Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes
Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipi...
Saved in:
| Published in | British journal of pharmacology Vol. 172; no. 5; pp. 1379 - 1394 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Blackwell Publishing Ltd
01.03.2015
BlackWell Publishing Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0007-1188 1476-5381 1476-5381 |
| DOI | 10.1111/bph.13016 |
Cover
| Abstract | Background and Purpose
Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT‐4 lymphoblasts.
Experimental Approach
Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′‐dioctadecyl‐3,3,3,3′‐tetramethylindocarbocyanine perchlorate (DiI)‐labelled LDL uptake was analysed by flow cytometry.
Key Results
Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI‐LDL uptake by lymphocytes by inhibiting LDL‐derived cholesterol trafficking and subsequent down‐regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT‐4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM‐mediated increase in LDL receptor activity was not altered by the anti‐oestrogen ICI 182 780 nor was it reproduced by 17β‐oestradiol. However, the tamoxifen‐active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.
Conclusions and Implications
Clinically used SERMs up‐regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT‐4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen‐active metabolite endoxifen. This mechanism may contribute to the cholesterol‐lowering action of SERMs. |
|---|---|
| AbstractList | Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts.
Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry.
Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182,780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.
Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182780 nor was it reproduced by 17[beta]-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts.BACKGROUND AND PURPOSETreatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts.Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry.EXPERIMENTAL APPROACHLymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry.Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182,780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.KEY RESULTSTamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182,780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs.CONCLUSIONS AND IMPLICATIONSClinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT‐4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′‐dioctadecyl‐3,3,3,3′‐tetramethylindocarbocyanine perchlorate (DiI)‐labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI‐LDL uptake by lymphocytes by inhibiting LDL‐derived cholesterol trafficking and subsequent down‐regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT‐4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM‐mediated increase in LDL receptor activity was not altered by the anti‐oestrogen ICI 182 780 nor was it reproduced by 17β‐oestradiol. However, the tamoxifen‐active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up‐regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT‐4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen‐active metabolite endoxifen. This mechanism may contribute to the cholesterol‐lowering action of SERMs. |
| Author | Pastor, O Fernández‐Suárez, M E Gómez‐Coronado, D Alonso, R Cerrato, F Vázquez, C Alonso, M Mata, P Lasunción, M A |
| Author_xml | – sequence: 1 givenname: F surname: Cerrato fullname: Cerrato, F organization: Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS) – sequence: 2 givenname: M E surname: Fernández‐Suárez fullname: Fernández‐Suárez, M E organization: Instituto de Salud Carlos III – sequence: 3 givenname: R surname: Alonso fullname: Alonso, R organization: Fundación Jiménez Díaz‐IDC – sequence: 4 givenname: M surname: Alonso fullname: Alonso, M organization: Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS) – sequence: 5 givenname: C surname: Vázquez fullname: Vázquez, C organization: Instituto de Salud Carlos III – sequence: 6 givenname: O surname: Pastor fullname: Pastor, O organization: Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS) – sequence: 7 givenname: P surname: Mata fullname: Mata, P organization: Fundación Jiménez Díaz‐IDC – sequence: 8 givenname: M A surname: Lasunción fullname: Lasunción, M A organization: Instituto de Salud Carlos III – sequence: 9 givenname: D surname: Gómez‐Coronado fullname: Gómez‐Coronado, D organization: Instituto de Salud Carlos III |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25395200$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV9vFCEUxYmpsdvqg1_AkPiiJtPCzADDi4muf2qyiT7oM2GYu10aBkaYaTPfXsZdrTaxkRcI93cO9x5O0JEPHhB6SskZzeu8HXZntCKUP0ArWgtesKqhR2hFCBEFpU1zjE5SuiIkFwV7hI5LVklWErJCae2st0Y7N-MpQYcTODCjvQYcII0xXILHEQwMY4i4D93kdD4lbL2JoBPgzbvNLaAXqR3nXMZDtL2OM95NvfbYzf2wC2YeIT1GD7faJXhy2E_Rtw_vv64vis3nj5_WbzaFYTXnBW8kKRvWdlyQ2rQS8m1ZgWxbKk1X18ClrlrBhaBQadYyI5iRnei41qTebqtT9GrvO_lBzzd5RnXoSVGiluRUTk79TC7Dr_fwMLU9dAb8GPWtIGir_q54u1OX4VrVVSUEabLBi4NBDN-nnJ3qbTLgnPYQpqQo503JOOH8P1DGRMkkkRl9fge9ClP0ObaFqiVrRLO8_ezP5n93_eufM_ByD5gYUoqwvTeJ8zussaMebVjmtu4-xY11MP_bWr39crFX_ADsxtjw |
| CitedBy_id | crossref_primary_10_1016_j_cbi_2022_110091 crossref_primary_10_1038_srep32105 crossref_primary_10_1002_ijc_33919 crossref_primary_10_3390_ijms22083919 crossref_primary_10_1007_s12020_022_03287_2 crossref_primary_10_1016_j_biopha_2021_111871 crossref_primary_10_3390_ijms17030404 crossref_primary_10_1007_s40265_017_0767_4 crossref_primary_10_1016_j_atherosclerosis_2019_01_010 crossref_primary_10_1002_prca_201900029 crossref_primary_10_1016_j_clinthera_2021_07_017 crossref_primary_10_1016_j_bcp_2021_114623 crossref_primary_10_1016_j_omtm_2020_03_017 crossref_primary_10_1016_j_semcancer_2020_08_015 |
| Cites_doi | 10.1161/CIRCULATIONAHA.104.531178 10.1124/mol.110.065193 10.1016/j.maturitas.2010.05.009 10.1016/S0022-2275(20)32566-9 10.1172/JCI0215593 10.1194/jlr.M026948 10.1016/j.cardiores.2004.06.024 10.1016/j.coph.2006.10.009 10.1200/JCO.1995.13.12.2900 10.1194/jlr.M400448-JLR200 10.1038/nrd1112 10.1093/nar/gkt1143 10.1038/nrm2336 10.1016/0021-9150(95)05649-1 10.1194/jlr.R800054-JLR200 10.1016/S0021-9258(18)45483-X 10.1126/science.1189862 10.1124/dmd.31.9.1103 10.1111/bph.12448 10.1016/j.coph.2012.07.001 10.1016/j.metabol.2005.02.010 10.1016/S1567-5688(01)00014-9 10.1124/jpet.103.060426 10.1126/science.1252787 10.1056/NEJM198604033141404 10.1016/S0140-6736(05)67394-1 10.1038/bjc.1989.214 10.1126/science.1189123 10.1016/S0026-0495(98)90078-6 10.1038/cdd.2009.62 10.1016/j.coph.2012.09.007 10.1074/jbc.M405230200 10.1111/bph.12451 10.2165/11584380-000000000-00000 10.1056/NEJMra022219 10.1016/0145-2126(85)90125-0 10.1093/jnci/djk062 10.1038/tpj.2009.62 10.1074/jbc.M302588200 10.1017/S1462399408000896 10.1016/S0960-0760(03)00263-2 10.1016/S0021-9258(19)85085-8 10.1016/j.bcp.2004.03.006 10.1146/annurev.physiol.68.033104.152158 10.1016/j.atherosclerosis.2007.12.024 10.1074/jbc.271.23.13504 10.1016/j.bcp.2013.02.031 10.1073/pnas.1002922107 10.1016/S0026-0495(99)90214-7 10.1146/annurev-med-052209-100305 10.1001/jama.295.23.joc60074 10.1111/bph.12450 |
| ContentType | Journal Article |
| Copyright | 2014 The British Pharmacological Society 2014 The British Pharmacological Society. Copyright © 2015 The British Pharmacological Society 2014 The British Pharmacological Society 2014 |
| Copyright_xml | – notice: 2014 The British Pharmacological Society – notice: 2014 The British Pharmacological Society. – notice: Copyright © 2015 The British Pharmacological Society – notice: 2014 The British Pharmacological Society 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. NAPCQ 7X8 7T5 H94 5PM ADTOC UNPAY |
| DOI | 10.1111/bph.13016 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1476-5381 |
| EndPage | 1394 |
| ExternalDocumentID | 10.1111/bph.13016 PMC4337708 3589561881 25395200 10_1111_bph_13016 BPH13016 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad funderid: SAF2011‐29951 – fundername: Instituto de Salud Carlos III funderid: PI 11/2077 |
| GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OB 1OC 23N 2WC 31~ 33P 36B 3O- 3SF 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM AAESR AAEVG AAFWJ AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q.N Q2X QB0 ROL RPM SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAYXX CITATION 24P 3V. A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV CGR CUY CVF ECM EIF NPM P4E RIG RWI 7QP 7TK K9. 7X8 7T5 H94 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c5466-6890285bd6704cb9e54623e9bb19cd44e69a3b76771e3a5b5c75c9d7d6aa04ff3 |
| IEDL.DBID | UNPAY |
| ISSN | 0007-1188 1476-5381 |
| IngestDate | Wed Oct 29 11:48:14 EDT 2025 Tue Sep 30 17:03:45 EDT 2025 Thu Sep 04 18:39:52 EDT 2025 Thu Sep 04 16:16:53 EDT 2025 Mon Oct 06 18:18:53 EDT 2025 Wed Feb 19 01:53:05 EST 2025 Thu Apr 24 23:06:21 EDT 2025 Wed Oct 01 03:39:59 EDT 2025 Sun Sep 21 06:22:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | 2014 The British Pharmacological Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5466-6890285bd6704cb9e54623e9bb19cd44e69a3b76771e3a5b5c75c9d7d6aa04ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Departamento de Endocrinología y Nutrición, Fundación Jiménez Díaz – IDC, Madrid, Spain. Fundaciön Hipercolesterolemia Familiar, Madrid, Spain |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.13016 |
| PMID | 25395200 |
| PQID | 1654958788 |
| PQPubID | 42104 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1111_bph_13016 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337708 proquest_miscellaneous_1668256066 proquest_miscellaneous_1655725909 proquest_journals_1654958788 pubmed_primary_25395200 crossref_primary_10_1111_bph_13016 crossref_citationtrail_10_1111_bph_13016 wiley_primary_10_1111_bph_13016_BPH13016 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2015 |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: March 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: Oxford, UK |
| PublicationTitle | British journal of pharmacology |
| PublicationTitleAlternate | Br J Pharmacol |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd BlackWell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: BlackWell Publishing Ltd |
| References | 1987; 262 2010; 10 2004; 64 2010; 107 2013b; 170 2011; 62 2004; 67 1999; 48 2008; 9 2006; 295 2003; 278 2012; 12 2001; 85 1998; 47 2013c; 170 2010; 67 2001 2013; 54 2006; 68 2009; 50 1989; 264 2003; 2 2007; 7 2002; 109 2003; 86 2009; 16 2010; 78 1989; 60 1986; 314 2010; 328 2005; 112 1985; 9 1995; 13 2013; 86 2002; 2 2008; 10 2011; 34 2008; 200 2007; 99 2003; 31 2005; 46 1996; 56 2004; 308 2014; 42 1998; 39 2004; 279 2003; 348 2005; 366 1996; 271 2005; 54 1996; 119 2013a; 170 2014; 343 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 Pink JJ (e_1_2_10_45_1) 1996; 56 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Cuthbert JA (e_1_2_10_14_1) 1989; 264 Goldstein JL (e_1_2_10_18_1) 2001 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Robertson JF (e_1_2_10_50_1) 2001; 85 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 11923123 - Atheroscler Suppl. 2002 Mar;2(3):9-11 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78 8625307 - Cancer Res. 1996 May 15;56(10):2321-30 16460270 - Annu Rev Physiol. 2006;68:159-91 11994399 - J Clin Invest. 2002 May;109(9):1125-31 24675946 - Science. 2014 Mar 28;343(6178):1445-6 10421221 - Metabolism. 1999 Jul;48(7):834-9 19521424 - Cell Death Differ. 2009 Oct;16(10):1372-84 20837678 - Mol Pharmacol. 2010 Dec;78(6):1046-58 17317318 - Curr Opin Pharmacol. 2007 Apr;7(2):130-9 12920165 - Drug Metab Dispos. 2003 Sep;31(9):1103-7 12719428 - J Biol Chem. 2003 Jul 11;278(28):25517-25 23063783 - Curr Opin Pharmacol. 2012 Dec;12(6):683-9 24528240 - Br J Pharmacol. 2013 Dec;170(8):1652-75 18974038 - J Lipid Res. 2009 Apr;50 Suppl:S15-27 20466885 - Science. 2010 Jun 18;328(5985):1570-3 23500540 - Biochem Pharmacol. 2013 Jul 1;86(1):175-89 4079452 - Leuk Res. 1985;9(11):1373-8 8662863 - J Biol Chem. 1996 Jun 7;271(23):13504-14 15741653 - J Lipid Res. 2005 Jun;46(6):1285-94 18216769 - Nat Rev Mol Cell Biol. 2008 Feb;9(2):125-38 14617686 - J Pharmacol Exp Ther. 2004 Mar;308(3):1165-73 3633381 - N Engl J Med. 1986 Apr 3;314(14):879-83 17341726 - J Natl Cancer Inst. 2007 Mar 7;99(5):350-6 2910855 - J Biol Chem. 1989 Jan 15;264(2):1298-304 20580502 - Maturitas. 2010 Oct;67(2):129-38 24528242 - Br J Pharmacol. 2013 Dec;170(8):1706-96 12815379 - Nat Rev Drug Discov. 2003 Jul;2(7):517-26 15485695 - Cardiovasc Res. 2004 Nov 1;64(2):346-55 3680287 - J Biol Chem. 1987 Dec 15;262(35):17002-8 24234439 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1098-106 9867082 - Metabolism. 1998 Dec;47(12):1504-13 22824432 - Curr Opin Pharmacol. 2012 Dec;12(6):717-23 19019258 - Expert Rev Mol Med. 2008;10:e34 23175778 - J Lipid Res. 2013 Feb;54(2):310-24 15988705 - Metabolism. 2005 Jul;54(7):939-46 20615952 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13520-5 8523053 - J Clin Oncol. 1995 Dec;13(12):2900-5 11900210 - Br J Cancer. 2001 Nov;85 Suppl 2:11-4 24528243 - Br J Pharmacol. 2013 Dec;170(8):1797-867 14568562 - J Steroid Biochem Mol Biol. 2003 Aug;86(2):113-21 8808497 - Atherosclerosis. 1996 Jan 26;119(2):203-13 16275887 - Circulation. 2005 Nov 8;112(19):3018-24 12584371 - N Engl J Med. 2003 Feb 13;348(7):618-29 15175332 - J Biol Chem. 2004 Aug 6;279(32):34048-61 21142270 - Drug Saf. 2011 Jan 1;34(1):1-19 15163559 - Biochem Pharmacol. 2004 Jun 15;67(12):2281-9 16754727 - JAMA. 2006 Jun 21;295(23):2727-41 20466882 - Science. 2010 Jun 18;328(5985):1566-9 19997082 - Pharmacogenomics J. 2010 Oct;10(5):396-407 2803912 - Br J Cancer. 1989 Jul;60(1):30-5 21054173 - Annu Rev Med. 2011;62:217-32 9555943 - J Lipid Res. 1998 Apr;39(4):777-88 18243212 - Atherosclerosis. 2008 Oct;200(2):315-21 |
| References_xml | – volume: 86 start-page: 113 year: 2003 end-page: 121 article-title: Estrogen receptor‐alpha and Sp1 interact in the induction of the low density lipoprotein‐receptor publication-title: J Steroid Biochem Mol Biol – volume: 278 start-page: 25517 year: 2003 end-page: 25525 article-title: NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol‐derived oxysterols publication-title: J Biol Chem – volume: 16 start-page: 1372 year: 2009 end-page: 1384 article-title: Ligands of the antiestrogen‐binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism publication-title: Cell Death Differ – volume: 328 start-page: 1566 year: 2010 end-page: 1569 article-title: MicroRNA‐33 and the SREBP host genes cooperate to control cholesterol homeostasis publication-title: Science – volume: 50 start-page: S15 year: 2009 end-page: S27 article-title: Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL publication-title: J Lipid Res – volume: 56 start-page: 2321 year: 1996 end-page: 2330 article-title: Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines publication-title: Cancer Res – volume: 64 start-page: 346 year: 2004 end-page: 355 article-title: Synergistic upregulation of low‐density lipoprotein receptor activity by tamoxifen and lovastatin publication-title: Cardiovasc Res – volume: 54 start-page: 310 year: 2013 end-page: 324 article-title: Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro publication-title: J Lipid Res – volume: 9 start-page: 125 year: 2008 end-page: 138 article-title: Cellular cholesterol trafficking and compartmentalization publication-title: Nat Rev Mol Cell Biol – volume: 348 start-page: 618 year: 2003 end-page: 629 article-title: Selective estrogen‐receptor modulators – mechanisms of action and application to clinical practice publication-title: N Engl J Med – volume: 170 start-page: 1706 year: 2013b end-page: 1796 article-title: The Concise Guide to PHARMACOLOGY 2013/14: Transporters publication-title: Br J Pharmacol – volume: 343 start-page: 1445 year: 2014 end-page: 1446 article-title: Cholesterol and cancer, in the balance publication-title: Science – volume: 67 start-page: 129 year: 2010 end-page: 138 article-title: SERMs: progress and future perspectives publication-title: Maturitas – volume: 328 start-page: 1570 year: 2010 end-page: 1573 article-title: MiR‐33 contributes to the regulation of cholesterol homeostasis publication-title: Science – volume: 2 start-page: 517 year: 2003 end-page: 526 article-title: Lovastatin and beyond: the history of the HMG‐CoA reductase inhibitors publication-title: Nat Rev Drug Discov – volume: 7 start-page: 130 year: 2007 end-page: 139 article-title: Estrogens and SERMs in coronary heart disease publication-title: Curr Opin Pharmacol – volume: 2 start-page: 9 year: 2002 end-page: 11 article-title: MEDPED and the Spanish Familial Hypercholesterolemia Foundation publication-title: Atheroscler Suppl – volume: 85 start-page: 11 issue: Suppl. 2 year: 2001 end-page: 14 article-title: ICI 182,780 (Fulvestrant) – the first oestrogen receptor down‐regulator – current clinical data publication-title: Br J Cancer – volume: 279 start-page: 34048 year: 2004 end-page: 34061 article-title: Molecular characterization of the microsomal tamoxifen binding site publication-title: J Biol Chem – volume: 13 start-page: 2900 year: 1995 end-page: 2905 article-title: Tamoxifen and toremifene lower serum cholesterol by inhibition of delta 8‐cholesterol conversion to lathosterol in women with breast cancer publication-title: J Clin Oncol – start-page: 2863 year: 2001 end-page: 2913 – volume: 170 start-page: 1797 year: 2013c end-page: 1867 article-title: The Concise Guide to PHARMACOLOGY 2013/14: Enzymes publication-title: Br J Pharmacol – volume: 271 start-page: 13504 year: 1996 end-page: 13514 article-title: Tamoxifen modulates protein kinase C via oxidative stress in estrogen receptor‐negative breast cancer cells publication-title: J Biol Chem – volume: 119 start-page: 203 year: 1996 end-page: 213 article-title: Plasma mevalonic acid, an index of cholesterol synthesis in vivo, and responsiveness to HMG‐CoA reductase inhibitors in familial hypercholesterolaemia publication-title: Atherosclerosis – volume: 34 start-page: 1 year: 2011 end-page: 19 article-title: Clinical implications of pharmacogenetic variation on the effects of statins publication-title: Drug Saf – volume: 12 start-page: 683 year: 2012 end-page: 689 article-title: Cholesterol metabolism and resistance to tamoxifen publication-title: Curr Opin Pharmacol – volume: 86 start-page: 175 year: 2013 end-page: 189 article-title: 5,6‐Epoxy‐cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells publication-title: Biochem Pharmacol – volume: 170 start-page: 1652 year: 2013a end-page: 1675 article-title: The Concise Guide to PHARMACOLOGY 2013/14: Nuclear hormone receptors publication-title: Br J Pharmacol – volume: 200 start-page: 315 year: 2008 end-page: 321 article-title: Cardiovascular disease in familial hypercholesterolaemia: influence of low‐density lipoprotein receptor mutation type and classic risk factors publication-title: Atherosclerosis – volume: 308 start-page: 1165 year: 2004 end-page: 1173 article-title: Tamoxifen is a potent inhibitor of cholesterol esterification and prevents the formation of foam cells publication-title: J Pharmacol Exp Ther – volume: 314 start-page: 879 year: 1986 end-page: 883 article-title: Detection of familial hypercholesterolemia by assaying functional low‐density‐lipoprotein receptors on lymphocytes publication-title: N Engl J Med – volume: 62 start-page: 217 year: 2011 end-page: 232 article-title: Antiestrogens and their therapeutic applications in breast cancer and other diseases publication-title: Annu Rev Med – volume: 107 start-page: 13520 year: 2010 end-page: 13525 article-title: Identification and pharmacological characterization of cholesterol‐5,6‐epoxide hydrolase as a target for tamoxifen and AEBS ligands publication-title: Proc Natl Acad Sci U S A – volume: 39 start-page: 777 year: 1998 end-page: 788 article-title: Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL publication-title: J Lipid Res – volume: 42 start-page: D1098 issue: Database Issue year: 2014 end-page: D1106 article-title: The IUPHAR/BPS Guide to PHARMACOLOGY: an expert‐driven knowledgebase of drug targets and their ligands publication-title: Nucl Acids Res – volume: 9 start-page: 1373 year: 1985 end-page: 1378 article-title: Distribution of androgen and estrogen receptors among lymphoid and haemopoietic cell lines publication-title: Leuk Res – volume: 68 start-page: 159 year: 2006 end-page: 191 article-title: LXRS and FXR: the yin and yang of cholesterol and fat metabolism publication-title: Annu Rev Physiol – volume: 112 start-page: 3018 year: 2005 end-page: 3024 article-title: Tamoxifen for the prevention of myocardial infarction in humans: preclinical and early clinical evidence publication-title: Circulation – volume: 60 start-page: 30 year: 1989 end-page: 35 article-title: Tamoxifen metabolism: pharmacokinetic and in vitro study publication-title: Br J Cancer – volume: 10 start-page: 396 year: 2010 end-page: 407 article-title: Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein‐derived cholesterol publication-title: Pharmacogenomics J – volume: 31 start-page: 1103 year: 2003 end-page: 1107 article-title: Only truncated, not complete cytochrome p450 2D6 RNA transcript and no detectable enzyme activity are expressed in human lymphocytes publication-title: Drug Metab Dispos – volume: 264 start-page: 1298 year: 1989 end-page: 1304 article-title: Regulation of low density lipoprotein receptor gene expression in human lymphocytes publication-title: J Biol Chem – volume: 262 start-page: 17002 year: 1987 end-page: 17008 article-title: Low density lipoprotein (LDL)‐mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann‐Pick type C fibroblasts publication-title: J Biol Chem – volume: 12 start-page: 717 year: 2012 end-page: 723 article-title: Post‐lanosterol biosynthesis of cholesterol and cancer publication-title: Curr Opin Pharmacol – volume: 10 start-page: e34 year: 2008 article-title: Pharmacogenetics and breast cancer endocrine therapy: CYP2D6 as a predictive factor for tamoxifen metabolism and drug response? publication-title: Expert Rev Mol Med – volume: 54 start-page: 939 year: 2005 end-page: 946 article-title: Effects of raloxifene and low‐dose simvastatin coadministration on plasma lipids in postmenopausal women with primary hypercholesterolemia publication-title: Metabolism – volume: 48 start-page: 834 year: 1999 end-page: 839 article-title: Impact of different low‐density lipoprotein (LDL) receptor mutations on the ability of LDL to support lymphocyte proliferation publication-title: Metabolism – volume: 366 start-page: 1267 year: 2005 end-page: 1278 article-title: Efficacy and safety of cholesterol‐lowering treatment: prospective meta‐analysis of data from 90,056 participants in 14 randomised trials of statins publication-title: Lancet – volume: 109 start-page: 1125 year: 2002 end-page: 1131 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J Clin Invest – volume: 46 start-page: 1285 year: 2005 end-page: 1294 article-title: Hypolipidemic action of the SERM acolbifene is associated with decreased liver MTP and increased SR‐BI and LDL receptors publication-title: J Lipid Res – volume: 67 start-page: 2281 year: 2004 end-page: 2289 article-title: Up‐regulation of low‐density lipoprotein receptor in human hepatocytes is induced by sequestration of free cholesterol in the endosomal/lysosomal compartment publication-title: Biochem Pharmacol – volume: 78 start-page: 1046 year: 2010 end-page: 1058 article-title: Identification of 5alpha, 6alpha‐epoxycholesterol as a novel modulator of liver X receptor activity publication-title: Mol Pharmacol – volume: 47 start-page: 1504 year: 1998 end-page: 1513 article-title: Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes publication-title: Metabolism – volume: 295 start-page: 2727 year: 2006 end-page: 2741 article-title: Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P‐2 trial publication-title: JAMA – volume: 99 start-page: 350 year: 2007 end-page: 356 article-title: SERMs: meeting the promise of multifunctional medicines publication-title: J Natl Cancer Inst – ident: e_1_2_10_19_1 doi: 10.1161/CIRCULATIONAHA.104.531178 – ident: e_1_2_10_8_1 doi: 10.1124/mol.110.065193 – ident: e_1_2_10_44_1 doi: 10.1016/j.maturitas.2010.05.009 – ident: e_1_2_10_11_1 doi: 10.1016/S0022-2275(20)32566-9 – ident: e_1_2_10_23_1 doi: 10.1172/JCI0215593 – ident: e_1_2_10_12_1 doi: 10.1194/jlr.M026948 – ident: e_1_2_10_54_1 doi: 10.1016/j.cardiores.2004.06.024 – ident: e_1_2_10_48_1 doi: 10.1016/j.coph.2006.10.009 – ident: e_1_2_10_21_1 doi: 10.1200/JCO.1995.13.12.2900 – ident: e_1_2_10_32_1 doi: 10.1194/jlr.M400448-JLR200 – ident: e_1_2_10_55_1 doi: 10.1038/nrd1112 – ident: e_1_2_10_43_1 doi: 10.1093/nar/gkt1143 – ident: e_1_2_10_24_1 doi: 10.1038/nrm2336 – ident: e_1_2_10_42_1 doi: 10.1016/0021-9150(95)05649-1 – ident: e_1_2_10_9_1 doi: 10.1194/jlr.R800054-JLR200 – ident: e_1_2_10_33_1 doi: 10.1016/S0021-9258(18)45483-X – ident: e_1_2_10_47_1 doi: 10.1126/science.1189862 – ident: e_1_2_10_37_1 doi: 10.1124/dmd.31.9.1103 – volume: 56 start-page: 2321 year: 1996 ident: e_1_2_10_45_1 article-title: Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines publication-title: Cancer Res – ident: e_1_2_10_2_1 doi: 10.1111/bph.12448 – ident: e_1_2_10_31_1 doi: 10.1016/j.coph.2012.07.001 – ident: e_1_2_10_25_1 doi: 10.1016/j.metabol.2005.02.010 – ident: e_1_2_10_36_1 doi: 10.1016/S1567-5688(01)00014-9 – ident: e_1_2_10_38_1 doi: 10.1124/jpet.103.060426 – volume: 85 start-page: 11 issue: 2 year: 2001 ident: e_1_2_10_50_1 article-title: ICI 182,780 (Fulvestrant) – the first oestrogen receptor down‐regulator – current clinical data publication-title: Br J Cancer – ident: e_1_2_10_52_1 doi: 10.1126/science.1252787 – ident: e_1_2_10_13_1 doi: 10.1056/NEJM198604033141404 – ident: e_1_2_10_7_1 doi: 10.1016/S0140-6736(05)67394-1 – ident: e_1_2_10_16_1 doi: 10.1038/bjc.1989.214 – ident: e_1_2_10_41_1 doi: 10.1126/science.1189123 – ident: e_1_2_10_22_1 doi: 10.1016/S0026-0495(98)90078-6 – ident: e_1_2_10_39_1 doi: 10.1038/cdd.2009.62 – ident: e_1_2_10_46_1 doi: 10.1016/j.coph.2012.09.007 – start-page: 2863 volume-title: The Metabolic and Molecular Basis of Inherited Disease year: 2001 ident: e_1_2_10_18_1 – ident: e_1_2_10_29_1 doi: 10.1074/jbc.M405230200 – ident: e_1_2_10_4_1 doi: 10.1111/bph.12451 – ident: e_1_2_10_34_1 doi: 10.2165/11584380-000000000-00000 – ident: e_1_2_10_49_1 doi: 10.1056/NEJMra022219 – ident: e_1_2_10_15_1 doi: 10.1016/0145-2126(85)90125-0 – ident: e_1_2_10_27_1 doi: 10.1093/jnci/djk062 – ident: e_1_2_10_30_1 doi: 10.1038/tpj.2009.62 – ident: e_1_2_10_17_1 doi: 10.1074/jbc.M302588200 – ident: e_1_2_10_53_1 doi: 10.1017/S1462399408000896 – ident: e_1_2_10_10_1 doi: 10.1016/S0960-0760(03)00263-2 – volume: 264 start-page: 1298 year: 1989 ident: e_1_2_10_14_1 article-title: Regulation of low density lipoprotein receptor gene expression in human lymphocytes publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)85085-8 – ident: e_1_2_10_26_1 doi: 10.1016/j.bcp.2004.03.006 – ident: e_1_2_10_28_1 doi: 10.1146/annurev.physiol.68.033104.152158 – ident: e_1_2_10_6_1 doi: 10.1016/j.atherosclerosis.2007.12.024 – ident: e_1_2_10_20_1 doi: 10.1074/jbc.271.23.13504 – ident: e_1_2_10_51_1 doi: 10.1016/j.bcp.2013.02.031 – ident: e_1_2_10_40_1 doi: 10.1073/pnas.1002922107 – ident: e_1_2_10_35_1 doi: 10.1016/S0026-0495(99)90214-7 – ident: e_1_2_10_5_1 doi: 10.1146/annurev-med-052209-100305 – ident: e_1_2_10_56_1 doi: 10.1001/jama.295.23.joc60074 – ident: e_1_2_10_3_1 doi: 10.1111/bph.12450 – reference: 8625307 - Cancer Res. 1996 May 15;56(10):2321-30 – reference: 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78 – reference: 12584371 - N Engl J Med. 2003 Feb 13;348(7):618-29 – reference: 15175332 - J Biol Chem. 2004 Aug 6;279(32):34048-61 – reference: 21054173 - Annu Rev Med. 2011;62:217-32 – reference: 12920165 - Drug Metab Dispos. 2003 Sep;31(9):1103-7 – reference: 19019258 - Expert Rev Mol Med. 2008;10:e34 – reference: 11900210 - Br J Cancer. 2001 Nov;85 Suppl 2:11-4 – reference: 11923123 - Atheroscler Suppl. 2002 Mar;2(3):9-11 – reference: 3680287 - J Biol Chem. 1987 Dec 15;262(35):17002-8 – reference: 16460270 - Annu Rev Physiol. 2006;68:159-91 – reference: 23175778 - J Lipid Res. 2013 Feb;54(2):310-24 – reference: 24528240 - Br J Pharmacol. 2013 Dec;170(8):1652-75 – reference: 22824432 - Curr Opin Pharmacol. 2012 Dec;12(6):717-23 – reference: 4079452 - Leuk Res. 1985;9(11):1373-8 – reference: 16275887 - Circulation. 2005 Nov 8;112(19):3018-24 – reference: 12815379 - Nat Rev Drug Discov. 2003 Jul;2(7):517-26 – reference: 15163559 - Biochem Pharmacol. 2004 Jun 15;67(12):2281-9 – reference: 18243212 - Atherosclerosis. 2008 Oct;200(2):315-21 – reference: 8523053 - J Clin Oncol. 1995 Dec;13(12):2900-5 – reference: 9555943 - J Lipid Res. 1998 Apr;39(4):777-88 – reference: 15741653 - J Lipid Res. 2005 Jun;46(6):1285-94 – reference: 9867082 - Metabolism. 1998 Dec;47(12):1504-13 – reference: 14617686 - J Pharmacol Exp Ther. 2004 Mar;308(3):1165-73 – reference: 8662863 - J Biol Chem. 1996 Jun 7;271(23):13504-14 – reference: 17317318 - Curr Opin Pharmacol. 2007 Apr;7(2):130-9 – reference: 2910855 - J Biol Chem. 1989 Jan 15;264(2):1298-304 – reference: 15988705 - Metabolism. 2005 Jul;54(7):939-46 – reference: 3633381 - N Engl J Med. 1986 Apr 3;314(14):879-83 – reference: 24234439 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1098-106 – reference: 16754727 - JAMA. 2006 Jun 21;295(23):2727-41 – reference: 20837678 - Mol Pharmacol. 2010 Dec;78(6):1046-58 – reference: 19997082 - Pharmacogenomics J. 2010 Oct;10(5):396-407 – reference: 24675946 - Science. 2014 Mar 28;343(6178):1445-6 – reference: 17341726 - J Natl Cancer Inst. 2007 Mar 7;99(5):350-6 – reference: 15485695 - Cardiovasc Res. 2004 Nov 1;64(2):346-55 – reference: 24528242 - Br J Pharmacol. 2013 Dec;170(8):1706-96 – reference: 20466882 - Science. 2010 Jun 18;328(5985):1566-9 – reference: 11994399 - J Clin Invest. 2002 May;109(9):1125-31 – reference: 20466885 - Science. 2010 Jun 18;328(5985):1570-3 – reference: 8808497 - Atherosclerosis. 1996 Jan 26;119(2):203-13 – reference: 12719428 - J Biol Chem. 2003 Jul 11;278(28):25517-25 – reference: 23063783 - Curr Opin Pharmacol. 2012 Dec;12(6):683-9 – reference: 23500540 - Biochem Pharmacol. 2013 Jul 1;86(1):175-89 – reference: 10421221 - Metabolism. 1999 Jul;48(7):834-9 – reference: 14568562 - J Steroid Biochem Mol Biol. 2003 Aug;86(2):113-21 – reference: 24528243 - Br J Pharmacol. 2013 Dec;170(8):1797-867 – reference: 20615952 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13520-5 – reference: 21142270 - Drug Saf. 2011 Jan 1;34(1):1-19 – reference: 20580502 - Maturitas. 2010 Oct;67(2):129-38 – reference: 2803912 - Br J Cancer. 1989 Jul;60(1):30-5 – reference: 18216769 - Nat Rev Mol Cell Biol. 2008 Feb;9(2):125-38 – reference: 19521424 - Cell Death Differ. 2009 Oct;16(10):1372-84 – reference: 18974038 - J Lipid Res. 2009 Apr;50 Suppl:S15-27 |
| SSID | ssj0014775 |
| Score | 2.2299583 |
| Snippet | Background and Purpose
Treatment with selective oestrogen receptor modulators (SERMs) reduces low‐density lipoprotein (LDL) cholesterol levels. We assessed the... Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen,... Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1379 |
| SubjectTerms | Cells, Cultured Cholesterol Dose-Response Relationship, Drug Down-Regulation - drug effects Hep G2 Cells Hepatocytes - drug effects Hepatocytes - metabolism Humans Lipoproteins, LDL - chemistry Lipoproteins, LDL - metabolism Lovastatin - chemistry Lovastatin - pharmacology Lymphocytes Lymphocytes - cytology Lymphocytes - drug effects Lymphocytes - metabolism Male Raloxifene Hydrochloride - chemistry Raloxifene Hydrochloride - pharmacology Receptors, LDL - metabolism Research Papers Selective Estrogen Receptor Modulators - chemistry Selective Estrogen Receptor Modulators - pharmacology Structure-Activity Relationship Tamoxifen - chemistry Tamoxifen - pharmacology Toremifene - chemistry Toremifene - pharmacology |
| Title | Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.13016 https://www.ncbi.nlm.nih.gov/pubmed/25395200 https://www.proquest.com/docview/1654958788 https://www.proquest.com/docview/1655725909 https://www.proquest.com/docview/1668256066 https://pubmed.ncbi.nlm.nih.gov/PMC4337708 https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.13016 |
| UnpaywallVersion | publishedVersion |
| Volume | 172 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1476-5381 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0014775 issn: 1476-5381 databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1476-5381 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0014775 issn: 1476-5381 databaseCode: DIK dateStart: 19680101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1476-5381 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0014775 issn: 1476-5381 databaseCode: GX1 dateStart: 19680101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1476-5381 dateEnd: 20201231 omitProxy: true ssIdentifier: ssj0014775 issn: 1476-5381 databaseCode: RPM dateStart: 19680101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB6V5AAX9iVQqmFR1UMd2fEs9jGhhAiVKodGKidrNisVxo7iWMj8et54i0yh4sDN8rzxLH5v5pvlfQ-h90IHwpWecZScCIcE1HXCCXcd6dIgFvbaobEb-l8u2GJFPl_RqwP0qfWFkZsc6pGPa56IbuPNWkg1bltD3-i4Hu9bk4dcaxvW2GN30JBRAOUDNFxdLKdfa_DLHYDRlVMc4cwBE_cajqFe3v7MdANu3rw1ebdIN6L8IZKkj2yrqWn-AK3bRtU3Ur6Ni50cq5-_8T3-h1Y_RPcb-Iqntb49QgcmfYyOlzX_dXmKL_fuXPkpPsbLPTN2-QTlDQtpkpS4yI3GeRWFBwZcnEEnbDPQZgyFm80u2-LvmbaxxbJtjq9TC25zg8_PzvcC1ifDhr6AZLypWTNwFXMQJyUoaaZKwNFP0Wr-8fLDwmmiPjiKEsYcZk8-Ayo14y5RMjTwduKbUEovVJoQw0LhS84494wvqKSKUxVqrpkQLolj_xkapFlqXiDMBaNK6wmJAYlonwdaEWpgaqBuHEgSj9BJ-8cj1VCi28gcSdQujaCLo6qLR-htJ9q06E9Ch63aRM1QkEfWXSykAQ-CEXrTJYMR25MZkZqsqGQoh4WoG94mwwKLTxkU87zWxK4mE-qHlj9rhHhPRzsBSyLeT0mv1xWZOPF9zl2o27tOm29r4EmllH-XiGbLRfXw8p8--ArdAwRK60t9h2iw2xbmNaC8nTxCw-nsbDY_aiz5F-Z7V3k |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLbK9AAXylqmFGQWVT00oyxekmNZygiVag4dqZwib9FUhCSaTITCr-c52ygUKg7covg5XvKe_Xl530PordChcKVnHCV94ZCQuk7kc9eRLg0TYa8dGruh_-WCzZfk8xW92kGfel8YWZRQj3LW8kQMG2_WQppx2xp6oZN2vO9NHnKtbFhjj91Bu4wCKJ-g3eXF4vRrC365AzC6cYojnDlg4l7HMTTKO56ZbsDNm7cm71ZZIeofIk3HyLaZms720KpvVHsj5dus2siZ-vkb3-N_aPUDdL-Dr_i01beHaMdkj9DRouW_rk_w5dadqzzBR3ixZcauH6OyYyFN0xpXpdG4bKLwwICLc-iEdQ7ajKFwU2zyNf6eaxtbLF-X-Dqz4LY0-PzD-VbA-mTY0BeQjIuWNQM3MQdxWoOS5qoGHP0ELc8-Xr6fO13UB0dRwpjD7MlnSKVm3CVKRgbe-oGJpPQipQkxLBKB5IxzzwSCSqo4VZHmmgnhkiQJnqJJlmfmGcJcMKq09kkCSEQHPNSKUANTA3WTUJJkio77Px6rjhLdRuZI435pBF0cN108Ra8H0a5FfxI67NUm7oaCMrbuYhENeRhO0ashGYzYnsyIzORVI0M5LETd6DYZFlp8yqCY_VYTh5r4NIgsf9YU8ZGODgKWRHyckl2vGjJxEgScu1C3N4M239bA40Yp_y4Rv1vMm4eDf_rgc3QPEChtL_UdoslmXZkXgPI28mVnwb8AMyRWBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+used+selective+oestrogen+receptor+modulators+increase+LDL+receptor+activity+in+primary+human+lymphocytes&rft.jtitle=British+journal+of+pharmacology&rft.au=Cerrato%2C+F&rft.au=Fern%C3%A1ndez-Su%C3%A1rez%2C+M+E&rft.au=Alonso%2C+R&rft.au=Alonso%2C+M&rft.date=2015-03-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=172&rft.issue=5&rft.spage=1379&rft_id=info:doi/10.1111%2Fbph.13016&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |