Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters

Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 7; pp. E854 - E863
Main Authors Cheung, Kevin J., Padmanaban, Veena, Silvestri, Vanesa, Schipper, Koen, Cohen, Joshua D., Fairchild, Amanda N., Gorin, Michael A., Verdone, James E., Pienta, Kenneth J., Bader, Joel S., Ewald, Andrew J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.02.2016
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1508541113

Cover

Abstract Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14⁺ cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14⁺ epithelial tumor cell clusters disseminate collectively to colonize distant organs.
AbstractList Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Conventional models of cancer progression propose that single cells leave the primary tumor, enter the circulation, and seed clonal metastases. However, metastases can contain multiple clones, raising the question: How do polyclonal metastases form? We demonstrate that cancer cells seed distant organs as cohesive clusters, composed of two molecularly distinct subpopulations, whose proportions vary systematically during metastasis. We establish that collective dissemination is a frequent mechanism for metastasis and identify a molecular program in the most invasive, keratin 14 + (K14 + ) cancer cells, regulating cell–cell adhesion, cell–matrix adhesion, and immune evasion. We demonstrate that this metastatic phenotype is dependent upon K14 expression. Understanding the molecular basis of collective dissemination may therefore enable novel prognostics and therapies to improve patient outcomes. Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14 + cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C ( Tnc ), Jagged1 ( Jag1 ), and Epiregulin ( Ereg ). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14 + epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Conventional models of cancer progression propose that single cells leave the primary tumor, enter the circulation, and seed clonal metastases. However, metastases can contain multiple clones, raising the question: How do polyclonal metastases form? We demonstrate that cancer cells seed distant organs as cohesive clusters, composed of two molecularly distinct subpopulations, whose proportions vary systematically during metastasis. We establish that collective dissemination is a frequent mechanism for metastasis and identify a molecular program in the most invasive, keratin 14+ (K14+) cancer cells, regulating cell–cell adhesion, cell–matrix adhesion, and immune evasion. We demonstrate that this metastatic phenotype is dependent upon K14 expression. Understanding the molecular basis of collective dissemination may therefore enable novel prognostics and therapies to improve patient outcomes. Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14+ cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14+ epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14⁺ cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14⁺ epithelial tumor cell clusters disseminate collectively to colonize distant organs.
SignificanceConventional models of cancer progression propose that single cells leave the primary tumor, enter the circulation, and seed clonal metastases. However, metastases can contain multiple clones, raising the question: How do polyclonal metastases form? We demonstrate that cancer cells seed distant organs as cohesive clusters, composed of two molecularly distinct subpopulations, whose proportions vary systematically during metastasis. We establish that collective dissemination is a frequent mechanism for metastasis and identify a molecular program in the most invasive, keratin 14+ (K14+) cancer cells, regulating cell–cell adhesion, cell–matrix adhesion, and immune evasion. We demonstrate that this metastatic phenotype is dependent upon K14 expression. Understanding the molecular basis of collective dissemination may therefore enable novel prognostics and therapies to improve patient outcomes. Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14+ cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14+ epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs.Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Author Cohen, Joshua D.
Pienta, Kenneth J.
Ewald, Andrew J.
Padmanaban, Veena
Verdone, James E.
Schipper, Koen
Cheung, Kevin J.
Gorin, Michael A.
Fairchild, Amanda N.
Bader, Joel S.
Silvestri, Vanesa
Author_xml – sequence: 1
  givenname: Kevin J.
  surname: Cheung
  fullname: Cheung, Kevin J.
  organization: Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
– sequence: 2
  givenname: Veena
  surname: Padmanaban
  fullname: Padmanaban, Veena
  organization: Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
– sequence: 3
  givenname: Vanesa
  surname: Silvestri
  fullname: Silvestri, Vanesa
  organization: Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
– sequence: 4
  givenname: Koen
  surname: Schipper
  fullname: Schipper, Koen
  organization: Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
– sequence: 5
  givenname: Joshua D.
  surname: Cohen
  fullname: Cohen, Joshua D.
  organization: Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
– sequence: 6
  givenname: Amanda N.
  surname: Fairchild
  fullname: Fairchild, Amanda N.
  organization: Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
– sequence: 7
  givenname: Michael A.
  surname: Gorin
  fullname: Gorin, Michael A.
  organization: The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
– sequence: 8
  givenname: James E.
  surname: Verdone
  fullname: Verdone, James E.
  organization: The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
– sequence: 9
  givenname: Kenneth J.
  surname: Pienta
  fullname: Pienta, Kenneth J.
  organization: The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
– sequence: 10
  givenname: Joel S.
  surname: Bader
  fullname: Bader, Joel S.
  organization: Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205
– sequence: 11
  givenname: Andrew J.
  surname: Ewald
  fullname: Ewald, Andrew J.
  organization: Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26831077$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVAR3S6cOYEscUFCae04tuMLEqr4kirBAc6R40yKF8debKew_x6nu9DSA3DyWPPem_dmTtCRDx4QekzJKSWSnW29TqeUk5Y3lFJ2D60oUbQSjSJHaEVILau2qZtjdJLShhCieEseoONatKzw5Qrlj8HtjAteO9xH0Cljo72BiCfI5acTJKyjTYDHGCZsgnNgsr0CPNiUYLJeZxs8DiP-CrHUHtOmgh_bCClZf4nzPIWIDTiHjZtThpgeovujdgkeHd41-vzm9afzd9XFh7fvz19dVIY3PFcjobLnrW5Uz3XNe8UGKrSS42Bor3rg9dCTEp6BVsIYPYIAyjjpRcMU4y1bI7LXnf1W775r57pttJOOu46Sbllgtyywu1lgobzcU7ZzP8FgwOeob2hB2-7Pjrdfustw1TVSMNkuAs8PAjF8myHlbrJpSa89hLnMkkLUQhKpCvTZHegmzLFcYkFJoti14ho9ve3ot5VfNyyAsz3AxJBShPE_QvI7DGPz9RlLJOv-wntxsLI0_j3lyR69STnEW74bIYtt9hMo_Nny
CitedBy_id crossref_primary_10_1002_ijc_32910
crossref_primary_10_1038_s41598_017_01150_3
crossref_primary_10_1080_21688370_2017_1356900
crossref_primary_10_1007_s10529_020_03074_x
crossref_primary_10_1158_1541_7786_MCR_20_0334
crossref_primary_10_1242_jcs_226753
crossref_primary_10_1016_j_bone_2020_115693
crossref_primary_10_3892_ijmm_2017_3320
crossref_primary_10_1016_j_trecan_2024_03_004
crossref_primary_10_1016_j_xcrm_2021_100404
crossref_primary_10_1016_j_aca_2017_12_050
crossref_primary_10_1038_s41580_018_0080_4
crossref_primary_10_3390_cancers11101459
crossref_primary_10_1242_dmm_030403
crossref_primary_10_1016_j_devcel_2018_02_015
crossref_primary_10_1016_j_tice_2023_102208
crossref_primary_10_3390_cancers11101575
crossref_primary_10_1158_0008_5472_CAN_18_2757
crossref_primary_10_1007_s10911_018_9412_4
crossref_primary_10_1016_j_trecan_2020_11_003
crossref_primary_10_1186_s12862_023_02147_5
crossref_primary_10_1016_j_cobme_2017_08_001
crossref_primary_10_1053_j_gastro_2023_02_047
crossref_primary_10_3390_ijms251910612
crossref_primary_10_1073_pnas_1815345116
crossref_primary_10_1007_s11912_019_0842_y
crossref_primary_10_1016_j_pbiomolbio_2024_11_005
crossref_primary_10_1007_s11255_023_03923_4
crossref_primary_10_1186_s12885_024_12214_9
crossref_primary_10_1093_carcin_bgx030
crossref_primary_10_3389_fonc_2021_645698
crossref_primary_10_1051_medsci_2018195
crossref_primary_10_3390_cancers12040867
crossref_primary_10_18632_oncotarget_12000
crossref_primary_10_1101_sqb_2016_81_030957
crossref_primary_10_3390_cancers11091228
crossref_primary_10_1038_s41559_019_1046_4
crossref_primary_10_1016_j_biopha_2024_117474
crossref_primary_10_1016_j_molcel_2020_08_017
crossref_primary_10_1038_s41419_019_1618_x
crossref_primary_10_3389_fcell_2020_00749
crossref_primary_10_1158_0008_5472_CAN_16_2072
crossref_primary_10_1038_s41580_021_00375_5
crossref_primary_10_1016_j_cell_2016_11_037
crossref_primary_10_3390_cancers15072169
crossref_primary_10_1146_annurev_cancerbio_030518_055425
crossref_primary_10_1186_s13046_024_03011_0
crossref_primary_10_7554_eLife_63518
crossref_primary_10_3389_fonc_2021_601668
crossref_primary_10_1111_1759_7714_14728
crossref_primary_10_1007_s10439_020_02679_7
crossref_primary_10_1016_j_medidd_2023_100158
crossref_primary_10_1186_s12964_024_01957_4
crossref_primary_10_1038_s43018_020_0068_9
crossref_primary_10_1016_j_biomaterials_2021_120922
crossref_primary_10_3389_fcell_2018_00048
crossref_primary_10_1016_j_bbcan_2018_07_001
crossref_primary_10_3389_fonc_2020_00623
crossref_primary_10_1007_s10585_021_10090_2
crossref_primary_10_7554_eLife_76520
crossref_primary_10_1083_jcb_202302076
crossref_primary_10_1158_0008_5472_CAN_16_3152
crossref_primary_10_1091_mbc_E19_02_0124
crossref_primary_10_1111_cpr_12589
crossref_primary_10_1371_journal_pone_0304404
crossref_primary_10_26508_lsa_201900425
crossref_primary_10_18632_oncotarget_25692
crossref_primary_10_1158_0008_5472_CAN_16_3279
crossref_primary_10_1186_s12943_022_01506_y
crossref_primary_10_3390_cancers17061027
crossref_primary_10_3389_fcell_2023_1221784
crossref_primary_10_1073_pnas_1819408116
crossref_primary_10_1074_jbc_RA119_010252
crossref_primary_10_1038_s41598_021_82102_w
crossref_primary_10_1186_s12935_023_02896_9
crossref_primary_10_1083_jcb_201903066
crossref_primary_10_3390_cancers13194798
crossref_primary_10_3390_cancers15030584
crossref_primary_10_1098_rstb_2020_0087
crossref_primary_10_1080_07357907_2024_2416166
crossref_primary_10_1111_cas_14285
crossref_primary_10_1016_j_biomaterials_2023_122128
crossref_primary_10_1002_jcb_25553
crossref_primary_10_1007_s10911_020_09464_1
crossref_primary_10_18632_oncotarget_25360
crossref_primary_10_3390_cancers12030743
crossref_primary_10_1007_s10585_017_9858_6
crossref_primary_10_1016_j_semcancer_2021_12_006
crossref_primary_10_1016_j_ceb_2023_102160
crossref_primary_10_1242_jcs_205740
crossref_primary_10_1016_j_ceb_2018_04_008
crossref_primary_10_37349_etat_2021_00046
crossref_primary_10_3390_ijms232213931
crossref_primary_10_1111_his_13828
crossref_primary_10_1016_j_sjbs_2022_103318
crossref_primary_10_1038_s41568_020_00300_6
crossref_primary_10_4111_icu_2018_59_3_149
crossref_primary_10_1158_0008_5472_CAN_18_2828
crossref_primary_10_3892_ijo_2016_3747
crossref_primary_10_1016_j_prp_2024_155378
crossref_primary_10_1134_S0006297918120052
crossref_primary_10_3389_fimmu_2020_565165
crossref_primary_10_1007_s00018_023_04902_9
crossref_primary_10_3389_fonc_2017_00220
crossref_primary_10_1002_cbin_11882
crossref_primary_10_1186_s12885_019_5883_y
crossref_primary_10_1016_j_tranon_2020_100909
crossref_primary_10_1016_j_jsamd_2019_01_006
crossref_primary_10_1093_g3journal_jkab356
crossref_primary_10_1002_cso2_1015
crossref_primary_10_1016_j_semcancer_2019_07_020
crossref_primary_10_1186_s13058_019_1182_4
crossref_primary_10_1007_s12032_016_0875_0
crossref_primary_10_1002_ags3_12182
crossref_primary_10_1002_ppsc_202100276
crossref_primary_10_1016_j_isci_2022_104678
crossref_primary_10_3389_fcell_2018_00112
crossref_primary_10_1016_j_cell_2022_02_027
crossref_primary_10_3390_cancers13112727
crossref_primary_10_1111_febs_16021
crossref_primary_10_1007_s00109_021_02162_3
crossref_primary_10_1016_j_prp_2022_153958
crossref_primary_10_1103_PhysRevE_110_064401
crossref_primary_10_1038_s41467_019_10269_y
crossref_primary_10_1016_j_celrep_2022_111298
crossref_primary_10_1126_sciadv_adh4184
crossref_primary_10_3390_ijms20061466
crossref_primary_10_1371_journal_pone_0306450
crossref_primary_10_1038_s41586_024_07302_6
crossref_primary_10_1038_s41588_020_0628_z
crossref_primary_10_1371_journal_pbio_3000051
crossref_primary_10_2174_1871520621666210712090017
crossref_primary_10_3390_cells13060495
crossref_primary_10_3389_fcell_2023_1125782
crossref_primary_10_1016_j_trecan_2023_03_002
crossref_primary_10_1038_s41467_022_34863_9
crossref_primary_10_1016_j_ceb_2020_05_006
crossref_primary_10_1038_s41388_019_0781_y
crossref_primary_10_1038_s41422_018_0058_y
crossref_primary_10_1126_science_aaf6546
crossref_primary_10_1002_admt_202400477
crossref_primary_10_1158_0008_5472_CAN_22_0906
crossref_primary_10_1016_j_isci_2022_103969
crossref_primary_10_1007_s00109_020_01874_2
crossref_primary_10_1158_1078_0432_CCR_17_1425
crossref_primary_10_1038_s41388_022_02586_2
crossref_primary_10_1101_cshperspect_a036905
crossref_primary_10_1038_s41540_024_00463_0
crossref_primary_10_1186_s12859_017_1869_4
crossref_primary_10_1242_dmm_050542
crossref_primary_10_18632_oncotarget_13175
crossref_primary_10_1038_s41576_025_00825_2
crossref_primary_10_1016_j_bbagen_2023_130375
crossref_primary_10_3390_cancers12061632
crossref_primary_10_1158_0008_5472_CAN_23_1490
crossref_primary_10_1007_s40291_021_00543_5
crossref_primary_10_1111_cas_13574
crossref_primary_10_1063_1_5084736
crossref_primary_10_3389_fcell_2020_00461
crossref_primary_10_1038_s41388_020_01508_4
crossref_primary_10_1186_s12935_019_1067_8
crossref_primary_10_3390_ijms25094832
crossref_primary_10_1007_s10585_021_10139_2
crossref_primary_10_1016_j_heliyon_2022_e10160
crossref_primary_10_1038_nrc_2018_15
crossref_primary_10_1016_j_matbio_2019_07_001
crossref_primary_10_1038_s41467_022_31009_9
crossref_primary_10_1098_rsos_202219
crossref_primary_10_3390_jcm8050725
crossref_primary_10_1016_j_devcel_2020_01_025
crossref_primary_10_2139_ssrn_3305559
crossref_primary_10_3390_ijms251910554
crossref_primary_10_1016_j_jocs_2024_102237
crossref_primary_10_1016_j_tranon_2020_100959
crossref_primary_10_1371_journal_pone_0196986
crossref_primary_10_1016_j_devcel_2022_10_004
crossref_primary_10_1007_s10528_024_10975_3
crossref_primary_10_1083_jcb_202202146
crossref_primary_10_2139_ssrn_3316799
crossref_primary_10_1038_ncomms15008
crossref_primary_10_1016_j_coisb_2017_02_004
crossref_primary_10_1371_journal_pone_0267882
crossref_primary_10_1007_s10238_024_01518_6
crossref_primary_10_1084_jem_20190218
crossref_primary_10_1007_s12672_024_00949_7
crossref_primary_10_3389_fendo_2022_1081585
crossref_primary_10_1016_j_devcel_2022_12_005
crossref_primary_10_1088_1361_648X_aabd9f
crossref_primary_10_3389_fcell_2022_918795
crossref_primary_10_61634_2782_3024_2023_11_49_56
crossref_primary_10_3390_ijms21051671
crossref_primary_10_3389_fcell_2021_704939
crossref_primary_10_3390_cancers14163985
crossref_primary_10_1016_j_tranon_2020_100845
crossref_primary_10_1111_cas_15891
crossref_primary_10_1073_pnas_2214888120
crossref_primary_10_3390_cancers11010089
crossref_primary_10_3389_fonc_2021_641187
crossref_primary_10_1007_s00018_021_04077_1
crossref_primary_10_1002_ijc_32672
crossref_primary_10_1038_s41388_020_1288_2
crossref_primary_10_1038_s41467_019_12412_1
crossref_primary_10_1007_s11684_018_0656_6
crossref_primary_10_1186_s13058_023_01651_2
crossref_primary_10_12688_f1000research_15064_2
crossref_primary_10_3389_fmed_2021_620988
crossref_primary_10_12688_f1000research_15064_1
crossref_primary_10_1039_c6ib00202A
crossref_primary_10_1091_mbc_E19_05_0304
crossref_primary_10_1210_endocr_bqae022
crossref_primary_10_1021_acsbiomaterials_4c00245
crossref_primary_10_1016_j_bj_2019_11_002
crossref_primary_10_1242_jcs_242495
crossref_primary_10_1002_smll_201601394
crossref_primary_10_1146_annurev_cellbio_111315_125201
crossref_primary_10_3390_ijms21072653
crossref_primary_10_3233_BLC_170111
crossref_primary_10_1007_s12672_022_00543_9
crossref_primary_10_1038_aps_2017_189
crossref_primary_10_1080_14737159_2020_1846523
crossref_primary_10_1093_intbio_zyz019
crossref_primary_10_3389_fonc_2023_1116783
crossref_primary_10_1371_journal_pone_0156904
crossref_primary_10_1038_s41598_021_99951_0
crossref_primary_10_1007_s10555_023_10109_y
crossref_primary_10_1038_s41568_023_00574_6
crossref_primary_10_1016_j_mam_2019_09_001
crossref_primary_10_1016_j_humgen_2024_201341
crossref_primary_10_1172_JCI183971
crossref_primary_10_1089_cmb_2023_0352
crossref_primary_10_3390_ijms232012141
crossref_primary_10_1002_dvdy_24506
crossref_primary_10_1126_sciadv_abb3308
crossref_primary_10_1371_journal_pcbi_1009011
crossref_primary_10_1016_j_cellsig_2024_111465
crossref_primary_10_1007_s10549_022_06819_6
crossref_primary_10_1038_nrc_2017_83
crossref_primary_10_1038_s41388_024_03127_9
crossref_primary_10_1371_journal_pone_0209591
crossref_primary_10_1038_s41598_020_65566_0
crossref_primary_10_3390_cancers11091368
crossref_primary_10_3390_ijms22041821
crossref_primary_10_1242_dmm_048887
crossref_primary_10_1016_j_apmt_2019_100450
crossref_primary_10_3390_cancers10070212
crossref_primary_10_1158_0008_5472_CAN_21_3302
crossref_primary_10_1038_s41467_022_35059_x
crossref_primary_10_15252_embj_2021108647
crossref_primary_10_1172_JCI96149
crossref_primary_10_1039_C9LC01122F
crossref_primary_10_1016_j_stemcr_2019_05_026
crossref_primary_10_1002_admt_202301306
crossref_primary_10_3390_cancers12123588
crossref_primary_10_1158_1541_7786_MCR_21_0866
crossref_primary_10_1172_JCI162054
crossref_primary_10_1093_molbev_msy115
crossref_primary_10_1002_jcp_29828
crossref_primary_10_3389_fcell_2017_00081
crossref_primary_10_1038_s41467_019_09676_y
crossref_primary_10_1016_j_celrep_2023_113470
crossref_primary_10_1242_dev_172056
crossref_primary_10_3390_ijms222312828
crossref_primary_10_1172_JCI164227
crossref_primary_10_1093_gigascience_giab036
crossref_primary_10_1016_j_cell_2017_01_018
crossref_primary_10_1016_j_bpj_2024_01_007
crossref_primary_10_1098_rspb_2019_2186
crossref_primary_10_1016_j_mehy_2023_111209
crossref_primary_10_3390_biomedicines10010003
crossref_primary_10_1038_s41416_021_01327_8
crossref_primary_10_3390_cells8070683
crossref_primary_10_1186_s13045_023_01433_5
crossref_primary_10_3389_fmed_2018_00085
crossref_primary_10_1038_s41388_018_0378_x
crossref_primary_10_1038_s41467_020_18794_x
crossref_primary_10_3390_cancers12102861
crossref_primary_10_1016_j_pharmthera_2017_08_009
crossref_primary_10_21294_1814_4861_2023_22_5_71_83
crossref_primary_10_1039_D0LC00089B
crossref_primary_10_3390_ijms21051696
crossref_primary_10_3390_ijms23116271
crossref_primary_10_3390_ijms24043338
crossref_primary_10_3389_fcell_2023_1076432
crossref_primary_10_1038_s41467_018_06401_z
crossref_primary_10_1136_esmoopen_2016_000078
crossref_primary_10_3390_cancers13092189
crossref_primary_10_1126_sciadv_abg7265
crossref_primary_10_1038_ncomms15078
crossref_primary_10_1083_jcb_202001134
crossref_primary_10_1039_C6LC01496H
crossref_primary_10_1371_journal_pone_0296153
crossref_primary_10_1016_j_biomaterials_2019_119572
crossref_primary_10_1242_jcs_231514
crossref_primary_10_1186_s13058_023_01696_3
crossref_primary_10_3390_ijtm1010005
crossref_primary_10_1016_j_trecan_2016_06_004
crossref_primary_10_1186_s12935_022_02782_w
crossref_primary_10_3390_biom14060674
crossref_primary_10_1016_j_biopha_2021_111314
crossref_primary_10_1371_journal_pone_0171341
crossref_primary_10_3389_fonc_2022_944487
crossref_primary_10_1002_cncr_32903
crossref_primary_10_1158_0008_5472_CAN_21_3863
crossref_primary_10_1242_dmm_034330
crossref_primary_10_1007_s10911_020_09470_3
crossref_primary_10_1007_s00432_023_04576_7
crossref_primary_10_1515_almed_2020_0038
crossref_primary_10_1016_j_jasc_2019_09_001
crossref_primary_10_1111_eva_12943
crossref_primary_10_1111_his_15395
crossref_primary_10_1016_j_apsb_2019_10_005
crossref_primary_10_1002_1878_0261_12083
crossref_primary_10_1002_1878_0261_12084
crossref_primary_10_1016_j_bpj_2021_02_014
crossref_primary_10_3390_biom12121862
crossref_primary_10_3389_fcell_2020_592616
crossref_primary_10_1002_ijc_32159
crossref_primary_10_1016_j_isci_2022_103917
crossref_primary_10_1002_ijc_34457
crossref_primary_10_1007_s00018_024_05183_6
crossref_primary_10_1093_pnasnexus_pgae014
crossref_primary_10_1038_s41598_018_23217_5
crossref_primary_10_1126_scitranslmed_abn7571
crossref_primary_10_1186_s13046_021_02086_3
crossref_primary_10_1016_j_ceb_2016_06_002
crossref_primary_10_3390_cancers13174380
crossref_primary_10_1021_acsnano_8b06305
crossref_primary_10_3389_fmed_2018_00034
crossref_primary_10_1016_j_semcancer_2023_04_002
crossref_primary_10_1016_j_biochi_2022_05_012
crossref_primary_10_1038_s41588_025_02120_6
crossref_primary_10_1146_annurev_pathmechdis_031521_023557
crossref_primary_10_3892_mco_2023_2667
crossref_primary_10_1007_s43152_025_00059_8
crossref_primary_10_1016_j_bbcan_2017_09_004
crossref_primary_10_1016_j_heliyon_2024_e39148
crossref_primary_10_3390_cancers13143530
crossref_primary_10_1038_s41586_019_0915_y
crossref_primary_10_1016_j_celrep_2019_12_056
crossref_primary_10_1002_1878_0261_12091
crossref_primary_10_1007_s10585_020_10033_3
crossref_primary_10_54097_hset_v36i_6261
crossref_primary_10_1371_journal_pcbi_1007682
crossref_primary_10_1007_s00018_019_03169_3
crossref_primary_10_1016_j_cmet_2019_07_014
crossref_primary_10_2139_ssrn_3921280
crossref_primary_10_1083_jcb_202311002
crossref_primary_10_1016_j_gene_2022_146504
crossref_primary_10_1016_j_cub_2021_11_040
crossref_primary_10_1016_j_cmet_2021_05_009
crossref_primary_10_1515_psr_2021_0169
crossref_primary_10_1136_bmjonc_2024_000437
crossref_primary_10_1038_s41580_023_00585_z
crossref_primary_10_1021_acs_jproteome_9b00287
crossref_primary_10_1016_j_path_2018_04_008
crossref_primary_10_1038_s41598_021_85743_z
crossref_primary_10_1002_smll_202106097
crossref_primary_10_1016_j_celrep_2020_108105
crossref_primary_10_1158_0008_5472_CAN_19_1726
crossref_primary_10_1210_endocr_bqae092
crossref_primary_10_1186_s40659_024_00490_5
crossref_primary_10_1038_s41568_019_0213_x
crossref_primary_10_3390_cells11233885
crossref_primary_10_1073_pnas_1522656113
crossref_primary_10_1016_j_devcel_2020_10_011
crossref_primary_10_1038_s41467_021_21160_0
crossref_primary_10_1038_s41598_021_89130_6
crossref_primary_10_1016_j_lungcan_2018_11_020
crossref_primary_10_1515_almed_2020_0009
crossref_primary_10_3389_fonc_2022_990398
crossref_primary_10_1038_s41576_023_00601_0
crossref_primary_10_1038_s43018_020_0081_z
crossref_primary_10_1097_MOH_0000000000000852
crossref_primary_10_1016_j_biopha_2024_117726
crossref_primary_10_1158_0008_5472_CAN_17_2748
crossref_primary_10_1016_j_cell_2020_08_045
crossref_primary_10_3390_jcm8050646
crossref_primary_10_1371_journal_pcbi_1007464
crossref_primary_10_1111_imcb_12658
crossref_primary_10_1016_j_devcel_2020_10_004
crossref_primary_10_1016_j_pdpdt_2020_101755
crossref_primary_10_1016_j_bbcan_2021_188660
crossref_primary_10_1038_s41523_017_0023_9
crossref_primary_10_3389_fimmu_2023_1192907
crossref_primary_10_1016_j_trecan_2017_09_001
crossref_primary_10_1242_jcs_250225
crossref_primary_10_3390_cancers12123622
crossref_primary_10_1088_1478_3975_aaf8d4
crossref_primary_10_1038_s41388_019_0899_y
crossref_primary_10_3389_fmolb_2020_00072
crossref_primary_10_3389_fcell_2022_1048630
crossref_primary_10_1007_s40610_017_0073_7
crossref_primary_10_1016_j_ijbiomac_2025_141752
crossref_primary_10_2174_1389201021666201211102710
crossref_primary_10_3390_biomedicines12092137
crossref_primary_10_1016_j_yexcr_2019_06_026
crossref_primary_10_1242_dev_155200
crossref_primary_10_1007_s13402_023_00877_8
crossref_primary_10_1016_j_ebiom_2023_104444
crossref_primary_10_1016_j_tips_2022_02_005
crossref_primary_10_1038_s41585_018_0119_5
crossref_primary_10_3389_fgene_2023_1265866
crossref_primary_10_2217_bmm_2016_0192
crossref_primary_10_1242_jcs_214379
crossref_primary_10_3390_biomedicines8060169
crossref_primary_10_1038_s41392_025_02148_4
crossref_primary_10_1117_1_JBO_29_6_065003
crossref_primary_10_1002_cm_21963
crossref_primary_10_1093_carcin_bgz172
crossref_primary_10_1093_intbio_zyae005
crossref_primary_10_5812_ijcm_6019
crossref_primary_10_1186_s12885_023_10916_0
crossref_primary_10_1016_j_trecan_2019_10_003
crossref_primary_10_3389_fimmu_2022_849701
crossref_primary_10_1038_s41568_019_0221_x
crossref_primary_10_3390_cancers12051111
crossref_primary_10_1016_j_bbcan_2019_06_002
crossref_primary_10_1016_j_cell_2022_03_013
crossref_primary_10_1038_s41392_024_01938_6
crossref_primary_10_1016_j_cej_2024_158682
crossref_primary_10_1038_srep41707
crossref_primary_10_1016_j_lfs_2022_121215
crossref_primary_10_3390_genes11010006
crossref_primary_10_1007_s10555_024_10198_3
crossref_primary_10_3389_fcell_2022_887107
crossref_primary_10_1039_D0BM00969E
crossref_primary_10_3389_fonc_2018_00244
crossref_primary_10_1186_s13073_020_00728_3
crossref_primary_10_1088_1478_3975_aaffa1
crossref_primary_10_1115_1_4035121
crossref_primary_10_1016_j_trecan_2021_07_001
crossref_primary_10_1016_j_trecan_2021_11_002
crossref_primary_10_1098_rsos_161007
crossref_primary_10_1016_j_tranon_2021_101026
crossref_primary_10_1039_C9NA00021F
crossref_primary_10_1146_annurev_pathol_020117_043854
crossref_primary_10_1007_s00018_020_03529_4
crossref_primary_10_1016_j_isci_2023_106827
crossref_primary_10_1038_s41568_022_00536_4
crossref_primary_10_1158_2159_8290_CD_23_1332
crossref_primary_10_1016_j_celrep_2019_08_029
crossref_primary_10_3238_PersOnko_2016_09_30_02
crossref_primary_10_3389_fonc_2023_1201497
crossref_primary_10_1126_sciadv_abf4408
crossref_primary_10_1038_s41698_019_0095_0
crossref_primary_10_1080_19932820_2021_1994741
crossref_primary_10_1038_s41588_018_0106_z
crossref_primary_10_1152_ajpcell_00109_2021
crossref_primary_10_12688_f1000research_15782_1
crossref_primary_10_1155_2021_9573540
crossref_primary_10_1038_s41467_024_47227_2
crossref_primary_10_1038_s41598_018_30683_4
crossref_primary_10_1084_jem_20181184
crossref_primary_10_18632_oncotarget_26850
crossref_primary_10_1186_s12943_022_01577_x
crossref_primary_10_3389_fonc_2018_00063
crossref_primary_10_1016_j_cels_2019_07_003
crossref_primary_10_1186_s12885_021_08589_8
crossref_primary_10_1016_j_devcel_2018_11_038
crossref_primary_10_1038_s41568_021_00376_8
crossref_primary_10_1242_jcs_188599
crossref_primary_10_1038_s41556_018_0268_z
crossref_primary_10_3389_fimmu_2025_1524781
crossref_primary_10_1126_sciadv_aay9691
crossref_primary_10_1016_j_isci_2024_111133
crossref_primary_10_1016_j_devcel_2019_04_002
crossref_primary_10_1038_s41388_019_1105_y
crossref_primary_10_1371_journal_pcbi_1012195
crossref_primary_10_1016_j_canlet_2022_215983
crossref_primary_10_1038_s41374_020_0448_x
crossref_primary_10_1101_gad_305805_117
crossref_primary_10_1002_smll_202203515
crossref_primary_10_1007_s10585_021_10111_0
crossref_primary_10_3390_cells10092221
crossref_primary_10_1088_1478_3975_ab0032
crossref_primary_10_1007_s10585_017_9842_1
crossref_primary_10_3389_fcell_2024_1363361
crossref_primary_10_3390_life15010127
crossref_primary_10_1016_j_cellsig_2021_110046
crossref_primary_10_1016_j_semcancer_2023_02_001
crossref_primary_10_1158_2159_8290_CD_18_0065
crossref_primary_10_3390_cells11223683
crossref_primary_10_2478_raon_2019_0024
crossref_primary_10_15252_embj_201899144
crossref_primary_10_1158_0008_5472_CAN_19_1564
crossref_primary_10_1158_2159_8290_CD_18_1285
crossref_primary_10_1126_sciadv_aaz6197
crossref_primary_10_3389_fcell_2018_00083
crossref_primary_10_3390_biom12010029
crossref_primary_10_1158_2159_8290_CD_22_0644
crossref_primary_10_1007_s10555_023_10124_z
crossref_primary_10_1098_rstb_2018_0224
crossref_primary_10_1186_s12964_021_00713_2
crossref_primary_10_1016_j_humpath_2016_10_006
crossref_primary_10_1038_s41388_019_0889_0
crossref_primary_10_1021_acsnano_3c08946
crossref_primary_10_1038_s41596_020_0335_3
crossref_primary_10_1016_j_isci_2020_101991
crossref_primary_10_3389_fmolb_2020_00134
crossref_primary_10_1002_1878_0261_13665
crossref_primary_10_1016_j_snb_2023_134896
crossref_primary_10_1242_jcs_259256
crossref_primary_10_3390_cancers15102734
crossref_primary_10_1016_j_biotechadv_2018_05_002
crossref_primary_10_1091_mbc_E16_01_0058
crossref_primary_10_1016_j_isci_2024_110187
crossref_primary_10_1038_nrc_2017_126
crossref_primary_10_1002_cam4_3902
crossref_primary_10_1172_JCI143762
crossref_primary_10_1007_s00018_021_04101_4
crossref_primary_10_3390_ijms22179279
crossref_primary_10_1016_j_bbcan_2023_188863
crossref_primary_10_1038_s41416_021_01328_7
crossref_primary_10_1039_D1LC00433F
crossref_primary_10_1186_s12885_020_07376_1
crossref_primary_10_1016_j_pharmthera_2018_09_007
crossref_primary_10_1016_j_bbcan_2016_09_005
crossref_primary_10_1016_j_devcel_2021_08_018
Cites_doi 10.1016/j.cell.2006.01.007
10.1186/1472-6750-2-11
10.1016/j.cell.2011.07.026
10.1016/j.cell.2009.11.025
10.1093/bioinformatics/bts635
10.1093/nar/gkq537
10.1158/2159-8290.CD-15-0012
10.1038/nature05760
10.1007/s00441-015-2136-5
10.1002/1097-0142(196001/02)13:1<111::AID-CNCR2820130121>3.0.CO;2-Y
10.1186/bcr2142
10.2202/1544-6115.1027
10.1073/pnas.1037154100
10.1038/ncb2756
10.1038/nm.2379
10.1200/JCO.2010.33.3716
10.1038/nature10694
10.1186/s13058-015-0539-6
10.1158/2159-8290.CD-15-0120
10.1016/j.cell.2014.07.013
10.1016/j.cell.2013.11.029
10.1016/j.cell.2011.02.013
10.1016/j.cell.2011.05.040
10.1158/1541-7786.MCR-15-0229-T
10.1016/j.ceb.2010.08.015
10.1038/ncb2548
10.1016/j.cell.2010.09.016
10.1038/nrc2618
10.1038/nprot.2013.099
10.1016/j.ceb.2014.07.003
10.1002/path.4416
10.1038/nature13187
10.1038/nature14347
10.1073/pnas.1015938108
10.1038/nrclinonc.2011.59
10.1016/j.cell.2014.02.031
10.1016/S0002-9440(10)63568-7
10.1038/nature15748
10.1016/j.ccr.2010.12.022
10.1016/S1534-5807(02)00259-9
10.1002/dvg.20335
10.1038/nm.3707
10.1016/j.stem.2011.12.018
10.1016/S1535-6108(03)00132-6
10.1016/j.cub.2012.10.054
10.1038/nprot.2008.211
10.1038/nrc863
10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 16, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 16, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.1508541113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate K14+ tumor clusters form polyclonal metastases
EISSN 1091-6490
EndPage E863
ExternalDocumentID 10.1073/pnas.1508541113
PMC4763783
3972687541
26831077
10_1073_pnas_1508541113
26467773
Genre Research Article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA006973
– fundername: Breast Cancer Research Foundation (BCRF)
  grantid: Pink Agenda Research Award
– fundername: American Cancer Society (ACS)
  grantid: RSG-12-141-01-CSM
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P30 CA006973
– fundername: Burroughs Wellcome Fund (BWF)
  grantid: 1013355
– fundername: DOD | Congressionally Directed Medical Research Programs (CDMRP)
  grantid: W81XWH-12-1-0018
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
AFOSN
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADTOC
ADXHL
AFHIN
AFQQW
AS~
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
UNPAY
VOH
WHG
ZCG
ID FETCH-LOGICAL-c545t-f017b58a49b5a25b93d16a97fdc1b9be52db01503ea96ccafe6e1350b64393583
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Wed Oct 29 11:59:12 EDT 2025
Tue Sep 30 16:46:41 EDT 2025
Fri Sep 05 11:28:11 EDT 2025
Mon Jun 30 08:27:04 EDT 2025
Wed Feb 19 01:58:22 EST 2025
Thu Apr 24 23:09:18 EDT 2025
Wed Oct 01 02:36:58 EDT 2025
Thu Oct 09 22:07:58 EDT 2025
Thu Oct 30 12:02:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
IssueTitle PNAS Plus
Keywords polyclonal metastasis
breast cancer
collective invasion
keratin 14
collective dissemination
Language English
License http://www.pnas.org/preview_site/misc/userlicense.xhtml
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-f017b58a49b5a25b93d16a97fdc1b9be52db01503ea96ccafe6e1350b64393583
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: K.J.C., V.P., V.S., K.S., A.N.F., M.A.G., K.J.P., J.S.B., and A.J.E. designed research; K.J.C., V.P., V.S., K.S., J.D.C., A.N.F., M.A.G., and J.E.V. performed research; K.J.C., J.D.C., M.A.G., J.E.V., K.J.P., and J.S.B. contributed new reagents/analytic tools; K.J.C., V.P., V.S., K.S., J.D.C., A.N.F., M.A.G., J.E.V., J.S.B., and A.J.E. analyzed data; and K.J.C. and A.J.E. wrote the paper.
Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved December 23, 2015 (received for review April 30, 2015)
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/113/7/E854.full.pdf
PMID 26831077
PQID 1770936378
PQPubID 42026
PageCount 10
ParticipantIDs unpaywall_primary_10_1073_pnas_1508541113
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4763783
proquest_miscellaneous_1766267079
proquest_journals_1770936378
pubmed_primary_26831077
crossref_primary_10_1073_pnas_1508541113
crossref_citationtrail_10_1073_pnas_1508541113
pnas_primary_10_1073_pnas_1508541113
jstor_primary_26467773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-16
PublicationDateYYYYMMDD 2016-02-16
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAbbrev Proc Natl Acad Sci USA
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Tanaka 2000; 6
Dobin 2013; 29
Hanahan, Weinberg 2011; 144
Calvo 2013; 15
Kondo 2011; 108
Huang, Sherman, Lempicki 2009; 4
Tabansky 2013; 23
Pan 2015
Condeelis, Pollard 2006; 124
Stacker, Achen, Jussila, Baldwin, Alitalo 2002; 2
Fischer 2015; 527
Gupta 2007; 446
Muzumdar, Tasic, Miyamichi, Li, Luo 2007; 45
Anders 2013; 8
Devoogdt 2003; 100
Warde-Farley 2010; 38
Maddipati, Stanger 2015; 5
McFadden 2014; 156
Friedl, Zänker, Bröcker 1998; 43
Broussard, Getsios, Green 2015; 360
Cheung, Gabrielson, Werb, Ewald 2013; 155
Spike 2012; 10
Sethi, Dai, Winter, Kang 2011; 19
Nguyen-Ngoc 2012; 109
Hou 2012; 30
Herschkowitz, He, Fan, Perou 2008; 10
Hadjantonakis, Macmaster, Nagy 2002; 2
Kang 2003; 3
Bruns 2014; 20
Gundem 2015; 520
Joyce, Pollard 2009; 9
Oskarsson 2011; 17
Guy, Cardiff, Muller 1992; 12
Goetz 2011; 146
Bronsert 2014; 234
Cheung, Ewald 2014; 30
Vaezi, Bauer, Vasioukhin, Fuchs 2002; 3
Cleary, Leonard, Gestl, Gunther 2014; 508
Smyth 2004; 3
Liotta, Saidel, Kleinerman 1976; 36
Snippert 2010; 143
Soady 2015; 17
Aceto 2014; 158
Malanchi 2012; 481
Harney 2015; 5
Friedl 1995; 55
Moore, Sandberg, Watne 1960; 13
Friedl, Locker, Sahai, Segall 2012; 14
Gupta 2011; 146
Lin 2003; 163
Egeblad, Rasch, Weaver 2010; 22
Kim 2009; 139
Mina, Sledge 2011; 8
Liotta LA (e_1_3_4_3_2) 1976; 36
Malanchi I (e_1_3_4_28_2) 2012; 481
Bruns I (e_1_3_4_49_2) 2014; 20
Condeelis J (e_1_3_4_40_2) 2006; 124
Kondo J (e_1_3_4_22_2) 2011; 108
Broussard JA (e_1_3_4_32_2) 2015; 360
Bronsert P (e_1_3_4_9_2) 2014; 234
Lin EY (e_1_3_4_16_2) 2003; 163
Cheung KJ (e_1_3_4_12_2) 2014; 30
Tanaka K (e_1_3_4_34_2) 2000; 6
Egeblad M (e_1_3_4_42_2) 2010; 22
Smyth GK (e_1_3_4_52_2) 2004; 3
Cheung KJ (e_1_3_4_11_2) 2013; 155
Gupta GP (e_1_3_4_37_2) 2007; 446
Gundem G (e_1_3_4_8_2) 2015; 520
Kang Y (e_1_3_4_27_2) 2003; 3
Calvo F (e_1_3_4_41_2) 2013; 15
Oskarsson T (e_1_3_4_29_2) 2011; 17
e_1_3_4_38_2
Fischer KR (e_1_3_4_45_2) 2015; 527
Hanahan D (e_1_3_4_1_2) 2011; 144
Huang W (e_1_3_4_26_2) 2009; 4
Nguyen-Ngoc KV (e_1_3_4_14_2) 2012; 109
Maddipati R (e_1_3_4_6_2) 2015; 5
Gupta PB (e_1_3_4_25_2) 2011; 146
Moore GE (e_1_3_4_2_2) 1960; 13
Devoogdt N (e_1_3_4_35_2) 2003; 100
Mina LA (e_1_3_4_46_2) 2011; 8
Spike BT (e_1_3_4_31_2) 2012; 10
Hou JM (e_1_3_4_4_2) 2012; 30
Kim MY (e_1_3_4_21_2) 2009; 139
McFadden DG (e_1_3_4_7_2) 2014; 156
Vaezi A (e_1_3_4_23_2) 2002; 3
Sethi N (e_1_3_4_33_2) 2011; 19
Guy CT (e_1_3_4_17_2) 1992; 12
Joyce JA (e_1_3_4_39_2) 2009; 9
Soady KJ (e_1_3_4_30_2) 2015; 17
Harney AS (e_1_3_4_44_2) 2015; 5
Tabansky I (e_1_3_4_20_2) 2013; 23
Hadjantonakis AK (e_1_3_4_48_2) 2002; 2
Snippert HJ (e_1_3_4_19_2) 2010; 143
Goetz JG (e_1_3_4_36_2) 2011; 146
Friedl P (e_1_3_4_13_2) 1998; 43
Aceto N (e_1_3_4_5_2) 2014; 158
Anders S (e_1_3_4_51_2) 2013; 8
Herschkowitz JI (e_1_3_4_18_2) 2008; 10
Muzumdar MD (e_1_3_4_47_2) 2007; 45
Dobin A (e_1_3_4_50_2) 2013; 29
Friedl P (e_1_3_4_10_2) 2012; 14
Friedl P (e_1_3_4_15_2) 1995; 55
Cleary AS (e_1_3_4_24_2) 2014; 508
Stacker SA (e_1_3_4_43_2) 2002; 2
Warde-Farley D (e_1_3_4_53_2) 2010; 38
17868096 - Genesis. 2007 Sep;45(9):593-605
10656440 - Clin Cancer Res. 2000 Jan;6(1):127-34
17429393 - Nature. 2007 Apr 12;446(7137):765-70
23104886 - Bioinformatics. 2013 Jan 1;29(1):15-21
12079497 - BMC Biotechnol. 2002 Jun 11;2:11
7553628 - Cancer Res. 1995 Oct 15;55(20):4557-60
18782450 - Breast Cancer Res. 2008;10(5):R75
22854810 - Nat Cell Biol. 2012 Aug;14(8):777-83
25326802 - Nat Med. 2014 Nov;20(11):1315-20
12732717 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5778-82
20887898 - Cell. 2010 Oct 1;143(1):134-44
26209539 - Cancer Discov. 2015 Oct;5(10):1086-97
20576703 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20
21729786 - Cell. 2011 Jul 8;146(1):148-63
9858334 - Microsc Res Tech. 1998 Dec 1;43(5):369-78
23708000 - Nat Cell Biol. 2013 Jun;15(6):637-46
25171411 - Cell. 2014 Aug 28;158(5):1110-22
25830880 - Nature. 2015 Apr 16;520(7547):353-7
25849541 - Breast Cancer Res. 2015;17:31
25137487 - Curr Opin Cell Biol. 2014 Oct;30:99-111
21502993 - Nat Rev Clin Oncol. 2011 Jun;8(6):325-32
26560033 - Nature. 2015 Nov 26;527(7579):472-6
22923691 - Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2595-604
22158103 - Nature. 2012 Jan 5;481(7379):85-9
21444794 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6235-40
25693896 - Cell Tissue Res. 2015 Jun;360(3):501-12
21706029 - Nat Med. 2011 Jul;17(7):867-74
22253462 - J Clin Oncol. 2012 Feb 10;30(5):525-32
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
24630729 - Cell. 2014 Mar 13;156(6):1298-311
20822891 - Curr Opin Cell Biol. 2010 Oct;22(5):697-706
14423852 - Cancer. 1960 Jan-Feb;13:111-7
21376230 - Cell. 2011 Mar 4;144(5):646-74
24332913 - Cell. 2013 Dec 19;155(7):1639-51
19279573 - Nat Rev Cancer. 2009 Apr;9(4):239-52
21295524 - Cancer Cell. 2011 Feb 15;19(2):192-205
26269515 - Cancer Discov. 2015 Sep;5(9):932-43
22305568 - Cell Stem Cell. 2012 Feb 3;10(2):183-97
23177476 - Curr Biol. 2013 Jan 7;23(1):21-31
21854987 - Cell. 2011 Aug 19;146(4):633-44
25081610 - J Pathol. 2014 Nov;234(3):410-22
1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61
14578209 - Am J Pathol. 2003 Nov;163(5):2113-26
1253177 - Cancer Res. 1976 Mar;36(3):889-94
24695311 - Nature. 2014 Apr 3;508(7494):113-7
23975260 - Nat Protoc. 2013 Sep;8(9):1765-86
12154350 - Nat Rev Cancer. 2002 Aug;2(8):573-83
12361600 - Dev Cell. 2002 Sep;3(3):367-81
16439202 - Cell. 2006 Jan 27;124(2):263-6
12842083 - Cancer Cell. 2003 Jun;3(6):537-49
20064377 - Cell. 2009 Dec 24;139(7):1315-26
19131956 - Nat Protoc. 2009;4(1):44-57
References_xml – volume: 520
  start-page: 353
  year: 2015
  end-page: 357
  article-title: The evolutionary history of lethal metastatic prostate cancer
  publication-title: Nature
– volume: 158
  start-page: 1110
  year: 2014
  end-page: 1122
  article-title: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis
  publication-title: Cell
– volume: 19
  start-page: 192
  year: 2011
  end-page: 205
  article-title: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
  publication-title: Cancer Cell
– volume: 2
  start-page: 11
  year: 2002
  article-title: Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal
  publication-title: BMC Biotechnol
– volume: 508
  start-page: 113
  year: 2014
  end-page: 117
  article-title: Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers
  publication-title: Nature
– volume: 36
  start-page: 889
  year: 1976
  end-page: 894
  article-title: The significance of hematogenous tumor cell clumps in the metastatic process
  publication-title: Cancer Res
– volume: 143
  start-page: 134
  year: 2010
  end-page: 144
  article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
  publication-title: Cell
– year: 2015
– volume: 2
  start-page: 573
  year: 2002
  end-page: 583
  article-title: Lymphangiogenesis and cancer metastasis
  publication-title: Nat Rev Cancer
– volume: 139
  start-page: 1315
  year: 2009
  end-page: 1326
  article-title: Tumor self-seeding by circulating cancer cells
  publication-title: Cell
– volume: 360
  start-page: 501
  year: 2015
  end-page: 512
  article-title: Desmosome regulation and signaling in disease
  publication-title: Cell Tissue Res
– volume: 10
  start-page: R75
  year: 2008
  article-title: The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas
  publication-title: Breast Cancer Res
– volume: 22
  start-page: 697
  year: 2010
  end-page: 706
  article-title: Dynamic interplay between the collagen scaffold and tumor evolution
  publication-title: Curr Opin Cell Biol
– volume: 234
  start-page: 410
  year: 2014
  end-page: 422
  article-title: Cancer cell invasion and EMT marker expression: A three-dimensional study of the human cancer-host interface
  publication-title: J Pathol
– volume: 55
  start-page: 4557
  year: 1995
  end-page: 4560
  article-title: Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro
  publication-title: Cancer Res
– volume: 43
  start-page: 369
  year: 1998
  end-page: 378
  article-title: Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function
  publication-title: Microsc Res Tech
– volume: 156
  start-page: 1298
  year: 2014
  end-page: 1311
  article-title: Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing
  publication-title: Cell
– volume: 3
  start-page: 367
  year: 2002
  end-page: 381
  article-title: Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium
  publication-title: Dev Cell
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protoc
– volume: 10
  start-page: 183
  year: 2012
  end-page: 197
  article-title: A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer
  publication-title: Cell Stem Cell
– volume: 9
  start-page: 239
  year: 2009
  end-page: 252
  article-title: Microenvironmental regulation of metastasis
  publication-title: Nat Rev Cancer
– volume: 146
  start-page: 148
  year: 2011
  end-page: 163
  article-title: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis
  publication-title: Cell
– volume: 124
  start-page: 263
  year: 2006
  end-page: 266
  article-title: Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis
  publication-title: Cell
– volume: 3
  start-page: Article3
  year: 2004
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol Biol
– volume: 14
  start-page: 777
  year: 2012
  end-page: 783
  article-title: Classifying collective cancer cell invasion
  publication-title: Nat Cell Biol
– volume: 23
  start-page: 21
  year: 2013
  end-page: 31
  article-title: Developmental bias in cleavage-stage mouse blastomeres
  publication-title: Curr Biol
– volume: 109
  start-page: E2595
  year: 2012
  end-page: E2604
  article-title: ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 325
  year: 2011
  end-page: 332
  article-title: Rethinking the metastatic cascade as a therapeutic target
  publication-title: Nat Rev Clin Oncol
– volume: 163
  start-page: 2113
  year: 2003
  end-page: 2126
  article-title: Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases
  publication-title: Am J Pathol
– volume: 15
  start-page: 637
  year: 2013
  end-page: 646
  article-title: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts
  publication-title: Nat Cell Biol
– volume: 146
  start-page: 633
  year: 2011
  end-page: 644
  article-title: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells
  publication-title: Cell
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  article-title: STAR: Ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 17
  start-page: 31
  year: 2015
  article-title: Mouse mammary stem cells express prognostic markers for triple-negative breast cancer
  publication-title: Breast Cancer Res
– volume: 17
  start-page: 867
  year: 2011
  end-page: 874
  article-title: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs
  publication-title: Nat Med
– volume: 20
  start-page: 1315
  year: 2014
  end-page: 1320
  article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
  publication-title: Nat Med
– volume: 30
  start-page: 525
  year: 2012
  end-page: 532
  article-title: Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer
  publication-title: J Clin Oncol
– volume: 3
  start-page: 537
  year: 2003
  end-page: 549
  article-title: A multigenic program mediating breast cancer metastasis to bone
  publication-title: Cancer Cell
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
– volume: 446
  start-page: 765
  year: 2007
  end-page: 770
  article-title: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis
  publication-title: Nature
– volume: 527
  start-page: 472
  year: 2015
  end-page: 476
  article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
  publication-title: Nature
– volume: 45
  start-page: 593
  year: 2007
  end-page: 605
  article-title: A global double-fluorescent Cre reporter mouse
  publication-title: Genesis
– volume: 100
  start-page: 5778
  year: 2003
  end-page: 5782
  article-title: Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 954
  year: 1992
  end-page: 961
  article-title: Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease
  publication-title: Mol Cell Biol
– volume: 38
  start-page: W214
  year: 2010
  end-page: W220
  article-title: The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function
  publication-title: Nucleic Acids Res
– volume: 30
  start-page: 99
  year: 2014
  end-page: 111
  article-title: Illuminating breast cancer invasion: Diverse roles for cell-cell interactions
  publication-title: Curr Opin Cell Biol
– volume: 481
  start-page: 85
  year: 2012
  end-page: 89
  article-title: Interactions between cancer stem cells and their niche govern metastatic colonization
  publication-title: Nature
– volume: 108
  start-page: 6235
  year: 2011
  end-page: 6240
  article-title: Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 111
  year: 1960
  end-page: 117
  article-title: The comparative size and structure of tumor cells and clumps in the blood, bone marrow, and tumor imprints
  publication-title: Cancer
– volume: 5
  start-page: 932
  year: 2015
  end-page: 943
  article-title: Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA
  publication-title: Cancer Discov
– volume: 155
  start-page: 1639
  year: 2013
  end-page: 1651
  article-title: Collective invasion in breast cancer requires a conserved basal epithelial program
  publication-title: Cell
– volume: 6
  start-page: 127
  year: 2000
  end-page: 134
  article-title: Expression of survivin and its relationship to loss of apoptosis in breast carcinomas
  publication-title: Clin Cancer res
– volume: 8
  start-page: 1765
  year: 2013
  end-page: 1786
  article-title: Count-based differential expression analysis of RNA sequencing data using R and Bioconductor
  publication-title: Nat Protoc
– volume: 5
  start-page: 1086
  year: 2015
  end-page: 1097
  article-title: Pancreatic cancer metastases harbor evidence of polyclonality
  publication-title: Cancer Discov
– volume: 124
  start-page: 263
  year: 2006
  ident: e_1_3_4_40_2
  article-title: Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.007
– volume: 2
  start-page: 11
  year: 2002
  ident: e_1_3_4_48_2
  article-title: Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-2-11
– volume: 146
  start-page: 633
  year: 2011
  ident: e_1_3_4_25_2
  article-title: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.026
– volume: 139
  start-page: 1315
  year: 2009
  ident: e_1_3_4_21_2
  article-title: Tumor self-seeding by circulating cancer cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.025
– volume: 29
  start-page: 15
  year: 2013
  ident: e_1_3_4_50_2
  article-title: STAR: Ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 38
  start-page: W214
  year: 2010
  ident: e_1_3_4_53_2
  article-title: The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq537
– volume: 5
  start-page: 932
  year: 2015
  ident: e_1_3_4_44_2
  article-title: Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0012
– volume: 446
  start-page: 765
  year: 2007
  ident: e_1_3_4_37_2
  article-title: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis
  publication-title: Nature
  doi: 10.1038/nature05760
– volume: 360
  start-page: 501
  year: 2015
  ident: e_1_3_4_32_2
  article-title: Desmosome regulation and signaling in disease
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-015-2136-5
– volume: 13
  start-page: 111
  year: 1960
  ident: e_1_3_4_2_2
  article-title: The comparative size and structure of tumor cells and clumps in the blood, bone marrow, and tumor imprints
  publication-title: Cancer
  doi: 10.1002/1097-0142(196001/02)13:1<111::AID-CNCR2820130121>3.0.CO;2-Y
– volume: 10
  start-page: R75
  year: 2008
  ident: e_1_3_4_18_2
  article-title: The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2142
– volume: 3
  start-page: Article3
  year: 2004
  ident: e_1_3_4_52_2
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1027
– volume: 100
  start-page: 5778
  year: 2003
  ident: e_1_3_4_35_2
  article-title: Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1037154100
– volume: 12
  start-page: 954
  year: 1992
  ident: e_1_3_4_17_2
  article-title: Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease
  publication-title: Mol Cell Biol
– volume: 15
  start-page: 637
  year: 2013
  ident: e_1_3_4_41_2
  article-title: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2756
– volume: 17
  start-page: 867
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs
  publication-title: Nat Med
  doi: 10.1038/nm.2379
– volume: 30
  start-page: 525
  year: 2012
  ident: e_1_3_4_4_2
  article-title: Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.33.3716
– volume: 481
  start-page: 85
  year: 2012
  ident: e_1_3_4_28_2
  article-title: Interactions between cancer stem cells and their niche govern metastatic colonization
  publication-title: Nature
  doi: 10.1038/nature10694
– volume: 17
  start-page: 31
  year: 2015
  ident: e_1_3_4_30_2
  article-title: Mouse mammary stem cells express prognostic markers for triple-negative breast cancer
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-015-0539-6
– volume: 5
  start-page: 1086
  year: 2015
  ident: e_1_3_4_6_2
  article-title: Pancreatic cancer metastases harbor evidence of polyclonality
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0120
– volume: 158
  start-page: 1110
  year: 2014
  ident: e_1_3_4_5_2
  article-title: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.013
– volume: 155
  start-page: 1639
  year: 2013
  ident: e_1_3_4_11_2
  article-title: Collective invasion in breast cancer requires a conserved basal epithelial program
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.029
– volume: 144
  start-page: 646
  year: 2011
  ident: e_1_3_4_1_2
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 146
  start-page: 148
  year: 2011
  ident: e_1_3_4_36_2
  article-title: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.05.040
– ident: e_1_3_4_38_2
  doi: 10.1158/1541-7786.MCR-15-0229-T
– volume: 22
  start-page: 697
  year: 2010
  ident: e_1_3_4_42_2
  article-title: Dynamic interplay between the collagen scaffold and tumor evolution
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2010.08.015
– volume: 14
  start-page: 777
  year: 2012
  ident: e_1_3_4_10_2
  article-title: Classifying collective cancer cell invasion
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2548
– volume: 143
  start-page: 134
  year: 2010
  ident: e_1_3_4_19_2
  article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.016
– volume: 9
  start-page: 239
  year: 2009
  ident: e_1_3_4_39_2
  article-title: Microenvironmental regulation of metastasis
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2618
– volume: 8
  start-page: 1765
  year: 2013
  ident: e_1_3_4_51_2
  article-title: Count-based differential expression analysis of RNA sequencing data using R and Bioconductor
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.099
– volume: 30
  start-page: 99
  year: 2014
  ident: e_1_3_4_12_2
  article-title: Illuminating breast cancer invasion: Diverse roles for cell-cell interactions
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2014.07.003
– volume: 234
  start-page: 410
  year: 2014
  ident: e_1_3_4_9_2
  article-title: Cancer cell invasion and EMT marker expression: A three-dimensional study of the human cancer-host interface
  publication-title: J Pathol
  doi: 10.1002/path.4416
– volume: 55
  start-page: 4557
  year: 1995
  ident: e_1_3_4_15_2
  article-title: Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro
  publication-title: Cancer Res
– volume: 508
  start-page: 113
  year: 2014
  ident: e_1_3_4_24_2
  article-title: Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers
  publication-title: Nature
  doi: 10.1038/nature13187
– volume: 520
  start-page: 353
  year: 2015
  ident: e_1_3_4_8_2
  article-title: The evolutionary history of lethal metastatic prostate cancer
  publication-title: Nature
  doi: 10.1038/nature14347
– volume: 108
  start-page: 6235
  year: 2011
  ident: e_1_3_4_22_2
  article-title: Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1015938108
– volume: 8
  start-page: 325
  year: 2011
  ident: e_1_3_4_46_2
  article-title: Rethinking the metastatic cascade as a therapeutic target
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2011.59
– volume: 109
  start-page: E2595
  year: 2012
  ident: e_1_3_4_14_2
  article-title: ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium
  publication-title: Proc Natl Acad Sci USA
– volume: 156
  start-page: 1298
  year: 2014
  ident: e_1_3_4_7_2
  article-title: Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.031
– volume: 163
  start-page: 2113
  year: 2003
  ident: e_1_3_4_16_2
  article-title: Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63568-7
– volume: 527
  start-page: 472
  year: 2015
  ident: e_1_3_4_45_2
  article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
  publication-title: Nature
  doi: 10.1038/nature15748
– volume: 19
  start-page: 192
  year: 2011
  ident: e_1_3_4_33_2
  article-title: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.12.022
– volume: 3
  start-page: 367
  year: 2002
  ident: e_1_3_4_23_2
  article-title: Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(02)00259-9
– volume: 6
  start-page: 127
  year: 2000
  ident: e_1_3_4_34_2
  article-title: Expression of survivin and its relationship to loss of apoptosis in breast carcinomas
  publication-title: Clin Cancer res
– volume: 36
  start-page: 889
  year: 1976
  ident: e_1_3_4_3_2
  article-title: The significance of hematogenous tumor cell clumps in the metastatic process
  publication-title: Cancer Res
– volume: 45
  start-page: 593
  year: 2007
  ident: e_1_3_4_47_2
  article-title: A global double-fluorescent Cre reporter mouse
  publication-title: Genesis
  doi: 10.1002/dvg.20335
– volume: 20
  start-page: 1315
  year: 2014
  ident: e_1_3_4_49_2
  article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
  publication-title: Nat Med
  doi: 10.1038/nm.3707
– volume: 10
  start-page: 183
  year: 2012
  ident: e_1_3_4_31_2
  article-title: A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.12.018
– volume: 3
  start-page: 537
  year: 2003
  ident: e_1_3_4_27_2
  article-title: A multigenic program mediating breast cancer metastasis to bone
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00132-6
– volume: 23
  start-page: 21
  year: 2013
  ident: e_1_3_4_20_2
  article-title: Developmental bias in cleavage-stage mouse blastomeres
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.10.054
– volume: 4
  start-page: 44
  year: 2009
  ident: e_1_3_4_26_2
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 2
  start-page: 573
  year: 2002
  ident: e_1_3_4_43_2
  article-title: Lymphangiogenesis and cancer metastasis
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc863
– volume: 43
  start-page: 369
  year: 1998
  ident: e_1_3_4_13_2
  article-title: Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function
  publication-title: Microsc Res Tech
  doi: 10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6
– reference: 19279573 - Nat Rev Cancer. 2009 Apr;9(4):239-52
– reference: 22923691 - Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2595-604
– reference: 7553628 - Cancer Res. 1995 Oct 15;55(20):4557-60
– reference: 26209539 - Cancer Discov. 2015 Oct;5(10):1086-97
– reference: 25849541 - Breast Cancer Res. 2015;17:31
– reference: 20576703 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20
– reference: 22305568 - Cell Stem Cell. 2012 Feb 3;10(2):183-97
– reference: 21729786 - Cell. 2011 Jul 8;146(1):148-63
– reference: 23975260 - Nat Protoc. 2013 Sep;8(9):1765-86
– reference: 23708000 - Nat Cell Biol. 2013 Jun;15(6):637-46
– reference: 21854987 - Cell. 2011 Aug 19;146(4):633-44
– reference: 23177476 - Curr Biol. 2013 Jan 7;23(1):21-31
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 12732717 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5778-82
– reference: 25326802 - Nat Med. 2014 Nov;20(11):1315-20
– reference: 10656440 - Clin Cancer Res. 2000 Jan;6(1):127-34
– reference: 1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61
– reference: 23104886 - Bioinformatics. 2013 Jan 1;29(1):15-21
– reference: 12361600 - Dev Cell. 2002 Sep;3(3):367-81
– reference: 26269515 - Cancer Discov. 2015 Sep;5(9):932-43
– reference: 21706029 - Nat Med. 2011 Jul;17(7):867-74
– reference: 22854810 - Nat Cell Biol. 2012 Aug;14(8):777-83
– reference: 24630729 - Cell. 2014 Mar 13;156(6):1298-311
– reference: 25171411 - Cell. 2014 Aug 28;158(5):1110-22
– reference: 17429393 - Nature. 2007 Apr 12;446(7137):765-70
– reference: 12079497 - BMC Biotechnol. 2002 Jun 11;2:11
– reference: 25830880 - Nature. 2015 Apr 16;520(7547):353-7
– reference: 26560033 - Nature. 2015 Nov 26;527(7579):472-6
– reference: 21295524 - Cancer Cell. 2011 Feb 15;19(2):192-205
– reference: 24695311 - Nature. 2014 Apr 3;508(7494):113-7
– reference: 14423852 - Cancer. 1960 Jan-Feb;13:111-7
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 24332913 - Cell. 2013 Dec 19;155(7):1639-51
– reference: 20064377 - Cell. 2009 Dec 24;139(7):1315-26
– reference: 12842083 - Cancer Cell. 2003 Jun;3(6):537-49
– reference: 1253177 - Cancer Res. 1976 Mar;36(3):889-94
– reference: 18782450 - Breast Cancer Res. 2008;10(5):R75
– reference: 9858334 - Microsc Res Tech. 1998 Dec 1;43(5):369-78
– reference: 17868096 - Genesis. 2007 Sep;45(9):593-605
– reference: 25693896 - Cell Tissue Res. 2015 Jun;360(3):501-12
– reference: 21502993 - Nat Rev Clin Oncol. 2011 Jun;8(6):325-32
– reference: 20822891 - Curr Opin Cell Biol. 2010 Oct;22(5):697-706
– reference: 12154350 - Nat Rev Cancer. 2002 Aug;2(8):573-83
– reference: 25081610 - J Pathol. 2014 Nov;234(3):410-22
– reference: 25137487 - Curr Opin Cell Biol. 2014 Oct;30:99-111
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 20887898 - Cell. 2010 Oct 1;143(1):134-44
– reference: 16439202 - Cell. 2006 Jan 27;124(2):263-6
– reference: 22253462 - J Clin Oncol. 2012 Feb 10;30(5):525-32
– reference: 21444794 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6235-40
– reference: 22158103 - Nature. 2012 Jan 5;481(7379):85-9
– reference: 14578209 - Am J Pathol. 2003 Nov;163(5):2113-26
SSID ssj0009580
Score 2.6586614
Snippet Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be...
SignificanceConventional models of cancer progression propose that single cells leave the primary tumor, enter the circulation, and seed clonal metastases....
Conventional models of cancer progression propose that single cells leave the primary tumor, enter the circulation, and seed clonal metastases. However,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E854
SubjectTerms Animals
Biological Sciences
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Cell Biology
Cells
Cloning
Disease Models, Animal
Gene expression
Humans
Keratin-14 - genetics
Metastasis
Mice
Neoplasm Metastasis - genetics
PNAS Plus
Ribonucleic acid
RNA
Tumors
Title Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters
URI https://www.jstor.org/stable/26467773
https://www.pnas.org/doi/10.1073/pnas.1508541113
https://www.ncbi.nlm.nih.gov/pubmed/26831077
https://www.proquest.com/docview/1770936378
https://www.proquest.com/docview/1766267079
https://pubmed.ncbi.nlm.nih.gov/PMC4763783
https://www.pnas.org/content/pnas/113/7/E854.full.pdf
UnpaywallVersion publishedVersion
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250505
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals at publisher websites
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250505
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXocmgvbWkL3ZYiV-IAB2c366_kiCoQ6gFx6Fb0FNmO0yJCstpNBPTXdyZfZfshxHHjSTZOnj0v8csbQvazSKXGes8gl2gmnJIsmqWCudTCEzY3yEpRbXGmTufi84W82CCy_xYGZZWLwqyaRXxUa8PUO8ENkzDkEz05jqQI8M10sEizJ2RTSaDgI7I5Pzs_-tbKOWDWFW0xW8iFTIl42lv6aN4cKkAPdCmwyPpaNmoFiehyCkH_Ypx_Cyef1sXC3N2YPL-XlU5ekK99f1oxylVQVzZwP_-wenx0h1-S5x1PpUctsLbIhi9eka1uJljRg86u-vA1qc7L_M7lyOipRYl7RR1CaUmvfQW_IE2uKJY69BS_ZaGIvHaWpY0YALU4iA5aZvQKLZ4vCxoK5m9biW7xnVb1dbmkuMRAXV6js8PqDZmfHH_5dMq6Wg7MAUerWAYj38rIiNhKM5M25mmoTKyz1IU2tl7OUosvX7g3sQJUZV75kMupRcbEZcS3yagoC_-WUMuhPbLAvJQRkfQxgGuaWjQeVI5zPSZBf08T1xmdY72NPGkW3DVP8PImv0EwJgfDDovW4-P_odsNSIY44JNKaw0N-03og_vv9qhKuskCmrWexlxxHY3Jx6EZhjleWFP4ssYYBY-eaGc4JjstCO-dA1aL09BxvQbPIQAtxNdbissfjZW40Pi3cFqHA5Af6sK7R8S-J8-AYDYq91DtklG1rP0HIHGV3cMUKve6gfsLO5BFhw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2V9AAXoEAhUNAi9dAe7MTZL_tYoVYVh6oHgsop2l2voaprR4ktKL-eGX_R8KGqx3jHjtd-O_vsfX4DsJ_FKjXW-wDnEh0Ip2QQz1IRuNTiEzY3xEpJbXGmTufi44W82ALZfwtDssplYdbNIj6ptTH1TmjDJIr4RE-OYylCejMdLtPsAWwriRR8BNvzs_OjL62cA7OuaIvZ4lwYKJFMe0sfzZtDheSBLgUVWd-YjVpBIrmcYtC_GOffwsmHdbE0N99Nnt-alU6ewOe-P60Y5SqsKxu6n39YPd67w0_hccdT2VELrB3Y8sUz2OkywZoddHbVh8-hOi_zG5cTo2eWJO4VcwSlFbv2Ff7CaXLNqNShZ_QtCyPktVmWNWIA0uIQOliZsSuyeL4sWCQC_6OV6BZfWVVflytGSwzM5TU5O6xfwPzk-NOH06Cr5RA45GhVkOHItzI2IrHSzKRNeBopk-gsdZFNrJez1NLLF-5NohBVmVc-4nJqiTFxGfNdGBVl4V8BsxzbY4vMSxkRS58guKapJeNB5TjXYwj7e7pwndE51dvIF82Cu-YLuryL3yAYw8Gww7L1-Ph_6G4DkiEO-aTSWmPDfhN65_57PaoWXbLAZq2nCVdcx2N4PzTjMKcLawpf1hSj8NGT7AzH8LIF4a1zoGpxGjuuN-A5BJCF-GZLcfmtsRIXmv4WT-twAPJdXXh9j9g38AgJZqNyj9QejKpV7d8iiavsu27I_gKgP0Sh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyclonal+breast+cancer+metastases+arise+from+collective+dissemination+of+keratin+14-expressing+tumor+cell+clusters&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cheung%2C+Kevin+J.&rft.au=Padmanaban%2C+Veena&rft.au=Silvestri%2C+Vanesa&rft.au=Schipper%2C+Koen&rft.date=2016-02-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=7&rft.spage=E854&rft.epage=E863&rft_id=info:doi/10.1073%2Fpnas.1508541113&rft.externalDocID=10.1073%2Fpnas.1508541113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon