Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation
A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The cult...
Saved in:
Published in | Biotechnology and bioengineering Vol. 96; no. 6; pp. 1040 - 1050 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.04.2007
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 |
DOI | 10.1002/bit.21243 |
Cover
Abstract | A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from −11.6 to −3.5 mV, hydrophobicity in terms of contact angle improved from 31° to 43° and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5–0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g‐VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol‐H2/mol‐glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen‐producing granules by regulating the surface characteristics of microbial aggregates in a well‐mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040–1050. © 2006 Wiley Periodicals, Inc. |
---|---|
AbstractList | A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 not equal to . To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31to 43and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol-H sub(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007; 96:1040-1050. A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37...C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from - 11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31... to 43... and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L - h and 1.81 mol-H.../mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. (ProQuest -CSA LLC: ... denotes formulae/symbols omitted.) A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from −11.6 to −3.5 mV, hydrophobicity in terms of contact angle improved from 31° to 43° and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5–0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g‐VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol‐H 2 /mol‐glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen‐producing granules by regulating the surface characteristics of microbial aggregates in a well‐mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040–1050. © 2006 Wiley Periodicals, Inc. Abstract A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 deg C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 deg to 43 deg and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L*h and 1.81 mol-H2/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040-1050. A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 degrees to 43 degrees and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L x h and 1.81 mol-H(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 degrees to 43 degrees and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L x h and 1.81 mol-H(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production.A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 degrees to 43 degrees and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L x h and 1.81 mol-H(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from −11.6 to −3.5 mV, hydrophobicity in terms of contact angle improved from 31° to 43° and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5–0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g‐VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol‐H2/mol‐glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen‐producing granules by regulating the surface characteristics of microbial aggregates in a well‐mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040–1050. © 2006 Wiley Periodicals, Inc. |
Author | Show, Kuan-Yeow Jiang, Wen-Ju Liang, David Tee Tay, Joo-Hwa Lee, Duu-Jong Zhang, Zhen-Peng |
Author_xml | – sequence: 1 givenname: Zhen-Peng surname: Zhang fullname: Zhang, Zhen-Peng organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 – sequence: 2 givenname: Kuan-Yeow surname: Show fullname: Show, Kuan-Yeow organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 – sequence: 3 givenname: Joo-Hwa surname: Tay fullname: Tay, Joo-Hwa organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 – sequence: 4 givenname: David Tee surname: Liang fullname: Liang, David Tee organization: Institute of Environmental Science and Engineering, Nanyang Technological University, Singapore 637723 – sequence: 5 givenname: Duu-Jong surname: Lee fullname: Lee, Duu-Jong organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Republic of China – sequence: 6 givenname: Wen-Ju surname: Jiang fullname: Jiang, Wen-Ju organization: Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, People Republic of China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18649525$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17089398$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7LZ64R-QICh4MW0-ZvJxWYvWaqmolV6GTCZZ084ma5JB99-b7m4rFKUhEE543vfk5Jw9sBNisAA8x-gAI0QOe18OCCYtfQRmGEneICLRDpghhFhDO0l2wV7OVzXkgrEnYBdzJCSVYgZWX_XSD9DFtNDFxwCjgz9WQ4pzG5plisNkfJjDedJhGm2GPkB9s7VNsfcGmhiKD1OcMszFp2QHWHS4hslqU2KqfHWol_0KalMT-WCmfp3pKXjs9Jjts-25D76_f3dx_KE5-3xyenx01piuZbRxhDurhZY9662ptUgjpSOaI2da10rJJdWI8Z5KY1oskSZWcGQR62yLu4Hug9cb31rNz8nmohY-GzuOOtj6bMURoaxl-EGQIiQwJfxBEEsm6qIVfHkPvIpTCrVaRTDlDAlCKvRiC039wg5qmfxCp5W67VEFXm0BnY0eXW2F8fkvJ1grO9JV7nDDmRRzTtYp48v6q0vSflQYqZtpUXVa1HpaquLNPcWd6T_YrfsvP9rV_0H19vTiVtFsFD4X-_tOodO1YpzyTl2en6iP9JJ_-vblXAn6B2Bu3Ws |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1002_ep_14521 crossref_primary_10_1021_ef700272m crossref_primary_10_1039_C6RA09298E crossref_primary_10_1002_elsc_201700164 crossref_primary_10_1016_j_biortech_2022_127036 crossref_primary_10_1016_j_ijhydene_2013_05_059 crossref_primary_10_1016_j_ijhydene_2022_06_317 crossref_primary_10_1016_j_watres_2008_04_020 crossref_primary_10_1016_j_apenergy_2015_01_136 crossref_primary_10_1002_bit_21948 crossref_primary_10_1016_j_biortech_2017_03_062 crossref_primary_10_1016_j_biombioe_2022_106451 crossref_primary_10_1016_j_biortech_2018_02_105 crossref_primary_10_1016_j_cej_2021_130716 crossref_primary_10_1039_C4RA12730G crossref_primary_10_1016_j_cej_2017_11_088 crossref_primary_10_1016_j_ijhydene_2012_01_004 crossref_primary_10_1016_j_ijhydene_2013_03_138 crossref_primary_10_1016_j_biortech_2011_03_056 crossref_primary_10_1016_j_ijhydene_2013_03_171 crossref_primary_10_4491_KSEE_2013_35_1_001 crossref_primary_10_1002_bit_23145 crossref_primary_10_1007_s12649_014_9295_6 crossref_primary_10_1002_bit_21956 crossref_primary_10_1016_j_renene_2018_09_062 crossref_primary_10_1016_j_ijhydene_2017_08_060 crossref_primary_10_1080_10643389_2011_644218 crossref_primary_10_1016_j_ijhydene_2021_01_075 crossref_primary_10_1016_S1002_0071_12_60090_2 crossref_primary_10_1038_s41598_020_65702_w crossref_primary_10_1016_j_psep_2017_04_007 crossref_primary_10_1016_j_ijhydene_2015_06_077 crossref_primary_10_1016_j_ijhydene_2012_04_109 crossref_primary_10_1007_s11157_015_9369_3 crossref_primary_10_1039_C7RA09413B crossref_primary_10_1016_j_biortech_2011_03_041 crossref_primary_10_1016_j_biortech_2011_04_055 crossref_primary_10_1002_wene_15 crossref_primary_10_1016_j_ijhydene_2010_09_095 crossref_primary_10_1016_j_fuproc_2024_108158 crossref_primary_10_1016_j_ijhydene_2021_06_186 crossref_primary_10_1016_j_biortech_2012_11_003 crossref_primary_10_1016_j_ijhydene_2017_07_176 crossref_primary_10_1016_j_biortech_2011_02_110 crossref_primary_10_2516_ogst_2018099 crossref_primary_10_1016_j_biortech_2013_02_075 crossref_primary_10_1016_j_biortech_2019_121747 crossref_primary_10_1016_j_ijhydene_2015_12_081 crossref_primary_10_1016_j_biortech_2020_122751 crossref_primary_10_1016_j_procbio_2016_06_012 crossref_primary_10_1016_j_bej_2009_12_005 crossref_primary_10_1016_j_ijhydene_2022_01_156 crossref_primary_10_1007_s11356_024_35873_4 |
Cites_doi | 10.1002/bit.10654 10.2166/wst.2003.0040 10.1002/jctb.961 10.1128/AEM.65.5.2041-2048.1999 10.2166/wst.1994.0561 10.1002/bit.20269 10.1002/bit.20174 10.1007/s002530051197 10.1023/A:1014459006210 10.1002/bit.20844 10.1016/S0141-0229(02)00309-5 10.2166/wst.2001.0341 10.1061/(ASCE)0733-9372(2000)126:5(403) 10.1016/j.procbio.2005.02.029 10.1016/S0043-1354(02)00351-2 10.1007/s00253-003-1246-2 10.1016/S0360-3199(02)00130-1 10.1016/0043-1354(95)00323-1 10.1016/j.enzmictec.2003.12.009 10.1002/bit.20923 10.1046/j.1365-2672.2000.00845.x 10.1007/s00253-004-1657-8 10.1128/aem.61.10.3676-3680.1995 10.1016/S0958-1669(99)80045-7 10.1002/bit.20924 10.1016/j.procbio.2006.05.021 10.1016/j.chemosphere.2005.12.048 10.1111/j.1472-765X.2003.01479.x 10.1021/bp0201354 10.1021/ac60111a017 10.1016/S0168-1656(02)00025-1 10.1061/(ASCE)0733-9372(2003)129:11(1007) 10.1002/bit.260220402 10.2166/wst.1987.0206 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M 10.1038/nbt0996-1101 10.1016/j.watres.2004.01.039 10.1016/j.watres.2003.12.002 10.1016/j.chemosphere.2003.09.038 10.1016/S0360-3199(00)00058-6 10.1016/S0141-0229(01)00394-5 10.1016/S0927-7765(02)00188-1 10.1016/S0043-1354(00)00277-3 10.1007/s002530100814 10.1128/aem.59.8.2437-2441.1993 10.1016/S0360-3199(03)00082-X 10.1046/j.1365-2672.2001.01374.x 10.1016/S0713-2743(06)80111-X 10.1061/(ASCE)0733-9372(2004)130:7(743) 10.1046/j.1365-2672.2003.01915.x 10.1128/AEM.64.1.21-26.1998 10.1007/BF00902757 10.1002/bit.10174 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley Periodicals, Inc. 2007 INIST-CNRS (c) 2006 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Apr 15, 2007 |
Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: 2007 INIST-CNRS – notice: (c) 2006 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Apr 15, 2007 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.21243 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database Materials Research Database CrossRef Solid State and Superconductivity Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 1050 |
ExternalDocumentID | 1229756001 17089398 18649525 10_1002_bit_21243 BIT21243 ark_67375_WNG_J3W7KSQN_8 |
Genre | article Journal Article Feature |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION .GJ 3EH ABEML ACSCC AGHNM AI. BLYAC EBD EMOBN HF~ IQODW LH6 NDZJH PALCI RIWAO RJQFR SAMSI SV3 VH1 Y6R ZGI ZXP AEUQT AFPWT CGR CUY CVF ECM EIF NPM RBB RWI WRC 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c5463-f27fea8a9b6bec5929c99f2a70fc4f499793a067b39cc4190a2e870e065e415d3 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 |
IngestDate | Fri Jul 11 13:49:42 EDT 2025 Fri Jul 11 11:38:41 EDT 2025 Fri Jul 11 11:30:44 EDT 2025 Fri Jul 25 10:38:10 EDT 2025 Wed Feb 19 01:46:21 EST 2025 Mon Jul 21 09:11:35 EDT 2025 Tue Jul 01 03:28:20 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Sun Sep 21 06:14:45 EDT 2025 Sun Sep 21 06:26:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | acid incubation Bioreactor Incubation Anaerobe Hydrogen extracellular polymers Polymer zeta potential Hydrophobicity Continuous stirred tank reactor Extracellular hydrogen-producing granule |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 (c) 2006 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5463-f27fea8a9b6bec5929c99f2a70fc4f499793a067b39cc4190a2e870e065e415d3 |
Notes | ark:/67375/WNG-J3W7KSQN-8 istex:55C21328BB3C80BDDC1CF59F206B49425FDBCDBF ArticleID:BIT21243 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 17089398 |
PQID | 213760822 |
PQPubID | 48814 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_70236461 proquest_miscellaneous_30081327 proquest_miscellaneous_19688883 proquest_journals_213760822 pubmed_primary_17089398 pascalfrancis_primary_18649525 crossref_citationtrail_10_1002_bit_21243 crossref_primary_10_1002_bit_21243 wiley_primary_10_1002_bit_21243_BIT21243 istex_primary_ark_67375_WNG_J3W7KSQN_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 April 2007 |
PublicationDateYYYYMMDD | 2007-04-15 |
PublicationDate_xml | – month: 04 year: 2007 text: 15 April 2007 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Mu Y, Yu HQ. 2006. Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94(5): 980-987. Liu Y, Yang SF, Tay JH. 2003b. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol 61(5-6): 556-561. Oh YK, Kim SH, Kim MS, Park S. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6): 690-698. Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. 2004a. Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb Tech 34(5): 371-379. Tay JH, Liu QS, Liu Y. 2001. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91(1): 168-175. Mahoney EM, Varangu LK, Cairns WL, Kosaric N, Murray RGE. 1987. The effect of calcium on microbial aggregation during UASB reactor start-up. Wat Sci Technol 19(1-2): 249-260. Chen CC, Lin CY, Lin MC. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58(2): 224-228. Liu Y, Xu HL, Show KY, Tay JH. 2002. Anaerobic granulation technology for wastewater treatment. World J Microbiol Biotechnol 18(2): 99-113. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substrates. Anal Chem 28(3): 350-356. Show KY, Tay JH, Yang L, Wang Y, Lua CH. 2004a. Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors. J Environ Eng-ASCE 130(7): 743-750. Yu HQ, Mu Y. 2006. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnol Bioeng 94(5): 988-995. Del Re B, Sgorbati B, Miglioli M, Palenzona D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6): 438-442. Kumar N, Das D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Tech 29(4-5): 280-287. Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V. 1999. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5): 2041-2048. Aquino SF, Stuckey DC. 2003. Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency. J Environ Eng ASCE 129(11): 1007-1014. Mu Y, Yu HQ, Wang Y. 2006. The role of pH in the fermentative H-2 production from an acidogenic granule-based reactor. Chemosphere 64(3): 350-358. Schmidt JE, Ahring BK. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl Microbiol Biotechnol 42(2-3): 457-462. Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2006a. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10): 2118-2123. Lin D-Q, Brixius JP, Hubbuch JJ, Thömmes J, Kula M-R. 2003. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study. Biotechnol Bioeng 83(2): 149-157. Pan S, Tay JH, He YX, Tay STL. 2004. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett Appl Microbiol 38(2): 158-163. Liu H, Fang HHP. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95(3): 249-256. Perez PF, Minnaard Y, Disalvo EA, De Antoni GL. 1998. Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64(1): 21-26. Houghton JI, Quarmby J. 1999. Biopolymers in wastewater treatment. Curr Opin Biotechnol 10(3): 259-262. Kotsopoulos A, Zeng J, Angelidaki I. 2006. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotechnol Bioeng 94(2): 296-302. Frolund B, Palmgren R, Keiding K, Nielsen PH. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8): 1749-1758. Daffonchio D, Thaveesri J, Verstraete W. 1995. Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61(10): 3676-3680. Wu SY, Lin CN, Chang JS. 2003. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Prog 19(3): 828-832. Jorand F, Guicherd P, Urbain V, Manem J, Block JC. 1994. Hydrophobicity of activated-sludge flocs and laboratory-grown bacteria. Wat Sci Technol 30(11): 211-218. Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: A survey of literature. Int J Hydrog Energy 26(1): 13-28. Chang JS, Lee KS, Lin PJ. 2002. Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy 27(11-12): 1167-1174. Benemann J. 1996. Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14(9): 1101-1103. Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surface B 29(2-3): 181-188. Wang Y, Show KY, Tay JH, Sim KH. 2004. Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. J Chem Technol Biotechnol 79(3): 219-228. Erdincler A, Koseogly S, Onay T. 2001. The role of blending in polymer conditioning of waste activated sludge. Wat Sci Technol 44(6): 63-66. Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87(5): 648-657. Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49(4): 450-454. Zhou WL, Imai T, Ukita M, Sekine M, Higuchi T. 2006. Triggering forces for anaerobic granulation in UASB reactors. Process Biochem 41(1): 36-43. Liao BQ, Allen DG, Droppo IG, Leppard GG, Liss SN. 2001. Surface properties of sludge and their role in bioflocculation and settleability. Water Res 35(2): 339-350. Sponza DT. 2003. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme Microb Tech 32(3-4): 375-385. Liu YQ, Liu Y, Tay JH. 2004b. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2): 143-148. Liu Y, Xu HL, Yang SF, Tay JH. 2003a. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37(3): 661-673. Show KY, Wang Y, Foong SF, Tay JH. 2004b. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38(9): 2293-2304. APHA. 1998. Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, USA: American Public Health Association. Tay JH, Xu HL, Teo KC. 2000. Molecular mechanism of granulation. I: H+ trans location-dehydration theory. J Environ Eng-ASCE 126(5): 403-410. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6): 981-987. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4): 699-734. Chang FY, Lin CY. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy 29(1): 33-39. Fang HHP, Liu H, Zhang T. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78(1): 44-52. Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res 38(6): 1376-1389. Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnol Bioeng 49(3): 229-246. Huang GH, Hsu SF, Liang TM, Huang YH. 2004. Study on hydrogen production with hysteresis in UASB. Chemosphere 54(7): 815-821. Bonet R, Simon-Pujol M, Congregado F. 1993. Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl Environ Microbiol 59(8): 2437-2441. Tay JH, Tay STL, Liu Y, Show KY, Ivanov V. 2006. Biogranulation technologies for wastewater treatment. Oxford: Elsivier Science. Liu H, Fang HHP. 2003. Hydrogen production from wastewater by acidogenic granular sludge. Wat Sci Technol 47(1): 153-158. Zhang ZP, Tay JH, Show KY, Liang DT, Lee DJ, Jiang WJ. 2006b. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrog Energy, published online. DOI: 10.1016/j.ijhydene.2006.08.017. 1998; 49 2001; 91 2002; 58 2002; 18 2004; 29 2002; 95 1996; 30 2003a; 37 2004a; 130 2003; 19 2001; 44 2003; 94 1995; 61 2003; 129 2006; 64 2004; 38 2004a; 34 2000; 126 2004; 79 2003; 47 1999; 10 2004b; 38 2003; 83 1994; 30 2004; 87 2004; 88 2006; 94 2006a; 41 2003b; 61 2006b 2002; 78 1980; 22 1998 1999; 65 2006 2001; 26 2001; 29 1996; 14 2004b; 65 1987; 19 1998; 64 2003; 32 1994; 42 1993; 59 2002; 27 2004; 54 2006; 41 2000; 31 1956; 28 2003; 29 2001; 35 1996; 49 Mahoney EM (e_1_2_1_35_1) 1987; 19 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 APHA (e_1_2_1_2_1) 1998 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_12_1 e_1_2_1_50_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_37_1 Baldi F (e_1_2_1_4_1) 1999; 65 e_1_2_1_18_1 e_1_2_1_42_1 Daffonchio D (e_1_2_1_10_1) 1995; 61 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 Bonet R (e_1_2_1_6_1) 1993; 59 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 Liu H (e_1_2_1_29_1) 2003; 47 Perez PF (e_1_2_1_40_1) 1998; 64 e_1_2_1_7_1 e_1_2_1_30_1 Zhang ZP (e_1_2_1_55_1) 2006 e_1_2_1_5_1 Erdincler A (e_1_2_1_14_1) 2001; 44 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 Jorand F (e_1_2_1_20_1) 1994; 30 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: APHA. 1998. Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, USA: American Public Health Association. – reference: Liu Y, Xu HL, Show KY, Tay JH. 2002. Anaerobic granulation technology for wastewater treatment. World J Microbiol Biotechnol 18(2): 99-113. – reference: Liu YQ, Liu Y, Tay JH. 2004b. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2): 143-148. – reference: Zhang ZP, Tay JH, Show KY, Liang DT, Lee DJ, Jiang WJ. 2006b. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrog Energy, published online. DOI: 10.1016/j.ijhydene.2006.08.017. – reference: Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2006a. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10): 2118-2123. – reference: Kumar N, Das D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Tech 29(4-5): 280-287. – reference: Kotsopoulos A, Zeng J, Angelidaki I. 2006. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotechnol Bioeng 94(2): 296-302. – reference: Liu Y, Xu HL, Yang SF, Tay JH. 2003a. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37(3): 661-673. – reference: Fang HHP, Liu H, Zhang T. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78(1): 44-52. – reference: Mu Y, Yu HQ, Wang Y. 2006. The role of pH in the fermentative H-2 production from an acidogenic granule-based reactor. Chemosphere 64(3): 350-358. – reference: Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49(4): 450-454. – reference: Oh YK, Kim SH, Kim MS, Park S. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6): 690-698. – reference: Wu SY, Lin CN, Chang JS. 2003. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Prog 19(3): 828-832. – reference: Aquino SF, Stuckey DC. 2003. Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency. J Environ Eng ASCE 129(11): 1007-1014. – reference: Liu Y, Yang SF, Tay JH. 2003b. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol 61(5-6): 556-561. – reference: Wang Y, Show KY, Tay JH, Sim KH. 2004. Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. J Chem Technol Biotechnol 79(3): 219-228. – reference: Jorand F, Guicherd P, Urbain V, Manem J, Block JC. 1994. Hydrophobicity of activated-sludge flocs and laboratory-grown bacteria. Wat Sci Technol 30(11): 211-218. – reference: Mahoney EM, Varangu LK, Cairns WL, Kosaric N, Murray RGE. 1987. The effect of calcium on microbial aggregation during UASB reactor start-up. Wat Sci Technol 19(1-2): 249-260. – reference: Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V. 1999. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5): 2041-2048. – reference: Benemann J. 1996. Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14(9): 1101-1103. – reference: Tay JH, Xu HL, Teo KC. 2000. Molecular mechanism of granulation. I: H+ trans location-dehydration theory. J Environ Eng-ASCE 126(5): 403-410. – reference: Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6): 981-987. – reference: Show KY, Tay JH, Yang L, Wang Y, Lua CH. 2004a. Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors. J Environ Eng-ASCE 130(7): 743-750. – reference: Chen CC, Lin CY, Lin MC. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58(2): 224-228. – reference: Yu HQ, Mu Y. 2006. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnol Bioeng 94(5): 988-995. – reference: Liu H, Fang HHP. 2003. Hydrogen production from wastewater by acidogenic granular sludge. Wat Sci Technol 47(1): 153-158. – reference: Show KY, Wang Y, Foong SF, Tay JH. 2004b. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38(9): 2293-2304. – reference: Zhou WL, Imai T, Ukita M, Sekine M, Higuchi T. 2006. Triggering forces for anaerobic granulation in UASB reactors. Process Biochem 41(1): 36-43. – reference: Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res 38(6): 1376-1389. – reference: Erdincler A, Koseogly S, Onay T. 2001. The role of blending in polymer conditioning of waste activated sludge. Wat Sci Technol 44(6): 63-66. – reference: Chang JS, Lee KS, Lin PJ. 2002. Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy 27(11-12): 1167-1174. – reference: Del Re B, Sgorbati B, Miglioli M, Palenzona D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6): 438-442. – reference: Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87(5): 648-657. – reference: Liu H, Fang HHP. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95(3): 249-256. – reference: Lin D-Q, Brixius JP, Hubbuch JJ, Thömmes J, Kula M-R. 2003. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study. Biotechnol Bioeng 83(2): 149-157. – reference: Liao BQ, Allen DG, Droppo IG, Leppard GG, Liss SN. 2001. Surface properties of sludge and their role in bioflocculation and settleability. Water Res 35(2): 339-350. – reference: Houghton JI, Quarmby J. 1999. Biopolymers in wastewater treatment. Curr Opin Biotechnol 10(3): 259-262. – reference: Sponza DT. 2003. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme Microb Tech 32(3-4): 375-385. – reference: Daffonchio D, Thaveesri J, Verstraete W. 1995. Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61(10): 3676-3680. – reference: Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnol Bioeng 49(3): 229-246. – reference: Tay JH, Liu QS, Liu Y. 2001. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91(1): 168-175. – reference: Frolund B, Palmgren R, Keiding K, Nielsen PH. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8): 1749-1758. – reference: Perez PF, Minnaard Y, Disalvo EA, De Antoni GL. 1998. Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64(1): 21-26. – reference: Bonet R, Simon-Pujol M, Congregado F. 1993. Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl Environ Microbiol 59(8): 2437-2441. – reference: Pan S, Tay JH, He YX, Tay STL. 2004. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett Appl Microbiol 38(2): 158-163. – reference: Chang FY, Lin CY. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy 29(1): 33-39. – reference: Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4): 699-734. – reference: Huang GH, Hsu SF, Liang TM, Huang YH. 2004. Study on hydrogen production with hysteresis in UASB. Chemosphere 54(7): 815-821. – reference: Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. 2004a. Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb Tech 34(5): 371-379. – reference: Schmidt JE, Ahring BK. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl Microbiol Biotechnol 42(2-3): 457-462. – reference: Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substrates. Anal Chem 28(3): 350-356. – reference: Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: A survey of literature. Int J Hydrog Energy 26(1): 13-28. – reference: Tay JH, Tay STL, Liu Y, Show KY, Ivanov V. 2006. Biogranulation technologies for wastewater treatment. Oxford: Elsivier Science. – reference: Mu Y, Yu HQ. 2006. Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94(5): 980-987. – reference: Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surface B 29(2-3): 181-188. – volume: 28 start-page: 350 issue: 3 year: 1956 end-page: 356 article-title: Colorimetric method for determination of sugars and related substrates publication-title: Anal Chem – volume: 35 start-page: 339 issue: 2 year: 2001 end-page: 350 article-title: Surface properties of sludge and their role in bioflocculation and settleability publication-title: Water Res – year: 2006b article-title: Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor publication-title: Int J Hydrog Energy – volume: 29 start-page: 33 issue: 1 year: 2004 end-page: 39 article-title: Biohydrogen production using an up‐flow anaerobic sludge blanket reactor publication-title: Int J Hydrog Energy – volume: 26 start-page: 13 issue: 1 year: 2001 end-page: 28 article-title: Hydrogen production by biological processes: A survey of literature publication-title: Int J Hydrog Energy – volume: 10 start-page: 259 issue: 3 year: 1999 end-page: 262 article-title: Biopolymers in wastewater treatment publication-title: Curr Opin Biotechnol – volume: 64 start-page: 350 issue: 3 year: 2006 end-page: 358 article-title: The role of pH in the fermentative H‐2 production from an acidogenic granule‐based reactor publication-title: Chemosphere – volume: 14 start-page: 1101 issue: 9 year: 1996 end-page: 1103 article-title: Hydrogen biotechnology: Progress and prospects publication-title: Nat Biotechnol – volume: 29 start-page: 181 issue: 2–3 year: 2003 end-page: 188 article-title: Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory publication-title: Colloid Surface B – year: 1998 – volume: 31 start-page: 438 issue: 6 year: 2000 end-page: 442 article-title: Adhesion, autoaggregation and hydrophobicity of 13 strains of publication-title: Lett Appl Microbiol – volume: 130 start-page: 743 issue: 7 year: 2004a end-page: 750 article-title: Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors publication-title: J Environ Eng‐ASCE – volume: 29 start-page: 280 issue: 4–5 year: 2001 end-page: 287 article-title: Continuous hydrogen production by immobilized IIT‐BT 08 using lignocellulosic materials as solid matrices publication-title: Enzyme Microb Tech – volume: 91 start-page: 168 issue: 1 year: 2001 end-page: 175 article-title: Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor publication-title: J Appl Microbiol – volume: 18 start-page: 99 issue: 2 year: 2002 end-page: 113 article-title: Anaerobic granulation technology for wastewater treatment publication-title: World J Microbiol Biotechnol – volume: 49 start-page: 229 issue: 3 year: 1996 end-page: 246 article-title: Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors publication-title: Biotechnol Bioeng – volume: 129 start-page: 1007 issue: 11 year: 2003 end-page: 1014 article-title: Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency publication-title: J Environ Eng ASCE – volume: 87 start-page: 648 issue: 5 year: 2004 end-page: 657 article-title: Anaerobic hydrogen production with an efficient carrier‐induced granular sludge bed bioreactor publication-title: Biotechnol Bioeng – volume: 61 start-page: 556 issue: 5–6 year: 2003b end-page: 561 article-title: Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios publication-title: Appl Microbiol Biotechnol – volume: 47 start-page: 153 issue: 1 year: 2003 end-page: 158 article-title: Hydrogen production from wastewater by acidogenic granular sludge publication-title: Wat Sci Technol – volume: 59 start-page: 2437 issue: 8 year: 1993 end-page: 2441 article-title: Effects of nutrients on exopolysaccharide production and surface properties of publication-title: Appl Environ Microbiol – volume: 83 start-page: 149 issue: 2 year: 2003 end-page: 157 article-title: Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study publication-title: Biotechnol Bioeng – volume: 61 start-page: 3676 issue: 10 year: 1995 end-page: 3680 article-title: Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors publication-title: Appl Environ Microbiol – volume: 19 start-page: 828 issue: 3 year: 2003 end-page: 832 article-title: Hydrogen production with immobilized sewage sludge in three‐phase fluidized‐bed bioreactors publication-title: Biotechnol Prog – volume: 41 start-page: 36 issue: 1 year: 2006 end-page: 43 article-title: Triggering forces for anaerobic granulation in UASB reactors publication-title: Process Biochem – volume: 30 start-page: 211 issue: 11 year: 1994 end-page: 218 article-title: Hydrophobicity of activated‐sludge flocs and laboratory‐grown bacteria publication-title: Wat Sci Technol – volume: 32 start-page: 375 issue: 3–4 year: 2003 end-page: 385 article-title: Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady‐state conditions publication-title: Enzyme Microb Tech – volume: 44 start-page: 63 issue: 6 year: 2001 end-page: 66 article-title: The role of blending in polymer conditioning of waste activated sludge publication-title: Wat Sci Technol – volume: 94 start-page: 980 issue: 5 year: 2006 end-page: 987 article-title: Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen‐producing granules publication-title: Biotechnol Bioeng – volume: 64 start-page: 21 issue: 1 year: 1998 end-page: 26 article-title: Surface properties of bifidobacterial strains of human origin publication-title: Appl Environ Microbiol – volume: 37 start-page: 661 issue: 3 year: 2003a end-page: 673 article-title: Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor publication-title: Water Res – volume: 126 start-page: 403 issue: 5 year: 2000 end-page: 410 article-title: Molecular mechanism of granulation. I: H+ trans location‐dehydration theory publication-title: J Environ Eng‐ASCE – volume: 95 start-page: 249 issue: 3 year: 2002 end-page: 256 article-title: Extraction of extracellular polymeric substances (EPS) of sludges publication-title: J Biotechnol – volume: 34 start-page: 371 issue: 5 year: 2004a end-page: 379 article-title: Cell hydrophobicity is a triggering force of biogranulation publication-title: Enzyme Microb Tech – volume: 58 start-page: 224 issue: 2 year: 2002 end-page: 228 article-title: Acid‐base enrichment enhances anaerobic hydrogen production process publication-title: Appl Microbiol Biotechnol – volume: 94 start-page: 296 issue: 2 year: 2006 end-page: 302 article-title: Biohydrogen production in granular up‐flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper‐thermophilic temperature (70°C) publication-title: Biotechnol Bioeng – volume: 94 start-page: 988 issue: 5 year: 2006 end-page: 995 article-title: Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3‐year operation publication-title: Biotechnol Bioeng – volume: 30 start-page: 1749 issue: 8 year: 1996 end-page: 1758 article-title: Extraction of extracellular polymers from activated sludge using a cation exchange resin publication-title: Water Res – volume: 27 start-page: 1167 issue: 11–12 year: 2002 end-page: 1174 article-title: Biohydrogen production with fixed‐bed bioreactors publication-title: Int J Hydrog Energy – volume: 65 start-page: 2041 issue: 5 year: 1999 end-page: 2048 article-title: Adhesion of to diesel fuel droplets studied with in situ electrochemical and molecular probes publication-title: Appl Environ Microbiol – volume: 88 start-page: 690 issue: 6 year: 2004 end-page: 698 article-title: Thermophilic biohydrogen production from glucose with trickling biofilter publication-title: Biotechnol Bioeng – volume: 22 start-page: 699 issue: 4 year: 1980 end-page: 734 article-title: Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment publication-title: Biotechnol Bioeng – volume: 38 start-page: 2293 issue: 9 year: 2004b end-page: 2304 article-title: Accelerated start‐up and enhanced granulation in upflow anaerobic sludge blanket reactors publication-title: Water Res – volume: 38 start-page: 1376 issue: 6 year: 2004 end-page: 1389 article-title: Anaerobic sludge granulation publication-title: Water Res – volume: 54 start-page: 815 issue: 7 year: 2004 end-page: 821 article-title: Study on hydrogen production with hysteresis in UASB publication-title: Chemosphere – volume: 19 start-page: 249 issue: 1–2 year: 1987 end-page: 260 article-title: The effect of calcium on microbial aggregation during UASB reactor start‐up publication-title: Wat Sci Technol – year: 2006 – volume: 78 start-page: 44 issue: 1 year: 2002 end-page: 52 article-title: Characterization of a hydrogen‐producing granular sludge publication-title: Biotechnol Bioeng – volume: 38 start-page: 158 issue: 2 year: 2004 end-page: 163 article-title: The effect of hydraulic retention time on the stability of aerobically grown microbial granules publication-title: Lett Appl Microbiol – volume: 65 start-page: 143 issue: 2 year: 2004b end-page: 148 article-title: The effects of extracellular polymeric substances on the formation and stability of biogranules publication-title: Appl Microbiol Biotechnol – volume: 79 start-page: 219 issue: 3 year: 2004 end-page: 228 article-title: Effects of cationic polymer on start‐up and granulation in upflow anaerobic sludge blanket reactors publication-title: J Chem Technol Biotechnol – volume: 42 start-page: 457 issue: 2–3 year: 1994 end-page: 462 article-title: Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors publication-title: Appl Microbiol Biotechnol – volume: 49 start-page: 450 issue: 4 year: 1998 end-page: 454 article-title: Hydrogen production with high yield and high evolution rate by self‐flocculated cells of in a packed‐bed reactor publication-title: Appl Microbiol Biotechnol – volume: 41 start-page: 2118 issue: 10 year: 2006a end-page: 2123 article-title: Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community publication-title: Process Biochem – volume: 94 start-page: 981 issue: 6 year: 2003 end-page: 987 article-title: Adhesion and aggregation ability of probiotic strain M92 publication-title: J Appl Microbiol – ident: e_1_2_1_27_1 doi: 10.1002/bit.10654 – volume: 47 start-page: 153 issue: 1 year: 2003 ident: e_1_2_1_29_1 article-title: Hydrogen production from wastewater by acidogenic granular sludge publication-title: Wat Sci Technol doi: 10.2166/wst.2003.0040 – ident: e_1_2_1_51_1 doi: 10.1002/jctb.961 – volume: 65 start-page: 2041 issue: 5 year: 1999 ident: e_1_2_1_4_1 article-title: Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.5.2041-2048.1999 – volume: 30 start-page: 211 issue: 11 year: 1994 ident: e_1_2_1_20_1 article-title: Hydrophobicity of activated‐sludge flocs and laboratory‐grown bacteria publication-title: Wat Sci Technol doi: 10.2166/wst.1994.0561 – ident: e_1_2_1_38_1 doi: 10.1002/bit.20269 – ident: e_1_2_1_24_1 doi: 10.1002/bit.20174 – ident: e_1_2_1_41_1 doi: 10.1007/s002530051197 – volume-title: Standard methods for the examination of water and wastewater year: 1998 ident: e_1_2_1_2_1 – ident: e_1_2_1_30_1 doi: 10.1023/A:1014459006210 – ident: e_1_2_1_22_1 doi: 10.1002/bit.20844 – ident: e_1_2_1_46_1 doi: 10.1016/S0141-0229(02)00309-5 – volume: 44 start-page: 63 issue: 6 year: 2001 ident: e_1_2_1_14_1 article-title: The role of blending in polymer conditioning of waste activated sludge publication-title: Wat Sci Technol doi: 10.2166/wst.2001.0341 – ident: e_1_2_1_47_1 doi: 10.1061/(ASCE)0733-9372(2000)126:5(403) – ident: e_1_2_1_56_1 doi: 10.1016/j.procbio.2005.02.029 – ident: e_1_2_1_31_1 doi: 10.1016/S0043-1354(02)00351-2 – ident: e_1_2_1_32_1 doi: 10.1007/s00253-003-1246-2 – ident: e_1_2_1_8_1 doi: 10.1016/S0360-3199(02)00130-1 – ident: e_1_2_1_16_1 doi: 10.1016/0043-1354(95)00323-1 – ident: e_1_2_1_33_1 doi: 10.1016/j.enzmictec.2003.12.009 – ident: e_1_2_1_53_1 doi: 10.1002/bit.20923 – ident: e_1_2_1_12_1 doi: 10.1046/j.1365-2672.2000.00845.x – ident: e_1_2_1_34_1 doi: 10.1007/s00253-004-1657-8 – volume: 61 start-page: 3676 issue: 10 year: 1995 ident: e_1_2_1_10_1 article-title: Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors publication-title: Appl Environ Microbiol doi: 10.1128/aem.61.10.3676-3680.1995 – ident: e_1_2_1_17_1 doi: 10.1016/S0958-1669(99)80045-7 – ident: e_1_2_1_36_1 doi: 10.1002/bit.20924 – ident: e_1_2_1_54_1 doi: 10.1016/j.procbio.2006.05.021 – ident: e_1_2_1_37_1 doi: 10.1016/j.chemosphere.2005.12.048 – ident: e_1_2_1_39_1 doi: 10.1111/j.1472-765X.2003.01479.x – ident: e_1_2_1_52_1 doi: 10.1021/bp0201354 – ident: e_1_2_1_13_1 doi: 10.1021/ac60111a017 – ident: e_1_2_1_28_1 doi: 10.1016/S0168-1656(02)00025-1 – ident: e_1_2_1_3_1 doi: 10.1061/(ASCE)0733-9372(2003)129:11(1007) – ident: e_1_2_1_25_1 doi: 10.1002/bit.260220402 – volume: 19 start-page: 249 issue: 1 year: 1987 ident: e_1_2_1_35_1 article-title: The effect of calcium on microbial aggregation during UASB reactor start‐up publication-title: Wat Sci Technol doi: 10.2166/wst.1987.0206 – year: 2006 ident: e_1_2_1_55_1 article-title: Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor publication-title: Int J Hydrog Energy – ident: e_1_2_1_43_1 doi: 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M – ident: e_1_2_1_5_1 doi: 10.1038/nbt0996-1101 – ident: e_1_2_1_45_1 doi: 10.1016/j.watres.2004.01.039 – ident: e_1_2_1_19_1 doi: 10.1016/j.watres.2003.12.002 – ident: e_1_2_1_18_1 doi: 10.1016/j.chemosphere.2003.09.038 – ident: e_1_2_1_11_1 doi: 10.1016/S0360-3199(00)00058-6 – ident: e_1_2_1_23_1 doi: 10.1016/S0141-0229(01)00394-5 – ident: e_1_2_1_50_1 doi: 10.1016/S0927-7765(02)00188-1 – ident: e_1_2_1_26_1 doi: 10.1016/S0043-1354(00)00277-3 – ident: e_1_2_1_9_1 doi: 10.1007/s002530100814 – volume: 59 start-page: 2437 issue: 8 year: 1993 ident: e_1_2_1_6_1 article-title: Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida publication-title: Appl Environ Microbiol doi: 10.1128/aem.59.8.2437-2441.1993 – ident: e_1_2_1_7_1 doi: 10.1016/S0360-3199(03)00082-X – ident: e_1_2_1_48_1 doi: 10.1046/j.1365-2672.2001.01374.x – ident: e_1_2_1_49_1 doi: 10.1016/S0713-2743(06)80111-X – ident: e_1_2_1_44_1 doi: 10.1061/(ASCE)0733-9372(2004)130:7(743) – ident: e_1_2_1_21_1 doi: 10.1046/j.1365-2672.2003.01915.x – volume: 64 start-page: 21 issue: 1 year: 1998 ident: e_1_2_1_40_1 article-title: Surface properties of bifidobacterial strains of human origin publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.1.21-26.1998 – ident: e_1_2_1_42_1 doi: 10.1007/BF00902757 – ident: e_1_2_1_15_1 doi: 10.1002/bit.10174 |
SSID | ssj0007866 |
Score | 2.1833851 |
Snippet | A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce... A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To... A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37...C. To... A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 not equal to... Abstract A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 deg... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1040 |
SubjectTerms | acid incubation Acids Anaerobiosis - physiology Biological and medical sciences Biomass Bioreactors Biotechnology continuous stirred tank reactor extracellular polymers Fundamental and applied biological sciences. Psychology Hydrogen Hydrogen - metabolism Hydrogen production Hydrogen-Ion Concentration hydrogen-producing granule hydrophobicity Physicochemical properties Proteins Reactors Retention Saccharides Sewage - chemistry Sewage - microbiology Sludge Waste Disposal, Fluid Zeta potential |
Title | Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation |
URI | https://api.istex.fr/ark:/67375/WNG-J3W7KSQN-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21243 https://www.ncbi.nlm.nih.gov/pubmed/17089398 https://www.proquest.com/docview/213760822 https://www.proquest.com/docview/19688883 https://www.proquest.com/docview/30081327 https://www.proquest.com/docview/70236461 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-3592 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0290 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007866 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9NQwh44E_HnzAYFkLTXtKliRMn4mmbGGOISoxN2wNSdHYdiDrSKm0kCi98BD4jn4Sz06QUrRKiykOUXOPkfD7_bJ9_B_DC81TEJWo3STLhchUjtTnF3QDJW_rUnhDNfud3_ejojB9fhBdr8LLZC1PzQ7QTbqZlWH9tGjjKye6CNFTm0y75XW6YPntBaJdoTxbUUSKu1ynNiDkIE79hFfL83fafS33RNaPWryY2EieknqzOa3EV8FzGsbYjOrwDH5tPqONPht1qKrvq21_sjv_5jXfh9hygsr3aou7Bmi46sLFX0OD8y4xtMxsyaufiO3B9vzm7cdAkjuvArT84Djfg-wmO8wFrN0myUcY-zwbliCz314-fY8s4S5LsE6miutQTlhcMzYHacEQpZqLp86IaVRNG_qgs9YARoh0ygrtmxYHk6Ql0Uc4YKioqL1QlbVn34ezw1enBkTvP-OAqQ8vvZr7INMaYyIhsi2otUWRDPgovUzyjwRl5E6T-VQaJUpywDPqaHI4mHKUJiQyCB7BejAr9CBj2uOIecmm3WWAkPSUIuoSZp7iQmXZgp6n7VM3p0E1Wjsu0JnL2U1J-apXvwPNWdFxzgFwltG0NqJXAcmiC5kSYnvdfp8fBuXj74X0_jR3YWrKwxSPjiEarfujAZmNy6dyhTKgME71EaM6BZ-1dqlezvIOFpipIyZfG9AtWSwQGAAa-WC0hbEKBqOfAw9rWF28nPIK2Cb3-jrXY1ZpI99-c2pPH_y66CTfrSXPu9sInsD4tK_2U0N5Ubtlm_RsfvFJs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTWjwwJ8ORhhsFkLTXtKliRMnEi_bYHT_KjE6bS_Isl1nVB1p1TYShRc-Ap-RT8LZaVKKVglR5SFKrnFyvjv_bJ9_BnjteSqiUmg3SVLmUhUL9DlF3UBgtPTRn4Qw653PWlHzgh5fhVdL8KZcC1PwQ1QDbsYzbLw2Dm4GpHdnrKGyO65j4KXBHVgx83PGLd-ez8ijWFzMVJo-cxAmfskr5Pm71V_nWqMVo9ivJjtSjFBBabGzxW3Qcx7J2qbo8CF8Kj-iyEDp1fOxrKtvf_E7_u9XPoIHU4xK9gqjegxLOqvB2l6G_fMvE7JNbNaoHY6vwd398mz1oNw7rgb3_6A5XIPv52LQ7ZBqnSTpp-TzpDPso_H--vFzYElnUZJcoy7yGz0i3YwIcwhtaKIUMQn13Szv5yOCIWk41B2CoLZHEPGaSQeUxyfgRTkhQmFR3Uzl0pb1BC4O37UPmu500wdXGWZ-N_VZqkUsEhmheWG1JQrNyBfMSxVNsX-GAUVgEyuDRCmKcEb4GmOORiilEYx0gqewnPUz_QyIaFBFPUGlXWkhIukphuglTD1FmUy1Aztl5XM1ZUQ3G3Pc8ILL2eeofG6V78CrSnRQ0IDcJrRtLaiSEMOeyZtjIb9svefHwSU7-fihxWMHNudMbPbIOMIOqx86sFHaHJ_GlBGWYRKYENA5sFXdxXo1Mzwi01gFHMNpjL9gsURgMGDgs8USzO4pEDUcWC-MffZ2zEN0m-Dr71iTXawJvn_UtifP_110C1ab7bNTfnrUOtmAe8UYOnUb4QtYHg9z_RLB31huWh__DRFxVog |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7g9cOm4hMFmITTtJV2aOHEinrZB2QUq2EXbA5JlOw5UHWnVNhKFF34Cv5FfwrHTpBStEqLKQ5Scxsnx8fF37OPPAC88T0VUCu0mScZcqmKBbU5RNxDoLX1sT0KY9c7vOtH-GT28CC-W4GW1Fqbkh6gH3EzLsP7aNPBBmm3PSENld9xEv0uDa7BCI4yuDCI6nnFHsbicqDQhcxAmfkUr5Pnb9V_nOqMVo9evJjlSjFA_WbmxxVXIcx7I2p6ofRc-Vt9QJqD0msVYNtW3v-gd__Mj78GdKUIlO6VJ3YclnTdgdSfH6PzLhGwSmzNqB-MbcH23Oru5V-0c14Dbf5AcrsL3YzHopqReJUn6Gfk8SYd9NN1fP34OLOUsSpJPqIriUo9INyfCHEIbkihFTDp9Ny_6xYigQxoOdUoQ0vYI4l0z5YDy-AS8KCdEKCyqm6tC2rIewFn79enevjvd8sFVhpffzXyWaRGLREZoXFhriUIj8gXzMkUzjM7QnQjsYGWQKEURzAhfo8fRCKQ0QpE0eAjLeT_Xj4GIFlXUE1TadRYikp5iiF3CzFOUyUw7sFXVPVdTPnSzLcclL5mcfY7K51b5DjyvRQclCchVQpvWgGoJMeyZrDkW8vPOG34YnLOjkw8dHjuwPmdhs0fGEYarfujAWmVyfOpRRliGSV9COOfARn0X69XM74hcYxVwdKYx_oLFEoFBgIHPFkswu6NA1HLgUWnrs7djHmLbBF9_y1rsYk3w3YNTe_Lk30U34Mb7V23-9qBztAa3ygF06rbCp7A8Hhb6GSK_sVy3Lfw30VhVNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+formation+of+hydrogen-producing+granules+in+an+anaerobic+continuous+stirred+tank+reactor+induced+by+acid+incubation&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Zhang%2C+Zhen-Peng&rft.au=Show%2C+Kuan-Yeow&rft.au=Tay%2C+Joo-Hwa&rft.au=Liang%2C+David+Tee&rft.date=2007-04-15&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=96&rft.issue=6&rft.spage=1040&rft.epage=1050&rft_id=info:doi/10.1002%2Fbit.21243&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |