Subject-Specific Myoelectric Pattern Classification of Functional Hand Movements for Stroke Survivors
In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 19; no. 5; pp. 558 - 566 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2010.2079334 |
Cover
Abstract | In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures. |
---|---|
AbstractList | In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures. In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures.In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures. |
Author | Kamper, Derek G. Lock, Blair A. Lee, Sang Wook Wilson, Kristin M. |
AuthorAffiliation | 2 Department of Bioengineering, University of Pittsburgh 4 Department of Biomedical Engineering, Illinois Institute of Technology 3 Neural Engineering Center for Artificial Limbs, Rehabilitation Institute of Chicago 1 Sensory Motor Performance Program, Rehabilitation Institute of Chicago |
AuthorAffiliation_xml | – name: 2 Department of Bioengineering, University of Pittsburgh – name: 1 Sensory Motor Performance Program, Rehabilitation Institute of Chicago – name: 3 Neural Engineering Center for Artificial Limbs, Rehabilitation Institute of Chicago – name: 4 Department of Biomedical Engineering, Illinois Institute of Technology |
Author_xml | – sequence: 1 givenname: Sang Wook surname: Lee fullname: Lee, Sang Wook email: leeb@cua.edu organization: Sensory Motor Performance Program, Rehabilitation Institute of Chicago – sequence: 2 givenname: Kristin M. surname: Wilson fullname: Wilson, Kristin M. organization: Department of Bioengineering, University of Pittsburgh, Pittsburgh – sequence: 3 givenname: Blair A. surname: Lock fullname: Lock, Blair A. organization: Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago – sequence: 4 givenname: Derek G. surname: Kamper fullname: Kamper, Derek G. organization: Department of Biomedical Engineering, Illinois Institute of Technology, Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20876030$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQtVAr-gF_ACQUcekpxR-J7VyQ0KqlSC0gUs6W44zBSzbe2s5K_fd1utuK9gAnjz3vvRnPvCO0N_oREHpD8CkhuPlw_bX9cXZKcb5TLBrGqhfokNS1LDEleG-OWVVWjOIDdBTjEmMieC1eogOKpeCY4UME7dQtwaSyXYNx1pni6tbDkF9Cjr_rlCCMxWLQMc5ZnZwfC2-L82k0c6yH4kKPfXHlN7CCMcXC-lC0Kfg_ULRT2LiND_EV2rd6iPB6dx6jn-dn14uL8vLb5y-LT5elqSueyq43gvS26RhrQJpeYCAMAzdEgKWssT0RHSNMVIToTlY9Z1o0taDAhaytZcfo41Z3PXUr6E1uKOhBrYNb6XCrvHbqaWZ0v9Uvv1FVHmKeXBY42QkEfzNBTGrlooFh0CP4KaoGU8Y5JvS_SNlIwjmpZUa-f4Zc-inkyWU5wnjDhJgLv_u788eWHzaVAXILMMHHGMAq49L9OvJH3KAIVrMp1L0p1GwKtTNFptJn1Af1f5LebkkOAB4J2Vy1yIA7s8bD_Q |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2964678 crossref_primary_10_3390_bioengineering10070866 crossref_primary_10_1109_TBME_2018_2840848 crossref_primary_10_3389_fnins_2015_00416 crossref_primary_10_3390_s20236763 crossref_primary_10_1155_2013_908591 crossref_primary_10_1109_ACCESS_2025_3528902 crossref_primary_10_1016_j_medengphy_2014_01_005 crossref_primary_10_1016_j_bspc_2019_101737 crossref_primary_10_1016_j_bspc_2022_103737 crossref_primary_10_1186_s12984_019_0612_y crossref_primary_10_1186_s12938_022_01030_6 crossref_primary_10_1002_acn3_122 crossref_primary_10_1142_S0129065714500221 crossref_primary_10_1371_journal_pone_0140161 crossref_primary_10_1007_s10846_018_0966_6 crossref_primary_10_1109_TNSRE_2019_2939202 crossref_primary_10_1155_2018_2350834 crossref_primary_10_1186_s12984_023_01144_5 crossref_primary_10_3389_fnbot_2019_00067 crossref_primary_10_1109_TBME_2012_2191551 crossref_primary_10_1186_s12984_017_0248_8 crossref_primary_10_1142_S0219519416500767 crossref_primary_10_3389_fbioe_2017_00039 crossref_primary_10_3390_biomimetics9050266 crossref_primary_10_1177_0040517519858768 crossref_primary_10_3390_s18103342 crossref_primary_10_1109_LRA_2024_3511372 crossref_primary_10_1016_j_measurement_2019_107258 crossref_primary_10_3389_fnbot_2021_659876 crossref_primary_10_3390_s21051575 crossref_primary_10_1016_j_bspc_2022_104096 crossref_primary_10_1109_JSEN_2021_3119074 crossref_primary_10_3389_fnhum_2015_00706 crossref_primary_10_1109_JTEHM_2018_2822681 crossref_primary_10_1109_TBME_2019_2935182 crossref_primary_10_1109_TNSRE_2019_2894102 crossref_primary_10_21307_ijssis_2017_215 crossref_primary_10_1186_s13634_020_00699_y crossref_primary_10_3389_fneur_2016_00197 crossref_primary_10_3390_s22228733 crossref_primary_10_1123_mc_2020_0041 crossref_primary_10_1097_NPT_0000000000000398 crossref_primary_10_1088_1741_2560_10_4_046015 crossref_primary_10_1109_TII_2023_3348826 crossref_primary_10_1109_TNSRE_2012_2218832 crossref_primary_10_1016_j_medengphy_2014_09_011 crossref_primary_10_1007_s11062_020_09851_8 crossref_primary_10_3389_fbioe_2017_00042 crossref_primary_10_1109_TNSRE_2018_2800052 crossref_primary_10_1097_JPO_0000000000000277 crossref_primary_10_1016_j_bspc_2020_101949 crossref_primary_10_1109_RBME_2021_3078190 crossref_primary_10_1038_s41598_018_34785_x crossref_primary_10_1109_JSEN_2014_2315895 crossref_primary_10_1177_0300060516656689 crossref_primary_10_1186_1743_0003_10_52 crossref_primary_10_1109_TNSRE_2016_2569070 crossref_primary_10_1007_s11517_016_1608_4 crossref_primary_10_1109_ACCESS_2018_2851282 crossref_primary_10_3934_mbe_2023181 crossref_primary_10_1016_j_jneumeth_2019_108462 crossref_primary_10_3389_fneur_2017_00340 crossref_primary_10_3390_s21165334 crossref_primary_10_1016_j_measurement_2021_110102 crossref_primary_10_3389_fphys_2022_811950 crossref_primary_10_1002_ana_23879 crossref_primary_10_1007_s12541_020_00364_2 crossref_primary_10_3389_fneur_2019_00444 crossref_primary_10_1177_2055668320964050 crossref_primary_10_3389_fneur_2017_00107 crossref_primary_10_3390_s24123818 crossref_primary_10_1109_TNSRE_2019_2952470 crossref_primary_10_3109_17483107_2014_979330 |
Cites_doi | 10.1109/3468.925661 10.1097/PHM.0b013e3180383cc5 10.1093/cercor/bhk033 10.1093/ptj/72.9.624 10.1109/TNSRE.2007.908376 10.1310/tsr1401-1 10.1016/S1350-4533(99)00066-1 10.1001/jama.2009.116 10.1093/brain/awm311 10.1109/TNSRE.2008.2010480 10.1109/TBME.2006.889192 10.1109/TRO.2007.910708 10.1093/brain/awh432 10.1093/brain/118.2.495 10.1191/0269215502cr512oa 10.1109/TBME.2008.923917 10.1136/jnnp.46.1.5 10.1016/j.apmr.2006.05.013 10.1682/JRRD.2008.04.0052 10.1109/ICORR.2007.4428537 10.1109/TNSRE.2005.847357 10.1109/86.867886 10.1109/ICORR.2007.4428432 10.1161/01.STR.31.6.1360 10.1053/jhsu.2001.26188 10.1093/brain/74.4.443 10.1016/j.compbiomed.2009.02.001 10.1007/BF00241969 10.1109/TBME.2003.813539 10.1109/TBME.2006.883695 10.1109/TBME.2008.2005485 10.1191/0269215504cr724oa |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TNSRE.2010.2079334 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 566 |
ExternalDocumentID | PMC4010155 2553121141 20876030 10_1109_TNSRE_2010_2079334 5585779 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS052369 – fundername: NINDS NIH HHS grantid: 1R01NS052369-01A1 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c546t-bdc71df9b339e8cd70e130e6c17ef239fd17b3137411ab84d63a79572e6785ff3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Aug 21 18:20:36 EDT 2025 Thu Sep 04 17:14:46 EDT 2025 Fri Sep 05 02:43:42 EDT 2025 Mon Jul 14 08:19:18 EDT 2025 Mon Jul 21 05:54:03 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Tue Jul 01 00:43:09 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-bdc71df9b339e8cd70e130e6c17ef239fd17b3137411ab84d63a79572e6785ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TNSRE.2010.2079334 |
PMID | 20876030 |
PQID | 913693775 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | proquest_journals_913693775 crossref_citationtrail_10_1109_TNSRE_2010_2079334 ieee_primary_5585779 pubmed_primary_20876030 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4010155 proquest_miscellaneous_898166158 proquest_miscellaneous_902366012 crossref_primary_10_1109_TNSRE_2010_2079334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2011 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 trombly (ref4) 1989 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref11 ref10 li (ref32) 2008; 55 ref2 ref17 ref38 ref16 ref19 ref18 fukunaga (ref35) 1990 ref24 ref23 ref26 ref25 ref20 (ref1) 2001; 50 gowland (ref33) 1990; 21 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref3 ref6 fischer (ref9) 2007; 14 ref5 gowland (ref30) 1992; 72 |
References_xml | – ident: ref14 doi: 10.1109/3468.925661 – ident: ref15 doi: 10.1097/PHM.0b013e3180383cc5 – ident: ref18 doi: 10.1093/cercor/bhk033 – volume: 72 start-page: 624 year: 1992 ident: ref30 article-title: Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke publication-title: Phys Ther doi: 10.1093/ptj/72.9.624 – ident: ref27 doi: 10.1109/TNSRE.2007.908376 – volume: 14 start-page: 1 year: 2007 ident: ref9 article-title: A pilot study of assisted finger extension training in a virtual environment publication-title: Top Stroke Rehabil doi: 10.1310/tsr1401-1 – ident: ref36 doi: 10.1016/S1350-4533(99)00066-1 – volume: 21 start-page: 19 year: 1990 ident: ref33 article-title: Staging motor impairment after stroke publication-title: Stroke – ident: ref22 doi: 10.1001/jama.2009.116 – ident: ref11 doi: 10.1093/brain/awm311 – ident: ref28 doi: 10.1109/TNSRE.2008.2010480 – ident: ref34 doi: 10.1109/TBME.2006.889192 – volume: 50 year: 2001 ident: ref1 publication-title: Prevalence of disabilities and associated health conditions among adults United States 1999 Morbidity and mortality weekly report – start-page: 454 year: 1989 ident: ref4 publication-title: Stroke – ident: ref19 doi: 10.1109/TRO.2007.910708 – ident: ref31 doi: 10.1093/brain/awh432 – ident: ref29 doi: 10.1093/brain/118.2.495 – ident: ref6 doi: 10.1191/0269215502cr512oa – ident: ref7 doi: 10.1093/brain/awh432 – ident: ref24 doi: 10.1109/TBME.2008.923917 – ident: ref2 doi: 10.1136/jnnp.46.1.5 – ident: ref5 doi: 10.1016/j.apmr.2006.05.013 – ident: ref12 doi: 10.1682/JRRD.2008.04.0052 – ident: ref10 doi: 10.1109/ICORR.2007.4428537 – ident: ref25 doi: 10.1109/TNSRE.2005.847357 – ident: ref8 doi: 10.1109/86.867886 – ident: ref13 doi: 10.1109/ICORR.2007.4428432 – ident: ref16 doi: 10.1161/01.STR.31.6.1360 – ident: ref37 doi: 10.1053/jhsu.2001.26188 – ident: ref3 doi: 10.1093/brain/74.4.443 – ident: ref23 doi: 10.1016/j.compbiomed.2009.02.001 – ident: ref17 doi: 10.1007/BF00241969 – ident: ref20 doi: 10.1109/TBME.2003.813539 – year: 1990 ident: ref35 publication-title: Introduction to statistical pattern recognition – ident: ref26 doi: 10.1109/TBME.2006.883695 – ident: ref21 doi: 10.1109/TBME.2008.2005485 – ident: ref38 doi: 10.1191/0269215504cr724oa – volume: 55 start-page: 535 year: 2008 ident: ref32 article-title: Bayesian network modeling for discovering 'dependent synergies' among muscles in reaching movements publication-title: IEEE Trans Biomed Eng |
SSID | ssj0017657 |
Score | 2.3864748 |
Snippet | In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 558 |
SubjectTerms | Accuracy Aged Algorithms Classification Electrodes Electromyography Electromyography (EMG) Electromyography - classification Electromyography - statistics & numerical data Feasibility Studies Female Fingers functional task hand Hand - physiology Hand Strength - physiology Humans Male Middle Aged Movement - physiology Muscles Paresis - physiopathology Pattern classification Psychomotor Performance - physiology stroke Stroke - physiopathology Stroke Rehabilitation Studies Survivors Training |
Title | Subject-Specific Myoelectric Pattern Classification of Functional Hand Movements for Stroke Survivors |
URI | https://ieeexplore.ieee.org/document/5585779 https://www.ncbi.nlm.nih.gov/pubmed/20876030 https://www.proquest.com/docview/913693775 https://www.proquest.com/docview/898166158 https://www.proquest.com/docview/902366012 https://pubmed.ncbi.nlm.nih.gov/PMC4010155 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnHrpK324SYsObS-tNyvLsqxjKVmWwoaS3UBuxnrRkGCXXbvQ_vqM5Ae7IQ252WgkW8yMZqQZfQPwUXEhpJA61qbM4lRY1DnDVIwbMUmddaY0PqK7OMvmF-mPS365B1_HuzDW2pB8Zif-McTyTa1bf1R2wtG3xaH3YR_FrLurNUYMRBZQPVGB0zhlyXS4IDOVJ6uz5flpl8WVeDw45ovxJB6LLSQ_b9mjUGDlPl_zbsrklg2aPYPF8Pdd6sn1pG3URP-7A-z42Ok9h6e9M0q-ddLzAvZs9RI-bQMPk1WHOkA-k_MdTO9DsLjm-EOcOJSwd1eaLP7WXVUdfP4ZcDsrEopu-tbQi9SOzNCS9oPPy8qQRR0gy5sNQf-ZLJt1fW3JssUl7E-93ryCi9np6vs87os2xJqnWRMrowU1TirGpM21EVOLZtJmmgrrEiadoUIxytCToaXKU5OxUkguEotmkzvHXsNBVVf2LRBV5s7j5blS8dSW-OZwtUi18-FcoWUEdGBdofvZ-8IaN0XY2UxlEThfeM4XPecj-DL2-d3heTxIfejZNFL2HIrgaJCQolf5TSEpy9DXEzwCMrairvoATFnZut0UufRRWsrz_5NIj-iPm-QkgjedxI0fHyQ2ArEjiyOBRwrfbamufgXE8NQjCXL-7v7pHMGTZMhspMdw0Kxb-x5drUZ9CDp2C5ItJ5I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0IJ5eEDcIFsN3Ecx0eEulqgWaHuVuotil-iKkrQboIEv56x89BuVRC3RH4k1sx4ZjzjbwBeS8a54EKFSpdpmHCDMqepDNERE5E1VpfaRXTzRTo_Tz5fsIs9eD_ehTHG-OQzM3GPPpava9W6o7JjhrYtTn0LbjP0KrLuttYYM-Cpx_VEEU7ChMbT4YrMVByvFsuzky6PK3aIcNSV44kdGptPf97SSL7Eyk3W5vWkyS0tNLsP-fD_XfLJ1aRt5ET9vgbt-L8LfAD3enOUfOj45yHsmeoRvNmGHiarDneAvCVnO6jeB2Bw13HHOKEvYm8vFcl_1V1dHXz-6pE7K-LLbrpWP4rUlsxQl_aTz8tKk7z2oOXNhqAFTZbNur4yZNniJvazXm8ew_nsZPVxHvZlG0LFkrQJpVY80lZISoXJlOZTg4rSpCrixsZUWB1xSSOKtkxUyizRKS25YDw2qDiZtfQJ7Fd1ZZ4CkWVmHWKeLSVLTIlvFveLRFkX0OVKBBANpCtUv3pXWuN74X2bqSg85QtH-aKnfADvxjE_OkSPf_Y-cGQae_YUCuBo4JCiF_pNISKaorXHWQBkbEVpdSGYsjJ1uyky4eK0Ecv-3kU4TH90k-MADjuOGz8-cGwAfIcXxw4OK3y3pbr85jHDE4clyNizm5fzCu7MV_lpcfpp8eUI7sZDnmP0HPabdWteoOHVyJde3v4ANNIq5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+myoelectric+pattern+classification+of+functional+hand+movements+for+stroke+survivors&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lee%2C+Sang+Wook&rft.au=Wilson%2C+Kristin+M&rft.au=Lock%2C+Blair+A&rft.au=Kamper%2C+Derek+G&rft.date=2011-10-01&rft.eissn=1558-0210&rft.volume=19&rft.issue=5&rft.spage=558&rft_id=info:doi/10.1109%2FTNSRE.2010.2079334&rft_id=info%3Apmid%2F20876030&rft.externalDocID=20876030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |