Characterized source model of the M7.3 2016 Kumamoto earthquake by the 3D reciprocity GFs inversion with special reference to the velocity pulse at KMMH16
The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the M 7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The questi...
Saved in:
| Published in | Earth, planets, and space Vol. 75; no. 1; pp. 16 - 18 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1880-5981 1343-8832 1880-5981 |
| DOI | 10.1186/s40623-023-01768-w |
Cover
| Abstract | The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the
M
7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The question raised is how the near-fault ground motions with strong velocity pulse at KMMH16 were generated during the mainshock. We focus on the characterized source model with Strong Motion Generation Areas (SMGA). Empirical Green’s function (EGF) method is widely used for source modeling in this case. However, in case that the target site is located just near the fault in nodal plane of source mechanism (like KMMH16), mechanism of the EGF event should perfectly fit mechanism of the mainshock, which is a rare case. Therefore, instead of using EGFs, we used theoretical 3D Green’s functions. Our approach is a nonlinear source inversion. This method requires calculation of waveforms and comparison with observations for many source models. To accelerate these calculations, we use pre-calculated GFs by the reciprocity method in the JIVSM velocity structure model. By comparison with aftershock records, we validated this structure for periods as short as 1.5 s. Target sites are limited to sites close to the fault: KMM005, KMM006, KMMH14, and KMMH16. First, we look for an initial SMGA source model by the grid search method applied to relatively long-period (> 3 s) waveforms and coarse grid of source parameters. Then, we tune that source model to fit observed short-period waveforms with the simplex search method. Necessary physical constraints for the range of the source parameters are applied here. The important point in our inversion scheme is to describe the Kostrov-like slip velocity functions inside each SMGAs by using two triangles. The resulting source model agrees well with other inversion results. We found that the observed westward pulse at KMMH16 is the result of the constructive interference of two pulses from SMGA1 and SMGA2, located in Hinagu fault and southwestern segment of Futagawa fault.
Graphical Abstract |
|---|---|
| AbstractList | The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the M7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The question raised is how the near-fault ground motions with strong velocity pulse at KMMH16 were generated during the mainshock. We focus on the characterized source model with Strong Motion Generation Areas (SMGA). Empirical Green's function (EGF) method is widely used for source modeling in this case. However, in case that the target site is located just near the fault in nodal plane of source mechanism (like KMMH16), mechanism of the EGF event should perfectly fit mechanism of the mainshock, which is a rare case. Therefore, instead of using EGFs, we used theoretical 3D Green's functions. Our approach is a nonlinear source inversion. This method requires calculation of waveforms and comparison with observations for many source models. To accelerate these calculations, we use pre-calculated GFs by the reciprocity method in the JIVSM velocity structure model. By comparison with aftershock records, we validated this structure for periods as short as 1.5 s. Target sites are limited to sites close to the fault: KMM005, KMM006, KMMH14, and KMMH16. First, we look for an initial SMGA source model by the grid search method applied to relatively long-period (> 3 s) waveforms and coarse grid of source parameters. Then, we tune that source model to fit observed short-period waveforms with the simplex search method. Necessary physical constraints for the range of the source parameters are applied here. The important point in our inversion scheme is to describe the Kostrov-like slip velocity functions inside each SMGAs by using two triangles. The resulting source model agrees well with other inversion results. We found that the observed westward pulse at KMMH16 is the result of the constructive interference of two pulses from SMGA1 and SMGA2, located in Hinagu fault and southwestern segment of Futagawa fault. Graphical The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the M7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The question raised is how the near-fault ground motions with strong velocity pulse at KMMH16 were generated during the mainshock. We focus on the characterized source model with Strong Motion Generation Areas (SMGA). Empirical Green's function (EGF) method is widely used for source modeling in this case. However, in case that the target site is located just near the fault in nodal plane of source mechanism (like KMMH16), mechanism of the EGF event should perfectly fit mechanism of the mainshock, which is a rare case. Therefore, instead of using EGFs, we used theoretical 3D Green's functions. Our approach is a nonlinear source inversion. This method requires calculation of waveforms and comparison with observations for many source models. To accelerate these calculations, we use pre-calculated GFs by the reciprocity method in the JIVSM velocity structure model. By comparison with aftershock records, we validated this structure for periods as short as 1.5 s. Target sites are limited to sites close to the fault: KMM005, KMM006, KMMH14, and KMMH16. First, we look for an initial SMGA source model by the grid search method applied to relatively long-period (> 3 s) waveforms and coarse grid of source parameters. Then, we tune that source model to fit observed short-period waveforms with the simplex search method. Necessary physical constraints for the range of the source parameters are applied here. The important point in our inversion scheme is to describe the Kostrov-like slip velocity functions inside each SMGAs by using two triangles. The resulting source model agrees well with other inversion results. We found that the observed westward pulse at KMMH16 is the result of the constructive interference of two pulses from SMGA1 and SMGA2, located in Hinagu fault and southwestern segment of Futagawa fault. The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the M 7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The question raised is how the near-fault ground motions with strong velocity pulse at KMMH16 were generated during the mainshock. We focus on the characterized source model with Strong Motion Generation Areas (SMGA). Empirical Green’s function (EGF) method is widely used for source modeling in this case. However, in case that the target site is located just near the fault in nodal plane of source mechanism (like KMMH16), mechanism of the EGF event should perfectly fit mechanism of the mainshock, which is a rare case. Therefore, instead of using EGFs, we used theoretical 3D Green’s functions. Our approach is a nonlinear source inversion. This method requires calculation of waveforms and comparison with observations for many source models. To accelerate these calculations, we use pre-calculated GFs by the reciprocity method in the JIVSM velocity structure model. By comparison with aftershock records, we validated this structure for periods as short as 1.5 s. Target sites are limited to sites close to the fault: KMM005, KMM006, KMMH14, and KMMH16. First, we look for an initial SMGA source model by the grid search method applied to relatively long-period (> 3 s) waveforms and coarse grid of source parameters. Then, we tune that source model to fit observed short-period waveforms with the simplex search method. Necessary physical constraints for the range of the source parameters are applied here. The important point in our inversion scheme is to describe the Kostrov-like slip velocity functions inside each SMGAs by using two triangles. The resulting source model agrees well with other inversion results. We found that the observed westward pulse at KMMH16 is the result of the constructive interference of two pulses from SMGA1 and SMGA2, located in Hinagu fault and southwestern segment of Futagawa fault. Graphical Abstract Abstract The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the M7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The question raised is how the near-fault ground motions with strong velocity pulse at KMMH16 were generated during the mainshock. We focus on the characterized source model with Strong Motion Generation Areas (SMGA). Empirical Green’s function (EGF) method is widely used for source modeling in this case. However, in case that the target site is located just near the fault in nodal plane of source mechanism (like KMMH16), mechanism of the EGF event should perfectly fit mechanism of the mainshock, which is a rare case. Therefore, instead of using EGFs, we used theoretical 3D Green’s functions. Our approach is a nonlinear source inversion. This method requires calculation of waveforms and comparison with observations for many source models. To accelerate these calculations, we use pre-calculated GFs by the reciprocity method in the JIVSM velocity structure model. By comparison with aftershock records, we validated this structure for periods as short as 1.5 s. Target sites are limited to sites close to the fault: KMM005, KMM006, KMMH14, and KMMH16. First, we look for an initial SMGA source model by the grid search method applied to relatively long-period (> 3 s) waveforms and coarse grid of source parameters. Then, we tune that source model to fit observed short-period waveforms with the simplex search method. Necessary physical constraints for the range of the source parameters are applied here. The important point in our inversion scheme is to describe the Kostrov-like slip velocity functions inside each SMGAs by using two triangles. The resulting source model agrees well with other inversion results. We found that the observed westward pulse at KMMH16 is the result of the constructive interference of two pulses from SMGA1 and SMGA2, located in Hinagu fault and southwestern segment of Futagawa fault. Graphical Abstract |
| ArticleNumber | 16 |
| Audience | Academic |
| Author | Kawase, Hiroshi Nagashima, Fumiaki Ito, Eri Petukhin, Anatoly |
| Author_xml | – sequence: 1 givenname: Anatoly orcidid: 0000-0001-5850-2933 surname: Petukhin fullname: Petukhin, Anatoly email: anatolyp@geor.or.jp organization: Geo-Research Institute – sequence: 2 givenname: Hiroshi surname: Kawase fullname: Kawase, Hiroshi organization: Disaster Prevention Research Institute, Kyoto University – sequence: 3 givenname: Fumiaki surname: Nagashima fullname: Nagashima, Fumiaki organization: Disaster Prevention Research Institute, Kyoto University – sequence: 4 givenname: Eri surname: Ito fullname: Ito, Eri organization: Disaster Prevention Research Institute, Kyoto University |
| BookMark | eNqNUttuEzEQXaEi0RZ-gCdLPPGwwd6LL49VoBe1ERKXZ8vrnU0cNuvU9jaET-FrmXQroDxUyBrZGp9zxjPHJ9nR4AfIsteMzhiT_F2sKC_KnB6CCS7z3bPsmElJ81pJdvTX-UV2EuOa0pJWvDzOfs5XJhibILgf0JLox2CBbHwLPfEdSSsgCzErSUEZJ9fjxmx88gRMSKvb0XwD0uzvQeV7EsC6bfDWpT25OI_EDXcQovMD2bm0InGL96ZHWAcBBqyCQgfqHfQTaTv2EYhJ5HqxuGT8Zfa8M5h59bCfZl_PP3yZX-Y3Hy-u5mc3ua0rnnIlmLAt5WAZtwWnoilBUUOZkUVbdEpaAErrqqbGiKZSnEFRdw1VjVLKFrI8za4m3dabtd4GtzFhr71x-j7hw1Jju872oDmvOypxeFbWlVRcSVErYxrBoYS2rVGrnLTGYWv2O9P3vwUZ1Qer9GSVpoc4WKV3yHozsXB8tyPEpNfow4BN60IIKotalBxRswm1NPgUN3Q-oXO4Wtg4i_-hc5g_E2VdqFopioS3jwiISfA9Lc0Yo776_OkxVk5YG3yM6JFGS0xC97CI659-ffEP9b9afhhURPCwhPCn5SdYvwDYqeRt |
| CitedBy_id | crossref_primary_10_1007_s10064_023_03514_8 crossref_primary_10_1785_0120230071 |
| Cites_doi | 10.1002/2017GL073857 10.1093/gji/ggv543 10.1785/0120180200 10.1785/0120000845 10.1007/s00024-010-0150-9 10.1029/2000JB900435 10.1186/s40623-016-0591-1 10.1785/0120040177 10.1186/s40623-016-0586-y 10.1186/BF03351911 10.1029/2019JB018703 10.5047/eps.2011.06.050 10.1785/BSSA07306A1553 10.1785/0120180342 10.1186/s40623-016-0536-8 10.1007/s00024-019-02095-6 10.3130/aijs.65.33_3 10.1186/s40623-016-0519-9 10.1029/2007JB005189 10.1785/0120110198 10.1785/0120210138 10.1785/0120000222 10.1029/97GL00619 10.1029/2011JB009097 10.1785/BSSA07206A1867 10.1785/0120040037 10.1785/0120210047 10.1186/s40623-016-0385-5 10.1186/s40623-017-0649-8 10.1137/S1052623496303470 10.3130/aijs.67.37_6 10.1186/s40623-020-01276-1 10.1111/j.1365-246X.2011.05289.x 10.1029/2009JB006689 10.1007/s00024-019-02283-4 10.1785/BSSA0860041091 10.1785/0120020183 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7TG 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO H8D HCIFZ KL. L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.1186/s40623-023-01768-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Astronomy & Astrophysics Physics |
| EISSN | 1880-5981 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_665f08003c85489698759aab76e3edd5 10.1186/s40623-023-01768-w A735295990 10_1186_s40623_023_01768_w |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | -A0 -~X 0R~ 3K4 4.4 5GY 5VS 7.U 8FE 8FG 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AHBYD AHYZX AIDUJ ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BCNDV BENPR BGLVJ BHPHI BKSAR C24 C6C CCPQU E3Z EBLON EBS EJD FRP GROUPED_DOAJ HCIFZ IAO IGS ISR ITC JSH KQ8 LK5 M7R M~E OK1 P62 PCBAR PIMPY PROAC RSV SC5 SJN SOJ TR2 ~02 AASML AAYXX AFPKN CITATION PUEGO 7TG 8FD ABUWG AZQEC DWQXO H8D KL. L7M PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC AHSBF AI. JSF RJT RZJ TKC UNPAY VH1 VOH |
| ID | FETCH-LOGICAL-c546t-9717cd06ec16c2607b3e90a01a82d2f98cee005450aa7b4961e25fb09b999c283 |
| IEDL.DBID | UNPAY |
| ISSN | 1880-5981 1343-8832 |
| IngestDate | Tue Oct 14 19:08:18 EDT 2025 Tue Aug 19 09:14:49 EDT 2025 Wed Oct 08 14:30:31 EDT 2025 Mon Oct 20 17:10:52 EDT 2025 Thu Oct 16 16:26:54 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Wed Oct 01 02:48:47 EDT 2025 Fri Feb 21 02:44:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Source inversion Characterized source model Source time function 2016 Kumamoto earthquake Reciprocity method Recipe for strong-motion prediction Strong-motion generation area |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c546t-9717cd06ec16c2607b3e90a01a82d2f98cee005450aa7b4961e25fb09b999c283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5850-2933 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://earth-planets-space.springeropen.com/counter/pdf/10.1186/s40623-023-01768-w |
| PQID | 2770825736 |
| PQPubID | 2034776 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_665f08003c85489698759aab76e3edd5 unpaywall_primary_10_1186_s40623_023_01768_w proquest_journals_2770825736 gale_infotracacademiconefile_A735295990 gale_incontextgauss_ISR_A735295990 crossref_citationtrail_10_1186_s40623_023_01768_w crossref_primary_10_1186_s40623_023_01768_w springer_journals_10_1186_s40623_023_01768_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Earth, planets, and space |
| PublicationTitleAbbrev | Earth Planets Space |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Hartzell, Heaton (CR14) 1983; 73 Kobayashi, Koketsu, Miyake (CR24) 2017; 44 Eisner, Clayton (CR7) 2001; 91 Petukhin, Miyakoshi, Tsurugi, Kawase, Kamae (CR36) 2016; 68 Petukhin, Galvez, Somerville, Yoshida, Miyakoshi, Irikura (CR38) 2022 Aoyagi, Kimura, Mizoguchi (CR1) 2020; 72 Irikura, Miyakoshi, Kamae, Yoshida, Somei, Kurahashi, Miyake (CR19) 2017; 69 CR37 CR35 Poiata, Miyake, Koketsu, Hikima (CR40) 2012; 102 Kubo, Suzuki, Aoi, Sekiguchi (CR26) 2016; 68 Tinti, Fukuyama, Piatanesi, Cocco (CR47) 2005; 95 Kobayashi, Mamada, Wu (CR23) 2017; 17 Lagarias, Reeds, Wright, Wright (CR28) 1998; 9 Asano, Iwata (CR2) 2016; 68 Miyake, Iwata, Irikura (CR31) 2003; 93 Ikeda, Kamae, Miwa, Irikura (CR15) 2002; 561 Graves, Wald (CR9) 2001; 106 Guatteri, Mai, Beroza (CR11) 2004; 94 Asano, Iwata (CR3) 2021; 111 CR46 CR45 Irikura, Kurahashi, Matsumoto (CR20) 2020; 177 Asano, Sekiguchi, Iwata, Yoshimi, Hayashida, Saomoto, Horikawa (CR4) 2016; 204 Bizzarri (CR5) 2012; 117 Nakamura, Miyatake (CR33) 2000; 53 Pitarka, Graves, Irikura, Miyakoshi, Wu, Kawase, Rodgers, McCallen (CR39) 2021; 112 Oglesby, Mai (CR34) 2012; 188 Schmedes, Archuleta, Lavallée (CR41) 2010; 115 Irikura, Miyake (CR18) 2011; 168 Hallo, Gallovič (CR12) 2020; 125 Hanks (CR13) 1982; 72 Yoshida, Miyakoshi, Somei, Irikura (CR52) 2011; 63 CR17 Inoue, Miyatake (CR16) 1997; 24 CR10 Kurita (CR27) 2017; 73 CR51 Miyakoshi, Petukhin (CR32) 2005 Sekiguchi, Aoi, Honda, Morikawa, Kunugi, Fujiwara (CR42) 2006; 58 Matsushima, Kawase (CR29) 2000; 534 Sleep, Nakata (CR43) 2019; 109 Somei, Miyakoshi, Yoshida, Kurahashi, Irikura (CR44) 2019; 177 Yoshida, Miyakoshi, Somei, Irikura (CR53) 2017; 69 Kawase, Matsushima, Nagashima, Baoyintu (CR22) 2017; 69 Tsurugi, Kagawa, Irikura, Kowada (CR48) 1997 CR25 Bouchon, Toksoz, Karabulut, Bouin, Dietrich, Aktar, Edie (CR6) 2002; 92 CR21 Matsushima, Kawase (CR30) 2009; 55B Wu, Koketsu, Miyake (CR50) 2008; 113 Tsurugi, Tanaka, Kagawa, Irikura (CR49) 2020; 110 Graves (CR8) 1996; 86 K Asano (1768_CR2) 2016; 68 S Matsushima (1768_CR29) 2000; 534 TC Hanks (1768_CR13) 1982; 72 N Poiata (1768_CR40) 2012; 102 K Asano (1768_CR4) 2016; 204 M Hallo (1768_CR12) 2020; 125 D Oglesby (1768_CR34) 2012; 188 M Guatteri (1768_CR11) 2004; 94 K Asano (1768_CR3) 2021; 111 1768_CR21 H Kawase (1768_CR22) 2017; 69 E Tinti (1768_CR47) 2005; 95 Jan Schmedes (1768_CR41) 2010; 115 1768_CR25 K Irikura (1768_CR20) 2020; 177 T Ikeda (1768_CR15) 2002; 561 L Eisner (1768_CR7) 2001; 91 A Petukhin (1768_CR38) 2022 H Nakamura (1768_CR33) 2000; 53 JC Lagarias (1768_CR28) 1998; 9 A Pitarka (1768_CR39) 2021; 112 RW Graves (1768_CR8) 1996; 86 T Inoue (1768_CR16) 1997; 24 1768_CR10 Y Aoyagi (1768_CR1) 2020; 72 K Yoshida (1768_CR53) 2017; 69 M Tsurugi (1768_CR49) 2020; 110 S Matsushima (1768_CR30) 2009; 55B H Sekiguchi (1768_CR42) 2006; 58 1768_CR51 1768_CR17 H Miyake (1768_CR31) 2003; 93 G Kobayashi (1768_CR23) 2017; 17 H Kubo (1768_CR26) 2016; 68 R Graves (1768_CR9) 2001; 106 K Yoshida (1768_CR52) 2011; 63 NH Sleep (1768_CR43) 2019; 109 K Irikura (1768_CR19) 2017; 69 H Kobayashi (1768_CR24) 2017; 44 T Kurita (1768_CR27) 2017; 73 K Irikura (1768_CR18) 2011; 168 1768_CR45 M Tsurugi (1768_CR48) 1997 SH Hartzell (1768_CR14) 1983; 73 1768_CR46 K Miyakoshi (1768_CR32) 2005 C Wu (1768_CR50) 2008; 113 A Petukhin (1768_CR36) 2016; 68 M Bouchon (1768_CR6) 2002; 92 A Bizzarri (1768_CR5) 2012; 117 K Somei (1768_CR44) 2019; 177 1768_CR35 1768_CR37 |
| References_xml | – ident: CR45 – volume: 44 start-page: 6002 year: 2017 end-page: 6010 ident: CR24 article-title: Rupture processes of the 2016 Kumamoto earthquake sequence: causes for extreme ground motions publication-title: Geophys Res Lett doi: 10.1002/2017GL073857 – volume: 204 start-page: 1678 year: 2016 end-page: 1694 ident: CR4 article-title: Modelling of wave propagation and attenuation in the Osaka sedimentary basin, western Japan, during the 2013 Awaji Island earthquake publication-title: Geophys J Int doi: 10.1093/gji/ggv543 – volume: 109 start-page: 2674 issue: 6 year: 2019 end-page: 2690 ident: CR43 article-title: Nonlinear rheology at shallow depths with reference to the 2016 Kumamoto Earthquakes publication-title: Bull Seismol Soc Am doi: 10.1785/0120180200 – volume: 92 start-page: 256 year: 2002 end-page: 266 ident: CR6 article-title: Space and Time Evolution of Rupture and Faulting during the 1999 Izmit (Turkey) Earthquake publication-title: Bull Seismol Soc Am doi: 10.1785/0120000845 – ident: CR51 – volume: 168 start-page: 85 year: 2011 ident: CR18 article-title: Recipe for predicting strong ground motion from crustal earthquake scenarios publication-title: Pure Appl Geophys doi: 10.1007/s00024-010-0150-9 – volume: 106 start-page: 8767 year: 2001 end-page: 8788 ident: CR9 article-title: Resolution analysis of finite fault source inversion using 1D and 3D Green’s functions I publication-title: Strong Motions J Geophys Res doi: 10.1029/2000JB900435 – volume: 69 start-page: 3 year: 2017 ident: CR22 article-title: The cause of heavy damage concentration in downtown Mashiki inferred from observed data and field survey of the 2016 Kumamoto earthquake publication-title: Earth Planets Space doi: 10.1186/s40623-016-0591-1 – volume: 95 start-page: 1211 year: 2005 end-page: 1223 ident: CR47 article-title: A kinematic source-time function compatible with earthquake dynamics publication-title: Bull Seismol Soc Am doi: 10.1785/0120040177 – ident: CR35 – year: 1997 ident: CR48 publication-title: Basic research on the value for earthquakes in Kinki region – ident: CR25 – volume: 69 start-page: 10 year: 2017 ident: CR19 article-title: Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake publication-title: Earth Planets Space doi: 10.1186/s40623-016-0586-y – volume: 53 start-page: 1 year: 2000 end-page: 9 ident: CR33 article-title: An approximate expression of slip velocity time functions for simulation of near-field strong ground motion publication-title: Zisin (j Seismol Soc Jpn) – volume: 58 start-page: 37 year: 2006 end-page: 43 ident: CR42 article-title: Rupture process of the 2005 West Off Fukuoka prefecture earthquake obtained from strong motion data of K-NET and KiK-net publication-title: Earth Planets Space doi: 10.1186/BF03351911 – volume: 125 start-page: JB018703 year: 2020 ident: CR12 article-title: Bayesian self-adapting fault slip inversion with Green's functions uncertainty and application on the 2016 Mw71 Kumamoto earthquake publication-title: J Geophys Res doi: 10.1029/2019JB018703 – ident: CR21 – ident: CR46 – volume: 63 start-page: 577 year: 2011 end-page: 582 ident: CR52 article-title: Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records publication-title: Earth Planets Space doi: 10.5047/eps.2011.06.050 – volume: 73 start-page: 1553 year: 1983 end-page: 1583 ident: CR14 article-title: Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake publication-title: Bull Seism Soc Am doi: 10.1785/BSSA07306A1553 – volume: 110 start-page: 452 year: 2020 end-page: 470 ident: CR49 article-title: High frequency spectral decay characteristics of seismic records of inland crustal earthquakes in Japan: evaluation of the and κ models publication-title: Bull Seismol Soc Am doi: 10.1785/0120180342 – volume: 68 start-page: 161 year: 2016 ident: CR26 article-title: Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms publication-title: Earth Planets Space doi: 10.1186/s40623-016-0536-8 – start-page: SSS10 year: 2022 end-page: SSS12 ident: CR38 publication-title: Multi-hypocenter rupture propagation validated from realistic multi-cycle earthquake simulation – volume: 177 start-page: 2223 year: 2019 end-page: 2240 ident: CR44 article-title: Near-source strong pulses during two large JMA 6.5 and JMA 7.3 events in the 2016 2 Kumamoto, Japan publication-title: Earthquakes Pure Appl Geophys doi: 10.1007/s00024-019-02095-6 – volume: 534 start-page: 33 year: 2000 end-page: 40 ident: CR29 article-title: Multiple asperity source model of the Hyogo-ken Nanbu earthquake of 1995 and strong motion simulation in Kobe publication-title: J Struct Constr Eng AIJ doi: 10.3130/aijs.65.33_3 – volume: 68 start-page: 147 year: 2016 ident: CR2 article-title: Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data publication-title: Earth, Planets and Space doi: 10.1186/s40623-016-0519-9 – volume: 113 start-page: B08316 year: 2008 ident: CR50 article-title: Source processes of the 1978 and 2005 Miyagi-oki, Japan, earthquakes: repeated rupture of asperities over successive large earthquakes publication-title: J Geophys Res doi: 10.1029/2007JB005189 – volume: 102 start-page: 1477 issue: 4 year: 2012 end-page: 1496 ident: CR40 article-title: Strong-motion and teleseismic waveform inversions for the source process of the 2003 Bam, Iran publication-title: Earthquake Bull Seismol Soc Am doi: 10.1785/0120110198 – volume: 112 start-page: 287 issue: 1 year: 2021 end-page: 306 ident: CR39 article-title: Refinements to the Graves-Pitarka Kinematic Rupture Generator, Including a Dynamically Consistent Slip-Rate Function, Applied to the 2019 Mw 7.1 Ridgecrest Earthquake publication-title: Bull Seismol Soc Am doi: 10.1785/0120210138 – volume: 91 start-page: 553 year: 2001 end-page: 560 ident: CR7 article-title: A reciprocity method for multiple-source simulations publication-title: Bull Seismol Soc Am doi: 10.1785/0120000222 – volume: 24 start-page: 905 year: 1997 end-page: 908 ident: CR16 article-title: 3-D simulation of near-field strong ground motion: basin edge effect derived from rupture directivity publication-title: Geophys Res Lett doi: 10.1029/97GL00619 – ident: CR37 – volume: 117 start-page: B06309 year: 2012 ident: CR5 article-title: Analytical representation of the fault slip velocity from spontaneous dynamic earthquake models publication-title: J Geophys Res doi: 10.1029/2011JB009097 – ident: CR10 – volume: 72 start-page: 1867 year: 1982 end-page: 1879 ident: CR13 article-title: fmax publication-title: Bull Seism Soc Am doi: 10.1785/BSSA07206A1867 – volume: 94 start-page: 2051 issue: 6 year: 2004 end-page: 2063 ident: CR11 article-title: A pseudo-dynamic approximation to dynamic rupture models for strong ground motion prediction publication-title: Bull Seism Soc Am doi: 10.1785/0120040037 – volume: 111 start-page: 2426 year: 2021 end-page: 2440 ident: CR3 article-title: Revisiting the source rupture process of the mainshock of the 2016 kumamoto earthquake and implications for the generation of near-fault ground motions and forward-directivity pulse publication-title: Bull Seismol Soc Am doi: 10.1785/0120210047 – volume: 68 start-page: 4 year: 2016 ident: CR36 article-title: Visualization of Green's function anomalies for megathrust source in nankai trough by reciprocity method publication-title: Earth Planets Space doi: 10.1186/s40623-016-0385-5 – volume: 69 start-page: 64 year: 2017 ident: CR53 article-title: Source process of the Kumamoto earthquake (Mj 7.3) inferred from kinematic inversion of strong-motion records publication-title: Earth Planets Space doi: 10.1186/s40623-017-0649-8 – volume: 9 start-page: 112 issue: 1 year: 1998 end-page: 147 ident: CR28 article-title: Convergence properties of the nelder-mead simplex method in low dimensions publication-title: SIAM J Optimizat doi: 10.1137/S1052623496303470 – volume: 561 start-page: 37 year: 2002 end-page: 45 ident: CR15 article-title: Source characterization and strong ground motion simulation of the 2000 tottori-ken seibu earthquake using the empirical green’s function method publication-title: J Struct Constr Eng AIJ doi: 10.3130/aijs.67.37_6 – volume: 72 start-page: 142 year: 2020 ident: CR1 article-title: Seismic velocity structure at the southern termination of the 2016 Kumamoto Earthquake rupture publication-title: Japan Earth Planets Space doi: 10.1186/s40623-020-01276-1 – volume: 17 start-page: 101 issue: 4 year: 2017 end-page: 139 ident: CR23 article-title: Analysis of the factors of large acceleration amplitude and estimation of the bedrock ground motions at the KiK-net Mashiki station caused by the maximum foreshock (M 627 j 6.5) of the 2016 Kumamoto earthquakes publication-title: J Japan Associ Earthquake Eng – volume: 73 start-page: 74 year: 2017 end-page: 82 ident: CR27 article-title: Nonlinearity amplification of subsurface ground at KiK-net Mashiki site during the 2016 Kumamoto earthquake publication-title: J Japan Soc Civil Eng Struc Eng Earthquake Eng – volume: 188 start-page: 1071 year: 2012 ident: CR34 article-title: Fault geometry, rupture dynamics and ground motion from potential earthquakes on the north Anatolian fault under the sea of Marmara publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2011.05289.x – ident: CR17 – volume: 115 issue: B3 year: 2010 ident: CR41 article-title: Correlation of earthquake source parameters inferred from dynamic rupture simulations publication-title: Journal of Geophysical Research doi: 10.1029/2009JB006689 – volume: 177 start-page: 2021 issue: 5 year: 2020 end-page: 2047 ident: CR20 article-title: Extension of Characterized Source Model for Long-Period Ground Motions in Near-Fault Area publication-title: Pure and Applied Geophysics doi: 10.1007/s00024-019-02283-4 – volume: 55B start-page: 537 year: 2009 end-page: 543 ident: CR30 article-title: Re-evaluation of strong motion and damage of wooden houses in Kobe city during the 1995 Kobe earthquake publication-title: J Struct Eng B – start-page: S046p year: 2005 end-page: S52 ident: CR32 publication-title: Delineation of the rupture velocity of heterogeneous source model extracted from source inversion results of inland earthquakes – volume: 86 start-page: 1091 year: 1996 end-page: 1106 ident: CR8 article-title: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0860041091 – volume: 93 start-page: 2531 year: 2003 end-page: 2545 ident: CR31 article-title: Source characterization for broadband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area publication-title: Bull Seismol Soc Am doi: 10.1785/0120020183 – ident: 1768_CR17 – volume: 561 start-page: 37 year: 2002 ident: 1768_CR15 publication-title: J Struct Constr Eng AIJ doi: 10.3130/aijs.67.37_6 – volume: 168 start-page: 85 year: 2011 ident: 1768_CR18 publication-title: Pure Appl Geophys doi: 10.1007/s00024-010-0150-9 – volume-title: Basic research on the fmax value for earthquakes in Kinki region year: 1997 ident: 1768_CR48 – volume: 94 start-page: 2051 issue: 6 year: 2004 ident: 1768_CR11 publication-title: Bull Seism Soc Am doi: 10.1785/0120040037 – volume: 69 start-page: 3 year: 2017 ident: 1768_CR22 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0591-1 – volume: 69 start-page: 64 year: 2017 ident: 1768_CR53 publication-title: Earth Planets Space doi: 10.1186/s40623-017-0649-8 – volume: 72 start-page: 1867 year: 1982 ident: 1768_CR13 publication-title: Bull Seism Soc Am doi: 10.1785/BSSA07206A1867 – volume: 93 start-page: 2531 year: 2003 ident: 1768_CR31 publication-title: Bull Seismol Soc Am doi: 10.1785/0120020183 – volume: 188 start-page: 1071 year: 2012 ident: 1768_CR34 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2011.05289.x – volume: 125 start-page: JB018703 year: 2020 ident: 1768_CR12 publication-title: J Geophys Res doi: 10.1029/2019JB018703 – volume: 53 start-page: 1 year: 2000 ident: 1768_CR33 publication-title: Zisin (j Seismol Soc Jpn) – start-page: S046p volume-title: Delineation of the rupture velocity of heterogeneous source model extracted from source inversion results of inland earthquakes year: 2005 ident: 1768_CR32 – volume: 113 start-page: B08316 year: 2008 ident: 1768_CR50 publication-title: J Geophys Res doi: 10.1029/2007JB005189 – ident: 1768_CR46 – volume: 44 start-page: 6002 year: 2017 ident: 1768_CR24 publication-title: Geophys Res Lett doi: 10.1002/2017GL073857 – volume: 73 start-page: 74 year: 2017 ident: 1768_CR27 publication-title: J Japan Soc Civil Eng Struc Eng Earthquake Eng – volume: 72 start-page: 142 year: 2020 ident: 1768_CR1 publication-title: Japan Earth Planets Space doi: 10.1186/s40623-020-01276-1 – ident: 1768_CR35 – ident: 1768_CR51 – volume: 55B start-page: 537 year: 2009 ident: 1768_CR30 publication-title: J Struct Eng B – volume: 58 start-page: 37 year: 2006 ident: 1768_CR42 publication-title: Earth Planets Space doi: 10.1186/BF03351911 – volume: 63 start-page: 577 year: 2011 ident: 1768_CR52 publication-title: Earth Planets Space doi: 10.5047/eps.2011.06.050 – volume: 68 start-page: 147 year: 2016 ident: 1768_CR2 publication-title: Earth, Planets and Space doi: 10.1186/s40623-016-0519-9 – volume: 102 start-page: 1477 issue: 4 year: 2012 ident: 1768_CR40 publication-title: Earthquake Bull Seismol Soc Am doi: 10.1785/0120110198 – ident: 1768_CR10 – volume: 91 start-page: 553 year: 2001 ident: 1768_CR7 publication-title: Bull Seismol Soc Am doi: 10.1785/0120000222 – volume: 69 start-page: 10 year: 2017 ident: 1768_CR19 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0586-y – volume: 177 start-page: 2223 year: 2019 ident: 1768_CR44 publication-title: Earthquakes Pure Appl Geophys doi: 10.1007/s00024-019-02095-6 – volume: 95 start-page: 1211 year: 2005 ident: 1768_CR47 publication-title: Bull Seismol Soc Am doi: 10.1785/0120040177 – ident: 1768_CR45 – volume: 86 start-page: 1091 year: 1996 ident: 1768_CR8 publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0860041091 – start-page: SSS10 volume-title: Multi-hypocenter rupture propagation validated from realistic multi-cycle earthquake simulation year: 2022 ident: 1768_CR38 – volume: 24 start-page: 905 year: 1997 ident: 1768_CR16 publication-title: Geophys Res Lett doi: 10.1029/97GL00619 – ident: 1768_CR21 – volume: 177 start-page: 2021 issue: 5 year: 2020 ident: 1768_CR20 publication-title: Pure and Applied Geophysics doi: 10.1007/s00024-019-02283-4 – volume: 68 start-page: 161 year: 2016 ident: 1768_CR26 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0536-8 – volume: 106 start-page: 8767 year: 2001 ident: 1768_CR9 publication-title: Strong Motions J Geophys Res doi: 10.1029/2000JB900435 – ident: 1768_CR25 – volume: 115 issue: B3 year: 2010 ident: 1768_CR41 publication-title: Journal of Geophysical Research doi: 10.1029/2009JB006689 – volume: 110 start-page: 452 year: 2020 ident: 1768_CR49 publication-title: Bull Seismol Soc Am doi: 10.1785/0120180342 – volume: 9 start-page: 112 issue: 1 year: 1998 ident: 1768_CR28 publication-title: SIAM J Optimizat doi: 10.1137/S1052623496303470 – volume: 534 start-page: 33 year: 2000 ident: 1768_CR29 publication-title: J Struct Constr Eng AIJ doi: 10.3130/aijs.65.33_3 – volume: 111 start-page: 2426 year: 2021 ident: 1768_CR3 publication-title: Bull Seismol Soc Am doi: 10.1785/0120210047 – volume: 92 start-page: 256 year: 2002 ident: 1768_CR6 publication-title: Bull Seismol Soc Am doi: 10.1785/0120000845 – volume: 204 start-page: 1678 year: 2016 ident: 1768_CR4 publication-title: Geophys J Int doi: 10.1093/gji/ggv543 – volume: 117 start-page: B06309 year: 2012 ident: 1768_CR5 publication-title: J Geophys Res doi: 10.1029/2011JB009097 – volume: 17 start-page: 101 issue: 4 year: 2017 ident: 1768_CR23 publication-title: J Japan Associ Earthquake Eng – ident: 1768_CR37 – volume: 112 start-page: 287 issue: 1 year: 2021 ident: 1768_CR39 publication-title: Bull Seismol Soc Am doi: 10.1785/0120210138 – volume: 68 start-page: 4 year: 2016 ident: 1768_CR36 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0385-5 – volume: 73 start-page: 1553 year: 1983 ident: 1768_CR14 publication-title: Bull Seism Soc Am doi: 10.1785/BSSA07306A1553 – volume: 109 start-page: 2674 issue: 6 year: 2019 ident: 1768_CR43 publication-title: Bull Seismol Soc Am doi: 10.1785/0120180200 |
| SSID | ssj0030463 |
| Score | 2.3812542 |
| Snippet | The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the
M... The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the... Abstract The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki,... |
| SourceID | doaj unpaywall proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16 |
| SubjectTerms | 2016 AD 2016 Kumamoto earthquake 4. Seismology Analysis Characterized source model Earth and Environmental Science Earth Sciences Earthquake damage Earthquakes Effects of Surface Geology on Seismic Motion (ESG): General State-of-Research Environmental aspects Epidermal growth factor Fault lines Faults (Geology) Geology Geophysics/Geodesy Green's function Green's functions Ground motion Japan Mathematical models Modelling Parameters Recipe for strong-motion prediction Reciprocity Reciprocity method Residential areas Search methods Seismic activity Seismology Slip velocity Source inversion Strong-motion generation area Velocity Waveforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIOqD6Klc9ZRBRB-8ev2ZNo_r6boqK6Ie3FtI2vQU13a1rcv6p_jXOpO06x7C6YMPC2U7KW1mkvkmmXzD2ANEtKIIQ-1HRgV-ggGzj2FE7AcmqTTXVPOIzjvP3_DZcfLqJD3ZKvVFOWGOHth13CHnaUWoJi5yBNeCY4ycCqV0xk1sytKylwa5GIMpNwdbHqzxiEzOD1t0WxHtV1LuEAJsf3XGDVm2_j_n5K3N0SvsUl8v1XqlFost_zO9xq4OwBEm7oWvswum3mV7k5aWspsva3gI9tqtVLS77OJbd3WD_TzakDL_MCW45XqwJXCgqQARIMyzJzGgk-ZAKdeovQZwBHQfv_bqswG9tkLxMyAqDHJ5CN3hxbSFT_V3t94GtJ4LrStmD5vaJYAPoqaUmGQbLXt0xaA6eD2fz0J-kx1Pn384mvlDSQa_SBPe-QKjv6IMuClCXmAolOnYiEAFocqjMqpEjj6XUGAaKJXpRPDQRGmlA6ERiBYIZW6xnbqpzR6DErFllZeRQpUSTb5WYWWMSE0RKxEq4bFw1JAsBr5yKpuxkDZuybl0WpUB_UircuWxx5s2S8fWca70U1L8RpKYtu0faH9ysD_5N_vz2H0yG0lcGjUl65yqvm3ly_fv5CSLaRsV_b3HHg1CVYPfUKjh7AP2BNFvnZHcH81PDrNJK6Mso0g-i7nHDkaT_H37vC882JjtP3TI7f_RIXfY5YgGmk352Wc73bfe3EXg1ul7doz-Aq1tOZU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGJwQ8IBigFQY6IQQPLCw_Gid-QKgbKwXUahpM2ptlO85AlKRbWqryp_DXcuck3SakiodKUWu3Tc539935_B1jLxDRChME2gut8r0eBswehhGR59terrmmnkd03nk05sOT3qfT-HSDjduzMFRW2dpEZ6iz0lCOfC9MEopmkoi_m5571DWKdlfbFhqqaa2QvXUUYzfYZkjMWB22uX84PjpubbPjx2qPzqR8r0J3FtI-JtUUIfD2Ftfck2Px_9dWX9k0vcNuzYupWi7UZHLFLw3usbsNoIR-vQLusw1bbLHtfkUp7vLnEl6Cu64zGNUWu3lUXz1gfw5WZM2_bQZ1Gh9caxwoc0BkCKPkTQTovDlQKTZKtQTUjNm387n6YUEv3aDoPRBFBrlChPTwYVDB9-JXnYcDyvNCVTe5h1VPE8AvoqlUsOQmTefookHN4PNoNAz4Q3YyOPx6MPSaVg2eiXt85gmMCk3mc2sCbjBESnRkha_8QKVhFuYiRV9M6DD2lUp0T_DAhnGufaERoBqEOI9YpygLu80gQ8yZp1mouEiJPl-rILdWxNZESgRKdFnQSkiahsec2mlMpItnUi5rqUqfXiRVueiy16s505rFY-3ofRL8aiQxcLs3yosz2Si05DzOCW1HJsWgT-CfTWKhlE64jWyWxV32nJaNJI6Ngop4ztS8quTHL8eyn0S0vYo4oMteNYPyEu_BqOZMBD4JouW6NnKnXX6ysTKVvNSJLtttl-Tlx-vucHe1bP_jgTxe_-NP2O2QVMgV-eywzuxibp8iVJvpZ43-_QWV0zhw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD6Klc9ZRBRB-8nv1Mm8d1dW9VVkQ9uLeQtKmKa7va1mX9U_xrnUk_3EM59KFQ2klpO5PMbybJbxh7gIhWZL6v3cAoz40wYHYxjAhdz0SF5ppqHtF-58VrPj-OXp7EJz1NDu2F2Z6_91P-pEaHE9BMI636QWjsrs-zC-ikuJ2Y5dNh1LXMV8OmmL-2O-V4LD__n6Pw1nToFXapLVdqs1bL5ZbHmV1jV3uoCJNOt9fZOVPusr1JTcnr6ssGHoI973IT9S67eGSr9G7w7E137Qb7OR0JmX-YHLpUPdjyN1AVgOgPFslhCOigOdBya9RcBWj9zcevrfpsQG-sUPgMiAaD3B3Cdjia1fCp_N7l2oByuVB3hexhrFsC-CBqSouSbKNVi24YVAOvFou5z2-y49nz99O525djcLM44o0rMPLLco-bzOcZhkGJDo3wlOerNMiDQqTobwkBxp5SiY4E900QF9oTGkFohjDmFtspq9LsMcgRVxZpHiguUqLI18ovjBGxyUIlfCUc5g-6klnPVU4lM5bSxiwpl51-pUcH6VeuHfZ4bLPqmDrOlH5KJjBKEsu2vYDGJ_tOKzmPC0LUYZZiYCfwZZNYKKUTbkKT57HD7pMBSeLRKGmhzgfV1rV88e6tnCQhTaGir3fYo16oqPAbMtXve8A_QdRbpyT3B0OU_UhSyyBJKIpPQu6wg8E4f98-6wsPRgP-hx9y-_-efoddDqhz2YU9-2yn-daauwjPGn3P9stf2k8uLg priority: 102 providerName: Springer Nature |
| Title | Characterized source model of the M7.3 2016 Kumamoto earthquake by the 3D reciprocity GFs inversion with special reference to the velocity pulse at KMMH16 |
| URI | https://link.springer.com/article/10.1186/s40623-023-01768-w https://www.proquest.com/docview/2770825736 https://earth-planets-space.springeropen.com/counter/pdf/10.1186/s40623-023-01768-w https://doaj.org/article/665f08003c85489698759aab76e3edd5 |
| UnpaywallVersion | publishedVersion |
| Volume | 75 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: 8FG dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: AAJSJ dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: C24 dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: C6C dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdYKwQ88DFAK4zKQggemLt8OvFjV9YVUKtqUGl7ipzEGWglKU1C1f0p_LXcOUnZAE0g8dAqac9RnJzt353vfkfIC0C0IjLNkFlKGswBg5mBGWEzQzlJyEOseYT5zuMJH82cdyfuSZ1Zl2un7rL4xBYY6FnkDAZVpHrNDiXWk6rSHLCMglruL-KkGvU-389hZbJwSxLDgwBDs9UWaXMXAHqLtGeTaf9Um16OzXxfly1DIjLmCt9sUmn-eJEry5Vm9f997r60iXqH3CrThVyv5Hx-aZ0a3iNF08MqPOW8VxZhL7r4hfzxPz-C--RujWtpv1LEB-SGSrfJTj9HT3v2ZU1fUn1cOVLybXJzWh09JN8HG87oCxXTajeB6go9NEsoAFQ69no2BQzBKUaEg3JlVN_-11KeKxqutZD9hiJTB67IYFnQo2FOP6ffKncgRXczxaxSGG50U1qFwoWwKcZN6UaLEpAClQV9Px6PTP6IzIaHHwcjVleMYJHr8IIJME6j2OAqMnkElpoX2koY0jClb8VWInyABAhSXUNKL3QEN5XlJqEhQsDJESCtx6SVZqnaITQG6Jv4sSW58JHFP5RmopRwVWRLYUrRIWajGEFU06ljVY95oM0qnwfV6wgM_ODrCFYd8nrTZlGRiVwrfYD6tpFEInD9Q7Y8C-p5JeDcTRD025EPtqeAm_VcIWXocWWrOHY75Dlqa4BUHynGEp3JMs-Dtx-Og75n4y4vwJEOeVULJRn0IZJ1agY8CWQHuyK522h9UE92eWB5HjoaPJt3yF6jqT__vq6He5vR8hcP5Mm_iT8lty0cCzr2aJe0imWpngGCLMIu2fKHR13SPjicTI_hbGA5-M0HXe2T6dYzxg8k72ti |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqhwQFBANRQYIR4Haurn2nuoUPoICWmiqrRSb8vaXhdEsNM6IQo_hR_Db2PGj7QVUsSlh0hWsmvHOzM73-y8GHuFiFbEth2ZjlaW6aHBbKIZ4ZqW9tKIR9TziPKd-wPeOfE-nfqnS-xPkwtDYZXNnlhu1Eke0xn5lhMEZM0ELv8wOjepaxR5V5sWGqpurZBslyXG6sSOnp5N0YQrtrt7SO_XjtPeP97tmHWXATP2PT42BRo0cWJxHds8RnQfRK4WlrJsFTqJk4oQ1QgBG99SKog8wW3t-GlkiQixVYzaGe97i614rifQ-FvZ2R8cHjW6oKzH1aTqhHyrQPXpkN-UYpgQ6JvTa-qw7Brwr2644qS9y1Yn2UjNpmo4vKIH2_fZvRrAQqviuAdsSWdrbL1V0JF6_mMGb6C8rk5MijV2-7C6esh-786LQ__SCVRuAyhb8UCeAiJR6AfvXUCwwIFCv5GLcsAlHn89n6jvGqJZOcjdAyrJQaoXTQj42C7gW_azOvcDOlcGSh9FuYJ5DxXAG9FUCpAqJ40mCAlAjaHX73ds_oid3AjRHrPlLM_0OoMEMW4aJo7iIqRy_ZGyU62Fr2NXCVsJg9kNhWRc102n9h1DWdpPIZcVVaVFH6KqnBrs3XzOqKoasnD0DhF-PpIqfpdf5Bdnst5AJOd-SujejUM0MgX-2cAXSkUB165OEt9gL4ltJNX0yCho6ExNikJ2Px_JVuCSOxdxh8He1oPSHN8hVnUOBq4ElQG7NnKjYT9Z72qFvJRBg202LHn586I33Jyz7X8syJPFD3_BVjvH_QN50B30nrI7DolTGWC0wZbHFxP9DGHiOHpeyyKwLzct_n8BkvZ0cg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIl4HBAXUQIER4nGgJn6uvQeEQkOaEFJVQKXelvV6XRDBTuuEKPwUfgq_jhk_0lZIEZceIlnJrh3vzOx8MzsPxp4iohXacWLLNcq2fDSYLTQjPMs2fhrzmHoeUb7zaI_3D_z3h8HhGvvT5MJQWGWzJ5YbdZJr8pG33TAkayb0eDutwyL2u703k2OLOkjRSWvTTqNikaFZzNF8K14PukjrZ67be_d5p2_VHQYsHfh8agk0ZnRic6MdrhHZh7FnhK1sR0Vu4qYiQhVCoCawlQpjX3DHuEEa2yJGXKVRM-N9L7HLIVVxpyz13m6jBcpKXE2STsTbBSpOl05MKXoJIb41P6cIy34B_2qFM8ezN9i1WTZRi7kaj89owN4tdrOGrtCpeO02WzPZBtvsFORMz38s4DmU15WvpNhgV_arqzvs986yLPQvk0B1YABlEx7IU0AMCqPwlQcIEzhQ0DfyTw64wNOvxzP13UC8KAd5XaBiHKR00XiA3V4B37KflccPyKMMlDiKEgXL7imAN6KpFBpVTprMEAyAmsJwNOo7_C47uBCS3WPrWZ6ZTQYJots0SlzFRUSF-mPlpMaIwGhPCUeJFnMaCkldV0ynxh1jWVpOEZcVVaVNH6KqnLfYy-WcSVUvZOXot0T45Uiq9V1-kZ8cyXrrkJwHKeF6T0doXgr8s2EglIpDbjyTJEGLPSG2kVTNIyO5OFKzopCDTx9lJ_ToIBcRR4u9qAelOb6DVnX2Ba4EFQA7N3KrYT9Z72eFPJW-FttuWPL051VvuL1k2_9YkPurH_6YXUWhlx8Ge8MH7LpL0lRGFm2x9enJzDxEfDiNH5WCCOzLRUv-X09Hcgw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegEwIe-BigFQayEIIH5i6fTvxYBqWAOk1Ape3JshNnoJWkNAlV96fw13LnJGUDNIHEQ6WoOUexc7Z_d777HSFPANGKxHU184xyWAAGMwMzwmeOCTLNNdY8wnznyT4fT4O3h-Fhm1lXWqfuovrE5hjoWZUMJlViBt0JJdaTatIcsIyCWezO06yZ9THfLWFn8vBIEsODAEOz5WWywUMA6D2yMd0_GB5Z0yvwWRzbsmVIRMZCEbtdKs0fH3Juu7Ks_r-v3WcOUa-Tq3U-V6ulms3O7FOjm6TqetiEp5wM6koPktNfyB__8xDcIjdaXEuHjSLeJpdMvkm2hiV62osvK_qU2uvGkVJukisHzdUd8n1vzRl9alLanCZQW6GHFhkFgEon0cCngCE4xYhwUK6C2tf_WqsTQ_XKCvkvKTJ14I4MlgV9PSrp5_xb4w6k6G6mmFUK042uS6tQeBA2xbgp22heA1KgqqLvJpOxy--S6ejVx70xaytGsCQMeMUEGKdJ6nCTuDwBSy3SvhGOclwVe6mXiRggAYLU0FEq0oHgrvHCTDtCA05OAGndI728yM0WoSlA3yxOPcVFjCz-WrmZMSI0ia-Eq0SfuJ1iyKSlU8eqHjNpzaqYy-ZzSAd_-Dnksk-er9vMGzKRC6VfoL6tJZEI3P5RLI5lu65IzsMMQb-fxGB7CnjZKBRK6Ygb36Rp2CePUVslUn3kGEt0rOqylG8-vJfDyMdTXoAjffKsFcoK6EOi2tQMGAlkBzsnud1pvWwXu1J6UYSOhsjnfbLTaerP2xf1cGc9W_5iQO7_m_gDcs3DuWBjj7ZJr1rU5iEgyEo_aleEHxdvZkY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterized+source+model+of+the+M7.3+2016+Kumamoto+earthquake+by+the+3D+reciprocity+GFs+inversion+with+special+reference+to+the+velocity+pulse+at+KMMH16&rft.jtitle=Earth%2C+planets%2C+and+space&rft.au=Petukhin%2C+Anatoly&rft.au=Kawase%2C+Hiroshi&rft.au=Nagashima%2C+Fumiaki&rft.au=Ito%2C+Eri&rft.date=2023-12-01&rft.pub=Springer&rft.issn=1343-8832&rft.volume=75&rft.issue=1&rft_id=info:doi/10.1186%2Fs40623-023-01768-w&rft.externalDocID=A735295990 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-5981&client=summon |