Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipi...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 172; no. 5; pp. 1379 - 1394
Main Authors Cerrato, F, Fernández‐Suárez, M E, Alonso, R, Alonso, M, Vázquez, C, Pastor, O, Mata, P, Lasunción, M A, Gómez‐Coronado, D
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2015
BlackWell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0007-1188
1476-5381
1476-5381
DOI10.1111/bph.13016

Cover

Abstract Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT‐4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′‐dioctadecyl‐3,3,3,3′‐tetramethylindocarbocyanine perchlorate (DiI)‐labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI‐LDL uptake by lymphocytes by inhibiting LDL‐derived cholesterol trafficking and subsequent down‐regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT‐4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM‐mediated increase in LDL receptor activity was not altered by the anti‐oestrogen ICI 182 780 nor was it reproduced by 17β‐oestradiol. However, the tamoxifen‐active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up‐regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT‐4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen‐active metabolite endoxifen. This mechanism may contribute to the cholesterol‐lowering action of SERMs.
AbstractList Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182,780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs.
Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182780 nor was it reproduced by 17[beta]-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs.
Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts.BACKGROUND AND PURPOSETreatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts.Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry.EXPERIMENTAL APPROACHLymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry.Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182,780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.KEY RESULTSTamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182,780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs.CONCLUSIONS AND IMPLICATIONSClinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs.
Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT‐4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′‐dioctadecyl‐3,3,3,3′‐tetramethylindocarbocyanine perchlorate (DiI)‐labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI‐LDL uptake by lymphocytes by inhibiting LDL‐derived cholesterol trafficking and subsequent down‐regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT‐4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM‐mediated increase in LDL receptor activity was not altered by the anti‐oestrogen ICI 182 780 nor was it reproduced by 17β‐oestradiol. However, the tamoxifen‐active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up‐regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT‐4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen‐active metabolite endoxifen. This mechanism may contribute to the cholesterol‐lowering action of SERMs.
Author Pastor, O
Fernández‐Suárez, M E
Gómez‐Coronado, D
Alonso, R
Cerrato, F
Vázquez, C
Alonso, M
Mata, P
Lasunción, M A
Author_xml – sequence: 1
  givenname: F
  surname: Cerrato
  fullname: Cerrato, F
  organization: Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS)
– sequence: 2
  givenname: M E
  surname: Fernández‐Suárez
  fullname: Fernández‐Suárez, M E
  organization: Instituto de Salud Carlos III
– sequence: 3
  givenname: R
  surname: Alonso
  fullname: Alonso, R
  organization: Fundación Jiménez Díaz‐IDC
– sequence: 4
  givenname: M
  surname: Alonso
  fullname: Alonso, M
  organization: Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS)
– sequence: 5
  givenname: C
  surname: Vázquez
  fullname: Vázquez, C
  organization: Instituto de Salud Carlos III
– sequence: 6
  givenname: O
  surname: Pastor
  fullname: Pastor, O
  organization: Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS)
– sequence: 7
  givenname: P
  surname: Mata
  fullname: Mata, P
  organization: Fundación Jiménez Díaz‐IDC
– sequence: 8
  givenname: M A
  surname: Lasunción
  fullname: Lasunción, M A
  organization: Instituto de Salud Carlos III
– sequence: 9
  givenname: D
  surname: Gómez‐Coronado
  fullname: Gómez‐Coronado, D
  organization: Instituto de Salud Carlos III
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25395200$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9vFCEUxYmpsdvqg1_AkPiiJtPCzADDi4muf2qyiT7oM2GYu10aBkaYaTPfXsZdrTaxkRcI93cO9x5O0JEPHhB6SskZzeu8HXZntCKUP0ArWgtesKqhR2hFCBEFpU1zjE5SuiIkFwV7hI5LVklWErJCae2st0Y7N-MpQYcTODCjvQYcII0xXILHEQwMY4i4D93kdD4lbL2JoBPgzbvNLaAXqR3nXMZDtL2OM95NvfbYzf2wC2YeIT1GD7faJXhy2E_Rtw_vv64vis3nj5_WbzaFYTXnBW8kKRvWdlyQ2rQS8m1ZgWxbKk1X18ClrlrBhaBQadYyI5iRnei41qTebqtT9GrvO_lBzzd5RnXoSVGiluRUTk79TC7Dr_fwMLU9dAb8GPWtIGir_q54u1OX4VrVVSUEabLBi4NBDN-nnJ3qbTLgnPYQpqQo503JOOH8P1DGRMkkkRl9fge9ClP0ObaFqiVrRLO8_ezP5n93_eufM_ByD5gYUoqwvTeJ8zussaMebVjmtu4-xY11MP_bWr39crFX_ADsxtjw
CitedBy_id crossref_primary_10_1016_j_cbi_2022_110091
crossref_primary_10_1038_srep32105
crossref_primary_10_1002_ijc_33919
crossref_primary_10_3390_ijms22083919
crossref_primary_10_1007_s12020_022_03287_2
crossref_primary_10_1016_j_biopha_2021_111871
crossref_primary_10_3390_ijms17030404
crossref_primary_10_1007_s40265_017_0767_4
crossref_primary_10_1016_j_atherosclerosis_2019_01_010
crossref_primary_10_1002_prca_201900029
crossref_primary_10_1016_j_clinthera_2021_07_017
crossref_primary_10_1016_j_bcp_2021_114623
crossref_primary_10_1016_j_omtm_2020_03_017
crossref_primary_10_1016_j_semcancer_2020_08_015
Cites_doi 10.1161/CIRCULATIONAHA.104.531178
10.1124/mol.110.065193
10.1016/j.maturitas.2010.05.009
10.1016/S0022-2275(20)32566-9
10.1172/JCI0215593
10.1194/jlr.M026948
10.1016/j.cardiores.2004.06.024
10.1016/j.coph.2006.10.009
10.1200/JCO.1995.13.12.2900
10.1194/jlr.M400448-JLR200
10.1038/nrd1112
10.1093/nar/gkt1143
10.1038/nrm2336
10.1016/0021-9150(95)05649-1
10.1194/jlr.R800054-JLR200
10.1016/S0021-9258(18)45483-X
10.1126/science.1189862
10.1124/dmd.31.9.1103
10.1111/bph.12448
10.1016/j.coph.2012.07.001
10.1016/j.metabol.2005.02.010
10.1016/S1567-5688(01)00014-9
10.1124/jpet.103.060426
10.1126/science.1252787
10.1056/NEJM198604033141404
10.1016/S0140-6736(05)67394-1
10.1038/bjc.1989.214
10.1126/science.1189123
10.1016/S0026-0495(98)90078-6
10.1038/cdd.2009.62
10.1016/j.coph.2012.09.007
10.1074/jbc.M405230200
10.1111/bph.12451
10.2165/11584380-000000000-00000
10.1056/NEJMra022219
10.1016/0145-2126(85)90125-0
10.1093/jnci/djk062
10.1038/tpj.2009.62
10.1074/jbc.M302588200
10.1017/S1462399408000896
10.1016/S0960-0760(03)00263-2
10.1016/S0021-9258(19)85085-8
10.1016/j.bcp.2004.03.006
10.1146/annurev.physiol.68.033104.152158
10.1016/j.atherosclerosis.2007.12.024
10.1074/jbc.271.23.13504
10.1016/j.bcp.2013.02.031
10.1073/pnas.1002922107
10.1016/S0026-0495(99)90214-7
10.1146/annurev-med-052209-100305
10.1001/jama.295.23.joc60074
10.1111/bph.12450
ContentType Journal Article
Copyright 2014 The British Pharmacological Society
2014 The British Pharmacological Society.
Copyright © 2015 The British Pharmacological Society
2014 The British Pharmacological Society 2014
Copyright_xml – notice: 2014 The British Pharmacological Society
– notice: 2014 The British Pharmacological Society.
– notice: Copyright © 2015 The British Pharmacological Society
– notice: 2014 The British Pharmacological Society 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
NAPCQ
7X8
7T5
H94
5PM
ADTOC
UNPAY
DOI 10.1111/bph.13016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1476-5381
EndPage 1394
ExternalDocumentID 10.1111/bph.13016
PMC4337708
3589561881
25395200
10_1111_bph_13016
BPH13016
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  funderid: SAF2011‐29951
– fundername: Instituto de Salud Carlos III
  funderid: PI 11/2077
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OB
1OC
23N
2WC
31~
33P
36B
3O-
3SF
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q.N
Q2X
QB0
ROL
RPM
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
AAYXX
CITATION
24P
3V.
A00
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
P4E
RIG
RWI
7QP
7TK
K9.
7X8
7T5
H94
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c5466-6890285bd6704cb9e54623e9bb19cd44e69a3b76771e3a5b5c75c9d7d6aa04ff3
IEDL.DBID UNPAY
ISSN 0007-1188
1476-5381
IngestDate Wed Oct 29 11:48:14 EDT 2025
Tue Sep 30 17:03:45 EDT 2025
Thu Sep 04 18:39:52 EDT 2025
Thu Sep 04 16:16:53 EDT 2025
Mon Oct 06 18:18:53 EDT 2025
Wed Feb 19 01:53:05 EST 2025
Thu Apr 24 23:06:21 EDT 2025
Wed Oct 01 03:39:59 EDT 2025
Sun Sep 21 06:22:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2014 The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5466-6890285bd6704cb9e54623e9bb19cd44e69a3b76771e3a5b5c75c9d7d6aa04ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Departamento de Endocrinología y Nutrición, Fundación Jiménez Díaz – IDC, Madrid, Spain.
Fundaciön Hipercolesterolemia Familiar, Madrid, Spain
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.13016
PMID 25395200
PQID 1654958788
PQPubID 42104
PageCount 16
ParticipantIDs unpaywall_primary_10_1111_bph_13016
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337708
proquest_miscellaneous_1668256066
proquest_miscellaneous_1655725909
proquest_journals_1654958788
pubmed_primary_25395200
crossref_primary_10_1111_bph_13016
crossref_citationtrail_10_1111_bph_13016
wiley_primary_10_1111_bph_13016_BPH13016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2015
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: March 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Oxford, UK
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: BlackWell Publishing Ltd
References 1987; 262
2010; 10
2004; 64
2010; 107
2013b; 170
2011; 62
2004; 67
1999; 48
2008; 9
2006; 295
2003; 278
2012; 12
2001; 85
1998; 47
2013c; 170
2010; 67
2001
2013; 54
2006; 68
2009; 50
1989; 264
2003; 2
2007; 7
2002; 109
2003; 86
2009; 16
2010; 78
1989; 60
1986; 314
2010; 328
2005; 112
1985; 9
1995; 13
2013; 86
2002; 2
2008; 10
2011; 34
2008; 200
2007; 99
2003; 31
2005; 46
1996; 56
2004; 308
2014; 42
1998; 39
2004; 279
2003; 348
2005; 366
1996; 271
2005; 54
1996; 119
2013a; 170
2014; 343
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
Pink JJ (e_1_2_10_45_1) 1996; 56
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Cuthbert JA (e_1_2_10_14_1) 1989; 264
Goldstein JL (e_1_2_10_18_1) 2001
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Robertson JF (e_1_2_10_50_1) 2001; 85
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
11923123 - Atheroscler Suppl. 2002 Mar;2(3):9-11
16214597 - Lancet. 2005 Oct 8;366(9493):1267-78
8625307 - Cancer Res. 1996 May 15;56(10):2321-30
16460270 - Annu Rev Physiol. 2006;68:159-91
11994399 - J Clin Invest. 2002 May;109(9):1125-31
24675946 - Science. 2014 Mar 28;343(6178):1445-6
10421221 - Metabolism. 1999 Jul;48(7):834-9
19521424 - Cell Death Differ. 2009 Oct;16(10):1372-84
20837678 - Mol Pharmacol. 2010 Dec;78(6):1046-58
17317318 - Curr Opin Pharmacol. 2007 Apr;7(2):130-9
12920165 - Drug Metab Dispos. 2003 Sep;31(9):1103-7
12719428 - J Biol Chem. 2003 Jul 11;278(28):25517-25
23063783 - Curr Opin Pharmacol. 2012 Dec;12(6):683-9
24528240 - Br J Pharmacol. 2013 Dec;170(8):1652-75
18974038 - J Lipid Res. 2009 Apr;50 Suppl:S15-27
20466885 - Science. 2010 Jun 18;328(5985):1570-3
23500540 - Biochem Pharmacol. 2013 Jul 1;86(1):175-89
4079452 - Leuk Res. 1985;9(11):1373-8
8662863 - J Biol Chem. 1996 Jun 7;271(23):13504-14
15741653 - J Lipid Res. 2005 Jun;46(6):1285-94
18216769 - Nat Rev Mol Cell Biol. 2008 Feb;9(2):125-38
14617686 - J Pharmacol Exp Ther. 2004 Mar;308(3):1165-73
3633381 - N Engl J Med. 1986 Apr 3;314(14):879-83
17341726 - J Natl Cancer Inst. 2007 Mar 7;99(5):350-6
2910855 - J Biol Chem. 1989 Jan 15;264(2):1298-304
20580502 - Maturitas. 2010 Oct;67(2):129-38
24528242 - Br J Pharmacol. 2013 Dec;170(8):1706-96
12815379 - Nat Rev Drug Discov. 2003 Jul;2(7):517-26
15485695 - Cardiovasc Res. 2004 Nov 1;64(2):346-55
3680287 - J Biol Chem. 1987 Dec 15;262(35):17002-8
24234439 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1098-106
9867082 - Metabolism. 1998 Dec;47(12):1504-13
22824432 - Curr Opin Pharmacol. 2012 Dec;12(6):717-23
19019258 - Expert Rev Mol Med. 2008;10:e34
23175778 - J Lipid Res. 2013 Feb;54(2):310-24
15988705 - Metabolism. 2005 Jul;54(7):939-46
20615952 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13520-5
8523053 - J Clin Oncol. 1995 Dec;13(12):2900-5
11900210 - Br J Cancer. 2001 Nov;85 Suppl 2:11-4
24528243 - Br J Pharmacol. 2013 Dec;170(8):1797-867
14568562 - J Steroid Biochem Mol Biol. 2003 Aug;86(2):113-21
8808497 - Atherosclerosis. 1996 Jan 26;119(2):203-13
16275887 - Circulation. 2005 Nov 8;112(19):3018-24
12584371 - N Engl J Med. 2003 Feb 13;348(7):618-29
15175332 - J Biol Chem. 2004 Aug 6;279(32):34048-61
21142270 - Drug Saf. 2011 Jan 1;34(1):1-19
15163559 - Biochem Pharmacol. 2004 Jun 15;67(12):2281-9
16754727 - JAMA. 2006 Jun 21;295(23):2727-41
20466882 - Science. 2010 Jun 18;328(5985):1566-9
19997082 - Pharmacogenomics J. 2010 Oct;10(5):396-407
2803912 - Br J Cancer. 1989 Jul;60(1):30-5
21054173 - Annu Rev Med. 2011;62:217-32
9555943 - J Lipid Res. 1998 Apr;39(4):777-88
18243212 - Atherosclerosis. 2008 Oct;200(2):315-21
References_xml – volume: 86
  start-page: 113
  year: 2003
  end-page: 121
  article-title: Estrogen receptor‐alpha and Sp1 interact in the induction of the low density lipoprotein‐receptor
  publication-title: J Steroid Biochem Mol Biol
– volume: 278
  start-page: 25517
  year: 2003
  end-page: 25525
  article-title: NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol‐derived oxysterols
  publication-title: J Biol Chem
– volume: 16
  start-page: 1372
  year: 2009
  end-page: 1384
  article-title: Ligands of the antiestrogen‐binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism
  publication-title: Cell Death Differ
– volume: 328
  start-page: 1566
  year: 2010
  end-page: 1569
  article-title: MicroRNA‐33 and the SREBP host genes cooperate to control cholesterol homeostasis
  publication-title: Science
– volume: 50
  start-page: S15
  year: 2009
  end-page: S27
  article-title: Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL
  publication-title: J Lipid Res
– volume: 56
  start-page: 2321
  year: 1996
  end-page: 2330
  article-title: Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines
  publication-title: Cancer Res
– volume: 64
  start-page: 346
  year: 2004
  end-page: 355
  article-title: Synergistic upregulation of low‐density lipoprotein receptor activity by tamoxifen and lovastatin
  publication-title: Cardiovasc Res
– volume: 54
  start-page: 310
  year: 2013
  end-page: 324
  article-title: Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro
  publication-title: J Lipid Res
– volume: 9
  start-page: 125
  year: 2008
  end-page: 138
  article-title: Cellular cholesterol trafficking and compartmentalization
  publication-title: Nat Rev Mol Cell Biol
– volume: 348
  start-page: 618
  year: 2003
  end-page: 629
  article-title: Selective estrogen‐receptor modulators – mechanisms of action and application to clinical practice
  publication-title: N Engl J Med
– volume: 170
  start-page: 1706
  year: 2013b
  end-page: 1796
  article-title: The Concise Guide to PHARMACOLOGY 2013/14: Transporters
  publication-title: Br J Pharmacol
– volume: 343
  start-page: 1445
  year: 2014
  end-page: 1446
  article-title: Cholesterol and cancer, in the balance
  publication-title: Science
– volume: 67
  start-page: 129
  year: 2010
  end-page: 138
  article-title: SERMs: progress and future perspectives
  publication-title: Maturitas
– volume: 328
  start-page: 1570
  year: 2010
  end-page: 1573
  article-title: MiR‐33 contributes to the regulation of cholesterol homeostasis
  publication-title: Science
– volume: 2
  start-page: 517
  year: 2003
  end-page: 526
  article-title: Lovastatin and beyond: the history of the HMG‐CoA reductase inhibitors
  publication-title: Nat Rev Drug Discov
– volume: 7
  start-page: 130
  year: 2007
  end-page: 139
  article-title: Estrogens and SERMs in coronary heart disease
  publication-title: Curr Opin Pharmacol
– volume: 2
  start-page: 9
  year: 2002
  end-page: 11
  article-title: MEDPED and the Spanish Familial Hypercholesterolemia Foundation
  publication-title: Atheroscler Suppl
– volume: 85
  start-page: 11
  issue: Suppl. 2
  year: 2001
  end-page: 14
  article-title: ICI 182,780 (Fulvestrant) – the first oestrogen receptor down‐regulator – current clinical data
  publication-title: Br J Cancer
– volume: 279
  start-page: 34048
  year: 2004
  end-page: 34061
  article-title: Molecular characterization of the microsomal tamoxifen binding site
  publication-title: J Biol Chem
– volume: 13
  start-page: 2900
  year: 1995
  end-page: 2905
  article-title: Tamoxifen and toremifene lower serum cholesterol by inhibition of delta 8‐cholesterol conversion to lathosterol in women with breast cancer
  publication-title: J Clin Oncol
– start-page: 2863
  year: 2001
  end-page: 2913
– volume: 170
  start-page: 1797
  year: 2013c
  end-page: 1867
  article-title: The Concise Guide to PHARMACOLOGY 2013/14: Enzymes
  publication-title: Br J Pharmacol
– volume: 271
  start-page: 13504
  year: 1996
  end-page: 13514
  article-title: Tamoxifen modulates protein kinase C via oxidative stress in estrogen receptor‐negative breast cancer cells
  publication-title: J Biol Chem
– volume: 119
  start-page: 203
  year: 1996
  end-page: 213
  article-title: Plasma mevalonic acid, an index of cholesterol synthesis in vivo, and responsiveness to HMG‐CoA reductase inhibitors in familial hypercholesterolaemia
  publication-title: Atherosclerosis
– volume: 34
  start-page: 1
  year: 2011
  end-page: 19
  article-title: Clinical implications of pharmacogenetic variation on the effects of statins
  publication-title: Drug Saf
– volume: 12
  start-page: 683
  year: 2012
  end-page: 689
  article-title: Cholesterol metabolism and resistance to tamoxifen
  publication-title: Curr Opin Pharmacol
– volume: 86
  start-page: 175
  year: 2013
  end-page: 189
  article-title: 5,6‐Epoxy‐cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells
  publication-title: Biochem Pharmacol
– volume: 170
  start-page: 1652
  year: 2013a
  end-page: 1675
  article-title: The Concise Guide to PHARMACOLOGY 2013/14: Nuclear hormone receptors
  publication-title: Br J Pharmacol
– volume: 200
  start-page: 315
  year: 2008
  end-page: 321
  article-title: Cardiovascular disease in familial hypercholesterolaemia: influence of low‐density lipoprotein receptor mutation type and classic risk factors
  publication-title: Atherosclerosis
– volume: 308
  start-page: 1165
  year: 2004
  end-page: 1173
  article-title: Tamoxifen is a potent inhibitor of cholesterol esterification and prevents the formation of foam cells
  publication-title: J Pharmacol Exp Ther
– volume: 314
  start-page: 879
  year: 1986
  end-page: 883
  article-title: Detection of familial hypercholesterolemia by assaying functional low‐density‐lipoprotein receptors on lymphocytes
  publication-title: N Engl J Med
– volume: 62
  start-page: 217
  year: 2011
  end-page: 232
  article-title: Antiestrogens and their therapeutic applications in breast cancer and other diseases
  publication-title: Annu Rev Med
– volume: 107
  start-page: 13520
  year: 2010
  end-page: 13525
  article-title: Identification and pharmacological characterization of cholesterol‐5,6‐epoxide hydrolase as a target for tamoxifen and AEBS ligands
  publication-title: Proc Natl Acad Sci U S A
– volume: 39
  start-page: 777
  year: 1998
  end-page: 788
  article-title: Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL
  publication-title: J Lipid Res
– volume: 42
  start-page: D1098
  issue: Database Issue
  year: 2014
  end-page: D1106
  article-title: The IUPHAR/BPS Guide to PHARMACOLOGY: an expert‐driven knowledgebase of drug targets and their ligands
  publication-title: Nucl Acids Res
– volume: 9
  start-page: 1373
  year: 1985
  end-page: 1378
  article-title: Distribution of androgen and estrogen receptors among lymphoid and haemopoietic cell lines
  publication-title: Leuk Res
– volume: 68
  start-page: 159
  year: 2006
  end-page: 191
  article-title: LXRS and FXR: the yin and yang of cholesterol and fat metabolism
  publication-title: Annu Rev Physiol
– volume: 112
  start-page: 3018
  year: 2005
  end-page: 3024
  article-title: Tamoxifen for the prevention of myocardial infarction in humans: preclinical and early clinical evidence
  publication-title: Circulation
– volume: 60
  start-page: 30
  year: 1989
  end-page: 35
  article-title: Tamoxifen metabolism: pharmacokinetic and in vitro study
  publication-title: Br J Cancer
– volume: 10
  start-page: 396
  year: 2010
  end-page: 407
  article-title: Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein‐derived cholesterol
  publication-title: Pharmacogenomics J
– volume: 31
  start-page: 1103
  year: 2003
  end-page: 1107
  article-title: Only truncated, not complete cytochrome p450 2D6 RNA transcript and no detectable enzyme activity are expressed in human lymphocytes
  publication-title: Drug Metab Dispos
– volume: 264
  start-page: 1298
  year: 1989
  end-page: 1304
  article-title: Regulation of low density lipoprotein receptor gene expression in human lymphocytes
  publication-title: J Biol Chem
– volume: 262
  start-page: 17002
  year: 1987
  end-page: 17008
  article-title: Low density lipoprotein (LDL)‐mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann‐Pick type C fibroblasts
  publication-title: J Biol Chem
– volume: 12
  start-page: 717
  year: 2012
  end-page: 723
  article-title: Post‐lanosterol biosynthesis of cholesterol and cancer
  publication-title: Curr Opin Pharmacol
– volume: 10
  start-page: e34
  year: 2008
  article-title: Pharmacogenetics and breast cancer endocrine therapy: CYP2D6 as a predictive factor for tamoxifen metabolism and drug response?
  publication-title: Expert Rev Mol Med
– volume: 54
  start-page: 939
  year: 2005
  end-page: 946
  article-title: Effects of raloxifene and low‐dose simvastatin coadministration on plasma lipids in postmenopausal women with primary hypercholesterolemia
  publication-title: Metabolism
– volume: 48
  start-page: 834
  year: 1999
  end-page: 839
  article-title: Impact of different low‐density lipoprotein (LDL) receptor mutations on the ability of LDL to support lymphocyte proliferation
  publication-title: Metabolism
– volume: 366
  start-page: 1267
  year: 2005
  end-page: 1278
  article-title: Efficacy and safety of cholesterol‐lowering treatment: prospective meta‐analysis of data from 90,056 participants in 14 randomised trials of statins
  publication-title: Lancet
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J Clin Invest
– volume: 46
  start-page: 1285
  year: 2005
  end-page: 1294
  article-title: Hypolipidemic action of the SERM acolbifene is associated with decreased liver MTP and increased SR‐BI and LDL receptors
  publication-title: J Lipid Res
– volume: 67
  start-page: 2281
  year: 2004
  end-page: 2289
  article-title: Up‐regulation of low‐density lipoprotein receptor in human hepatocytes is induced by sequestration of free cholesterol in the endosomal/lysosomal compartment
  publication-title: Biochem Pharmacol
– volume: 78
  start-page: 1046
  year: 2010
  end-page: 1058
  article-title: Identification of 5alpha, 6alpha‐epoxycholesterol as a novel modulator of liver X receptor activity
  publication-title: Mol Pharmacol
– volume: 47
  start-page: 1504
  year: 1998
  end-page: 1513
  article-title: Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes
  publication-title: Metabolism
– volume: 295
  start-page: 2727
  year: 2006
  end-page: 2741
  article-title: Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P‐2 trial
  publication-title: JAMA
– volume: 99
  start-page: 350
  year: 2007
  end-page: 356
  article-title: SERMs: meeting the promise of multifunctional medicines
  publication-title: J Natl Cancer Inst
– ident: e_1_2_10_19_1
  doi: 10.1161/CIRCULATIONAHA.104.531178
– ident: e_1_2_10_8_1
  doi: 10.1124/mol.110.065193
– ident: e_1_2_10_44_1
  doi: 10.1016/j.maturitas.2010.05.009
– ident: e_1_2_10_11_1
  doi: 10.1016/S0022-2275(20)32566-9
– ident: e_1_2_10_23_1
  doi: 10.1172/JCI0215593
– ident: e_1_2_10_12_1
  doi: 10.1194/jlr.M026948
– ident: e_1_2_10_54_1
  doi: 10.1016/j.cardiores.2004.06.024
– ident: e_1_2_10_48_1
  doi: 10.1016/j.coph.2006.10.009
– ident: e_1_2_10_21_1
  doi: 10.1200/JCO.1995.13.12.2900
– ident: e_1_2_10_32_1
  doi: 10.1194/jlr.M400448-JLR200
– ident: e_1_2_10_55_1
  doi: 10.1038/nrd1112
– ident: e_1_2_10_43_1
  doi: 10.1093/nar/gkt1143
– ident: e_1_2_10_24_1
  doi: 10.1038/nrm2336
– ident: e_1_2_10_42_1
  doi: 10.1016/0021-9150(95)05649-1
– ident: e_1_2_10_9_1
  doi: 10.1194/jlr.R800054-JLR200
– ident: e_1_2_10_33_1
  doi: 10.1016/S0021-9258(18)45483-X
– ident: e_1_2_10_47_1
  doi: 10.1126/science.1189862
– ident: e_1_2_10_37_1
  doi: 10.1124/dmd.31.9.1103
– volume: 56
  start-page: 2321
  year: 1996
  ident: e_1_2_10_45_1
  article-title: Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines
  publication-title: Cancer Res
– ident: e_1_2_10_2_1
  doi: 10.1111/bph.12448
– ident: e_1_2_10_31_1
  doi: 10.1016/j.coph.2012.07.001
– ident: e_1_2_10_25_1
  doi: 10.1016/j.metabol.2005.02.010
– ident: e_1_2_10_36_1
  doi: 10.1016/S1567-5688(01)00014-9
– ident: e_1_2_10_38_1
  doi: 10.1124/jpet.103.060426
– volume: 85
  start-page: 11
  issue: 2
  year: 2001
  ident: e_1_2_10_50_1
  article-title: ICI 182,780 (Fulvestrant) – the first oestrogen receptor down‐regulator – current clinical data
  publication-title: Br J Cancer
– ident: e_1_2_10_52_1
  doi: 10.1126/science.1252787
– ident: e_1_2_10_13_1
  doi: 10.1056/NEJM198604033141404
– ident: e_1_2_10_7_1
  doi: 10.1016/S0140-6736(05)67394-1
– ident: e_1_2_10_16_1
  doi: 10.1038/bjc.1989.214
– ident: e_1_2_10_41_1
  doi: 10.1126/science.1189123
– ident: e_1_2_10_22_1
  doi: 10.1016/S0026-0495(98)90078-6
– ident: e_1_2_10_39_1
  doi: 10.1038/cdd.2009.62
– ident: e_1_2_10_46_1
  doi: 10.1016/j.coph.2012.09.007
– start-page: 2863
  volume-title: The Metabolic and Molecular Basis of Inherited Disease
  year: 2001
  ident: e_1_2_10_18_1
– ident: e_1_2_10_29_1
  doi: 10.1074/jbc.M405230200
– ident: e_1_2_10_4_1
  doi: 10.1111/bph.12451
– ident: e_1_2_10_34_1
  doi: 10.2165/11584380-000000000-00000
– ident: e_1_2_10_49_1
  doi: 10.1056/NEJMra022219
– ident: e_1_2_10_15_1
  doi: 10.1016/0145-2126(85)90125-0
– ident: e_1_2_10_27_1
  doi: 10.1093/jnci/djk062
– ident: e_1_2_10_30_1
  doi: 10.1038/tpj.2009.62
– ident: e_1_2_10_17_1
  doi: 10.1074/jbc.M302588200
– ident: e_1_2_10_53_1
  doi: 10.1017/S1462399408000896
– ident: e_1_2_10_10_1
  doi: 10.1016/S0960-0760(03)00263-2
– volume: 264
  start-page: 1298
  year: 1989
  ident: e_1_2_10_14_1
  article-title: Regulation of low density lipoprotein receptor gene expression in human lymphocytes
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)85085-8
– ident: e_1_2_10_26_1
  doi: 10.1016/j.bcp.2004.03.006
– ident: e_1_2_10_28_1
  doi: 10.1146/annurev.physiol.68.033104.152158
– ident: e_1_2_10_6_1
  doi: 10.1016/j.atherosclerosis.2007.12.024
– ident: e_1_2_10_20_1
  doi: 10.1074/jbc.271.23.13504
– ident: e_1_2_10_51_1
  doi: 10.1016/j.bcp.2013.02.031
– ident: e_1_2_10_40_1
  doi: 10.1073/pnas.1002922107
– ident: e_1_2_10_35_1
  doi: 10.1016/S0026-0495(99)90214-7
– ident: e_1_2_10_5_1
  doi: 10.1146/annurev-med-052209-100305
– ident: e_1_2_10_56_1
  doi: 10.1001/jama.295.23.joc60074
– ident: e_1_2_10_3_1
  doi: 10.1111/bph.12450
– reference: 8625307 - Cancer Res. 1996 May 15;56(10):2321-30
– reference: 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78
– reference: 12584371 - N Engl J Med. 2003 Feb 13;348(7):618-29
– reference: 15175332 - J Biol Chem. 2004 Aug 6;279(32):34048-61
– reference: 21054173 - Annu Rev Med. 2011;62:217-32
– reference: 12920165 - Drug Metab Dispos. 2003 Sep;31(9):1103-7
– reference: 19019258 - Expert Rev Mol Med. 2008;10:e34
– reference: 11900210 - Br J Cancer. 2001 Nov;85 Suppl 2:11-4
– reference: 11923123 - Atheroscler Suppl. 2002 Mar;2(3):9-11
– reference: 3680287 - J Biol Chem. 1987 Dec 15;262(35):17002-8
– reference: 16460270 - Annu Rev Physiol. 2006;68:159-91
– reference: 23175778 - J Lipid Res. 2013 Feb;54(2):310-24
– reference: 24528240 - Br J Pharmacol. 2013 Dec;170(8):1652-75
– reference: 22824432 - Curr Opin Pharmacol. 2012 Dec;12(6):717-23
– reference: 4079452 - Leuk Res. 1985;9(11):1373-8
– reference: 16275887 - Circulation. 2005 Nov 8;112(19):3018-24
– reference: 12815379 - Nat Rev Drug Discov. 2003 Jul;2(7):517-26
– reference: 15163559 - Biochem Pharmacol. 2004 Jun 15;67(12):2281-9
– reference: 18243212 - Atherosclerosis. 2008 Oct;200(2):315-21
– reference: 8523053 - J Clin Oncol. 1995 Dec;13(12):2900-5
– reference: 9555943 - J Lipid Res. 1998 Apr;39(4):777-88
– reference: 15741653 - J Lipid Res. 2005 Jun;46(6):1285-94
– reference: 9867082 - Metabolism. 1998 Dec;47(12):1504-13
– reference: 14617686 - J Pharmacol Exp Ther. 2004 Mar;308(3):1165-73
– reference: 8662863 - J Biol Chem. 1996 Jun 7;271(23):13504-14
– reference: 17317318 - Curr Opin Pharmacol. 2007 Apr;7(2):130-9
– reference: 2910855 - J Biol Chem. 1989 Jan 15;264(2):1298-304
– reference: 15988705 - Metabolism. 2005 Jul;54(7):939-46
– reference: 3633381 - N Engl J Med. 1986 Apr 3;314(14):879-83
– reference: 24234439 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1098-106
– reference: 16754727 - JAMA. 2006 Jun 21;295(23):2727-41
– reference: 20837678 - Mol Pharmacol. 2010 Dec;78(6):1046-58
– reference: 19997082 - Pharmacogenomics J. 2010 Oct;10(5):396-407
– reference: 24675946 - Science. 2014 Mar 28;343(6178):1445-6
– reference: 17341726 - J Natl Cancer Inst. 2007 Mar 7;99(5):350-6
– reference: 15485695 - Cardiovasc Res. 2004 Nov 1;64(2):346-55
– reference: 24528242 - Br J Pharmacol. 2013 Dec;170(8):1706-96
– reference: 20466882 - Science. 2010 Jun 18;328(5985):1566-9
– reference: 11994399 - J Clin Invest. 2002 May;109(9):1125-31
– reference: 20466885 - Science. 2010 Jun 18;328(5985):1570-3
– reference: 8808497 - Atherosclerosis. 1996 Jan 26;119(2):203-13
– reference: 12719428 - J Biol Chem. 2003 Jul 11;278(28):25517-25
– reference: 23063783 - Curr Opin Pharmacol. 2012 Dec;12(6):683-9
– reference: 23500540 - Biochem Pharmacol. 2013 Jul 1;86(1):175-89
– reference: 10421221 - Metabolism. 1999 Jul;48(7):834-9
– reference: 14568562 - J Steroid Biochem Mol Biol. 2003 Aug;86(2):113-21
– reference: 24528243 - Br J Pharmacol. 2013 Dec;170(8):1797-867
– reference: 20615952 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13520-5
– reference: 21142270 - Drug Saf. 2011 Jan 1;34(1):1-19
– reference: 20580502 - Maturitas. 2010 Oct;67(2):129-38
– reference: 2803912 - Br J Cancer. 1989 Jul;60(1):30-5
– reference: 18216769 - Nat Rev Mol Cell Biol. 2008 Feb;9(2):125-38
– reference: 19521424 - Cell Death Differ. 2009 Oct;16(10):1372-84
– reference: 18974038 - J Lipid Res. 2009 Apr;50 Suppl:S15-27
SSID ssj0014775
Score 2.2299583
Snippet Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the...
Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen,...
Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1379
SubjectTerms Cells, Cultured
Cholesterol
Dose-Response Relationship, Drug
Down-Regulation - drug effects
Hep G2 Cells
Hepatocytes - drug effects
Hepatocytes - metabolism
Humans
Lipoproteins, LDL - chemistry
Lipoproteins, LDL - metabolism
Lovastatin - chemistry
Lovastatin - pharmacology
Lymphocytes
Lymphocytes - cytology
Lymphocytes - drug effects
Lymphocytes - metabolism
Male
Raloxifene Hydrochloride - chemistry
Raloxifene Hydrochloride - pharmacology
Receptors, LDL - metabolism
Research Papers
Selective Estrogen Receptor Modulators - chemistry
Selective Estrogen Receptor Modulators - pharmacology
Structure-Activity Relationship
Tamoxifen - chemistry
Tamoxifen - pharmacology
Toremifene - chemistry
Toremifene - pharmacology
Title Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.13016
https://www.ncbi.nlm.nih.gov/pubmed/25395200
https://www.proquest.com/docview/1654958788
https://www.proquest.com/docview/1655725909
https://www.proquest.com/docview/1668256066
https://pubmed.ncbi.nlm.nih.gov/PMC4337708
https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.13016
UnpaywallVersion publishedVersion
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-5381
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0014775
  issn: 1476-5381
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1476-5381
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0014775
  issn: 1476-5381
  databaseCode: DIK
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1476-5381
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0014775
  issn: 1476-5381
  databaseCode: GX1
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1476-5381
  dateEnd: 20201231
  omitProxy: true
  ssIdentifier: ssj0014775
  issn: 1476-5381
  databaseCode: RPM
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB6V5AAX9iVQqmFR1UMd2fEs9jGhhAiVKodGKidrNisVxo7iWMj8et54i0yh4sDN8rzxLH5v5pvlfQ-h90IHwpWecZScCIcE1HXCCXcd6dIgFvbaobEb-l8u2GJFPl_RqwP0qfWFkZsc6pGPa56IbuPNWkg1bltD3-i4Hu9bk4dcaxvW2GN30JBRAOUDNFxdLKdfa_DLHYDRlVMc4cwBE_cajqFe3v7MdANu3rw1ebdIN6L8IZKkj2yrqWn-AK3bRtU3Ur6Ni50cq5-_8T3-h1Y_RPcb-Iqntb49QgcmfYyOlzX_dXmKL_fuXPkpPsbLPTN2-QTlDQtpkpS4yI3GeRWFBwZcnEEnbDPQZgyFm80u2-LvmbaxxbJtjq9TC25zg8_PzvcC1ifDhr6AZLypWTNwFXMQJyUoaaZKwNFP0Wr-8fLDwmmiPjiKEsYcZk8-Ayo14y5RMjTwduKbUEovVJoQw0LhS84494wvqKSKUxVqrpkQLolj_xkapFlqXiDMBaNK6wmJAYlonwdaEWpgaqBuHEgSj9BJ-8cj1VCi28gcSdQujaCLo6qLR-htJ9q06E9Ch63aRM1QkEfWXSykAQ-CEXrTJYMR25MZkZqsqGQoh4WoG94mwwKLTxkU87zWxK4mE-qHlj9rhHhPRzsBSyLeT0mv1xWZOPF9zl2o27tOm29r4EmllH-XiGbLRfXw8p8--ArdAwRK60t9h2iw2xbmNaC8nTxCw-nsbDY_aiz5F-Z7V3k
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLbK9AAXylqmFGQWVT00oyxekmNZygiVag4dqZwib9FUhCSaTITCr-c52ygUKg7covg5XvKe_Xl530PordChcKVnHCV94ZCQuk7kc9eRLg0TYa8dGruh_-WCzZfk8xW92kGfel8YWZRQj3LW8kQMG2_WQppx2xp6oZN2vO9NHnKtbFhjj91Bu4wCKJ-g3eXF4vRrC365AzC6cYojnDlg4l7HMTTKO56ZbsDNm7cm71ZZIeofIk3HyLaZms720KpvVHsj5dus2siZ-vkb3-N_aPUDdL-Dr_i01beHaMdkj9DRouW_rk_w5dadqzzBR3ixZcauH6OyYyFN0xpXpdG4bKLwwICLc-iEdQ7ajKFwU2zyNf6eaxtbLF-X-Dqz4LY0-PzD-VbA-mTY0BeQjIuWNQM3MQdxWoOS5qoGHP0ELc8-Xr6fO13UB0dRwpjD7MlnSKVm3CVKRgbe-oGJpPQipQkxLBKB5IxzzwSCSqo4VZHmmgnhkiQJnqJJlmfmGcJcMKq09kkCSEQHPNSKUANTA3WTUJJkio77Px6rjhLdRuZI435pBF0cN108Ra8H0a5FfxI67NUm7oaCMrbuYhENeRhO0ashGYzYnsyIzORVI0M5LETd6DYZFlp8yqCY_VYTh5r4NIgsf9YU8ZGODgKWRHyckl2vGjJxEgScu1C3N4M239bA40Yp_y4Rv1vMm4eDf_rgc3QPEChtL_UdoslmXZkXgPI28mVnwb8AMyRWBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+used+selective+oestrogen+receptor+modulators+increase+LDL+receptor+activity+in+primary+human+lymphocytes&rft.jtitle=British+journal+of+pharmacology&rft.au=Cerrato%2C+F&rft.au=Fern%C3%A1ndez-Su%C3%A1rez%2C+M+E&rft.au=Alonso%2C+R&rft.au=Alonso%2C+M&rft.date=2015-03-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=172&rft.issue=5&rft.spage=1379&rft_id=info:doi/10.1111%2Fbph.13016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon