Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation

A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The cult...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 96; no. 6; pp. 1040 - 1050
Main Authors Zhang, Zhen-Peng, Show, Kuan-Yeow, Tay, Joo-Hwa, Liang, David Tee, Lee, Duu-Jong, Jiang, Wen-Ju
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.04.2007
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
DOI10.1002/bit.21243

Cover

Abstract A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from −11.6 to −3.5 mV, hydrophobicity in terms of contact angle improved from 31° to 43° and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5–0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g‐VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol‐H2/mol‐glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen‐producing granules by regulating the surface characteristics of microbial aggregates in a well‐mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040–1050. © 2006 Wiley Periodicals, Inc.
AbstractList A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 not equal to . To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31to 43and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol-H sub(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007; 96:1040-1050.
A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37...C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from - 11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31... to 43... and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L - h and 1.81 mol-H.../mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. (ProQuest -CSA LLC: ... denotes formulae/symbols omitted.)
A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from −11.6 to −3.5 mV, hydrophobicity in terms of contact angle improved from 31° to 43° and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5–0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g‐VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol‐H 2 /mol‐glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen‐producing granules by regulating the surface characteristics of microbial aggregates in a well‐mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040–1050. © 2006 Wiley Periodicals, Inc.
Abstract A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 deg C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 deg to 43 deg and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L*h and 1.81 mol-H2/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040-1050.
A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 degrees to 43 degrees and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L x h and 1.81 mol-H(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production.
A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 degrees to 43 degrees and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L x h and 1.81 mol-H(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production.A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from -11.6 to -3.5 mV, hydrophobicity in terms of contact angle improved from 31 degrees to 43 degrees and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5-0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g-VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L x h and 1.81 mol-H(2)/mol-glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen-producing granules by regulating the surface characteristics of microbial aggregates in a well-mixed reactor, which enhanced the hydrogen production.
A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce microbial granulation, the acclimated culture was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The culture was resumed to pH 5.5 after the incubation and the reactor was operated at hydraulic retention times (HRTs) of 12, 6, 2, 1, and 0.5 h in sequence. Microbial aggregation took place immediately with the initiation of acid incubation and granules were developed at 114 h. No granule was observed in the absence of acid incubation in the control test. Changing the culture pH resulted in improvement in surface physicochemical properties of the culture favoring microbial granulation. The zeta potential increased from −11.6 to −3.5 mV, hydrophobicity in terms of contact angle improved from 31° to 43° and extracellular proteins/polysaccharides ratio increased from 0.2 to 0.5–0.8. Formation of granular sludge facilitated biomass retention of up to 32.2 g‐VSS/L and enhanced hydrogen production. The hydrogen production rate and hydrogen yield increased with the reduction in HRT at an influent glucose concentration of 10 g/L once steady granular sludge layer was formed, achieving the respective peaks of 3.20 L/L · h and 1.81 mol‐H2/mol‐glucose at 0.5 h HRT. The experimental results suggested that acid incubation was able to initiate the rapid formation of hydrogen‐producing granules by regulating the surface characteristics of microbial aggregates in a well‐mixed reactor, which enhanced the hydrogen production. Biotechnol. Bioeng. 2007;96:1040–1050. © 2006 Wiley Periodicals, Inc.
Author Show, Kuan-Yeow
Jiang, Wen-Ju
Liang, David Tee
Tay, Joo-Hwa
Lee, Duu-Jong
Zhang, Zhen-Peng
Author_xml – sequence: 1
  givenname: Zhen-Peng
  surname: Zhang
  fullname: Zhang, Zhen-Peng
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
– sequence: 2
  givenname: Kuan-Yeow
  surname: Show
  fullname: Show, Kuan-Yeow
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
– sequence: 3
  givenname: Joo-Hwa
  surname: Tay
  fullname: Tay, Joo-Hwa
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
– sequence: 4
  givenname: David Tee
  surname: Liang
  fullname: Liang, David Tee
  organization: Institute of Environmental Science and Engineering, Nanyang Technological University, Singapore 637723
– sequence: 5
  givenname: Duu-Jong
  surname: Lee
  fullname: Lee, Duu-Jong
  organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Republic of China
– sequence: 6
  givenname: Wen-Ju
  surname: Jiang
  fullname: Jiang, Wen-Ju
  organization: Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, People Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18649525$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17089398$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7LZ64R-QICh4MW0-ZvJxWYvWaqmolV6GTCZZ084ma5JB99-b7m4rFKUhEE543vfk5Jw9sBNisAA8x-gAI0QOe18OCCYtfQRmGEneICLRDpghhFhDO0l2wV7OVzXkgrEnYBdzJCSVYgZWX_XSD9DFtNDFxwCjgz9WQ4pzG5plisNkfJjDedJhGm2GPkB9s7VNsfcGmhiKD1OcMszFp2QHWHS4hslqU2KqfHWol_0KalMT-WCmfp3pKXjs9Jjts-25D76_f3dx_KE5-3xyenx01piuZbRxhDurhZY9662ptUgjpSOaI2da10rJJdWI8Z5KY1oskSZWcGQR62yLu4Hug9cb31rNz8nmohY-GzuOOtj6bMURoaxl-EGQIiQwJfxBEEsm6qIVfHkPvIpTCrVaRTDlDAlCKvRiC039wg5qmfxCp5W67VEFXm0BnY0eXW2F8fkvJ1grO9JV7nDDmRRzTtYp48v6q0vSflQYqZtpUXVa1HpaquLNPcWd6T_YrfsvP9rV_0H19vTiVtFsFD4X-_tOodO1YpzyTl2en6iP9JJ_-vblXAn6B2Bu3Ws
CODEN BIBIAU
CitedBy_id crossref_primary_10_1002_ep_14521
crossref_primary_10_1021_ef700272m
crossref_primary_10_1039_C6RA09298E
crossref_primary_10_1002_elsc_201700164
crossref_primary_10_1016_j_biortech_2022_127036
crossref_primary_10_1016_j_ijhydene_2013_05_059
crossref_primary_10_1016_j_ijhydene_2022_06_317
crossref_primary_10_1016_j_watres_2008_04_020
crossref_primary_10_1016_j_apenergy_2015_01_136
crossref_primary_10_1002_bit_21948
crossref_primary_10_1016_j_biortech_2017_03_062
crossref_primary_10_1016_j_biombioe_2022_106451
crossref_primary_10_1016_j_biortech_2018_02_105
crossref_primary_10_1016_j_cej_2021_130716
crossref_primary_10_1039_C4RA12730G
crossref_primary_10_1016_j_cej_2017_11_088
crossref_primary_10_1016_j_ijhydene_2012_01_004
crossref_primary_10_1016_j_ijhydene_2013_03_138
crossref_primary_10_1016_j_biortech_2011_03_056
crossref_primary_10_1016_j_ijhydene_2013_03_171
crossref_primary_10_4491_KSEE_2013_35_1_001
crossref_primary_10_1002_bit_23145
crossref_primary_10_1007_s12649_014_9295_6
crossref_primary_10_1002_bit_21956
crossref_primary_10_1016_j_renene_2018_09_062
crossref_primary_10_1016_j_ijhydene_2017_08_060
crossref_primary_10_1080_10643389_2011_644218
crossref_primary_10_1016_j_ijhydene_2021_01_075
crossref_primary_10_1016_S1002_0071_12_60090_2
crossref_primary_10_1038_s41598_020_65702_w
crossref_primary_10_1016_j_psep_2017_04_007
crossref_primary_10_1016_j_ijhydene_2015_06_077
crossref_primary_10_1016_j_ijhydene_2012_04_109
crossref_primary_10_1007_s11157_015_9369_3
crossref_primary_10_1039_C7RA09413B
crossref_primary_10_1016_j_biortech_2011_03_041
crossref_primary_10_1016_j_biortech_2011_04_055
crossref_primary_10_1002_wene_15
crossref_primary_10_1016_j_ijhydene_2010_09_095
crossref_primary_10_1016_j_fuproc_2024_108158
crossref_primary_10_1016_j_ijhydene_2021_06_186
crossref_primary_10_1016_j_biortech_2012_11_003
crossref_primary_10_1016_j_ijhydene_2017_07_176
crossref_primary_10_1016_j_biortech_2011_02_110
crossref_primary_10_2516_ogst_2018099
crossref_primary_10_1016_j_biortech_2013_02_075
crossref_primary_10_1016_j_biortech_2019_121747
crossref_primary_10_1016_j_ijhydene_2015_12_081
crossref_primary_10_1016_j_biortech_2020_122751
crossref_primary_10_1016_j_procbio_2016_06_012
crossref_primary_10_1016_j_bej_2009_12_005
crossref_primary_10_1016_j_ijhydene_2022_01_156
crossref_primary_10_1007_s11356_024_35873_4
Cites_doi 10.1002/bit.10654
10.2166/wst.2003.0040
10.1002/jctb.961
10.1128/AEM.65.5.2041-2048.1999
10.2166/wst.1994.0561
10.1002/bit.20269
10.1002/bit.20174
10.1007/s002530051197
10.1023/A:1014459006210
10.1002/bit.20844
10.1016/S0141-0229(02)00309-5
10.2166/wst.2001.0341
10.1061/(ASCE)0733-9372(2000)126:5(403)
10.1016/j.procbio.2005.02.029
10.1016/S0043-1354(02)00351-2
10.1007/s00253-003-1246-2
10.1016/S0360-3199(02)00130-1
10.1016/0043-1354(95)00323-1
10.1016/j.enzmictec.2003.12.009
10.1002/bit.20923
10.1046/j.1365-2672.2000.00845.x
10.1007/s00253-004-1657-8
10.1128/aem.61.10.3676-3680.1995
10.1016/S0958-1669(99)80045-7
10.1002/bit.20924
10.1016/j.procbio.2006.05.021
10.1016/j.chemosphere.2005.12.048
10.1111/j.1472-765X.2003.01479.x
10.1021/bp0201354
10.1021/ac60111a017
10.1016/S0168-1656(02)00025-1
10.1061/(ASCE)0733-9372(2003)129:11(1007)
10.1002/bit.260220402
10.2166/wst.1987.0206
10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M
10.1038/nbt0996-1101
10.1016/j.watres.2004.01.039
10.1016/j.watres.2003.12.002
10.1016/j.chemosphere.2003.09.038
10.1016/S0360-3199(00)00058-6
10.1016/S0141-0229(01)00394-5
10.1016/S0927-7765(02)00188-1
10.1016/S0043-1354(00)00277-3
10.1007/s002530100814
10.1128/aem.59.8.2437-2441.1993
10.1016/S0360-3199(03)00082-X
10.1046/j.1365-2672.2001.01374.x
10.1016/S0713-2743(06)80111-X
10.1061/(ASCE)0733-9372(2004)130:7(743)
10.1046/j.1365-2672.2003.01915.x
10.1128/AEM.64.1.21-26.1998
10.1007/BF00902757
10.1002/bit.10174
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
2007 INIST-CNRS
(c) 2006 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Apr 15, 2007
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: 2007 INIST-CNRS
– notice: (c) 2006 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Apr 15, 2007
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.21243
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
Materials Research Database
CrossRef
Solid State and Superconductivity Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 1050
ExternalDocumentID 1229756001
17089398
18649525
10_1002_bit_21243
BIT21243
ark_67375_WNG_J3W7KSQN_8
Genre article
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
.GJ
3EH
ABEML
ACSCC
AGHNM
AI.
BLYAC
EBD
EMOBN
HF~
IQODW
LH6
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
SV3
VH1
Y6R
ZGI
ZXP
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
RBB
RWI
WRC
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c5463-f27fea8a9b6bec5929c99f2a70fc4f499793a067b39cc4190a2e870e065e415d3
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Fri Jul 11 13:49:42 EDT 2025
Fri Jul 11 11:38:41 EDT 2025
Fri Jul 11 11:30:44 EDT 2025
Fri Jul 25 10:38:10 EDT 2025
Wed Feb 19 01:46:21 EST 2025
Mon Jul 21 09:11:35 EDT 2025
Tue Jul 01 03:28:20 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Sun Sep 21 06:14:45 EDT 2025
Sun Sep 21 06:26:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords acid incubation
Bioreactor
Incubation
Anaerobe
Hydrogen
extracellular polymers
Polymer
zeta potential
Hydrophobicity
Continuous stirred tank reactor
Extracellular
hydrogen-producing granule
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
(c) 2006 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5463-f27fea8a9b6bec5929c99f2a70fc4f499793a067b39cc4190a2e870e065e415d3
Notes ark:/67375/WNG-J3W7KSQN-8
istex:55C21328BB3C80BDDC1CF59F206B49425FDBCDBF
ArticleID:BIT21243
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 17089398
PQID 213760822
PQPubID 48814
PageCount 11
ParticipantIDs proquest_miscellaneous_70236461
proquest_miscellaneous_30081327
proquest_miscellaneous_19688883
proquest_journals_213760822
pubmed_primary_17089398
pascalfrancis_primary_18649525
crossref_citationtrail_10_1002_bit_21243
crossref_primary_10_1002_bit_21243
wiley_primary_10_1002_bit_21243_BIT21243
istex_primary_ark_67375_WNG_J3W7KSQN_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 April 2007
PublicationDateYYYYMMDD 2007-04-15
PublicationDate_xml – month: 04
  year: 2007
  text: 15 April 2007
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Mu Y, Yu HQ. 2006. Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94(5): 980-987.
Liu Y, Yang SF, Tay JH. 2003b. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol 61(5-6): 556-561.
Oh YK, Kim SH, Kim MS, Park S. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6): 690-698.
Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. 2004a. Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb Tech 34(5): 371-379.
Tay JH, Liu QS, Liu Y. 2001. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91(1): 168-175.
Mahoney EM, Varangu LK, Cairns WL, Kosaric N, Murray RGE. 1987. The effect of calcium on microbial aggregation during UASB reactor start-up. Wat Sci Technol 19(1-2): 249-260.
Chen CC, Lin CY, Lin MC. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58(2): 224-228.
Liu Y, Xu HL, Show KY, Tay JH. 2002. Anaerobic granulation technology for wastewater treatment. World J Microbiol Biotechnol 18(2): 99-113.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substrates. Anal Chem 28(3): 350-356.
Show KY, Tay JH, Yang L, Wang Y, Lua CH. 2004a. Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors. J Environ Eng-ASCE 130(7): 743-750.
Yu HQ, Mu Y. 2006. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnol Bioeng 94(5): 988-995.
Del Re B, Sgorbati B, Miglioli M, Palenzona D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6): 438-442.
Kumar N, Das D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Tech 29(4-5): 280-287.
Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V. 1999. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5): 2041-2048.
Aquino SF, Stuckey DC. 2003. Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency. J Environ Eng ASCE 129(11): 1007-1014.
Mu Y, Yu HQ, Wang Y. 2006. The role of pH in the fermentative H-2 production from an acidogenic granule-based reactor. Chemosphere 64(3): 350-358.
Schmidt JE, Ahring BK. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl Microbiol Biotechnol 42(2-3): 457-462.
Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2006a. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10): 2118-2123.
Lin D-Q, Brixius JP, Hubbuch JJ, Thömmes J, Kula M-R. 2003. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study. Biotechnol Bioeng 83(2): 149-157.
Pan S, Tay JH, He YX, Tay STL. 2004. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett Appl Microbiol 38(2): 158-163.
Liu H, Fang HHP. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95(3): 249-256.
Perez PF, Minnaard Y, Disalvo EA, De Antoni GL. 1998. Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64(1): 21-26.
Houghton JI, Quarmby J. 1999. Biopolymers in wastewater treatment. Curr Opin Biotechnol 10(3): 259-262.
Kotsopoulos A, Zeng J, Angelidaki I. 2006. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotechnol Bioeng 94(2): 296-302.
Frolund B, Palmgren R, Keiding K, Nielsen PH. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8): 1749-1758.
Daffonchio D, Thaveesri J, Verstraete W. 1995. Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61(10): 3676-3680.
Wu SY, Lin CN, Chang JS. 2003. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Prog 19(3): 828-832.
Jorand F, Guicherd P, Urbain V, Manem J, Block JC. 1994. Hydrophobicity of activated-sludge flocs and laboratory-grown bacteria. Wat Sci Technol 30(11): 211-218.
Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: A survey of literature. Int J Hydrog Energy 26(1): 13-28.
Chang JS, Lee KS, Lin PJ. 2002. Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy 27(11-12): 1167-1174.
Benemann J. 1996. Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14(9): 1101-1103.
Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surface B 29(2-3): 181-188.
Wang Y, Show KY, Tay JH, Sim KH. 2004. Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. J Chem Technol Biotechnol 79(3): 219-228.
Erdincler A, Koseogly S, Onay T. 2001. The role of blending in polymer conditioning of waste activated sludge. Wat Sci Technol 44(6): 63-66.
Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87(5): 648-657.
Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49(4): 450-454.
Zhou WL, Imai T, Ukita M, Sekine M, Higuchi T. 2006. Triggering forces for anaerobic granulation in UASB reactors. Process Biochem 41(1): 36-43.
Liao BQ, Allen DG, Droppo IG, Leppard GG, Liss SN. 2001. Surface properties of sludge and their role in bioflocculation and settleability. Water Res 35(2): 339-350.
Sponza DT. 2003. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme Microb Tech 32(3-4): 375-385.
Liu YQ, Liu Y, Tay JH. 2004b. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2): 143-148.
Liu Y, Xu HL, Yang SF, Tay JH. 2003a. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37(3): 661-673.
Show KY, Wang Y, Foong SF, Tay JH. 2004b. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38(9): 2293-2304.
APHA. 1998. Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, USA: American Public Health Association.
Tay JH, Xu HL, Teo KC. 2000. Molecular mechanism of granulation. I: H+ trans location-dehydration theory. J Environ Eng-ASCE 126(5): 403-410.
Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6): 981-987.
Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4): 699-734.
Chang FY, Lin CY. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy 29(1): 33-39.
Fang HHP, Liu H, Zhang T. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78(1): 44-52.
Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res 38(6): 1376-1389.
Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnol Bioeng 49(3): 229-246.
Huang GH, Hsu SF, Liang TM, Huang YH. 2004. Study on hydrogen production with hysteresis in UASB. Chemosphere 54(7): 815-821.
Bonet R, Simon-Pujol M, Congregado F. 1993. Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl Environ Microbiol 59(8): 2437-2441.
Tay JH, Tay STL, Liu Y, Show KY, Ivanov V. 2006. Biogranulation technologies for wastewater treatment. Oxford: Elsivier Science.
Liu H, Fang HHP. 2003. Hydrogen production from wastewater by acidogenic granular sludge. Wat Sci Technol 47(1): 153-158.
Zhang ZP, Tay JH, Show KY, Liang DT, Lee DJ, Jiang WJ. 2006b. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrog Energy, published online. DOI: 10.1016/j.ijhydene.2006.08.017.
1998; 49
2001; 91
2002; 58
2002; 18
2004; 29
2002; 95
1996; 30
2003a; 37
2004a; 130
2003; 19
2001; 44
2003; 94
1995; 61
2003; 129
2006; 64
2004; 38
2004a; 34
2000; 126
2004; 79
2003; 47
1999; 10
2004b; 38
2003; 83
1994; 30
2004; 87
2004; 88
2006; 94
2006a; 41
2003b; 61
2006b
2002; 78
1980; 22
1998
1999; 65
2006
2001; 26
2001; 29
1996; 14
2004b; 65
1987; 19
1998; 64
2003; 32
1994; 42
1993; 59
2002; 27
2004; 54
2006; 41
2000; 31
1956; 28
2003; 29
2001; 35
1996; 49
Mahoney EM (e_1_2_1_35_1) 1987; 19
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
APHA (e_1_2_1_2_1) 1998
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_12_1
e_1_2_1_50_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_37_1
Baldi F (e_1_2_1_4_1) 1999; 65
e_1_2_1_18_1
e_1_2_1_42_1
Daffonchio D (e_1_2_1_10_1) 1995; 61
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
Bonet R (e_1_2_1_6_1) 1993; 59
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
Liu H (e_1_2_1_29_1) 2003; 47
Perez PF (e_1_2_1_40_1) 1998; 64
e_1_2_1_7_1
e_1_2_1_30_1
Zhang ZP (e_1_2_1_55_1) 2006
e_1_2_1_5_1
Erdincler A (e_1_2_1_14_1) 2001; 44
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
Jorand F (e_1_2_1_20_1) 1994; 30
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: APHA. 1998. Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, USA: American Public Health Association.
– reference: Liu Y, Xu HL, Show KY, Tay JH. 2002. Anaerobic granulation technology for wastewater treatment. World J Microbiol Biotechnol 18(2): 99-113.
– reference: Liu YQ, Liu Y, Tay JH. 2004b. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2): 143-148.
– reference: Zhang ZP, Tay JH, Show KY, Liang DT, Lee DJ, Jiang WJ. 2006b. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrog Energy, published online. DOI: 10.1016/j.ijhydene.2006.08.017.
– reference: Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2006a. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10): 2118-2123.
– reference: Kumar N, Das D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Tech 29(4-5): 280-287.
– reference: Kotsopoulos A, Zeng J, Angelidaki I. 2006. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotechnol Bioeng 94(2): 296-302.
– reference: Liu Y, Xu HL, Yang SF, Tay JH. 2003a. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37(3): 661-673.
– reference: Fang HHP, Liu H, Zhang T. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78(1): 44-52.
– reference: Mu Y, Yu HQ, Wang Y. 2006. The role of pH in the fermentative H-2 production from an acidogenic granule-based reactor. Chemosphere 64(3): 350-358.
– reference: Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49(4): 450-454.
– reference: Oh YK, Kim SH, Kim MS, Park S. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6): 690-698.
– reference: Wu SY, Lin CN, Chang JS. 2003. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Prog 19(3): 828-832.
– reference: Aquino SF, Stuckey DC. 2003. Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency. J Environ Eng ASCE 129(11): 1007-1014.
– reference: Liu Y, Yang SF, Tay JH. 2003b. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol 61(5-6): 556-561.
– reference: Wang Y, Show KY, Tay JH, Sim KH. 2004. Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. J Chem Technol Biotechnol 79(3): 219-228.
– reference: Jorand F, Guicherd P, Urbain V, Manem J, Block JC. 1994. Hydrophobicity of activated-sludge flocs and laboratory-grown bacteria. Wat Sci Technol 30(11): 211-218.
– reference: Mahoney EM, Varangu LK, Cairns WL, Kosaric N, Murray RGE. 1987. The effect of calcium on microbial aggregation during UASB reactor start-up. Wat Sci Technol 19(1-2): 249-260.
– reference: Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V. 1999. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5): 2041-2048.
– reference: Benemann J. 1996. Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14(9): 1101-1103.
– reference: Tay JH, Xu HL, Teo KC. 2000. Molecular mechanism of granulation. I: H+ trans location-dehydration theory. J Environ Eng-ASCE 126(5): 403-410.
– reference: Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6): 981-987.
– reference: Show KY, Tay JH, Yang L, Wang Y, Lua CH. 2004a. Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors. J Environ Eng-ASCE 130(7): 743-750.
– reference: Chen CC, Lin CY, Lin MC. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58(2): 224-228.
– reference: Yu HQ, Mu Y. 2006. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnol Bioeng 94(5): 988-995.
– reference: Liu H, Fang HHP. 2003. Hydrogen production from wastewater by acidogenic granular sludge. Wat Sci Technol 47(1): 153-158.
– reference: Show KY, Wang Y, Foong SF, Tay JH. 2004b. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38(9): 2293-2304.
– reference: Zhou WL, Imai T, Ukita M, Sekine M, Higuchi T. 2006. Triggering forces for anaerobic granulation in UASB reactors. Process Biochem 41(1): 36-43.
– reference: Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res 38(6): 1376-1389.
– reference: Erdincler A, Koseogly S, Onay T. 2001. The role of blending in polymer conditioning of waste activated sludge. Wat Sci Technol 44(6): 63-66.
– reference: Chang JS, Lee KS, Lin PJ. 2002. Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy 27(11-12): 1167-1174.
– reference: Del Re B, Sgorbati B, Miglioli M, Palenzona D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6): 438-442.
– reference: Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87(5): 648-657.
– reference: Liu H, Fang HHP. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95(3): 249-256.
– reference: Lin D-Q, Brixius JP, Hubbuch JJ, Thömmes J, Kula M-R. 2003. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study. Biotechnol Bioeng 83(2): 149-157.
– reference: Liao BQ, Allen DG, Droppo IG, Leppard GG, Liss SN. 2001. Surface properties of sludge and their role in bioflocculation and settleability. Water Res 35(2): 339-350.
– reference: Houghton JI, Quarmby J. 1999. Biopolymers in wastewater treatment. Curr Opin Biotechnol 10(3): 259-262.
– reference: Sponza DT. 2003. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme Microb Tech 32(3-4): 375-385.
– reference: Daffonchio D, Thaveesri J, Verstraete W. 1995. Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61(10): 3676-3680.
– reference: Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnol Bioeng 49(3): 229-246.
– reference: Tay JH, Liu QS, Liu Y. 2001. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91(1): 168-175.
– reference: Frolund B, Palmgren R, Keiding K, Nielsen PH. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8): 1749-1758.
– reference: Perez PF, Minnaard Y, Disalvo EA, De Antoni GL. 1998. Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64(1): 21-26.
– reference: Bonet R, Simon-Pujol M, Congregado F. 1993. Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl Environ Microbiol 59(8): 2437-2441.
– reference: Pan S, Tay JH, He YX, Tay STL. 2004. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett Appl Microbiol 38(2): 158-163.
– reference: Chang FY, Lin CY. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy 29(1): 33-39.
– reference: Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4): 699-734.
– reference: Huang GH, Hsu SF, Liang TM, Huang YH. 2004. Study on hydrogen production with hysteresis in UASB. Chemosphere 54(7): 815-821.
– reference: Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. 2004a. Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb Tech 34(5): 371-379.
– reference: Schmidt JE, Ahring BK. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl Microbiol Biotechnol 42(2-3): 457-462.
– reference: Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substrates. Anal Chem 28(3): 350-356.
– reference: Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: A survey of literature. Int J Hydrog Energy 26(1): 13-28.
– reference: Tay JH, Tay STL, Liu Y, Show KY, Ivanov V. 2006. Biogranulation technologies for wastewater treatment. Oxford: Elsivier Science.
– reference: Mu Y, Yu HQ. 2006. Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94(5): 980-987.
– reference: Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surface B 29(2-3): 181-188.
– volume: 28
  start-page: 350
  issue: 3
  year: 1956
  end-page: 356
  article-title: Colorimetric method for determination of sugars and related substrates
  publication-title: Anal Chem
– volume: 35
  start-page: 339
  issue: 2
  year: 2001
  end-page: 350
  article-title: Surface properties of sludge and their role in bioflocculation and settleability
  publication-title: Water Res
– year: 2006b
  article-title: Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor
  publication-title: Int J Hydrog Energy
– volume: 29
  start-page: 33
  issue: 1
  year: 2004
  end-page: 39
  article-title: Biohydrogen production using an up‐flow anaerobic sludge blanket reactor
  publication-title: Int J Hydrog Energy
– volume: 26
  start-page: 13
  issue: 1
  year: 2001
  end-page: 28
  article-title: Hydrogen production by biological processes: A survey of literature
  publication-title: Int J Hydrog Energy
– volume: 10
  start-page: 259
  issue: 3
  year: 1999
  end-page: 262
  article-title: Biopolymers in wastewater treatment
  publication-title: Curr Opin Biotechnol
– volume: 64
  start-page: 350
  issue: 3
  year: 2006
  end-page: 358
  article-title: The role of pH in the fermentative H‐2 production from an acidogenic granule‐based reactor
  publication-title: Chemosphere
– volume: 14
  start-page: 1101
  issue: 9
  year: 1996
  end-page: 1103
  article-title: Hydrogen biotechnology: Progress and prospects
  publication-title: Nat Biotechnol
– volume: 29
  start-page: 181
  issue: 2–3
  year: 2003
  end-page: 188
  article-title: Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory
  publication-title: Colloid Surface B
– year: 1998
– volume: 31
  start-page: 438
  issue: 6
  year: 2000
  end-page: 442
  article-title: Adhesion, autoaggregation and hydrophobicity of 13 strains of
  publication-title: Lett Appl Microbiol
– volume: 130
  start-page: 743
  issue: 7
  year: 2004a
  end-page: 750
  article-title: Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors
  publication-title: J Environ Eng‐ASCE
– volume: 29
  start-page: 280
  issue: 4–5
  year: 2001
  end-page: 287
  article-title: Continuous hydrogen production by immobilized IIT‐BT 08 using lignocellulosic materials as solid matrices
  publication-title: Enzyme Microb Tech
– volume: 91
  start-page: 168
  issue: 1
  year: 2001
  end-page: 175
  article-title: Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor
  publication-title: J Appl Microbiol
– volume: 18
  start-page: 99
  issue: 2
  year: 2002
  end-page: 113
  article-title: Anaerobic granulation technology for wastewater treatment
  publication-title: World J Microbiol Biotechnol
– volume: 49
  start-page: 229
  issue: 3
  year: 1996
  end-page: 246
  article-title: Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors
  publication-title: Biotechnol Bioeng
– volume: 129
  start-page: 1007
  issue: 11
  year: 2003
  end-page: 1014
  article-title: Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency
  publication-title: J Environ Eng ASCE
– volume: 87
  start-page: 648
  issue: 5
  year: 2004
  end-page: 657
  article-title: Anaerobic hydrogen production with an efficient carrier‐induced granular sludge bed bioreactor
  publication-title: Biotechnol Bioeng
– volume: 61
  start-page: 556
  issue: 5–6
  year: 2003b
  end-page: 561
  article-title: Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios
  publication-title: Appl Microbiol Biotechnol
– volume: 47
  start-page: 153
  issue: 1
  year: 2003
  end-page: 158
  article-title: Hydrogen production from wastewater by acidogenic granular sludge
  publication-title: Wat Sci Technol
– volume: 59
  start-page: 2437
  issue: 8
  year: 1993
  end-page: 2441
  article-title: Effects of nutrients on exopolysaccharide production and surface properties of
  publication-title: Appl Environ Microbiol
– volume: 83
  start-page: 149
  issue: 2
  year: 2003
  end-page: 157
  article-title: Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study
  publication-title: Biotechnol Bioeng
– volume: 61
  start-page: 3676
  issue: 10
  year: 1995
  end-page: 3680
  article-title: Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors
  publication-title: Appl Environ Microbiol
– volume: 19
  start-page: 828
  issue: 3
  year: 2003
  end-page: 832
  article-title: Hydrogen production with immobilized sewage sludge in three‐phase fluidized‐bed bioreactors
  publication-title: Biotechnol Prog
– volume: 41
  start-page: 36
  issue: 1
  year: 2006
  end-page: 43
  article-title: Triggering forces for anaerobic granulation in UASB reactors
  publication-title: Process Biochem
– volume: 30
  start-page: 211
  issue: 11
  year: 1994
  end-page: 218
  article-title: Hydrophobicity of activated‐sludge flocs and laboratory‐grown bacteria
  publication-title: Wat Sci Technol
– volume: 32
  start-page: 375
  issue: 3–4
  year: 2003
  end-page: 385
  article-title: Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady‐state conditions
  publication-title: Enzyme Microb Tech
– volume: 44
  start-page: 63
  issue: 6
  year: 2001
  end-page: 66
  article-title: The role of blending in polymer conditioning of waste activated sludge
  publication-title: Wat Sci Technol
– volume: 94
  start-page: 980
  issue: 5
  year: 2006
  end-page: 987
  article-title: Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen‐producing granules
  publication-title: Biotechnol Bioeng
– volume: 64
  start-page: 21
  issue: 1
  year: 1998
  end-page: 26
  article-title: Surface properties of bifidobacterial strains of human origin
  publication-title: Appl Environ Microbiol
– volume: 37
  start-page: 661
  issue: 3
  year: 2003a
  end-page: 673
  article-title: Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor
  publication-title: Water Res
– volume: 126
  start-page: 403
  issue: 5
  year: 2000
  end-page: 410
  article-title: Molecular mechanism of granulation. I: H+ trans location‐dehydration theory
  publication-title: J Environ Eng‐ASCE
– volume: 95
  start-page: 249
  issue: 3
  year: 2002
  end-page: 256
  article-title: Extraction of extracellular polymeric substances (EPS) of sludges
  publication-title: J Biotechnol
– volume: 34
  start-page: 371
  issue: 5
  year: 2004a
  end-page: 379
  article-title: Cell hydrophobicity is a triggering force of biogranulation
  publication-title: Enzyme Microb Tech
– volume: 58
  start-page: 224
  issue: 2
  year: 2002
  end-page: 228
  article-title: Acid‐base enrichment enhances anaerobic hydrogen production process
  publication-title: Appl Microbiol Biotechnol
– volume: 94
  start-page: 296
  issue: 2
  year: 2006
  end-page: 302
  article-title: Biohydrogen production in granular up‐flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper‐thermophilic temperature (70°C)
  publication-title: Biotechnol Bioeng
– volume: 94
  start-page: 988
  issue: 5
  year: 2006
  end-page: 995
  article-title: Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3‐year operation
  publication-title: Biotechnol Bioeng
– volume: 30
  start-page: 1749
  issue: 8
  year: 1996
  end-page: 1758
  article-title: Extraction of extracellular polymers from activated sludge using a cation exchange resin
  publication-title: Water Res
– volume: 27
  start-page: 1167
  issue: 11–12
  year: 2002
  end-page: 1174
  article-title: Biohydrogen production with fixed‐bed bioreactors
  publication-title: Int J Hydrog Energy
– volume: 65
  start-page: 2041
  issue: 5
  year: 1999
  end-page: 2048
  article-title: Adhesion of to diesel fuel droplets studied with in situ electrochemical and molecular probes
  publication-title: Appl Environ Microbiol
– volume: 88
  start-page: 690
  issue: 6
  year: 2004
  end-page: 698
  article-title: Thermophilic biohydrogen production from glucose with trickling biofilter
  publication-title: Biotechnol Bioeng
– volume: 22
  start-page: 699
  issue: 4
  year: 1980
  end-page: 734
  article-title: Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment
  publication-title: Biotechnol Bioeng
– volume: 38
  start-page: 2293
  issue: 9
  year: 2004b
  end-page: 2304
  article-title: Accelerated start‐up and enhanced granulation in upflow anaerobic sludge blanket reactors
  publication-title: Water Res
– volume: 38
  start-page: 1376
  issue: 6
  year: 2004
  end-page: 1389
  article-title: Anaerobic sludge granulation
  publication-title: Water Res
– volume: 54
  start-page: 815
  issue: 7
  year: 2004
  end-page: 821
  article-title: Study on hydrogen production with hysteresis in UASB
  publication-title: Chemosphere
– volume: 19
  start-page: 249
  issue: 1–2
  year: 1987
  end-page: 260
  article-title: The effect of calcium on microbial aggregation during UASB reactor start‐up
  publication-title: Wat Sci Technol
– year: 2006
– volume: 78
  start-page: 44
  issue: 1
  year: 2002
  end-page: 52
  article-title: Characterization of a hydrogen‐producing granular sludge
  publication-title: Biotechnol Bioeng
– volume: 38
  start-page: 158
  issue: 2
  year: 2004
  end-page: 163
  article-title: The effect of hydraulic retention time on the stability of aerobically grown microbial granules
  publication-title: Lett Appl Microbiol
– volume: 65
  start-page: 143
  issue: 2
  year: 2004b
  end-page: 148
  article-title: The effects of extracellular polymeric substances on the formation and stability of biogranules
  publication-title: Appl Microbiol Biotechnol
– volume: 79
  start-page: 219
  issue: 3
  year: 2004
  end-page: 228
  article-title: Effects of cationic polymer on start‐up and granulation in upflow anaerobic sludge blanket reactors
  publication-title: J Chem Technol Biotechnol
– volume: 42
  start-page: 457
  issue: 2–3
  year: 1994
  end-page: 462
  article-title: Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors
  publication-title: Appl Microbiol Biotechnol
– volume: 49
  start-page: 450
  issue: 4
  year: 1998
  end-page: 454
  article-title: Hydrogen production with high yield and high evolution rate by self‐flocculated cells of in a packed‐bed reactor
  publication-title: Appl Microbiol Biotechnol
– volume: 41
  start-page: 2118
  issue: 10
  year: 2006a
  end-page: 2123
  article-title: Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community
  publication-title: Process Biochem
– volume: 94
  start-page: 981
  issue: 6
  year: 2003
  end-page: 987
  article-title: Adhesion and aggregation ability of probiotic strain M92
  publication-title: J Appl Microbiol
– ident: e_1_2_1_27_1
  doi: 10.1002/bit.10654
– volume: 47
  start-page: 153
  issue: 1
  year: 2003
  ident: e_1_2_1_29_1
  article-title: Hydrogen production from wastewater by acidogenic granular sludge
  publication-title: Wat Sci Technol
  doi: 10.2166/wst.2003.0040
– ident: e_1_2_1_51_1
  doi: 10.1002/jctb.961
– volume: 65
  start-page: 2041
  issue: 5
  year: 1999
  ident: e_1_2_1_4_1
  article-title: Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.5.2041-2048.1999
– volume: 30
  start-page: 211
  issue: 11
  year: 1994
  ident: e_1_2_1_20_1
  article-title: Hydrophobicity of activated‐sludge flocs and laboratory‐grown bacteria
  publication-title: Wat Sci Technol
  doi: 10.2166/wst.1994.0561
– ident: e_1_2_1_38_1
  doi: 10.1002/bit.20269
– ident: e_1_2_1_24_1
  doi: 10.1002/bit.20174
– ident: e_1_2_1_41_1
  doi: 10.1007/s002530051197
– volume-title: Standard methods for the examination of water and wastewater
  year: 1998
  ident: e_1_2_1_2_1
– ident: e_1_2_1_30_1
  doi: 10.1023/A:1014459006210
– ident: e_1_2_1_22_1
  doi: 10.1002/bit.20844
– ident: e_1_2_1_46_1
  doi: 10.1016/S0141-0229(02)00309-5
– volume: 44
  start-page: 63
  issue: 6
  year: 2001
  ident: e_1_2_1_14_1
  article-title: The role of blending in polymer conditioning of waste activated sludge
  publication-title: Wat Sci Technol
  doi: 10.2166/wst.2001.0341
– ident: e_1_2_1_47_1
  doi: 10.1061/(ASCE)0733-9372(2000)126:5(403)
– ident: e_1_2_1_56_1
  doi: 10.1016/j.procbio.2005.02.029
– ident: e_1_2_1_31_1
  doi: 10.1016/S0043-1354(02)00351-2
– ident: e_1_2_1_32_1
  doi: 10.1007/s00253-003-1246-2
– ident: e_1_2_1_8_1
  doi: 10.1016/S0360-3199(02)00130-1
– ident: e_1_2_1_16_1
  doi: 10.1016/0043-1354(95)00323-1
– ident: e_1_2_1_33_1
  doi: 10.1016/j.enzmictec.2003.12.009
– ident: e_1_2_1_53_1
  doi: 10.1002/bit.20923
– ident: e_1_2_1_12_1
  doi: 10.1046/j.1365-2672.2000.00845.x
– ident: e_1_2_1_34_1
  doi: 10.1007/s00253-004-1657-8
– volume: 61
  start-page: 3676
  issue: 10
  year: 1995
  ident: e_1_2_1_10_1
  article-title: Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.61.10.3676-3680.1995
– ident: e_1_2_1_17_1
  doi: 10.1016/S0958-1669(99)80045-7
– ident: e_1_2_1_36_1
  doi: 10.1002/bit.20924
– ident: e_1_2_1_54_1
  doi: 10.1016/j.procbio.2006.05.021
– ident: e_1_2_1_37_1
  doi: 10.1016/j.chemosphere.2005.12.048
– ident: e_1_2_1_39_1
  doi: 10.1111/j.1472-765X.2003.01479.x
– ident: e_1_2_1_52_1
  doi: 10.1021/bp0201354
– ident: e_1_2_1_13_1
  doi: 10.1021/ac60111a017
– ident: e_1_2_1_28_1
  doi: 10.1016/S0168-1656(02)00025-1
– ident: e_1_2_1_3_1
  doi: 10.1061/(ASCE)0733-9372(2003)129:11(1007)
– ident: e_1_2_1_25_1
  doi: 10.1002/bit.260220402
– volume: 19
  start-page: 249
  issue: 1
  year: 1987
  ident: e_1_2_1_35_1
  article-title: The effect of calcium on microbial aggregation during UASB reactor start‐up
  publication-title: Wat Sci Technol
  doi: 10.2166/wst.1987.0206
– year: 2006
  ident: e_1_2_1_55_1
  article-title: Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor
  publication-title: Int J Hydrog Energy
– ident: e_1_2_1_43_1
  doi: 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M
– ident: e_1_2_1_5_1
  doi: 10.1038/nbt0996-1101
– ident: e_1_2_1_45_1
  doi: 10.1016/j.watres.2004.01.039
– ident: e_1_2_1_19_1
  doi: 10.1016/j.watres.2003.12.002
– ident: e_1_2_1_18_1
  doi: 10.1016/j.chemosphere.2003.09.038
– ident: e_1_2_1_11_1
  doi: 10.1016/S0360-3199(00)00058-6
– ident: e_1_2_1_23_1
  doi: 10.1016/S0141-0229(01)00394-5
– ident: e_1_2_1_50_1
  doi: 10.1016/S0927-7765(02)00188-1
– ident: e_1_2_1_26_1
  doi: 10.1016/S0043-1354(00)00277-3
– ident: e_1_2_1_9_1
  doi: 10.1007/s002530100814
– volume: 59
  start-page: 2437
  issue: 8
  year: 1993
  ident: e_1_2_1_6_1
  article-title: Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.59.8.2437-2441.1993
– ident: e_1_2_1_7_1
  doi: 10.1016/S0360-3199(03)00082-X
– ident: e_1_2_1_48_1
  doi: 10.1046/j.1365-2672.2001.01374.x
– ident: e_1_2_1_49_1
  doi: 10.1016/S0713-2743(06)80111-X
– ident: e_1_2_1_44_1
  doi: 10.1061/(ASCE)0733-9372(2004)130:7(743)
– ident: e_1_2_1_21_1
  doi: 10.1046/j.1365-2672.2003.01915.x
– volume: 64
  start-page: 21
  issue: 1
  year: 1998
  ident: e_1_2_1_40_1
  article-title: Surface properties of bifidobacterial strains of human origin
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.1.21-26.1998
– ident: e_1_2_1_42_1
  doi: 10.1007/BF00902757
– ident: e_1_2_1_15_1
  doi: 10.1002/bit.10174
SSID ssj0007866
Score 2.1833851
Snippet A novel approach to rapidly initiate granulation of hydrogen‐producing sludge was developed in an anaerobic continuous stirred tank reactor at 37°C. To induce...
A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 degrees C. To...
A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37...C. To...
A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 not equal to...
Abstract A novel approach to rapidly initiate granulation of hydrogen-producing sludge was developed in an anaerobic continuous stirred tank reactor at 37 deg...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1040
SubjectTerms acid incubation
Acids
Anaerobiosis - physiology
Biological and medical sciences
Biomass
Bioreactors
Biotechnology
continuous stirred tank reactor
extracellular polymers
Fundamental and applied biological sciences. Psychology
Hydrogen
Hydrogen - metabolism
Hydrogen production
Hydrogen-Ion Concentration
hydrogen-producing granule
hydrophobicity
Physicochemical properties
Proteins
Reactors
Retention
Saccharides
Sewage - chemistry
Sewage - microbiology
Sludge
Waste Disposal, Fluid
Zeta potential
Title Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation
URI https://api.istex.fr/ark:/67375/WNG-J3W7KSQN-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21243
https://www.ncbi.nlm.nih.gov/pubmed/17089398
https://www.proquest.com/docview/213760822
https://www.proquest.com/docview/19688883
https://www.proquest.com/docview/30081327
https://www.proquest.com/docview/70236461
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-3592
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0290
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007866
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9NQwh44E_HnzAYFkLTXtKliRMn4mmbGGOISoxN2wNSdHYdiDrSKm0kCi98BD4jn4Sz06QUrRKiykOUXOPkfD7_bJ9_B_DC81TEJWo3STLhchUjtTnF3QDJW_rUnhDNfud3_ejojB9fhBdr8LLZC1PzQ7QTbqZlWH9tGjjKye6CNFTm0y75XW6YPntBaJdoTxbUUSKu1ynNiDkIE79hFfL83fafS33RNaPWryY2EieknqzOa3EV8FzGsbYjOrwDH5tPqONPht1qKrvq21_sjv_5jXfh9hygsr3aou7Bmi46sLFX0OD8y4xtMxsyaufiO3B9vzm7cdAkjuvArT84Djfg-wmO8wFrN0myUcY-zwbliCz314-fY8s4S5LsE6miutQTlhcMzYHacEQpZqLp86IaVRNG_qgs9YARoh0ygrtmxYHk6Ql0Uc4YKioqL1QlbVn34ezw1enBkTvP-OAqQ8vvZr7INMaYyIhsi2otUWRDPgovUzyjwRl5E6T-VQaJUpywDPqaHI4mHKUJiQyCB7BejAr9CBj2uOIecmm3WWAkPSUIuoSZp7iQmXZgp6n7VM3p0E1Wjsu0JnL2U1J-apXvwPNWdFxzgFwltG0NqJXAcmiC5kSYnvdfp8fBuXj74X0_jR3YWrKwxSPjiEarfujAZmNy6dyhTKgME71EaM6BZ-1dqlezvIOFpipIyZfG9AtWSwQGAAa-WC0hbEKBqOfAw9rWF28nPIK2Cb3-jrXY1ZpI99-c2pPH_y66CTfrSXPu9sInsD4tK_2U0N5Ubtlm_RsfvFJs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTWjwwJ8ORhhsFkLTXtKliRMnEi_bYHT_KjE6bS_Isl1nVB1p1TYShRc-Ap-RT8LZaVKKVglR5SFKrnFyvjv_bJ9_BnjteSqiUmg3SVLmUhUL9DlF3UBgtPTRn4Qw653PWlHzgh5fhVdL8KZcC1PwQ1QDbsYzbLw2Dm4GpHdnrKGyO65j4KXBHVgx83PGLd-ez8ijWFzMVJo-cxAmfskr5Pm71V_nWqMVo9ivJjtSjFBBabGzxW3Qcx7J2qbo8CF8Kj-iyEDp1fOxrKtvf_E7_u9XPoIHU4xK9gqjegxLOqvB2l6G_fMvE7JNbNaoHY6vwd398mz1oNw7rgb3_6A5XIPv52LQ7ZBqnSTpp-TzpDPso_H--vFzYElnUZJcoy7yGz0i3YwIcwhtaKIUMQn13Szv5yOCIWk41B2CoLZHEPGaSQeUxyfgRTkhQmFR3Uzl0pb1BC4O37UPmu500wdXGWZ-N_VZqkUsEhmheWG1JQrNyBfMSxVNsX-GAUVgEyuDRCmKcEb4GmOORiilEYx0gqewnPUz_QyIaFBFPUGlXWkhIukphuglTD1FmUy1Aztl5XM1ZUQ3G3Pc8ILL2eeofG6V78CrSnRQ0IDcJrRtLaiSEMOeyZtjIb9svefHwSU7-fihxWMHNudMbPbIOMIOqx86sFHaHJ_GlBGWYRKYENA5sFXdxXo1Mzwi01gFHMNpjL9gsURgMGDgs8USzO4pEDUcWC-MffZ2zEN0m-Dr71iTXawJvn_UtifP_110C1ab7bNTfnrUOtmAe8UYOnUb4QtYHg9z_RLB31huWh__DRFxVog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7g9cOm4hMFmITTtJV2aOHEinrZB2QUq2EXbA5JlOw5UHWnVNhKFF34Cv5FfwrHTpBStEqLKQ5Scxsnx8fF37OPPAC88T0VUCu0mScZcqmKBbU5RNxDoLX1sT0KY9c7vOtH-GT28CC-W4GW1Fqbkh6gH3EzLsP7aNPBBmm3PSENld9xEv0uDa7BCI4yuDCI6nnFHsbicqDQhcxAmfkUr5Pnb9V_nOqMVo9evJjlSjFA_WbmxxVXIcx7I2p6ofRc-Vt9QJqD0msVYNtW3v-gd__Mj78GdKUIlO6VJ3YclnTdgdSfH6PzLhGwSmzNqB-MbcH23Oru5V-0c14Dbf5AcrsL3YzHopqReJUn6Gfk8SYd9NN1fP34OLOUsSpJPqIriUo9INyfCHEIbkihFTDp9Ny_6xYigQxoOdUoQ0vYI4l0z5YDy-AS8KCdEKCyqm6tC2rIewFn79enevjvd8sFVhpffzXyWaRGLREZoXFhriUIj8gXzMkUzjM7QnQjsYGWQKEURzAhfo8fRCKQ0QpE0eAjLeT_Xj4GIFlXUE1TadRYikp5iiF3CzFOUyUw7sFXVPVdTPnSzLcclL5mcfY7K51b5DjyvRQclCchVQpvWgGoJMeyZrDkW8vPOG34YnLOjkw8dHjuwPmdhs0fGEYarfujAWmVyfOpRRliGSV9COOfARn0X69XM74hcYxVwdKYx_oLFEoFBgIHPFkswu6NA1HLgUWnrs7djHmLbBF9_y1rsYk3w3YNTe_Lk30U34Mb7V23-9qBztAa3ygF06rbCp7A8Hhb6GSK_sVy3Lfw30VhVNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+formation+of+hydrogen-producing+granules+in+an+anaerobic+continuous+stirred+tank+reactor+induced+by+acid+incubation&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Zhang%2C+Zhen-Peng&rft.au=Show%2C+Kuan-Yeow&rft.au=Tay%2C+Joo-Hwa&rft.au=Liang%2C+David+Tee&rft.date=2007-04-15&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=96&rft.issue=6&rft.spage=1040&rft.epage=1050&rft_id=info:doi/10.1002%2Fbit.21243&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon