Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1

The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress toler...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 287; no. 10; pp. 1985 - 1999
Main Authors Cassidy, Katelyn B., Bang, Scott, Kurokawa, Manabu, Gerber, Scott A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2020
Subjects
Online AccessGet full text
ISSN1742-464X
1742-4658
1742-4658
DOI10.1111/febs.15132

Cover

Abstract The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single‐strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half‐life of Chk1 in steady‐state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein. HUWE1 is a ubiquitin E3 ligase with a diverse array of known substrates. Amongst its cellular activities, HUWE1 is thought to play a key role in genome integrity and responses to DNA damage. Here, Scott Gerber and colleagues demonstrate that HUWE1 controls the stability of DNA damage response (DDR) effector kinase Chk1, via proteosomal degradation. Their data indicate that HUWE1 poly‐ubiquitinates Chk1, independent of the DDR. By directly regulating the stability of Chk1 protein in steady‐state conditions and under prolonged replication stress, HUWE1 plays a significant role in the regulation of the DDR signaling pathway.
AbstractList The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single‐strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half‐life of Chk1 in steady‐state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlies this function remains elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are poly-ubiquitinated by HUWE1 in vitro , many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single‐strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half‐life of Chk1 in steady‐state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein. HUWE1 is a ubiquitin E3 ligase with a diverse array of known substrates. Amongst its cellular activities, HUWE1 is thought to play a key role in genome integrity and responses to DNA damage. Here, Scott Gerber and colleagues demonstrate that HUWE1 controls the stability of DNA damage response (DDR) effector kinase Chk1, via proteosomal degradation. Their data indicate that HUWE1 poly‐ubiquitinates Chk1, independent of the DDR. By directly regulating the stability of Chk1 protein in steady‐state conditions and under prolonged replication stress, HUWE1 plays a significant role in the regulation of the DDR signaling pathway.
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single‐strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro , many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half‐life of Chk1 in steady‐state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
Author Bang, Scott
Gerber, Scott A.
Cassidy, Katelyn B.
Kurokawa, Manabu
AuthorAffiliation 1 Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
2 Department of Biological Sciences, Kent State University, Kent, OH 44242
3 Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
AuthorAffiliation_xml – name: 1 Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
– name: 2 Department of Biological Sciences, Kent State University, Kent, OH 44242
– name: 3 Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
Author_xml – sequence: 1
  givenname: Katelyn B.
  surname: Cassidy
  fullname: Cassidy, Katelyn B.
  organization: Geisel School of Medicine
– sequence: 2
  givenname: Scott
  surname: Bang
  fullname: Bang, Scott
  organization: Kent State University
– sequence: 3
  givenname: Manabu
  surname: Kurokawa
  fullname: Kurokawa, Manabu
  email: mkurokaw@kent.edu
  organization: Geisel School of Medicine
– sequence: 4
  givenname: Scott A.
  orcidid: 0000-0002-2964-5051
  surname: Gerber
  fullname: Gerber, Scott A.
  email: scott.a.gerber@dartmouth.edu
  organization: Geisel School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31713291$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gwg9AlrigSikef6zXF6SSpgSpEgeo4GZ5N7Opi7NO7V1Q_j1O01ZQIfBlLM3zvpqZ95Ds9bFHQl4CO4Hy3nbY5BNQIPgTcgBa8omsVL338Jff9slhzteMCSWNeUb2BehCGzgg8zOfsB1owuUY3OBjT2NHp1ffga5THND3NA-u8cEPG9ps6EzQsfE3ox9KJ_ily0jnl19n8Jw87VzI-OKuHpHL89mX6Xxy8enDx-npxaRVUvOJamon0GDdat6xSlfVQjAhhESnF1oCEyhr45hRoB0XTnEFnDdOdBw6UTXiiLzb-a7HZoWLFvshuWDXya9c2tjovP2z0_sru4w_rOa8MrwuBm_uDFK8GTEPduVziyG4HuOYLVdcCq4rCf9HBUjGDJgt-voReh3H1JdLWC6Z5JppxQr16vfhH6a-z6MAbAe0KeacsLOtH25jKbv4YIHZbeR2G7m9jbxIjh9J7l3_CsMO_ukDbv5B2vPZ-887zS8uF7kH
CitedBy_id crossref_primary_10_3390_cancers14010025
crossref_primary_10_1016_j_phymed_2023_154765
crossref_primary_10_3389_fcimb_2022_905906
crossref_primary_10_1016_j_tibs_2020_11_002
crossref_primary_10_1128_MCB_00090_21
crossref_primary_10_3390_cells9102237
crossref_primary_10_1158_0008_5472_CAN_21_3882
crossref_primary_10_3390_cells12242838
crossref_primary_10_3390_v13071353
crossref_primary_10_1016_j_molcel_2021_06_032
crossref_primary_10_1158_1541_7786_MCR_20_1076
crossref_primary_10_1016_j_tcb_2021_01_008
crossref_primary_10_1038_s41388_023_02928_8
crossref_primary_10_1016_j_gendis_2023_101158
crossref_primary_10_1016_j_jbc_2021_101184
crossref_primary_10_3390_biom14050577
crossref_primary_10_3390_cells10051262
crossref_primary_10_1172_JCI138234
crossref_primary_10_14701_ahbps_2021_25_3_315
crossref_primary_10_3390_ijms26020834
crossref_primary_10_7554_eLife_83159
crossref_primary_10_1016_j_isci_2020_101523
crossref_primary_10_1016_j_phrs_2024_107091
crossref_primary_10_1186_s11658_020_00245_6
crossref_primary_10_1016_j_jep_2023_116295
crossref_primary_10_1042_BCJ20240124
crossref_primary_10_1186_s13045_023_01398_5
crossref_primary_10_18632_aging_204301
crossref_primary_10_1016_j_yexcr_2021_112617
crossref_primary_10_1111_febs_15173
crossref_primary_10_1186_s13059_024_03243_5
crossref_primary_10_1007_s42764_021_00036_z
crossref_primary_10_1016_j_celrep_2023_112496
crossref_primary_10_1017_erm_2024_10
crossref_primary_10_1002_mc_23487
crossref_primary_10_1016_j_dnarep_2021_103261
Cites_doi 10.1016/j.molcel.2005.07.019
10.1128/MCB.01497-14
10.1038/ng837
10.1126/science.277.5331.1497
10.1016/j.cell.2005.03.037
10.1242/jcs.086488
10.1038/nprot.2006.468
10.1038/celldisc.2016.40
10.1093/nar/gkx095
10.1021/pr200611n
10.1074/jbc.M109.051805
10.1016/j.cell.2005.06.009
10.1038/387296a0
10.1210/en.2017-00396
10.1038/ncomms7823
10.1038/ncb1727
10.1016/j.cell.2005.08.016
10.1084/jem.20112147
10.1074/jbc.M301136200
10.1016/j.devcel.2007.01.003
10.1128/MCB.00847-12
10.15252/embr.201541685
10.1128/MCB.23.20.7305-7314.2003
10.1093/nar/gks1262
10.1016/S1097-2765(05)00092-4
10.1021/ac100783x
10.1038/srep21519
10.15252/embr.201744754
10.1038/bjc.2011.242
10.1101/gad.14.12.1448
10.1093/emboj/19.1.94
10.1128/MCB.21.13.4129-4139.2001
10.1073/pnas.0604987103
10.1038/emboj.2009.243
10.1016/j.cellsig.2015.01.020
10.1093/emboj/16.3.545
10.1128/MCB.21.4.1066-1076.2001
10.1074/jbc.M117.811265
10.1016/j.molcel.2009.06.030
10.1016/j.bbamcr.2011.03.012
10.1042/BCJ20160719
10.1038/nsmb.2955
10.1128/MCB.00240-09
10.1101/gad.214577.113
10.1016/j.molcel.2017.08.020
10.1158/0008-5472.CAN-08-3382
10.1091/mbc.e07-02-0173
10.1091/mbc.e03-12-0874
10.1126/scisignal.2004985
10.1074/jbc.M414356200
10.1038/onc.2014.248
10.1126/scisignal.2003741
10.1016/j.bbrc.2013.12.053
10.1128/MCB.00492-06
ContentType Journal Article
Copyright 2019 Federation of European Biochemical Societies
2019 Federation of European Biochemical Societies.
Copyright © 2020 Federation of European Biochemical Societies
Copyright_xml – notice: 2019 Federation of European Biochemical Societies
– notice: 2019 Federation of European Biochemical Societies.
– notice: Copyright © 2020 Federation of European Biochemical Societies
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/febs.15132
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 1999
ExternalDocumentID PMC7226928
31713291
10_1111_febs_15132
FEBS15132
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Commentary
Editorial
GrantInformation_xml – fundername: Norris Cotton Cancer Center Holland Awards
– fundername: American Cancer Society
  funderid: IRG‐82‐003‐30
– fundername: National Institute of General Medical Sciences
  funderid: R01GM122846
– fundername: National Cancer Institute
  funderid: R01CA155260; R03CA230838
– fundername: Prouty Cancer Center Pilot Funds
– fundername: NIH HHS
  grantid: S10 OD016212
– fundername: NCI NIH HHS
  grantid: R01CA155260
– fundername: NCI NIH HHS
  grantid: R03CA230838
– fundername: NIGMS NIH HHS
  grantid: R01 GM122846
– fundername: NCI NIH HHS
  grantid: R03 CA230828
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ESTFP
7S9
L.6
5PM
ID FETCH-LOGICAL-c5472-5b8a3e9e8c72f06766d303334ea7d74103e489a09517a23a525122ba3f21f36b3
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Thu Aug 21 13:11:23 EDT 2025
Fri Sep 05 17:22:59 EDT 2025
Fri Sep 05 11:56:14 EDT 2025
Fri Jul 25 19:39:22 EDT 2025
Mon Jul 21 06:04:36 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Tue Jul 01 03:06:51 EDT 2025
Wed Jan 22 17:20:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords replication stress
ubiquitination
DNA damage
protein degradation
Language English
License 2019 Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5472-5b8a3e9e8c72f06766d303334ea7d74103e489a09517a23a525122ba3f21f36b3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to the work
KBC, MK, and SAG conceived the study and designed the experiments. KBC and SB performed the cell culture and Western blot experiments. KBC carried out the mass spec analysis as well as the in cellulo and in vitro ubiquitination assays. KBC, MK, and SAG analyzed the data and wrote the manuscript.
Author Contributions
ORCID 0000-0002-2964-5051
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7226928
PMID 31713291
PQID 2404270750
PQPubID 28478
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7226928
proquest_miscellaneous_2524327641
proquest_miscellaneous_2314009191
proquest_journals_2404270750
pubmed_primary_31713291
crossref_citationtrail_10_1111_febs_15132
crossref_primary_10_1111_febs_15132
wiley_primary_10_1111_febs_15132_FEBS15132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
2015; 34
2013; 27
2000; 6
1997; 277
2017; 45
2011; 10
2003; 278
2017; 158
2013; 6
2012; 209
2011; 124
2000; 19
2000; 14
2006; 26
1997; 387
1997; 16
2016; 473
2014; 7
2014; 444
2007; 18
2009; 69
2015; 6
2002; 30
2017; 68
2013; 41
2017; 292
2010; 285
2008; 10
2006; 1
2016; 17
2007; 12
2009; 29
2009; 28
2001; 21
2010; 82
2011; 105
2018; 19
2016; 6
2005; 280
2009; 35
2005; 19
2015; 27
2016; 2
2005; 121
2013; 33
2005; 123
2004; 15
2015; 22
2011; 1813
2006; 103
2003; 23
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
31904911 - FEBS J. 2020 May;287(10):1982-1984. doi: 10.1111/febs.15173
References_xml – volume: 82
  start-page: 6821
  year: 2010
  end-page: 6829
  article-title: MacroSEQUEST: efficient candidate‐centric searching and high‐resolution correlation analysis for large‐scale proteomics data sets
  publication-title: Anal Chem
– volume: 33
  start-page: 213
  year: 2013
  end-page: 226
  article-title: CRL4(CDT2) targets CHK1 for PCNA‐independent destruction
  publication-title: Mol Cell Biol
– volume: 387
  start-page: 296
  year: 1997
  end-page: 299
  article-title: Mdm2 promotes the rapid degradation of p53
  publication-title: Nature
– volume: 444
  start-page: 290
  year: 2014
  end-page: 295
  article-title: HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin‐proteasome pathway
  publication-title: Biochem Biophys Res Commun
– volume: 6
  start-page: 6823
  year: 2015
  article-title: Regulated degradation of Chk1 by chaperone‐mediated autophagy in response to DNA damage
  publication-title: Nat Commun
– volume: 12
  start-page: 247
  year: 2007
  end-page: 260
  article-title: Chk1 is required for spindle checkpoint function
  publication-title: Dev Cell
– volume: 121
  start-page: 1071
  year: 2005
  end-page: 1083
  article-title: ARF‐BP1/Mule is a critical mediator of the ARF tumor suppressor
  publication-title: Cell
– volume: 22
  start-page: 116
  year: 2015
  end-page: 123
  article-title: K63 polyubiquitination is a new modulator of the oxidative stress response
  publication-title: Nat Struct Mol Biol
– volume: 45
  start-page: 4532
  year: 2017
  end-page: 4549
  article-title: Ataxin‐3 promotes genome integrity by stabilizing Chk1
  publication-title: Nucleic Acids Res
– volume: 103
  start-page: 11964
  year: 2006
  end-page: 11969
  article-title: Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo‐like kinase 1 (Plk1)
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 643
  year: 2008
  end-page: 653
  article-title: The HECT‐domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N‐Myc oncoprotein
  publication-title: Nat Cell Biol
– volume: 209
  start-page: 455
  year: 2012
  end-page: 461
  article-title: An extra allele of Chk1 limits oncogene‐induced replicative stress and promotes transformation
  publication-title: J Exp Med
– volume: 6
  start-page: 21519
  year: 2016
  article-title: CHK1 expression in gastric cancer is modulated by p53 and RB1/E2F1: implications in chemo/radiotherapy response
  publication-title: Sci Rep
– volume: 285
  start-page: 5664
  year: 2010
  end-page: 5673
  article-title: A structural element within the HUWE1 HECT domain modulates self‐ubiquitination and substrate ubiquitination activities
  publication-title: J Biol Chem
– volume: 34
  start-page: 2978
  year: 2015
  end-page: 2990
  article-title: CHK1 overexpression in T‐cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress
  publication-title: Oncogene
– volume: 69
  start-page: 2630
  year: 2009
  end-page: 2637
  article-title: DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress
  publication-title: Cancer Res
– volume: 27
  start-page: 1101
  year: 2013
  end-page: 1114
  article-title: Mule/Huwe1/Arf‐BP1 suppresses Ras‐driven tumorigenesis by preventing c‐Myc/Miz1‐mediated down‐regulation of p21 and p15
  publication-title: Genes Dev
– volume: 19
  year: 2018
  article-title: Proteomic profiling of VCP substrates links VCP to K6‐linked ubiquitylation and c‐Myc function
  publication-title: EMBO Rep
– volume: 158
  start-page: 4000
  year: 2017
  end-page: 4016
  article-title: Huwe1 regulates the establishment and maintenance of spermatogonia by suppressing DNA damage response
  publication-title: Endocrinology
– volume: 16
  start-page: 545
  year: 1997
  end-page: 554
  article-title: Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation
  publication-title: EMBO J
– volume: 19
  start-page: 94
  year: 2000
  end-page: 102
  article-title: Recognition of the polyubiquitin proteolytic signal
  publication-title: EMBO J
– volume: 18
  start-page: 3340
  year: 2007
  end-page: 3350
  article-title: Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage
  publication-title: Mol Biol Cell
– volume: 124
  start-page: 2113
  year: 2011
  end-page: 2119
  article-title: Nuclear Chk1 prevents premature mitotic entry
  publication-title: J Cell Sci
– volume: 41
  start-page: D1063
  year: 2013
  end-page: D1069
  article-title: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 951
  year: 2015
  end-page: 960
  article-title: Chk1 and Wee1 control genotoxic‐stress induced G2‐M arrest in melanoma cells
  publication-title: Cell Signal
– volume: 28
  start-page: 3207
  year: 2009
  end-page: 3215
  article-title: Ubiquitin ligase ARF‐BP1/Mule modulates base excision repair
  publication-title: EMBO J
– volume: 1
  start-page: 2856
  year: 2006
  end-page: 2860
  article-title: In‐gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat Protoc
– volume: 29
  start-page: 3307
  year: 2009
  end-page: 3318
  article-title: Polyubiquitination by HECT E3s and the determinants of chain type specificity
  publication-title: Mol Cell Biol
– volume: 277
  start-page: 1497
  year: 1997
  end-page: 1501
  article-title: Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25
  publication-title: Science
– volume: 7
  start-page: ra26
  year: 2014
  article-title: Huwe1‐mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway
  publication-title: Science Signal
– volume: 6
  start-page: ra32
  year: 2013
  article-title: A network of substrates of the E3 ubiquitin ligases MDM2 and HUWE1 control apoptosis independently of p53
  publication-title: Sci Signal
– volume: 30
  start-page: 285
  year: 2002
  article-title: BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage
  publication-title: Nat Genet
– volume: 121
  start-page: 1085
  year: 2005
  end-page: 1095
  article-title: Mule/ARF‐BP1, a BH3‐only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl‐1 and regulates apoptosis
  publication-title: Cell
– volume: 123
  start-page: 409
  year: 2005
  end-page: 421
  article-title: The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation
  publication-title: Cell
– volume: 14
  start-page: 1448
  year: 2000
  end-page: 1459
  article-title: Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint
  publication-title: Genes Dev
– volume: 280
  start-page: 20365
  year: 2005
  end-page: 20374
  article-title: Lys6‐modified ubiquitin inhibits ubiquitin‐dependent protein degradation
  publication-title: J Biol Chem
– volume: 26
  start-page: 6056
  year: 2006
  end-page: 6064
  article-title: Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation
  publication-title: Mol Cell Biol
– volume: 2
  start-page: 16040
  year: 2016
  article-title: The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation
  publication-title: Cell Discov.
– volume: 21
  start-page: 1066
  year: 2001
  end-page: 1076
  article-title: p53 down‐regulates CHK1 through p21 and the retinoblastoma protein
  publication-title: Mol Cell Biol
– volume: 21
  start-page: 4129
  year: 2001
  end-page: 4139
  article-title: ATR‐mediated checkpoint pathways regulate phosphorylation and activation of human Chk1
  publication-title: Mol Cell Biol
– volume: 23
  start-page: 7305
  year: 2003
  end-page: 7314
  article-title: Degradation of transcription repressor ZBRK1 through the ubiquitin‐proteasome pathway relieves repression of Gadd45a upon DNA damage
  publication-title: Mol Cell Biol
– volume: 1813
  start-page: 1230
  year: 2011
  end-page: 1238
  article-title: Glucose deprivation is associated with Chk1 degradation through the ubiquitin‐proteasome pathway and effective checkpoint response to replication blocks
  publication-title: Biochim Biophys Acta
– volume: 105
  start-page: 428
  year: 2011
  end-page: 437
  article-title: Reduced association of anti‐apoptotic protein Mcl‐1 with E3 ligase Mule increases the stability of Mcl‐1 in breast cancer cells
  publication-title: Br J Cancer
– volume: 19
  start-page: 607
  year: 2005
  end-page: 618
  article-title: Genotoxic stress targets human Chk1 for degradation by the ubiquitin‐proteasome pathway
  publication-title: Mol Cell
– volume: 35
  start-page: 3829
  year: 2015
  end-page: 3840
  article-title: BRCA1 Is required for maintenance of phospho‐Chk1 and G2/M arrest during DNA cross‐link repair in DT40 cells
  publication-title: Mol Cell Biol
– volume: 278
  start-page: 30057
  year: 2003
  end-page: 30062
  article-title: Human claspin is required for replication checkpoint control
  publication-title: J Biol Chem
– volume: 10
  start-page: 5354
  year: 2011
  end-page: 5362
  article-title: Universal and confident phosphorylation site localization using phosphoRS
  publication-title: J Proteome Res
– volume: 15
  start-page: 1680
  year: 2004
  end-page: 1689
  article-title: Regulation of Chk1 Kinase by autoinhibition and ATR‐mediated phosphorylation
  publication-title: Mol Biol Cell
– volume: 473
  start-page: 4083
  year: 2016
  end-page: 4101
  article-title: Systematic approaches to identify E3 ligase substrates
  publication-title: Biochem J
– volume: 292
  start-page: 19024
  year: 2017
  end-page: 19033
  article-title: Intramolecular autoinhibition of checkpoint kinase 1 is mediated by conserved basic motifs of the C‐terminal kinase‐associated 1 domain
  publication-title: J Biol Chem
– volume: 68
  start-page: 233
  year: 2017
  end-page: 246
  article-title: Ubiquitin linkage‐specific affimers reveal insights into K6‐linked ubiquitin signaling
  publication-title: Mol Cell
– volume: 17
  start-page: 874
  year: 2016
  end-page: 886
  article-title: HUWE1 interacts with PCNA to alleviate replication stress
  publication-title: EMBO Rep
– volume: 6
  start-page: 839
  year: 2000
  end-page: 849
  article-title: Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts
  publication-title: Mol Cell
– volume: 35
  start-page: 442
  year: 2009
  end-page: 453
  article-title: The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress
  publication-title: Mol Cell
– ident: e_1_2_9_9_1
  doi: 10.1016/j.molcel.2005.07.019
– ident: e_1_2_9_19_1
  doi: 10.1128/MCB.01497-14
– ident: e_1_2_9_20_1
  doi: 10.1038/ng837
– ident: e_1_2_9_8_1
  doi: 10.1126/science.277.5331.1497
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cell.2005.03.037
– ident: e_1_2_9_13_1
  doi: 10.1242/jcs.086488
– ident: e_1_2_9_51_1
  doi: 10.1038/nprot.2006.468
– ident: e_1_2_9_4_1
  doi: 10.1038/celldisc.2016.40
– ident: e_1_2_9_40_1
  doi: 10.1093/nar/gkx095
– ident: e_1_2_9_53_1
  doi: 10.1021/pr200611n
– ident: e_1_2_9_39_1
  doi: 10.1074/jbc.M109.051805
– ident: e_1_2_9_6_1
  doi: 10.1016/j.cell.2005.06.009
– ident: e_1_2_9_35_1
  doi: 10.1038/387296a0
– ident: e_1_2_9_29_1
  doi: 10.1210/en.2017-00396
– ident: e_1_2_9_24_1
  doi: 10.1038/ncomms7823
– ident: e_1_2_9_32_1
  doi: 10.1038/ncb1727
– ident: e_1_2_9_43_1
  doi: 10.1016/j.cell.2005.08.016
– ident: e_1_2_9_47_1
  doi: 10.1084/jem.20112147
– ident: e_1_2_9_17_1
  doi: 10.1074/jbc.M301136200
– ident: e_1_2_9_15_1
  doi: 10.1016/j.devcel.2007.01.003
– ident: e_1_2_9_26_1
  doi: 10.1128/MCB.00847-12
– ident: e_1_2_9_3_1
  doi: 10.15252/embr.201541685
– ident: e_1_2_9_49_1
  doi: 10.1128/MCB.23.20.7305-7314.2003
– ident: e_1_2_9_54_1
  doi: 10.1093/nar/gks1262
– ident: e_1_2_9_11_1
  doi: 10.1016/S1097-2765(05)00092-4
– ident: e_1_2_9_52_1
  doi: 10.1021/ac100783x
– ident: e_1_2_9_22_1
  doi: 10.1038/srep21519
– ident: e_1_2_9_41_1
  doi: 10.15252/embr.201744754
– ident: e_1_2_9_7_1
  doi: 10.1038/bjc.2011.242
– ident: e_1_2_9_12_1
  doi: 10.1101/gad.14.12.1448
– ident: e_1_2_9_38_1
  doi: 10.1093/emboj/19.1.94
– ident: e_1_2_9_16_1
  doi: 10.1128/MCB.21.13.4129-4139.2001
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.0604987103
– ident: e_1_2_9_5_1
  doi: 10.1038/emboj.2009.243
– ident: e_1_2_9_10_1
  doi: 10.1016/j.cellsig.2015.01.020
– ident: e_1_2_9_21_1
  doi: 10.1093/emboj/16.3.545
– ident: e_1_2_9_34_1
  doi: 10.1128/MCB.21.4.1066-1076.2001
– ident: e_1_2_9_37_1
  doi: 10.1074/jbc.M117.811265
– ident: e_1_2_9_23_1
  doi: 10.1016/j.molcel.2009.06.030
– ident: e_1_2_9_27_1
  doi: 10.1016/j.bbamcr.2011.03.012
– ident: e_1_2_9_28_1
  doi: 10.1042/BCJ20160719
– ident: e_1_2_9_45_1
  doi: 10.1038/nsmb.2955
– ident: e_1_2_9_31_1
  doi: 10.1128/MCB.00240-09
– ident: e_1_2_9_33_1
  doi: 10.1101/gad.214577.113
– ident: e_1_2_9_42_1
  doi: 10.1016/j.molcel.2017.08.020
– ident: e_1_2_9_25_1
  doi: 10.1158/0008-5472.CAN-08-3382
– ident: e_1_2_9_30_1
  doi: 10.1091/mbc.e07-02-0173
– ident: e_1_2_9_36_1
  doi: 10.1091/mbc.e03-12-0874
– ident: e_1_2_9_44_1
  doi: 10.1126/scisignal.2004985
– ident: e_1_2_9_46_1
  doi: 10.1074/jbc.M414356200
– ident: e_1_2_9_48_1
  doi: 10.1038/onc.2014.248
– ident: e_1_2_9_50_1
  doi: 10.1126/scisignal.2003741
– ident: e_1_2_9_55_1
  doi: 10.1016/j.bbrc.2013.12.053
– ident: e_1_2_9_18_1
  doi: 10.1128/MCB.00492-06
– reference: 31904911 - FEBS J. 2020 May;287(10):1982-1984. doi: 10.1111/febs.15173
SSID ssj0035499
Score 2.4942849
Snippet The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1985
SubjectTerms Ataxia Telangiectasia Mutated Proteins - genetics
Camptothecin
Checkpoint Kinase 1 - genetics
CHK1 protein
Damage
Deoxyribonucleic acid
Depletion
DNA
DNA biosynthesis
DNA Breaks, Single-Stranded
DNA damage
DNA Damage - genetics
DNA repair
DNA replication
DNA Replication - genetics
Genotoxicity
half life
HeLa Cells
Humans
Huwe1 protein
Hydroxyurea
Kinases
Lysine
mutagens
neoplasms
p53 Protein
phosphotransferases (kinases)
protein degradation
Protein Stability
Proteins
remediation
Replication
replication stress
Signal transduction
Signaling
Stress
stress tolerance
Substrates
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Proteins - genetics
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - genetics
ubiquitination
Title Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15132
https://www.ncbi.nlm.nih.gov/pubmed/31713291
https://www.proquest.com/docview/2404270750
https://www.proquest.com/docview/2314009191
https://www.proquest.com/docview/2524327641
https://pubmed.ncbi.nlm.nih.gov/PMC7226928
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Ne4EXGBsfZWPyBEICKVXjc-JE4mWUVgUkHoCKvqDITm0WbUvH2jyUv56z88G6oUnwFsnnxB93vt85558BXlDIoS2fY6DJewQi1lGQ6CQPBpFViY75IFee7fNTPJmKD7NotgVv2rMwNT9Et-HmLMOv187AlV5eMXJr9LJP_grdAhxi7Ijz333uuKPQBT71aUjXBjFruEldGs-fqpve6AbEvJkpeRXBehc0vg_f28bXmSen_Wql-_mva7yO_9u7HbjXYFN2XCvTA9gy5S7sHZcUl5-v2Uvms0X9Nvwu3Bm2N8XtwaReN9llfa89zTRbWDY8OQ2Zp4EoSkYY1GfhrplesxGyShc_q2JFJWfFD3KkbDL9NgofwnQ8-jqcBM0NDUEeCUlRrE4UmtQkueSW_F4cz8klIgqj5JywygCNSFLlYJxUHFXk0BTXCi0PLcYaH8F2uSjNE2ASVWroHWGouLChVWk-QEseXMjcGiF68KqdqSxv6MvdLRpnWRvGuCHL_JD14Hkne1GTdvxV6qCd8Kwx3GVGAEdw6XBUD466YhpP9x9FlWZRkQxSVEo4Kw1vkYm4QC5jQTKPax3qmkKQjT7vassN7eoEHOX3ZklZnHjqb0loOeVJD1575bmld9l49PaLf3r6L8L7cJe7HQWf0nkA26vLyjwj2LXSh2Re7z8eeiP7DfhIKJU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-h8TBe-NiAdQwwAiGBlKqxnTh5HFWrAGMPsIq-RXZqs2hbCmvzUP567pw0rAxNgrdIPifxx_l-Z59_B_AKXQ7j-EwEBq1HIGMTBYlJimAQOZ2YmA8K7dk-j-NsIj9Mo2kbm0N3YRp-iG7DjTTDr9ek4LQhfUXLnTWLPhosgSvwbX9AR5joc8ceJcj1ae5D0l_IactOSoE8v-tu2qNrIPN6rORVDOuN0Phek2l14bkLKfbkrF8vTb_4-Qez43-37z7cbeEpO2zm0wO4Zasd2D2s0DW_WLHXzAeM-p34HdgerpPF7ULWLJ3sskltj4PN5o4NT89C5pkgyoohDPWBuCtmVmwkWG3KH3W5xJLz8hvaUpZNvo7ChzAZj06GWdAmaQiKSCp0ZE2ihU1tUiju0PTF8QytohDSajVDuDIQViapJiSnNBc6IkDFjRaOh07ERjyCrWpe2T1gSujU4jvCUHPpQqfTYiAcGnGpCmel7MGb9VDlRctgTok0zvO1J0Ndlvsu68HLTvZ7w9vxV6mD9Yjnre4ucsQ4kiuCUj140RVjf9JRiq7svEYZgY4pQq00vEEm4lJwFUuUedxMou5XELXh56m22phenQCxfm-WVOWpZ_9WCJhTnvTgrZ89N7QuH4_effFP-_8i_By2s5NPR_nR--OPT-AOpw0GH-F5AFvLy9o-RRS2NM-8rv0CcOcrug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNmnsBXZhULaB0RASk1I1thMn0l5GaVVgmhBQ0RcU2am9RdvSXZqH7tfv2LmwMjSJvUXySeLb8fcd5-QzwDsMOZShY-YpRA-PhyrwIhWlXicwMlIh7aTSqX0ehYMh_zIKRguwX_8LU-pDNBtu1jPcem0d_GJs7ji50eq6jXjFcAFe4iHipKVE3xvxKGYjn_J3SFsJPqrESW0ez5975-HoHse8nyp5l8I6DOo_g9917cvUk9N2MVXt9OYvYcfHNm8VnlbklByUs2kNFnS-DhsHOQbm5zPynrh0UbcPvw5PuvVRcRswKBdOclUebI9DTSaGdE9OfeJ0ILKcIAl1abgzomakx0ihsssim2LJWXaMSEoGw189_zkM-72f3YFXHdHgpQEXGMaqSDId6ygV1CDwheEYMZExrqUYI1npMM2jWFoeJyRlMrB0iirJDPUNCxXbhMV8kuuXQASTscZn-L6k3PhGxmmHGYRwLlKjOW_Bh3qkkrTSL7fHaJwldRxjuyxxXdaC3cb2olTt-KfVdj3gSeW51wkyHE6FJVIteNsUY3_aDyky15MCbRiGpUi0Yv8Bm4ByRkXI0eZFOYeaqiBnw9fbu8Xc7GoMrOb3fEmenTjtb4F0OaZRC_bc5HmgdUm_9_GHu3r1P8ZvYPnbp35y-Pno6xasULu74NI7t2FxelXoHaRgU_XaedotzQQqaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+regulation+of+Chk1+protein+stability+by+E3+ubiquitin+ligase+HUWE1&rft.jtitle=The+FEBS+journal&rft.au=Cassidy%2C+Katelyn+B.&rft.au=Bang%2C+Scott&rft.au=Kurokawa%2C+Manabu&rft.au=Gerber%2C+Scott+A.&rft.date=2020-05-01&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=287&rft.issue=10&rft.spage=1985&rft.epage=1999&rft_id=info:doi/10.1111%2Ffebs.15132&rft.externalDBID=10.1111%252Ffebs.15132&rft.externalDocID=FEBS15132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon