
– ident: e_1_2_8_25_1
  doi: 10.1137/0914086
– volume: 1
  start-page: 175
  year: 1998
  ident: e_1_2_8_26_1
  article-title: Rank deficient and discrete ill posed problems: numerical aspects of linear inversion
  publication-title: Soc Industrial Appl Math
– volume-title: Solutions of ill‐posed problems/Andrey N. Tikhonov and Vasiliy Y. Arsenin
  year: 1977
  ident: e_1_2_8_11_1
– ident: e_1_2_8_16_1
– volume-title: Advanced Methods for Radial Data Sampling in Magnetic Resonance Imaging
  year: 2008
  ident: e_1_2_8_18_1
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-030-43020-7_68
– ident: e_1_2_8_36_1
  doi: 10.1002/mrm.22453
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_8_24_1
  doi: 10.1080/00401706.1979.10489751
– ident: e_1_2_8_35_1
– ident: e_1_2_8_6_1
  doi: 10.1038/533452a
– ident: e_1_2_8_4_1
  doi: 10.1109/MCSE.2010.113
– volume: 8
  start-page: 2443
  year: 2007
  ident: e_1_2_8_30_1
  article-title: The need for open source software in machine learning
  publication-title: J Mach Learn Res
– ident: e_1_2_8_15_1
  doi: 10.1109/TSP.2002.807005
– ident: e_1_2_8_10_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1213847
– ident: e_1_2_8_23_1
  doi: 10.1109/TMI.1985.4307723
– volume: 5
  start-page: 1
  year: 2019
  ident: e_1_2_8_32_1
  article-title: MPIReco.jl: Julia package for image reconstruction in MPI
  publication-title: Int J Magn Particle Imaging
– ident: e_1_2_8_22_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_8_20_1
  doi: 10.1109/42.97598
– ident: e_1_2_8_31_1
  doi: 10.1137/141000671
– ident: e_1_2_8_19_1
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– ident: e_1_2_8_27_1
  doi: 10.1109/ICASSP.1998.681704
– ident: e_1_2_8_28_1
  doi: 10.1090/S0025-5718-1965-0178586-1
SSID ssj0009974
Score 2.4943912
SecondaryResourceType review_article
Snippet Purpose The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to...
The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate...
PurposeThe aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to...
SourceID unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1821
SubjectTerms Algorithms
Brain - diagnostic imaging
CG‐SENSE
Data acquisition
Humans
Image processing
Image Processing, Computer-Assisted
Image reconstruction
Magnetic Resonance Imaging
MRI
nonuniform sampling
NUFFT
Outliers (statistics)
Pixels
Programming languages
Regularization
Reproducibility
Reproducibility of Results
Similarity
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlcrjUKBQCBQUHkK9ZJvETuLACVVbCmJ72KVSD0iR7Tii6jatNhuhcuIn8Bv5Jcw4jyoUEOJm2eP4NZN8jmc-A7zAzsV-kRYeM7nyuDHGkyrUXiSUYCLhMrFxa5ODeP-Qvz-KjlbgdRcL0_BD9D_cyDLs-5oMXKpq55I09HRxOgpFFFPwXsBiu52aXlJHpWnDwJxwes-kvGMV8sOdvubwW3QFYF71k2zZRG_C9bo8lxdf5Hw-BLX2q7R3Cz5142mcUU5G9VKN9NdfqB7_c8C3Yb1Fq-6bRr3uwIopN-DapD2P34A160Cqq7vwYfftj2_fZ-OD2dhd2Ih1hLKv3Kmp6vmycimKxUWs6RbHCDfdd7PJdOISoSbxzTYOuheu7i52uQeHe-OPu_tee1ODpyOepJ6INSOP8jzwJZe50gI1Q8lA5AlLc7pvPafj11Slkse4KfZTlAgCxDrSxyzNNmG1PCvNA3A1QrwcNUso49OjROQXCMtMFKqiiFjkwHa3ZpluaczpNo151hAwhxnOU2bnyYFnveh5w93xO6GtbuGz1nyrLOQJiwPEttjc074YDY9OU2RpzmqSiQlus4A7cL_Rk74VxogHLowdSAYa1AsQqfewpDz-bMm9CZEJ6tbLRtcGVdqsE0yZjOPOMwkceN7r4t9GuW1V688SGa67TTz8d9FHcCMkFx_ryLQFq8tFbR4jRluqJ9YYfwKTFTo4
  priority: 102
  providerName: Wiley-Blackwell
Title CG‐SENSE revisited: Results from the first ISMRM reproducibility challenge
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28569
https://www.ncbi.nlm.nih.gov/pubmed/33179826
https://www.proquest.com/docview/2473611935
https://www.proquest.com/docview/2460080314
https://pubmed.ncbi.nlm.nih.gov/PMC8201869
http://kipublications.ki.se/Default.aspx?queryparsed=id:145128565
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28569
UnpaywallVersion publishedVersion
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7BVlwPHOUKlMocQn3JkjiXw1tVbSmIXaFdVipPIXEcUXWbrnY3QuWJn8Bv5JcwYzsRSwEh8RYlEx_xjP05M_4G4Bk2LvaqtHIDVRZuqJRy84JLNxKFCEQS5ok-tzYcxQfT8M1hdGjznNJZGMMP0f1wI8vQ8zUZ-LyszDxvvfv8xcnipM9FFKcXYSOOEIz3YGM6erf7wZBv0gyjUyHiIsVdBPphyy3087vrK9I5mHk-WtJyil6DK009z88-57PZOrTVa9P-DfjY9sqEpBz3m1XRl19-IXz8j27fhOsWt7Jdo2i34IKqN-Hy0HrmN-GSDiWVy9vwdu_V96_fJoPRZMAW-uw6gtqXbKyWzWy1ZHSehSHqZNURAk_2ejIcDxlRaxLzrAnVPWOyTfFyB6b7g_d7B67N2eDKKExSV8QyoNjy0vfyMC8LKVBHitwXZRKkJWVeL8kRmxZpHsa4PfZSlPB9RD25h7dkcBd69Wmt7gOTCPZK1DFRKI-KEpFXIUBTES-qKgoiB3baccukJTSnvBqzzFAx8wy_U6a_kwNPOtG5YfH4ndBWO_iZNeRlxsMkiH1EuVjd4-4xmiD5VfJanTYkExPwDvzQgXtGV7pagoAY4XjsQLKmRZ0A0XuvP6mPPmmab8Jmgpr13Ojb2iv21jFeqSzEPWjiO_C008e_9XJHq9efJTIcd33x4J8KfAhXOcX56GimLeitFo16hEBtVWzjFmXMt61J_gBZtz96
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigceJRXoECACvWSbRI7DyMuqNqyhc0edlupFxTZiSOqbtNqH0LlxE_gN_JLmHEeVSggxC2yx_Frxv5sjz8DbGLhQrcQhcN0rhyutXak8jMniFXM4ojLyNxbS0bh4IB_OAwOV-Btcxem4odoN9zIMsx4TQZOG9LbF6yhJ7OTnh8HobgCV3mI6xSCROML8ighKg7miNNII3jDK-T6223S7mx0CWJe9pSs-URvwtqyPJPnX-R02oW1Zl7avQ2fmhpV7ijHveVC9bKvv5A9_m-V78CtGrDa7yoNuwsrulyH60l9JL8O14wPaTa_B8Od9z--fZ_0R5O-PTOX1hHNvrHHer6cLuY2XWSxEW7axREiTntvkowTmzg1iXK28tE9t7PmbZf7cLDb398ZOPVjDU4W8Eg4cZgxcirPPVdymassRuVQ0ovziImcnlzP6QRWKCF5iOtiV6CE5yHckS4GZewBrJanpX4EdoYoL0flipV26Vdx4BaIzHTgq6IIWGDBVtNpaVYzmdODGtO04mD2U2yn1LSTBS9b0bOKvuN3QhtNz6e1Bc9Tn0cs9BDeYnYv2mi0PTpQkaU-XZJMSIibedyCh5WitLkwRlRwfmhB1FGhVoB4vbsx5dFnw-9NoCymYr2ulK2TpA46xi-dclx8Rp4Fr1pl_Fstt4xu_VkixX43H4__XfQ5rA32k2E63Bt9fAI3fPL4MX5NG7C6mC31U4RsC_XMWOZPG2U-WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2zwwGUMKAwwMKG9pEtiJ7ERL2hr2WCtUMukvaDIThwxrcuqthEaT_wEfiO_BB_nMoUBQrxZ9nF8O8f-HB9_Btg0lQvdTGQO1alymNbakcpPnIArTnnEZGTvrQ2G4d4he3cUHC3B6_ouTMkP0fxwQ8uw8zUauJ6m2fYFa-jp7LTr8yAUV-AqCwRHh77d0QV5lBAlB3PEcKYRrOYVcv3tJmt7NboEMS97SlZ8ojdgtcin8vyLnEzasNauS_1b8KluUemOctItFqqbfP2F7PF_m3wbblaAlbwpNewOLOl8DVYG1ZH8GlyzPqTJ_C4c7Lz98e37uDcc98jMXlo3aPYVGel5MVnMCV5kIQZukuzYIE6yPx6MBgQ5NZFytvTRPSdJ_bbLOhz2ex939pzqsQYnCVgkHB4mFJ3KU8-VTKYq4UY5lPR4GlGR4pPrKZ7ACiUkC82-2BVGwvMM3JGuiUroPVjOz3L9AEhiUF5qlIsr7eKneOBmBpnpwFdZFtCgA1v1oMVJxWSOD2pM4pKD2Y9NP8W2nzrwvBGdlvQdvxPaqEc-rix4HvssoqFn4K0p7lmTbGwPD1Rkrs8KlAkRcVOPdeB-qShNKZQiFZwfdiBqqVAjgLze7ZT8-LPl90ZQxrFaL0tla2Wpok5MSMfMbD4jrwMvGmX8Wyu3rG79WSI2424DD_9d9CmsfNjtxwf7w_eP4LqPDj_WrWkDlhezQj82iG2hnljD_Alx6T3d
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVlA48CivQEHmIdRLtknsJA63qtpSELtCXVZqT8F2HFF1m652N0LlxE_gN_JLGNtJxFJASNwsZ2zH9oz9JR5_A_ACXy4Jyqz0qS6kz7TWvpCR8mMuOeUpE6m9tzYcJfsT9vYwPmzinJq7MI4fovvhZizDrtfGwGdF6db55nQ_2j6dn_YjHifZZVhLYgTjPVibjN7vHDnyTbPC2FCIuElFPgJ91nIL_Vx2dUe6ADMveks2nKLXYb2uZuL8s5hOV6Gt3Zv2bsLHtlfOJeWkXy9lX335hfDxP7p9C240uJXsOEW7DZd0tQFXh83J_AZcsa6kanEH3u2-_v7123gwGg_I3N5dR1D7ihzoRT1dLoi5z0IQdZLyGIEneTMeHgyJodY0zLPOVfecqDbEy12Y7A0-7O77TcwGX8UszXyeKGp8y4swEEwUUnHUESlCXqQ0K0zk9cIcxGYyEyzBz-MgQ4kwRNQjAsxS9B70qrNKPwCiEOwVqGNc6sBUxeOgRICm40iWZUxjD7baectVQ2hu4mpMc0fFHOU4TrkdJw-edaIzx-LxO6HNdvLzxpAXecRSmoSIcrG5p91jNEFzriIqfVYbmcQAbxoyD-47XelaodQwwkWJB-mKFnUCht579Ul1_MnSfBtsxs1rvXT6tlKkyTrBlM4ZfoOmoQfPO338Wy-3rHr9WSLHebeJh_9U4SO4Fhk_H-vNtAm95bzWjxGoLeWTxhh_AOKpPpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CG%E2%80%90SENSE+revisited%3A+Results+from+the+first+ISMRM+reproducibility+challenge&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Maier%2C+Oliver&rft.au=Baete%2C+Steven+Hubert&rft.au=Fyrdahl%2C+Alexander&rft.au=Hammernik%2C+Kerstin&rft.date=2021-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=4&rft.spage=1821&rft.epage=1839&rft_id=info:doi/10.1002%2Fmrm.28569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_28569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon