Subject-Specific Myoelectric Pattern Classification of Functional Hand Movements for Stroke Survivors

In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 19; no. 5; pp. 558 - 566
Main Authors Lee, Sang Wook, Wilson, Kristin M., Lock, Blair A., Kamper, Derek G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2010.2079334

Cover

Abstract In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures.
AbstractList In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures.
In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures.In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures.
Author Kamper, Derek G.
Lock, Blair A.
Lee, Sang Wook
Wilson, Kristin M.
AuthorAffiliation 2 Department of Bioengineering, University of Pittsburgh
4 Department of Biomedical Engineering, Illinois Institute of Technology
3 Neural Engineering Center for Artificial Limbs, Rehabilitation Institute of Chicago
1 Sensory Motor Performance Program, Rehabilitation Institute of Chicago
AuthorAffiliation_xml – name: 2 Department of Bioengineering, University of Pittsburgh
– name: 1 Sensory Motor Performance Program, Rehabilitation Institute of Chicago
– name: 3 Neural Engineering Center for Artificial Limbs, Rehabilitation Institute of Chicago
– name: 4 Department of Biomedical Engineering, Illinois Institute of Technology
Author_xml – sequence: 1
  givenname: Sang Wook
  surname: Lee
  fullname: Lee, Sang Wook
  email: leeb@cua.edu
  organization: Sensory Motor Performance Program, Rehabilitation Institute of Chicago
– sequence: 2
  givenname: Kristin M.
  surname: Wilson
  fullname: Wilson, Kristin M.
  organization: Department of Bioengineering, University of Pittsburgh, Pittsburgh
– sequence: 3
  givenname: Blair A.
  surname: Lock
  fullname: Lock, Blair A.
  organization: Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago
– sequence: 4
  givenname: Derek G.
  surname: Kamper
  fullname: Kamper, Derek G.
  organization: Department of Biomedical Engineering, Illinois Institute of Technology, Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20876030$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVAr-gF_ACQUcekpxR-J7VyQ0KqlSC0gUs6W44zBSzbe2s5K_fd1utuK9gAnjz3vvRnPvCO0N_oREHpD8CkhuPlw_bX9cXZKcb5TLBrGqhfokNS1LDEleG-OWVVWjOIDdBTjEmMieC1eogOKpeCY4UME7dQtwaSyXYNx1pni6tbDkF9Cjr_rlCCMxWLQMc5ZnZwfC2-L82k0c6yH4kKPfXHlN7CCMcXC-lC0Kfg_ULRT2LiND_EV2rd6iPB6dx6jn-dn14uL8vLb5y-LT5elqSueyq43gvS26RhrQJpeYCAMAzdEgKWssT0RHSNMVIToTlY9Z1o0taDAhaytZcfo41Z3PXUr6E1uKOhBrYNb6XCrvHbqaWZ0v9Uvv1FVHmKeXBY42QkEfzNBTGrlooFh0CP4KaoGU8Y5JvS_SNlIwjmpZUa-f4Zc-inkyWU5wnjDhJgLv_u788eWHzaVAXILMMHHGMAq49L9OvJH3KAIVrMp1L0p1GwKtTNFptJn1Af1f5LebkkOAB4J2Vy1yIA7s8bD_Q
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2964678
crossref_primary_10_3390_bioengineering10070866
crossref_primary_10_1109_TBME_2018_2840848
crossref_primary_10_3389_fnins_2015_00416
crossref_primary_10_3390_s20236763
crossref_primary_10_1155_2013_908591
crossref_primary_10_1109_ACCESS_2025_3528902
crossref_primary_10_1016_j_medengphy_2014_01_005
crossref_primary_10_1016_j_bspc_2019_101737
crossref_primary_10_1016_j_bspc_2022_103737
crossref_primary_10_1186_s12984_019_0612_y
crossref_primary_10_1186_s12938_022_01030_6
crossref_primary_10_1002_acn3_122
crossref_primary_10_1142_S0129065714500221
crossref_primary_10_1371_journal_pone_0140161
crossref_primary_10_1007_s10846_018_0966_6
crossref_primary_10_1109_TNSRE_2019_2939202
crossref_primary_10_1155_2018_2350834
crossref_primary_10_1186_s12984_023_01144_5
crossref_primary_10_3389_fnbot_2019_00067
crossref_primary_10_1109_TBME_2012_2191551
crossref_primary_10_1186_s12984_017_0248_8
crossref_primary_10_1142_S0219519416500767
crossref_primary_10_3389_fbioe_2017_00039
crossref_primary_10_3390_biomimetics9050266
crossref_primary_10_1177_0040517519858768
crossref_primary_10_3390_s18103342
crossref_primary_10_1109_LRA_2024_3511372
crossref_primary_10_1016_j_measurement_2019_107258
crossref_primary_10_3389_fnbot_2021_659876
crossref_primary_10_3390_s21051575
crossref_primary_10_1016_j_bspc_2022_104096
crossref_primary_10_1109_JSEN_2021_3119074
crossref_primary_10_3389_fnhum_2015_00706
crossref_primary_10_1109_JTEHM_2018_2822681
crossref_primary_10_1109_TBME_2019_2935182
crossref_primary_10_1109_TNSRE_2019_2894102
crossref_primary_10_21307_ijssis_2017_215
crossref_primary_10_1186_s13634_020_00699_y
crossref_primary_10_3389_fneur_2016_00197
crossref_primary_10_3390_s22228733
crossref_primary_10_1123_mc_2020_0041
crossref_primary_10_1097_NPT_0000000000000398
crossref_primary_10_1088_1741_2560_10_4_046015
crossref_primary_10_1109_TII_2023_3348826
crossref_primary_10_1109_TNSRE_2012_2218832
crossref_primary_10_1016_j_medengphy_2014_09_011
crossref_primary_10_1007_s11062_020_09851_8
crossref_primary_10_3389_fbioe_2017_00042
crossref_primary_10_1109_TNSRE_2018_2800052
crossref_primary_10_1097_JPO_0000000000000277
crossref_primary_10_1016_j_bspc_2020_101949
crossref_primary_10_1109_RBME_2021_3078190
crossref_primary_10_1038_s41598_018_34785_x
crossref_primary_10_1109_JSEN_2014_2315895
crossref_primary_10_1177_0300060516656689
crossref_primary_10_1186_1743_0003_10_52
crossref_primary_10_1109_TNSRE_2016_2569070
crossref_primary_10_1007_s11517_016_1608_4
crossref_primary_10_1109_ACCESS_2018_2851282
crossref_primary_10_3934_mbe_2023181
crossref_primary_10_1016_j_jneumeth_2019_108462
crossref_primary_10_3389_fneur_2017_00340
crossref_primary_10_3390_s21165334
crossref_primary_10_1016_j_measurement_2021_110102
crossref_primary_10_3389_fphys_2022_811950
crossref_primary_10_1002_ana_23879
crossref_primary_10_1007_s12541_020_00364_2
crossref_primary_10_3389_fneur_2019_00444
crossref_primary_10_1177_2055668320964050
crossref_primary_10_3389_fneur_2017_00107
crossref_primary_10_3390_s24123818
crossref_primary_10_1109_TNSRE_2019_2952470
crossref_primary_10_3109_17483107_2014_979330
Cites_doi 10.1109/3468.925661
10.1097/PHM.0b013e3180383cc5
10.1093/cercor/bhk033
10.1093/ptj/72.9.624
10.1109/TNSRE.2007.908376
10.1310/tsr1401-1
10.1016/S1350-4533(99)00066-1
10.1001/jama.2009.116
10.1093/brain/awm311
10.1109/TNSRE.2008.2010480
10.1109/TBME.2006.889192
10.1109/TRO.2007.910708
10.1093/brain/awh432
10.1093/brain/118.2.495
10.1191/0269215502cr512oa
10.1109/TBME.2008.923917
10.1136/jnnp.46.1.5
10.1016/j.apmr.2006.05.013
10.1682/JRRD.2008.04.0052
10.1109/ICORR.2007.4428537
10.1109/TNSRE.2005.847357
10.1109/86.867886
10.1109/ICORR.2007.4428432
10.1161/01.STR.31.6.1360
10.1053/jhsu.2001.26188
10.1093/brain/74.4.443
10.1016/j.compbiomed.2009.02.001
10.1007/BF00241969
10.1109/TBME.2003.813539
10.1109/TBME.2006.883695
10.1109/TBME.2008.2005485
10.1191/0269215504cr724oa
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TNSRE.2010.2079334
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic

MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 566
ExternalDocumentID PMC4010155
2553121141
20876030
10_1109_TNSRE_2010_2079334
5585779
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS052369
– fundername: NINDS NIH HHS
  grantid: 1R01NS052369-01A1
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c546t-bdc71df9b339e8cd70e130e6c17ef239fd17b3137411ab84d63a79572e6785ff3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Aug 21 18:20:36 EDT 2025
Thu Sep 04 17:14:46 EDT 2025
Fri Sep 05 02:43:42 EDT 2025
Mon Jul 14 08:19:18 EDT 2025
Mon Jul 21 05:54:03 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Tue Jul 01 00:43:09 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-bdc71df9b339e8cd70e130e6c17ef239fd17b3137411ab84d63a79572e6785ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1109/TNSRE.2010.2079334
PMID 20876030
PQID 913693775
PQPubID 85423
PageCount 9
ParticipantIDs proquest_journals_913693775
crossref_citationtrail_10_1109_TNSRE_2010_2079334
ieee_primary_5585779
pubmed_primary_20876030
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4010155
proquest_miscellaneous_898166158
proquest_miscellaneous_902366012
crossref_primary_10_1109_TNSRE_2010_2079334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
trombly (ref4) 1989
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref11
ref10
li (ref32) 2008; 55
ref2
ref17
ref38
ref16
ref19
ref18
fukunaga (ref35) 1990
ref24
ref23
ref26
ref25
ref20
(ref1) 2001; 50
gowland (ref33) 1990; 21
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref3
ref6
fischer (ref9) 2007; 14
ref5
gowland (ref30) 1992; 72
References_xml – ident: ref14
  doi: 10.1109/3468.925661
– ident: ref15
  doi: 10.1097/PHM.0b013e3180383cc5
– ident: ref18
  doi: 10.1093/cercor/bhk033
– volume: 72
  start-page: 624
  year: 1992
  ident: ref30
  article-title: Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke
  publication-title: Phys Ther
  doi: 10.1093/ptj/72.9.624
– ident: ref27
  doi: 10.1109/TNSRE.2007.908376
– volume: 14
  start-page: 1
  year: 2007
  ident: ref9
  article-title: A pilot study of assisted finger extension training in a virtual environment
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr1401-1
– ident: ref36
  doi: 10.1016/S1350-4533(99)00066-1
– volume: 21
  start-page: 19
  year: 1990
  ident: ref33
  article-title: Staging motor impairment after stroke
  publication-title: Stroke
– ident: ref22
  doi: 10.1001/jama.2009.116
– ident: ref11
  doi: 10.1093/brain/awm311
– ident: ref28
  doi: 10.1109/TNSRE.2008.2010480
– ident: ref34
  doi: 10.1109/TBME.2006.889192
– volume: 50
  year: 2001
  ident: ref1
  publication-title: Prevalence of disabilities and associated health conditions among adults United States 1999 Morbidity and mortality weekly report
– start-page: 454
  year: 1989
  ident: ref4
  publication-title: Stroke
– ident: ref19
  doi: 10.1109/TRO.2007.910708
– ident: ref31
  doi: 10.1093/brain/awh432
– ident: ref29
  doi: 10.1093/brain/118.2.495
– ident: ref6
  doi: 10.1191/0269215502cr512oa
– ident: ref7
  doi: 10.1093/brain/awh432
– ident: ref24
  doi: 10.1109/TBME.2008.923917
– ident: ref2
  doi: 10.1136/jnnp.46.1.5
– ident: ref5
  doi: 10.1016/j.apmr.2006.05.013
– ident: ref12
  doi: 10.1682/JRRD.2008.04.0052
– ident: ref10
  doi: 10.1109/ICORR.2007.4428537
– ident: ref25
  doi: 10.1109/TNSRE.2005.847357
– ident: ref8
  doi: 10.1109/86.867886
– ident: ref13
  doi: 10.1109/ICORR.2007.4428432
– ident: ref16
  doi: 10.1161/01.STR.31.6.1360
– ident: ref37
  doi: 10.1053/jhsu.2001.26188
– ident: ref3
  doi: 10.1093/brain/74.4.443
– ident: ref23
  doi: 10.1016/j.compbiomed.2009.02.001
– ident: ref17
  doi: 10.1007/BF00241969
– ident: ref20
  doi: 10.1109/TBME.2003.813539
– year: 1990
  ident: ref35
  publication-title: Introduction to statistical pattern recognition
– ident: ref26
  doi: 10.1109/TBME.2006.883695
– ident: ref21
  doi: 10.1109/TBME.2008.2005485
– ident: ref38
  doi: 10.1191/0269215504cr724oa
– volume: 55
  start-page: 535
  year: 2008
  ident: ref32
  article-title: Bayesian network modeling for discovering 'dependent synergies' among muscles in reaching movements
  publication-title: IEEE Trans Biomed Eng
SSID ssj0017657
Score 2.3864748
Snippet In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 558
SubjectTerms Accuracy
Aged
Algorithms
Classification
Electrodes
Electromyography
Electromyography (EMG)
Electromyography - classification
Electromyography - statistics & numerical data
Feasibility Studies
Female
Fingers
functional task
hand
Hand - physiology
Hand Strength - physiology
Humans
Male
Middle Aged
Movement - physiology
Muscles
Paresis - physiopathology
Pattern classification
Psychomotor Performance - physiology
stroke
Stroke - physiopathology
Stroke Rehabilitation
Studies
Survivors
Training
Title Subject-Specific Myoelectric Pattern Classification of Functional Hand Movements for Stroke Survivors
URI https://ieeexplore.ieee.org/document/5585779
https://www.ncbi.nlm.nih.gov/pubmed/20876030
https://www.proquest.com/docview/913693775
https://www.proquest.com/docview/898166158
https://www.proquest.com/docview/902366012
https://pubmed.ncbi.nlm.nih.gov/PMC4010155
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnHrpK324SYsObS-tNyvLsqxjKVmWwoaS3UBuxnrRkGCXXbvQ_vqM5Ae7IQ252WgkW8yMZqQZfQPwUXEhpJA61qbM4lRY1DnDVIwbMUmddaY0PqK7OMvmF-mPS365B1_HuzDW2pB8Zif-McTyTa1bf1R2wtG3xaH3YR_FrLurNUYMRBZQPVGB0zhlyXS4IDOVJ6uz5flpl8WVeDw45ovxJB6LLSQ_b9mjUGDlPl_zbsrklg2aPYPF8Pdd6sn1pG3URP-7A-z42Ok9h6e9M0q-ddLzAvZs9RI-bQMPk1WHOkA-k_MdTO9DsLjm-EOcOJSwd1eaLP7WXVUdfP4ZcDsrEopu-tbQi9SOzNCS9oPPy8qQRR0gy5sNQf-ZLJt1fW3JssUl7E-93ryCi9np6vs87os2xJqnWRMrowU1TirGpM21EVOLZtJmmgrrEiadoUIxytCToaXKU5OxUkguEotmkzvHXsNBVVf2LRBV5s7j5blS8dSW-OZwtUi18-FcoWUEdGBdofvZ-8IaN0XY2UxlEThfeM4XPecj-DL2-d3heTxIfejZNFL2HIrgaJCQolf5TSEpy9DXEzwCMrairvoATFnZut0UufRRWsrz_5NIj-iPm-QkgjedxI0fHyQ2ArEjiyOBRwrfbamufgXE8NQjCXL-7v7pHMGTZMhspMdw0Kxb-x5drUZ9CDp2C5ItJ5I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0IJ5eEDcIFsN3Ecx0eEulqgWaHuVuotil-iKkrQboIEv56x89BuVRC3RH4k1sx4ZjzjbwBeS8a54EKFSpdpmHCDMqepDNERE5E1VpfaRXTzRTo_Tz5fsIs9eD_ehTHG-OQzM3GPPpava9W6o7JjhrYtTn0LbjP0KrLuttYYM-Cpx_VEEU7ChMbT4YrMVByvFsuzky6PK3aIcNSV44kdGptPf97SSL7Eyk3W5vWkyS0tNLsP-fD_XfLJ1aRt5ET9vgbt-L8LfAD3enOUfOj45yHsmeoRvNmGHiarDneAvCVnO6jeB2Bw13HHOKEvYm8vFcl_1V1dHXz-6pE7K-LLbrpWP4rUlsxQl_aTz8tKk7z2oOXNhqAFTZbNur4yZNniJvazXm8ew_nsZPVxHvZlG0LFkrQJpVY80lZISoXJlOZTg4rSpCrixsZUWB1xSSOKtkxUyizRKS25YDw2qDiZtfQJ7Fd1ZZ4CkWVmHWKeLSVLTIlvFveLRFkX0OVKBBANpCtUv3pXWuN74X2bqSg85QtH-aKnfADvxjE_OkSPf_Y-cGQae_YUCuBo4JCiF_pNISKaorXHWQBkbEVpdSGYsjJ1uyky4eK0Ecv-3kU4TH90k-MADjuOGz8-cGwAfIcXxw4OK3y3pbr85jHDE4clyNizm5fzCu7MV_lpcfpp8eUI7sZDnmP0HPabdWteoOHVyJde3v4ANNIq5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+myoelectric+pattern+classification+of+functional+hand+movements+for+stroke+survivors&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lee%2C+Sang+Wook&rft.au=Wilson%2C+Kristin+M&rft.au=Lock%2C+Blair+A&rft.au=Kamper%2C+Derek+G&rft.date=2011-10-01&rft.eissn=1558-0210&rft.volume=19&rft.issue=5&rft.spage=558&rft_id=info:doi/10.1109%2FTNSRE.2010.2079334&rft_id=info%3Apmid%2F20876030&rft.externalDocID=20876030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon