A generic motif discovery algorithm for sequential data
Motivation: Motif discovery in sequential data is a problem of great interest and with many applications. However, previous methods have been unable to combine exhaustive search with complex motif representations and are each typically only applicable to a certain class of problems. Results: Here we...
Saved in:
| Published in | Bioinformatics Vol. 22; no. 1; pp. 21 - 28 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Oxford University Press
01.01.2006
Oxford Publishing Limited (England) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI | 10.1093/bioinformatics/bti745 |
Cover
| Summary: | Motivation: Motif discovery in sequential data is a problem of great interest and with many applications. However, previous methods have been unable to combine exhaustive search with complex motif representations and are each typically only applicable to a certain class of problems. Results: Here we present a generic motif discovery algorithm (Gemoda) for sequential data. Gemoda can be applied to any dataset with a sequential character, including both categorical and real-valued data. As we show, Gemoda deterministically discovers motifs that are maximal in composition and length. As well, the algorithm allows any choice of similarity metric for finding motifs. Finally, Gemoda's output motifs are representation-agnostic: they can be represented using regular expressions, position weight matrices or any number of other models for any type of sequential data. We demonstrate a number of applications of the algorithm, including the discovery of motifs in amino acids sequences, a new solution to the (l,d)-motif problem in DNA sequences and the discovery of conserved protein substructures. Availability: Gemoda is freely available at Contact: gregstep@mit.edu Supplementary Information: Available at |
|---|---|
| Bibliography: | istex:528CCA44B8B30F41476D9568A8BBFFB3EE786293 To whom correspondence should be addressed. Associate Editor: Keith A Crandall ark:/67375/HXZ-9HGS8S2L-P ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI: | 10.1093/bioinformatics/bti745 |