CG‐SENSE revisited: Results from the first ISMRM reproducibility challenge
Purpose The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al. Methods The task of the...
        Saved in:
      
    
          | Published in | Magnetic resonance in medicine Vol. 85; no. 4; pp. 1821 - 1839 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Wiley Subscription Services, Inc
    
        01.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0740-3194 1522-2594 1522-2594  | 
| DOI | 10.1002/mrm.28569 | 
Cover
| Abstract | Purpose
The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al.
Methods
The task of the challenge was to reconstruct radially acquired multicoil k‐space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).
Results
Visually, differences between submissions were small. Pixel‐wise differences originated from image orientation, assumed field‐of‐view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.
Discussion and Conclusion
While the description level of the published algorithm enabled participants to reproduce CG‐SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground‐truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG‐SENSE presented here, as a benchmark for methods comparison. | 
    
|---|---|
| AbstractList | Purpose
The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al.
Methods
The task of the challenge was to reconstruct radially acquired multicoil k‐space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).
Results
Visually, differences between submissions were small. Pixel‐wise differences originated from image orientation, assumed field‐of‐view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.
Discussion and Conclusion
While the description level of the published algorithm enabled participants to reproduce CG‐SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground‐truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG‐SENSE presented here, as a benchmark for methods comparison. The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python). Visually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics. While the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison. PurposeThe aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of “Advances in sensitivity encoding with arbitrary k‐space trajectories" by Pruessmann et al.MethodsThe task of the challenge was to reconstruct radially acquired multicoil k‐space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).ResultsVisually, differences between submissions were small. Pixel‐wise differences originated from image orientation, assumed field‐of‐view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.Discussion and ConclusionWhile the description level of the published algorithm enabled participants to reproduce CG‐SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground‐truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG‐SENSE presented here, as a benchmark for methods comparison. The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).PURPOSEThe aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python).Visually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.RESULTSVisually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics.While the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison.DISCUSSION AND CONCLUSIONWhile the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison.  | 
    
| Author | Wang, Ke Uecker, Martin Maier, Oliver Hammernik, Kerstin Loecher, Michael Kasper, Lars Karakuzu, Agah Baete, Steven Hubert Patzig, Franz Gallichan, Daniel Knoll, Florian Harrevelt, Seb Tian, Ye Fyrdahl, Alexander  | 
    
| AuthorAffiliation | 17 German Centre for Cardiovascular Research (DZHK), Berlin, Germany 2 Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA 9 Techna Institute, University Health Network, Toronto, ON, Canada 6 Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands 7 Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland 19 Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany 1 Institute of Medical Engineering, Graz University of Technology, Graz, Austria 13 Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA 10 NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada 16 Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany 5 Institute of Computer Graphics and Vision, Graz  | 
    
| AuthorAffiliation_xml | – name: 2 Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA – name: 9 Techna Institute, University Health Network, Toronto, ON, Canada – name: 11 Department of Radiology, Stanford University, Stanford, CA, USA – name: 19 Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany – name: 3 Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden – name: 1 Institute of Medical Engineering, Graz University of Technology, Graz, Austria – name: 13 Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA – name: 14 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA – name: 16 Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany – name: 6 Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands – name: 8 Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland – name: 4 Department of Computing, Imperial College London, London, UK – name: 18 Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany – name: 12 Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA – name: 10 NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada – name: 17 German Centre for Cardiovascular Research (DZHK), Berlin, Germany – name: 5 Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria – name: 7 Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland – name: 15 Cardiff University Brain Research Imaging Centre, Cardiff, UK  | 
    
| Author_xml | – sequence: 1 givenname: Oliver orcidid: 0000-0002-7800-0022 surname: Maier fullname: Maier, Oliver organization: Graz University of Technology – sequence: 2 givenname: Steven Hubert orcidid: 0000-0003-3361-3789 surname: Baete fullname: Baete, Steven Hubert organization: New York University School of Medicine – sequence: 3 givenname: Alexander orcidid: 0000-0003-0237-7699 surname: Fyrdahl fullname: Fyrdahl, Alexander organization: Karolinska University Hospital, and Karolinska Institutet – sequence: 4 givenname: Kerstin orcidid: 0000-0002-2734-1409 surname: Hammernik fullname: Hammernik, Kerstin organization: Graz University of Technology – sequence: 5 givenname: Seb surname: Harrevelt fullname: Harrevelt, Seb organization: Eindhoven University of Technology – sequence: 6 givenname: Lars orcidid: 0000-0001-7667-603X surname: Kasper fullname: Kasper, Lars organization: University Health Network – sequence: 7 givenname: Agah surname: Karakuzu fullname: Karakuzu, Agah organization: Institute of Biomedical Engineering, Polytechnique Montréal – sequence: 8 givenname: Michael orcidid: 0000-0002-6533-1113 surname: Loecher fullname: Loecher, Michael organization: Stanford University – sequence: 9 givenname: Franz surname: Patzig fullname: Patzig, Franz organization: ETH Zurich and University of Zurich – sequence: 10 givenname: Ye orcidid: 0000-0002-8559-4404 surname: Tian fullname: Tian, Ye organization: University of Southern California – sequence: 11 givenname: Ke surname: Wang fullname: Wang, Ke organization: University of California – sequence: 12 givenname: Daniel surname: Gallichan fullname: Gallichan, Daniel organization: Cardiff University Brain Research Imaging Centre – sequence: 13 givenname: Martin orcidid: 0000-0002-8850-809X surname: Uecker fullname: Uecker, Martin organization: University of Göttingen – sequence: 14 givenname: Florian orcidid: 0000-0001-5357-8656 surname: Knoll fullname: Knoll, Florian email: florian.knoll@nyumc.org organization: New York University School of Medicine  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33179826$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:145128565$$DView record from Swedish Publication Index  | 
    
| BookMark | eNp9ks1uEzEUhS1URNPCghdAI7EBpGnt8c_YXSChKJRKKUgNrC2Px2lcPONgexplxyPwjDwJbidUtAJWtu79zr1Hxz4Ae73vDQDPETxCEFbHXeiOKk6ZeAQmiFZVWVFB9sAE1gSWGAmyDw5ivIIQClGTJ2AfY1QLXrEJmE9Pf37_sZh9XMyKYK5ttMm0J8WFiYNLsVgG3xVpZYqlDTEVZ4vzi_PMrYNvB20b62zaFnqlnDP9pXkKHi-Vi-bZ7jwEX97PPk8_lPNPp2fTd_NSU1KLkjONKwzrFkFFVNtobrRuFOJtjUVLCaMtg5SLRijCMOZQZAIhTKmCuaTxIXgzzh36tdpu8na5DrZTYSsRlDeRyByJvI0kw-UIx41ZD80d6ZWVu9LXfDOSMMZqlPm3I587nWm16VNQ7p7sfqe3K3npryWvIOK3C1_tBgT_bTAxyc5GbZxTvfFDlBVhEHKIEcnoywfolR9Cn7PLVI0ZQgLTTL3409Gdld-vmIHjEdDBxxjMUmqbVLL-xqB1fw3l9QPF_wLcTd9YZ7b_BmX-G6PiF1yRzD0 | 
    
| CitedBy_id | crossref_primary_10_1002_mrm_29292 crossref_primary_10_1016_j_media_2022_102538 crossref_primary_10_1002_mrm_30041 crossref_primary_10_1002_mrm_30375 crossref_primary_10_1002_mrm_29366 crossref_primary_10_1002_mrm_29883 crossref_primary_10_1016_j_neuroimage_2022_119623 crossref_primary_10_1109_TCI_2023_3240081 crossref_primary_10_1002_nbm_5268 crossref_primary_10_2463_mrms_mp_2021_0103 crossref_primary_10_1002_mrm_29384 crossref_primary_10_1109_TMI_2021_3075856 crossref_primary_10_1016_j_neuroimage_2021_118738 crossref_primary_10_1109_ACCESS_2025_3552853 crossref_primary_10_1002_mrm_29645 crossref_primary_10_1007_s10334_025_01236_4 crossref_primary_10_1016_j_mri_2023_10_008 crossref_primary_10_1038_s41597_022_01571_4 crossref_primary_10_1002_hbm_25407 crossref_primary_10_3934_mbe_2023712  | 
    
| Cites_doi | 10.1109/TAU.1970.1162132 10.3389/fncom.2015.00030 10.1038/s41567-018-0342-2 10.1109/TMI.2019.2954121 10.1109/TMI.2005.848376 10.3390/jimaging4030051 10.1090/conm/180/2003 10.1002/mrm.21691 10.1137/0914086 10.1007/978-3-030-43020-7_68 10.1002/mrm.22453 10.1002/mrm.1241 10.1080/00401706.1979.10489751 10.1038/533452a 10.1109/MCSE.2010.113 10.1109/TSP.2002.807005 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.24751 10.1126/science.1213847 10.1109/TMI.1985.4307723 10.1109/TIP.2003.819861 10.1109/42.97598 10.1137/141000671 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G 10.1109/ICASSP.1998.681704 10.1090/S0025-5718-1965-0178586-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine.  | 
    
| Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTPV AOWAS D8T ZZAVC ADTOC UNPAY  | 
    
| DOI | 10.1002/mrm.28569 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Biochemistry Abstracts 1 MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Physics  | 
    
| EISSN | 1522-2594 | 
    
| EndPage | 1839 | 
    
| ExternalDocumentID | 10.1002/mrm.28569 oai_swepub_ki_se_466671 PMC8201869 33179826 10_1002_mrm_28569 MRM28569  | 
    
| Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIH (NIBIB) funderid: R01EB024532; P41EB017183; R21EB027241; U24EB029240 – fundername: Austrian Academy of Sciences, DOC‐Fellowship funderid: 24966 – fundername: NIBIB NIH HHS grantid: R01 EB024532 – fundername: NIBIB NIH HHS grantid: U24 EB029240 – fundername: NIBIB NIH HHS grantid: R21 EB027241 – fundername: NIBIB NIH HHS grantid: P41 EB017183  | 
    
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTPV AOWAS D8T ZZAVC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5479-86c32307d10a4adbc8eccba18d739d5465d60589b9a4633809c8e11355a09a4c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0740-3194 1522-2594  | 
    
| IngestDate | Sun Oct 26 03:45:05 EDT 2025 Mon Oct 20 03:26:08 EDT 2025 Thu Aug 21 13:55:41 EDT 2025 Thu Jul 10 22:04:26 EDT 2025 Tue Oct 07 06:17:57 EDT 2025 Thu Apr 03 07:09:35 EDT 2025 Wed Oct 01 05:05:34 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Thu Sep 25 07:34:32 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | CG-SENSE image reconstruction nonuniform sampling MRI reproducibility NUFFT  | 
    
| Language | English | 
    
| License | 2020 International Society for Magnetic Resonance in Medicine. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5479-86c32307d10a4adbc8eccba18d739d5465d60589b9a4633809c8e11355a09a4c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23  | 
    
| ORCID | 0000-0003-3361-3789 0000-0002-2734-1409 0000-0001-5357-8656 0000-0002-8559-4404 0000-0002-8850-809X 0000-0002-7800-0022 0000-0002-6533-1113 0000-0001-7667-603X 0000-0003-0237-7699  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28569 | 
    
| PMID | 33179826 | 
    
| PQID | 2473611935 | 
    
| PQPubID | 1016391 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mrm_28569 swepub_primary_oai_swepub_ki_se_466671 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8201869 proquest_miscellaneous_2460080314 proquest_journals_2473611935 pubmed_primary_33179826 crossref_citationtrail_10_1002_mrm_28569 crossref_primary_10_1002_mrm_28569 wiley_primary_10_1002_mrm_28569_MRM28569  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2021 | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Hoboken  | 
    
| PublicationTitle | Magnetic resonance in medicine | 
    
| PublicationTitleAlternate | Magn Reson Med | 
    
| PublicationYear | 2021 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2010; 12 2011; 334 2019; 5 1985; 4 1991; 10 2000; 43 2020; 39 2008 1999; 42 1994 1992 2020; 1134 2015; 9 2001; 46 2003; 51 1970; 18 1965; 19 2010; 63 2005; 24 1977 1993; 14 2018; 4 2017; 59 2001 2004; 13 2007; 8 2019 1998; 3 2015 2016; 533 1998; 1 2014 2008; 60 1979; 21 2014; 71 2018; 15 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 Sonnenburg S (e_1_2_8_30_1) 2007; 8 e_1_2_8_27_1 Tikhonov AN (e_1_2_8_11_1) 1977 e_1_2_8_2_1 Hansen PC (e_1_2_8_26_1) 1998; 1 e_1_2_8_5_1 e_1_2_8_4_1 Block KT (e_1_2_8_18_1) 2008 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Claerbout JF (e_1_2_8_3_1) 1992 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Knopp T (e_1_2_8_32_1) 2019; 5  | 
    
| References_xml | – volume: 15 start-page: 113 year: 2018 end-page: 119 article-title: Open is not enough publication-title: Nat Phys – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories publication-title: Magn Reson Med – volume: 4 start-page: 200 year: 1985 end-page: 207 article-title: A fast sinc function gridding algorithm for fourier inversion in computer tomography publication-title: IEEE Trans Med Imaging – volume: 13 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 5 start-page: 1 year: 2019 end-page: 9 article-title: MPIReco.jl: Julia package for image reconstruction in MPI publication-title: Int J Magn Particle Imaging – volume: 14 start-page: 1487 year: 1993 end-page: 1503 article-title: The use of the L‐curve in the regularization of discrete ill‐posed problems publication-title: SIAM J Sci Comput – volume: 4 start-page: 51 year: 2018 article-title: Python non‐uniform fast Fourier transform (PyNUFFT): an accelerated non‐Cartesian MRI package on a heterogeneous platform (CPU/GPU) publication-title: J Imaging – start-page: 4819 year: 2019 – volume: 39 start-page: 1646 year: 2020 end-page: 1654 article-title: Accelerating non‐Cartesian MRI reconstruction convergence using k‐space preconditioning publication-title: IEEE Trans Med Imaging – volume: 1 start-page: 175 year: 1998 end-page: 208 article-title: Rank deficient and discrete ill posed problems: numerical aspects of linear inversion publication-title: Soc Industrial Appl Math – volume: 1134 start-page: 519 year: 2020 end-page: 524 – start-page: 2486 year: 2015 – volume: 51 start-page: 560 year: 2003 end-page: 574 article-title: Nonuniform fast Fourier transforms using min‐max interpolation publication-title: IEEE Trans Signal Process – start-page: 767 year: 2001 – volume: 533 start-page: 452 year: 2016 end-page: 454 article-title: 1,500 scientists lift the lid on reproducibility publication-title: Nature – volume: 21 start-page: 215 year: 1979 end-page: 223 article-title: Generalized cross‐validation as a method for choosing a good ridge parameter publication-title: Technometrics – volume: 9 start-page: 30 year: 2015 article-title: A long journey into reproducible computational neuroscience publication-title: Front Comput Neurosci – volume: 43 start-page: 682 year: 2000 end-page: 690 article-title: Adaptive reconstruction of phased array MR imagery publication-title: Magn Reson Med – volume: 8 start-page: 2443 year: 2007 end-page: 2466 article-title: The need for open source software in machine learning publication-title: J Mach Learn Res – volume: 63 start-page: 1456 year: 2010 end-page: 1462 article-title: Nonlinear inverse reconstruction for real‐time MRI of the human heart using undersampled radial FLASH publication-title: Magn Reson Med – year: 1977 – volume: 60 start-page: 674 year: 2008 end-page: 682 article-title: Image reconstruction by regularized nonlinear inversion–joint estimation of coil sensitivities and image content publication-title: Magn Reson Med – year: 1994 – start-page: 4297 year: 2014 – volume: 24 start-page: 799 year: 2005 end-page: 808 article-title: Rapid gridding reconstruction with a minimal oversampling ratio publication-title: IEEE Trans Med Imaging – volume: 59 start-page: 65 year: 2017 end-page: 98 article-title: Julia: a fresh approach to numerical computing publication-title: SIAM Rev – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 3 start-page: 1381 year: 1998 end-page: 1384 – volume: 12 start-page: 8 year: 2010 end-page: 13 article-title: Reproducible Research publication-title: Computing in Science & Engineering – start-page: 601 year: 1992 end-page: 604 article-title: Electronic documents give reproducible research a new meaning publication-title: SEG Technical Program Expanded Abstracts – year: 2008 – start-page: 3639 year: 2015 – volume: 18 start-page: 451 year: 1970 end-page: 455 article-title: A linear filtering approach to the computation of discrete Fourier transform publication-title: IEEE Trans Audio Electroacoustics – volume: 334 start-page: 1226 year: 2011 end-page: 1227 article-title: Reproducible research in computational science publication-title: Science (80‐) – volume: 10 start-page: 473 year: 1991 end-page: 478 article-title: Selection of a convolution function for Fourier inversion using gridding (computerised tomography application) publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 297 year: 1965 end-page: 301 article-title: An algorithm for the machine calculation of complex fourier series publication-title: Math Comput – volume: 71 start-page: 990 year: 2014 end-page: 1001 article-title: ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn Reson Med – ident: e_1_2_8_29_1 doi: 10.1109/TAU.1970.1162132 – ident: e_1_2_8_37_1 – ident: e_1_2_8_7_1 doi: 10.3389/fncom.2015.00030 – ident: e_1_2_8_8_1 doi: 10.1038/s41567-018-0342-2 – ident: e_1_2_8_17_1 – ident: e_1_2_8_13_1 doi: 10.1109/TMI.2019.2954121 – ident: e_1_2_8_39_1 – ident: e_1_2_8_14_1 doi: 10.1109/TMI.2005.848376 – ident: e_1_2_8_33_1 – ident: e_1_2_8_38_1 doi: 10.3390/jimaging4030051 – ident: e_1_2_8_12_1 doi: 10.1090/conm/180/2003 – start-page: 601 year: 1992 ident: e_1_2_8_3_1 article-title: Electronic documents give reproducible research a new meaning publication-title: SEG Technical Program Expanded Abstracts – ident: e_1_2_8_21_1 doi: 10.1002/mrm.21691 – ident: e_1_2_8_25_1 doi: 10.1137/0914086 – volume: 1 start-page: 175 year: 1998 ident: e_1_2_8_26_1 article-title: Rank deficient and discrete ill posed problems: numerical aspects of linear inversion publication-title: Soc Industrial Appl Math – volume-title: Solutions of ill‐posed problems/Andrey N. Tikhonov and Vasiliy Y. Arsenin year: 1977 ident: e_1_2_8_11_1 – ident: e_1_2_8_16_1 – volume-title: Advanced Methods for Radial Data Sampling in Magnetic Resonance Imaging year: 2008 ident: e_1_2_8_18_1 – ident: e_1_2_8_9_1 doi: 10.1007/978-3-030-43020-7_68 – ident: e_1_2_8_36_1 doi: 10.1002/mrm.22453 – ident: e_1_2_8_2_1 doi: 10.1002/mrm.1241 – ident: e_1_2_8_24_1 doi: 10.1080/00401706.1979.10489751 – ident: e_1_2_8_35_1 – ident: e_1_2_8_6_1 doi: 10.1038/533452a – ident: e_1_2_8_4_1 doi: 10.1109/MCSE.2010.113 – volume: 8 start-page: 2443 year: 2007 ident: e_1_2_8_30_1 article-title: The need for open source software in machine learning publication-title: J Mach Learn Res – ident: e_1_2_8_15_1 doi: 10.1109/TSP.2002.807005 – ident: e_1_2_8_10_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_8_34_1 doi: 10.1002/mrm.24751 – ident: e_1_2_8_5_1 doi: 10.1126/science.1213847 – ident: e_1_2_8_23_1 doi: 10.1109/TMI.1985.4307723 – volume: 5 start-page: 1 year: 2019 ident: e_1_2_8_32_1 article-title: MPIReco.jl: Julia package for image reconstruction in MPI publication-title: Int J Magn Particle Imaging – ident: e_1_2_8_22_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_8_20_1 doi: 10.1109/42.97598 – ident: e_1_2_8_31_1 doi: 10.1137/141000671 – ident: e_1_2_8_19_1 doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G – ident: e_1_2_8_27_1 doi: 10.1109/ICASSP.1998.681704 – ident: e_1_2_8_28_1 doi: 10.1090/S0025-5718-1965-0178586-1  | 
    
| SSID | ssj0009974 | 
    
| Score | 2.4943912 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Purpose
The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to... The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate... PurposeThe aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to...  | 
    
| SourceID | unpaywall swepub pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1821 | 
    
| SubjectTerms | Algorithms Brain - diagnostic imaging CG‐SENSE Data acquisition Humans Image processing Image Processing, Computer-Assisted Image reconstruction Magnetic Resonance Imaging MRI nonuniform sampling NUFFT Outliers (statistics) Pixels Programming languages Regularization Reproducibility Reproducibility of Results Similarity  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlcrjUKBQCBQUHkK9ZJvETuLACVVbCmJ72KVSD0iR7Tii6jatNhuhcuIn8Bv5Jcw4jyoUEOJm2eP4NZN8jmc-A7zAzsV-kRYeM7nyuDHGkyrUXiSUYCLhMrFxa5ODeP-Qvz-KjlbgdRcL0_BD9D_cyDLs-5oMXKpq55I09HRxOgpFFFPwXsBiu52aXlJHpWnDwJxwes-kvGMV8sOdvubwW3QFYF71k2zZRG_C9bo8lxdf5Hw-BLX2q7R3Cz5142mcUU5G9VKN9NdfqB7_c8C3Yb1Fq-6bRr3uwIopN-DapD2P34A160Cqq7vwYfftj2_fZ-OD2dhd2Ih1hLKv3Kmp6vmycimKxUWs6RbHCDfdd7PJdOISoSbxzTYOuheu7i52uQeHe-OPu_tee1ODpyOepJ6INSOP8jzwJZe50gI1Q8lA5AlLc7pvPafj11Slkse4KfZTlAgCxDrSxyzNNmG1PCvNA3A1QrwcNUso49OjROQXCMtMFKqiiFjkwHa3ZpluaczpNo151hAwhxnOU2bnyYFnveh5w93xO6GtbuGz1nyrLOQJiwPEttjc074YDY9OU2RpzmqSiQlus4A7cL_Rk74VxogHLowdSAYa1AsQqfewpDz-bMm9CZEJ6tbLRtcGVdqsE0yZjOPOMwkceN7r4t9GuW1V688SGa67TTz8d9FHcCMkFx_ryLQFq8tFbR4jRluqJ9YYfwKTFTo4 priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | CG‐SENSE revisited: Results from the first ISMRM reproducibility challenge | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28569 https://www.ncbi.nlm.nih.gov/pubmed/33179826 https://www.proquest.com/docview/2473611935 https://www.proquest.com/docview/2460080314 https://pubmed.ncbi.nlm.nih.gov/PMC8201869 http://kipublications.ki.se/Default.aspx?queryparsed=id:145128565 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.28569  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 85 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7BVlwPHOUKlMocQn3JkjiXw1tVbSmIXaFdVipPIXEcUXWbrnY3QuWJn8Bv5JcwYzsRSwEh8RYlEx_xjP05M_4G4Bk2LvaqtHIDVRZuqJRy84JLNxKFCEQS5ok-tzYcxQfT8M1hdGjznNJZGMMP0f1wI8vQ8zUZ-LyszDxvvfv8xcnipM9FFKcXYSOOEIz3YGM6erf7wZBv0gyjUyHiIsVdBPphyy3087vrK9I5mHk-WtJyil6DK009z88-57PZOrTVa9P-DfjY9sqEpBz3m1XRl19-IXz8j27fhOsWt7Jdo2i34IKqN-Hy0HrmN-GSDiWVy9vwdu_V96_fJoPRZMAW-uw6gtqXbKyWzWy1ZHSehSHqZNURAk_2ejIcDxlRaxLzrAnVPWOyTfFyB6b7g_d7B67N2eDKKExSV8QyoNjy0vfyMC8LKVBHitwXZRKkJWVeL8kRmxZpHsa4PfZSlPB9RD25h7dkcBd69Wmt7gOTCPZK1DFRKI-KEpFXIUBTES-qKgoiB3baccukJTSnvBqzzFAx8wy_U6a_kwNPOtG5YfH4ndBWO_iZNeRlxsMkiH1EuVjd4-4xmiD5VfJanTYkExPwDvzQgXtGV7pagoAY4XjsQLKmRZ0A0XuvP6mPPmmab8Jmgpr13Ojb2iv21jFeqSzEPWjiO_C008e_9XJHq9efJTIcd33x4J8KfAhXOcX56GimLeitFo16hEBtVWzjFmXMt61J_gBZtz96 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigceJRXoECACvWSbRI7DyMuqNqyhc0edlupFxTZiSOqbtNqH0LlxE_gN_JLmHEeVSggxC2yx_Frxv5sjz8DbGLhQrcQhcN0rhyutXak8jMniFXM4ojLyNxbS0bh4IB_OAwOV-Btcxem4odoN9zIMsx4TQZOG9LbF6yhJ7OTnh8HobgCV3mI6xSCROML8ighKg7miNNII3jDK-T6223S7mx0CWJe9pSs-URvwtqyPJPnX-R02oW1Zl7avQ2fmhpV7ijHveVC9bKvv5A9_m-V78CtGrDa7yoNuwsrulyH60l9JL8O14wPaTa_B8Od9z--fZ_0R5O-PTOX1hHNvrHHer6cLuY2XWSxEW7axREiTntvkowTmzg1iXK28tE9t7PmbZf7cLDb398ZOPVjDU4W8Eg4cZgxcirPPVdymassRuVQ0ovziImcnlzP6QRWKCF5iOtiV6CE5yHckS4GZewBrJanpX4EdoYoL0flipV26Vdx4BaIzHTgq6IIWGDBVtNpaVYzmdODGtO04mD2U2yn1LSTBS9b0bOKvuN3QhtNz6e1Bc9Tn0cs9BDeYnYv2mi0PTpQkaU-XZJMSIibedyCh5WitLkwRlRwfmhB1FGhVoB4vbsx5dFnw-9NoCymYr2ulK2TpA46xi-dclx8Rp4Fr1pl_Fstt4xu_VkixX43H4__XfQ5rA32k2E63Bt9fAI3fPL4MX5NG7C6mC31U4RsC_XMWOZPG2U-WQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2zwwGUMKAwwMKG9pEtiJ7ERL2hr2WCtUMukvaDIThwxrcuqthEaT_wEfiO_BB_nMoUBQrxZ9nF8O8f-HB9_Btg0lQvdTGQO1alymNbakcpPnIArTnnEZGTvrQ2G4d4he3cUHC3B6_ouTMkP0fxwQ8uw8zUauJ6m2fYFa-jp7LTr8yAUV-AqCwRHh77d0QV5lBAlB3PEcKYRrOYVcv3tJmt7NboEMS97SlZ8ojdgtcin8vyLnEzasNauS_1b8KluUemOctItFqqbfP2F7PF_m3wbblaAlbwpNewOLOl8DVYG1ZH8GlyzPqTJ_C4c7Lz98e37uDcc98jMXlo3aPYVGel5MVnMCV5kIQZukuzYIE6yPx6MBgQ5NZFytvTRPSdJ_bbLOhz2ex939pzqsQYnCVgkHB4mFJ3KU8-VTKYq4UY5lPR4GlGR4pPrKZ7ACiUkC82-2BVGwvMM3JGuiUroPVjOz3L9AEhiUF5qlIsr7eKneOBmBpnpwFdZFtCgA1v1oMVJxWSOD2pM4pKD2Y9NP8W2nzrwvBGdlvQdvxPaqEc-rix4HvssoqFn4K0p7lmTbGwPD1Rkrs8KlAkRcVOPdeB-qShNKZQiFZwfdiBqqVAjgLze7ZT8-LPl90ZQxrFaL0tla2Wpok5MSMfMbD4jrwMvGmX8Wyu3rG79WSI2424DD_9d9CmsfNjtxwf7w_eP4LqPDj_WrWkDlhezQj82iG2hnljD_Alx6T3d | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVlA48CivQEHmIdRLtknsJA63qtpSELtCXVZqT8F2HFF1m652N0LlxE_gN_JLGNtJxFJASNwsZ2zH9oz9JR5_A_ACXy4Jyqz0qS6kz7TWvpCR8mMuOeUpE6m9tzYcJfsT9vYwPmzinJq7MI4fovvhZizDrtfGwGdF6db55nQ_2j6dn_YjHifZZVhLYgTjPVibjN7vHDnyTbPC2FCIuElFPgJ91nIL_Vx2dUe6ADMveks2nKLXYb2uZuL8s5hOV6Gt3Zv2bsLHtlfOJeWkXy9lX335hfDxP7p9C240uJXsOEW7DZd0tQFXh83J_AZcsa6kanEH3u2-_v7123gwGg_I3N5dR1D7ihzoRT1dLoi5z0IQdZLyGIEneTMeHgyJodY0zLPOVfecqDbEy12Y7A0-7O77TcwGX8UszXyeKGp8y4swEEwUUnHUESlCXqQ0K0zk9cIcxGYyEyzBz-MgQ4kwRNQjAsxS9B70qrNKPwCiEOwVqGNc6sBUxeOgRICm40iWZUxjD7baectVQ2hu4mpMc0fFHOU4TrkdJw-edaIzx-LxO6HNdvLzxpAXecRSmoSIcrG5p91jNEFzriIqfVYbmcQAbxoyD-47XelaodQwwkWJB-mKFnUCht579Ul1_MnSfBtsxs1rvXT6tlKkyTrBlM4ZfoOmoQfPO338Wy-3rHr9WSLHebeJh_9U4SO4Fhk_H-vNtAm95bzWjxGoLeWTxhh_AOKpPpE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CG%E2%80%90SENSE+revisited%3A+Results+from+the+first+ISMRM+reproducibility+challenge&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Maier%2C+Oliver&rft.au=Baete%2C+Steven+Hubert&rft.au=Fyrdahl%2C+Alexander&rft.au=Hammernik%2C+Kerstin&rft.date=2021-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=4&rft.spage=1821&rft.epage=1839&rft_id=info:doi/10.1002%2Fmrm.28569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_28569 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |