Is the magnitude of the Peccei–Quinn scale set by the landscape?
The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of...
Saved in:
| Published in | The European physical journal. C, Particles and fields Vol. 79; no. 11; pp. 1 - 16 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
Springer Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1434-6044 1434-6052 1434-6052 |
| DOI | 10.1140/epjc/s10052-019-7408-x |
Cover
| Abstract | The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from
m
weak
∼
100
GeV. Such a picture leads to the prediction that
m
h
≃
125
GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale
f
a
is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe
Z
24
R
symmetry and where the SUSY
μ
parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle
θ
i
because WIMPs are also overproduced at large
f
a
. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale
m
3
/
2
∼
10
–100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where
f
a
∼
10
11
–
10
12
GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on
θ
i
but leading to the measured dark matter abundance: this approach leads to a preference for
f
a
∼
10
12
GeV. |
|---|---|
| AbstractList | The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from
m
weak
∼
100
GeV. Such a picture leads to the prediction that
m
h
≃
125
GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale
f
a
is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe
Z
24
R
symmetry and where the SUSY
μ
parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle
θ
i
because WIMPs are also overproduced at large
f
a
. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale
m
3
/
2
∼
10
–100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where
f
a
∼
10
11
–
10
12
GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on
θ
i
but leading to the measured dark matter abundance: this approach leads to a preference for
f
a
∼
10
12
GeV. The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from \[m_{weak}\sim 100\] GeV. Such a picture leads to the prediction that \[m_h\simeq 125\] GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale \[f_a\] is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe \[\mathbb {Z}_{24}^R\] symmetry and where the SUSY \[\mu \] parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle \[\theta _i\] because WIMPs are also overproduced at large \[f_a\]. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale \[m_{3/2}\sim 10\]–100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where \[f_a\sim 10^{11}\]–\[10^{12}\] GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on \[\theta _i\] but leading to the measured dark matter abundance: this approach leads to a preference for \[f_a\sim 10^{12}\] GeV. Abstract The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from $$m_{weak}\sim 100$$ mweak∼100 GeV. Such a picture leads to the prediction that $$m_h\simeq 125$$ mh≃125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale $$f_a$$ fa is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe $$\mathbb {Z}_{24}^R$$ Z24R symmetry and where the SUSY $$\mu $$ μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle $$\theta _i$$ θi because WIMPs are also overproduced at large $$f_a$$ fa . Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale $$m_{3/2}\sim 10$$ m3/2∼10 –100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where $$f_a\sim 10^{11}$$ fa∼1011 –$$10^{12}$$ 1012 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on $$\theta _i$$ θi but leading to the measured dark matter abundance: this approach leads to a preference for $$f_a\sim 10^{12}$$ fa∼1012 GeV. Rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from mweak~ 100 GeV. Such a picture leads to the prediction that mh~ 125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei-Quinn (PQ) scale fa is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe Z$R\atop{24}$$ symmetry and where the SUSY mu parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle θi because WIMPs are also overproduced at large fa. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale m3/2~ 10-100 TeV places the mixed axion-neutralino dark matter abundance into the intermediate scale sweet zone where fa~ 1011-1012 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on theta_i but leading to the measured dark matter abundance: this approach leads to a preference for fa~ 1012 GeV. The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from $$m_{weak}\sim 100$$ m weak ∼ 100 GeV. Such a picture leads to the prediction that $$m_h\simeq 125$$ m h ≃ 125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale $$f_a$$ f a is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe $$\mathbb {Z}_{24}^R$$ Z 24 R symmetry and where the SUSY $$\mu $$ μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle $$\theta _i$$ θ i because WIMPs are also overproduced at large $$f_a$$ f a . Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale $$m_{3/2}\sim 10$$ m 3 / 2 ∼ 10 –100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where $$f_a\sim 10^{11}$$ f a ∼ 10 11 – $$10^{12}$$ 10 12 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on $$\theta _i$$ θ i but leading to the measured dark matter abundance: this approach leads to a preference for $$f_a\sim 10^{12}$$ f a ∼ 10 12 GeV. The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from [Formula omitted] GeV. Such a picture leads to the prediction that [Formula omitted] GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei-Quinn (PQ) scale [Formula omitted] is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe [Formula omitted] symmetry and where the SUSY [Formula omitted] parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle [Formula omitted] because WIMPs are also overproduced at large [Formula omitted]. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale [Formula omitted]-100 TeV places the mixed axion-neutralino dark matter abundance into the intermediate scale sweet zone where [Formula omitted]- [Formula omitted] GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on [Formula omitted] but leading to the measured dark matter abundance: this approach leads to a preference for [Formula omitted] GeV. |
| ArticleNumber | 897 |
| Audience | Academic |
| Author | Baer, Howard Barger, Vernon Sinha, Kuver Sengupta, Dibyashree Deal, Robert Wiley Serce, Hasan |
| Author_xml | – sequence: 1 givenname: Howard surname: Baer fullname: Baer, Howard email: baer@ou.edu organization: Department of Physics and Astronomy, University of Oklahoma – sequence: 2 givenname: Vernon surname: Barger fullname: Barger, Vernon organization: Department of Physics, University of Wisconsin – sequence: 3 givenname: Dibyashree surname: Sengupta fullname: Sengupta, Dibyashree organization: Department of Physics and Astronomy, University of Oklahoma – sequence: 4 givenname: Hasan surname: Serce fullname: Serce, Hasan organization: Department of Physics, University of Wisconsin – sequence: 5 givenname: Kuver surname: Sinha fullname: Sinha, Kuver organization: Department of Physics and Astronomy, University of Oklahoma – sequence: 6 givenname: Robert Wiley surname: Deal fullname: Deal, Robert Wiley organization: Department of Physics and Astronomy, University of Oklahoma |
| BackLink | https://www.osti.gov/servlets/purl/1600540$$D View this record in Osti.gov |
| BookMark | eNqNkc1u1DAUhSNUJNrCK6AIVizS-iaOnUhIqFT8jFSJ_7XlONepRxk72I6Y2fEOvCFPgmdSFZVNkRexTr5zbu7JSXZkncUsewrkDICSc5zW6jwAIXVZEGgLTklTbB9kx0ArWrAkH93eKX2UnYSwJoSUCTvOXq9CHq8x38jBmjj3mDt9ED6iUmh-__z1aTbW5kHJEfOAMe92h_ejtH0SJ3z1OHuo5Rjwyc3zNPv29s3Xy_fF1Yd3q8uLq0LVtI5FrxuqaVmi1AgVYFt3JTSq0URp1nHFVM0kMKihYqSS0BFgrEeArmd91fTVabZacnsn12LyZiP9TjhpxEFwfhDSR6NGFApJp3TbkKbsKOdMtsih5byRTMm2q1MWX7JmO8ndDzmOt4FAxL5Wsa9VLLWKVKvY1yq2yflscboQjQjKRFTXylmLKgpgCackQc8XaPLu-4whirWbvU3tiLKCklekYW2izhZqSN0KY7WLXqp0etyYFInaJP0i_UHgJSf7r35xx5CYiNs4yDkEsfry-S7LFlZ5F4JH_f8LvvzHmHaU0aRZXprxfvtNsyHNswP6v6vf4_wDJGPbWQ |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_104_055014 crossref_primary_10_1103_PhysRevD_104_015037 crossref_primary_10_1016_j_jheap_2022_03_005 crossref_primary_10_1140_epjst_e2020_000020_x crossref_primary_10_1103_PhysRevD_109_095045 crossref_primary_10_1103_PhysRevResearch_2_013346 |
| Cites_doi | 10.1088/1742-6596/485/1/012064 10.1103/PhysRevD.54.6944 10.1016/j.physletb.2015.07.073 10.1103/PhysRevLett.37.8 10.1088/1126-6708/2005/06/073 10.1103/PhysRevD.87.115028 10.1103/PhysRevLett.80.1822 10.1016/j.crhy.2004.09.008 10.1016/S0370-2693(97)00465-6 10.1088/1751-8113/40/25/S25 10.1103/PhysRevD.88.095013 10.1007/JHEP11(2014)108 10.1088/1126-6708/2008/08/098 10.1016/j.physletb.2019.01.007 10.1103/PhysRevLett.120.151301 10.1143/PTP.85.1 10.1103/PhysRevD.88.075022 10.1007/JHEP10(2012)146 10.1088/1126-6708/2006/06/051 10.1007/JHEP12(2013)013 10.1103/PhysRevD.11.3583 10.1088/1126-6708/2000/06/006 10.1016/0370-2693(83)90639-1 10.1103/PhysRevD.78.065011 10.1016/0370-2693(83)90637-8 10.1016/0370-1573(84)90008-5 10.1103/PhysRevLett.40.223 10.1103/PhysRevD.72.123520 10.1007/JHEP12(2010)056 10.1103/PhysRevLett.113.111801 10.1016/0370-2693(82)90720-1 10.1103/PhysRevD.24.1681 10.1103/PhysRevD.33.889 10.1016/0370-2693(84)91890-2 10.1103/PhysRevLett.40.279 10.1103/PhysRevLett.106.101301 10.1103/PhysRevD.91.015003 10.1088/1126-6708/2006/08/052 10.1103/RevModPhys.61.1 10.1103/PhysRevD.80.063510 10.1016/0370-2693(91)91641-8 10.1143/PTP.68.927 10.1007/s12648-014-0504-8 10.1103/PhysRevD.74.103509 10.1016/j.crhy.2007.02.004 10.1038/scientificamerican0904-78 10.1016/0370-2693(92)90491-L 10.1088/1126-6708/2004/05/072 10.1016/0370-2693(82)90453-1 10.1103/PhysRevD.61.035004 10.1016/0550-3213(81)90522-8 10.1103/PhysRevD.98.075010 10.1103/PhysRevD.94.115019 10.1016/0370-2693(83)90460-4 10.1017/CBO9780511617270 10.1103/PhysRevLett.109.161802 10.1016/j.nuclphysb.2011.04.009 10.1016/0370-2693(83)90638-X 10.1016/0370-2693(95)00881-K 10.1016/0550-3213(81)90006-7 10.1016/0370-2693(83)90593-2 10.1016/0550-3213(96)00194-0 10.1007/JHEP04(2019)043 10.1103/PhysRevD.57.5480 10.1016/j.nuclphysb.2006.07.031 10.1016/0550-3213(94)00487-Y 10.1103/PhysRevD.96.115008 10.1016/j.physletb.2010.10.038 10.1103/PhysRevD.73.023505 10.1016/0370-2693(82)91239-4 10.1007/JHEP02(2013)126 10.1103/PhysRevD.62.095008 10.1088/1475-7516/2004/08/008 10.1088/1126-6708/2004/01/060 10.1103/PhysRevD.81.123530 10.1088/1126-6708/2002/03/042 10.1142/S0217732315300086 10.1016/0370-2693(91)90980-5 10.1103/PhysRevD.89.115019 10.1016/0550-3213(83)90591-6 10.1103/PhysRevD.80.035024 10.1103/PhysRevLett.38.1440 10.1103/PhysRevD.94.035025 10.1007/JHEP03(2018)002 10.1103/PhysRevD.93.035016 10.1088/1126-6708/2003/05/046 10.1103/PhysRevD.90.115007 10.1103/PhysRevD.75.023509 10.1016/0370-2693(88)90597-7 10.1103/PhysRevD.16.1791 10.1007/JHEP01(2012)082 10.1103/PhysRevD.44.817 10.1103/PhysRevD.89.075007 10.1103/PhysRevD.54.2340 10.1143/PTP.71.413 10.1088/1126-6708/2005/07/065 10.1016/j.nuclphysb.2012.06.018 10.1007/JHEP11(2011)031 10.1088/1475-7516/2016/02/039 10.1103/PhysRevD.88.063503 10.1103/PhysRevLett.66.1815 10.1103/PhysRevD.52.912 10.1103/PhysRevD.55.5826 10.1103/PhysRevLett.59.2607 10.1088/1126-6708/2006/05/078 10.1016/S0370-2693(02)02071-3 10.1016/0370-2693(83)91283-2 10.1007/JHEP04(2015)132 10.1016/0370-2693(94)01571-S 10.1088/1475-7516/2012/01/036 10.1016/0370-2693(92)90492-M 10.1103/PhysRevD.92.075003 10.1016/0370-2693(91)90863-L 10.1103/PhysRevD.56.2820 10.1088/1475-7516/2010/03/021 10.1016/j.physletb.2016.05.010 10.1016/S0550-3213(02)01144-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2019 Springer The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 Springer – notice: The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Univ. of Oklahoma, Norman, OK (United States) |
| CorporateAuthor_xml | – name: Univ. of Oklahoma, Norman, OK (United States) |
| DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI ADTOC UNPAY DOA |
| DOI | 10.1140/epjc/s10052-019-7408-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1434-6052 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_ce0bcf98082b4776a9e719778a6ca9b5 10.1140/epjc/s10052-019-7408-x 1600540 A605172705 10_1140_epjc_s10052_019_7408_x |
| GrantInformation_xml | – fundername: US Department of Energy |
| GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PQGLB PUEGO 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PRINS AAYZJ AHBXF OIOZB OTOTI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c545t-df84f422eafe131e95b218c8f0cf6b7c6c56a161513603a1b0166de11bd6d38d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1434-6044 1434-6052 |
| IngestDate | Tue Oct 14 19:07:02 EDT 2025 Sun Oct 26 04:09:51 EDT 2025 Tue Nov 05 04:35:47 EST 2024 Sat Oct 18 23:48:13 EDT 2025 Mon Oct 20 16:24:35 EDT 2025 Thu Oct 16 15:08:36 EDT 2025 Wed Oct 01 02:22:59 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Fri Feb 21 02:34:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-df84f422eafe131e95b218c8f0cf6b7c6c56a161513603a1b0166de11bd6d38d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0009956 arXiv:1905.00443 USDOE Office of Science (SC), High Energy Physics (HEP) |
| ORCID | 0000000207332644 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-7408-x.pdf |
| PQID | 2312730869 |
| PQPubID | 2034659 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ce0bcf98082b4776a9e719778a6ca9b5 unpaywall_primary_10_1140_epjc_s10052_019_7408_x osti_scitechconnect_1600540 proquest_journals_2312730869 gale_infotracacademiconefile_A605172705 gale_incontextgauss_ISR_A605172705 crossref_primary_10_1140_epjc_s10052_019_7408_x crossref_citationtrail_10_1140_epjc_s10052_019_7408_x springer_journals_10_1140_epjc_s10052_019_7408_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
| PublicationSubtitle | Particles and Fields |
| PublicationTitle | The European physical journal. C, Particles and fields |
| PublicationTitleAbbrev | Eur. Phys. J. C |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | ArvanitakiACraigNDimopoulosSVilladoroGJHEP201313021262013JHEP...02..126A BrandenburgASteffenFDJCAP200404080082004JCAP...08..008B HaberHEHempflingRPhys. Rev. Lett.19916618151991PhRvL..66.1815H CicoliMJ. Phys. Conf. Ser.2014485012064 PradlerJSteffenFDPhys. Rev. D2007750235092007PhRvD..75b3509P PecceiRDAdv. Ser. Direct. High Energy Phys.198935031989ASDHE...3..501P BobkovKBraunVKumarPRabySJHEP201010120562010JHEP...12..056B BoussoRHallLPhys. Rev. D2013880635032013PhRvD..88f3503B N. Arkani-Hamed, S. Dimopoulos, S. Kachru, arXiv:hep-th/0501082 BaerHBargerVMickelsonDPhys. Rev. D20138890950132013PhRvD..88i5013B N. Du et al. [ADMX Collaboration], Phys. Rev. Lett. 120(15), 151301 (2018) EllisJFalkTOliveKSantosoYNucl. Phys. B20036522592003NuPhB.652..259E MatalliotakisDNillesHPNucl. Phys. B19954351151995NuPhB.435..115M IbanezLERossGGPhys. Lett. B19821102151982PhLB..110..215I SoniSKWeldonHAPhys. Lett.1983126B2151983PhLB..126..215S BaerHBargerVGainerJSSenguptaDSerceHTataXPhys. Rev. D20189870750102018PhRvD..98g5010B EllisJRKelleySNanopoulosDVPhys. Lett. B19912601311991PhLB..260..131E M. Dine, E. Gorbatov, S.D. Thomas, JHEP 0808, 098 (2008) (for reviews, see M. Dine, arXiv:hep-th/0410201) BaeKJHuhJHKimJEJCAP200808090052008JCAP...09..005B M. Cicoli, arXiv:1309.6988 [hep-th] ChunEJLukasAPhys. Lett. B1995357431995PhLB..357...43C BaerHBargerVSenguptaDPhys. Lett. B2019790582019PhLB..790...58B HarigayaKIbeMSchmitzKYanagidaTTPhys. Lett. B20157492982015PhLB..749..298H BaerHBalazsCBelyaevAJHEP200202030422002JHEP...03..042B BaerHBargerVHuangPMustafayevATataXPhys. Rev. Lett.20121091618022012PhRvL.109p1802B MustafayevATataXIndian J. Phys.2014889912014InJPh..88..991M BoussoRFreivogelBLeichenauerSRosenhausVPhys. Rev. Lett.20111061013012011PhRvL.106j1301B LeeHMRabySRatzMRossGGSchierenRSchmidt-HobergKVaudrevangePKSPhys. Lett. B20116944912011PhLB..694..491L TurnerMSPhys. Rev. D1986338891986PhRvD..33..889T BaerHBargerVSalamSSerceHSinhaKJHEP201919040432019JHEP...04..043B PecceiRDQuinnHRPhys. Rev. D19771617911977PhRvD..16.1791P BaerHBargerVMickelsonDPadeffke-KirklandMPhys. Rev. D201489111150192014PhRvD..89k5019B H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, K. Schmidt-Hoberg, P.K. S. Vaudrevange, Nucl. Phys. B 850, 1 (2011) (see also K. S. Babu, I. Gogoladze and K. Wang, Nucl. Phys. B 660, 322 (2003)) BaerHMustafayevATataXPhys. Rev. D201490111150072014PhRvD..90k5007B BaerHBargerVGainerJSSerceHTataXPhys. Rev. D201796111150082017PhRvD..96k5008B NomuraYShiraiSPhys. Rev. Lett.2014113111118012014PhRvL.113k1801N BaerHBargerVHuangPJHEP201111110312011JHEP...11..031B M. Kamionkowski, J. March-Russell, Phys. Lett. B 282 (1992) 137 (see also S. M. Barr and D. Seckel, Phys. Rev. D 46, 539 (1992)) DimopoulosSRabySWilczekFPhys. Rev. D19812416811981PhRvD..24.1681D GiudiceGFRattazziRNucl. Phys. B2006757192006NuPhB.757...19G CasasJALleydaAMunozCNucl. Phys. B199647131996NuPhB.471....3C PecceiRDQuinnHRPhys. Rev. Lett.19773814401977PhRvL..38.1440P BaeKJBaerHSerceHPhys. Rev. D20159110150032015PhRvD..91a5003B DineMFischlerWPhys. Lett. B19831201371983PhLB..120..137D HolmanRHsuSDHKephartTWKolbEWWatkinsRWidrowLMPhys. Lett. B19922821321992PhLB..282..132H NillesHPPhys. Rep.198411011984PhR...110....1N NillesHPVaudrevangePKSMod. Phys. Lett. A2015301015300082015MPLA...3030008N HanCKimDMunirSParkMJHEP201515041322015JHEP...04..132H FreivogelBJCAP201010030212010JCAP...03..021F ConlonJPJHEP200606050782006JHEP...05..078C B.A. Ovrut, S. Raby, Phys. Lett. B 130, 277 (1983) (for a review, see L.E. Ibanez and G.G. Ross, Comptes Rendus Physique 8, 1013 (2007)) KimJENillesHPPhys. Lett. B19841381501984PhLB..138..150K KawasakiMKohriKMoroiTYotsuyanagiAPhys. Rev. D2008780650112008PhRvD..78f5011K A.M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 782, 440 (2018) AshokSDouglasMRJHEP200404010602004JHEP...01..060A F. Wilczek, In *Carr, Bernard (ed.): Universe or multiverse* 151–162. arXiv:hep-ph/0408167 (see also F. Wilczek, Class. Quant. Grav. 30, 193001 (2013)) t HooftGPhys. Rev. Lett.19763781976PhRvL..37....8T HanZKribsGDMartinAMenonAPhys. Rev. D20148970750072014PhRvD..89g5007H LykkenJSpiropuluMSci. Am.2014310N536 DouglasMRComptes Rendus Physique200459652004CRPhy...5..965D2121681[hep-th/0409207] InoueKProg. Theor. Phys.1984714131984PThPh..71..413I DouglasMRJHEP200303050462003JHEP...05..046D VisinelliLGondoloPPhys. Rev. D2009800350242009PhRvD..80c5024V HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20159270750032015PhRvD..92g5003H H. Baer, V. Barger, S. Salam, arXiv:1906.07741 [hep-ph] LangackerPLuoM xPhys. Rev. D1991448171991PhRvD..44..817L BaerHLessaASreethawongWJCAP201212010362012JCAP...01..036B BaeKJBaerHSerceHJCAP20171706060242017JCAP...06..024B MartinSPPhys. Rev. D19965423401996PhRvD..54.2340M AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. D19985754801998PhRvD..57.5480A M.R. Douglas, arXiv:hep-th/0405279 BaerHBrhlikMCastanoDPhys. Rev. D19965469441996PhRvD..54.6944B ArvanitakiADimopoulosSDubovskySKaloperNMarch-RussellJPhys. Rev. D2010811235302010PhRvD..81l3530A BaerHTataXWeak Scale Supersymmetry: From Superfields to Scattering Events2006CambridgeCambridge University Press5371243.81012 ConlonJPKrippendorfSJHEP201616040852016JHEP...04..085C SvrcekPWittenEJHEP200606060512006JHEP...06..051S EllisJRRidolfiGZwirnerFPhys. Lett. B1991257831991PhLB..257...83E BaeKJBaerHSerceHZhangYFJCAP201616010122016JCAP...01..012B BaerHBargerVSavoyMPhys. Rev. D20169330350162016PhRvD..93c5016B MartinSPPhys. Rev. D2000620950082000PhRvD..62i5008M JedamzikKPhys. Rev. D2006741035092006PhRvD..74j3509J BoussoRPolchinskiJSci. Am.200429160 DimopoulosSGeorgiHPhys. Lett.1982117B2871982PhLB..117..287D BaeKJChoiKImSHJHEP201111080652011JHEP...08..065B L. Susskind, In *Carr, Bernard (ed.): Universe or multiverse?* 247–266. arXiv:hep-th/0302219 NillesHPSrednickiMWylerDPhys. Lett. B19831203461983PhLB..120..346N TegmarkMAguirreAReesMWilczekFPhys. Rev. D2006730235052006PhRvD..73b3505T DenefFDouglasMRJHEP200404050722004JHEP...05..072D BoussoRHallLJNomuraYPhys. Rev. D2009800635102009PhRvD..80f3510B2607654 BaerHMustafayevAProfumoSBelyaevATataXJHEP200505070652005JHEP...07..065B BoussoRPolchinskiJJHEP200000060062000JHEP...06..006B L. Susskind, In *Shifman, M. (ed.) et al.: From fields to strings, vol. 3* 1745–1749. arXiv:hep-th/0405189 InoueKProg. Theor. Phys.1982689271982PThPh..68..927I F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, arXiv:hep-ph/0312045 HallLJNomuraYJHEP201212010822012JHEP...01..082H BaerHBargerVHuangPMickelsonDMustafayevATataXPhys. Rev. D2013871150282013PhRvD..87k5028B BaeKJBaerHChunEJJCAP201313120282013JCAP...12..028B Alvarez-GauméLPolchinskiJWiseMNucl. Phys. B19832214951983NuPhB.221..495A NathPArnowittRLPhys. Rev. D19975628201997PhRvD..56.2820N HeinemeyerSHollikWStockingerDWeberAMWeigleinGJHEP200606080522006JHEP...08..052H M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98(3), 030001 (2018) AbbottLFSikiviePPhys. Lett. B19831201331983PhLB..120..133A KimJESeoMSNucl. Phys. B20128642962012NuPhB.864..296K BaeKJChunEJImSHJCAP201212030132012JCAP...03..013B HellermanSWalcherJPhys. Rev. D2005721235202005PhRvD..72l3520H WilczekFPhys. Rev. Lett.1978402791978PhRvL..40..279W LindeADPhys. Lett. B19882014371988PhLB..201..437L CicoliMGoodsellMRingwaldAJHEP201212101462012JHEP...10..146C AmaldiUde BoerWFurstenauHPhys. Lett. B19912604471991PhLB..260..447A DobrescuBAPhys. Rev. D19975558261997PhRvD..55.5826D BaerHBargerVSerceHSinhaKJHEP201818030022018JHEP...03..002B ChoiKChunEJKimJEPhys. Lett. B19974032091997PhLB..403..209C BaerHBargerVSerceHPhys. Rev. D201694111150192016PhRvD..94k5019B WeinbergSPhys. Rev. Lett.1978402231978PhRvL..40..223W WeinbergSPhys. Rev. Lett.19875926071987PhRvL..59.2607W PreskillJWiseMBWilczekFPhys. Lett. B19831201271983PhLB..120..127P BaerHBargerVSavoyMSerceHPhys. Lett. B20167581132016PhLB..758..113B KalloshRLindeADLindeDASusskindLPhys. Rev. D1995529121995PhRvD..52..912K1344160 WittenENucl. Phys. B19811885131981NuPhB.188..513W K.J. Bae, H. Baer, V. Barger, D. Sengupta, arXiv:1902.10748 [hep-ph] D’EramoFHallLJPappadopuloDJHEP201414111082014JHEP...11..108D WeinbergSPhys. Rev. D19751135831975PhRvD..11.3583W OkadaYasuhiroYamaguchiMasahiroYanagidaTsutomuUpper Bound of the Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard ModelProgress of Theoretical Physics1991851151991PThPh..85....1O M.L. Ahnen et al., [MAGIC and Fermi-LAT Collaborations], JCAP 1602(02), 039 (2016) EllisJOliveKSantosoYPhys. Lett. B20025391072002PhLB..539..107E DimopoulosSGeorgiHNucl. Phys. B19811931501981NuPhB.193..150D HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20138870750222013PhRvD..88g5022H EllisJHagelinJNanopoulosDTamvakisMPhys. Lett. B19831252751983PhLB..125..275E BaerHBargerVHuangPMickelsonDMustafayevASreethawongWTataXJHEP201313120132013JHEP...12..013B BaerHBargerVSavoyMTataXPhys. Rev. D20169430350252016PhRvD..94c5025B GuthAHJ. Phys. A20074068112007JPhA...40.6811G2344486 KaulRKPhys. Lett.1982109B191982PhLB..109...19K OlechowskiMPokorskiSPhys. Lett. B19953442011995PhLB..344..201O AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. Lett.19988018221998PhRvL..80.1822A WeinbergSRev. Mod. Phys.19896111989RvMP...61....1W BaeKJBaerHLessaASerceHJCAP20141410100822014JCAP...10..082B MartinSPPhys. Rev. D2000610350042000PhRvD..61c5004M Arkani-HamedNDimopoulosSJHEP200505060732005JHEP...06..073A Yasuhiro Okada (7408_CR23) 1991; 85 7408_CR42 K Harigaya (7408_CR95) 2013; 88 H Baer (7408_CR33) 2014; 89 7408_CR41 U Amaldi (7408_CR11) 1991; 260 E Witten (7408_CR1) 1981; 188 J Pradler (7408_CR120) 2007; 75 H Baer (7408_CR29) 2017; 96 JR Ellis (7408_CR12) 1991; 260 S Dimopoulos (7408_CR8) 1982; 117B LF Abbott (7408_CR53) 1983; 120 7408_CR50 H Baer (7408_CR9) 2006 A Arvanitaki (7408_CR64) 2010; 81 R Bousso (7408_CR43) 2004; 291 7408_CR59 KJ Bae (7408_CR57) 2008; 0809 M Cicoli (7408_CR68) 2014; 485 SP Martin (7408_CR77) 2000; 62 KJ Bae (7408_CR117) 2011; 1108 H Baer (7408_CR35) 2013; 1312 F Wilczek (7408_CR52) 1978; 40 AD Linde (7408_CR78) 1988; 201 7408_CR105 MR Douglas (7408_CR80) 2004; 5 H Baer (7408_CR84) 2016; 758 H Baer (7408_CR112) 2002; 0203 K Inoue (7408_CR15) 1982; 68 SP Martin (7408_CR76) 2000; 61 7408_CR60 V Agrawal (7408_CR83) 1998; 57 M Kawasaki (7408_CR115) 2008; 78 S Dimopoulos (7408_CR7) 1981; 193 H Baer (7408_CR104) 2005; 0507 KJ Bae (7408_CR118) 2012; 1203 7408_CR67 J Ellis (7408_CR18) 1983; 125 7408_CR130 H Baer (7408_CR73) 2019; 790 7408_CR132 R Bousso (7408_CR93) 2013; 88 H Baer (7408_CR30) 2018; 98 MR Douglas (7408_CR46) 2003; 0305 M Dine (7408_CR55) 1983; 120 K Harigaya (7408_CR97) 2015; 92 M Cicoli (7408_CR66) 2012; 1210 K Jedamzik (7408_CR116) 2006; 74 7408_CR72 F D’Eramo (7408_CR94) 2014; 1411 AH Guth (7408_CR98) 2007; 40 JE Kim (7408_CR126) 1984; 138 Z Han (7408_CR38) 2014; 89 K Inoue (7408_CR16) 1984; 71 BA Dobrescu (7408_CR63) 1997; 55 M Tegmark (7408_CR89) 2006; 73 M Olechowski (7408_CR100) 1995; 344 HE Haber (7408_CR21) 1991; 66 J Lykken (7408_CR25) 2014; 310N5 7408_CR79 P Langacker (7408_CR13) 1991; 44 7408_CR121 K Bobkov (7408_CR81) 2010; 1012 J Ellis (7408_CR103) 2003; 652 KJ Bae (7408_CR110) 2014; 1410 HP Nilles (7408_CR122) 2015; 30 G ’t Hooft (7408_CR6) 1976; 37 7408_CR123 7408_CR125 B Freivogel (7408_CR90) 2010; 1003 D Matalliotakis (7408_CR99) 1995; 435 H Baer (7408_CR86) 2019; 1904 S Weinberg (7408_CR45) 1987; 59 R Holman (7408_CR61) 1992; 282 S Heinemeyer (7408_CR24) 2006; 0608 7408_CR88 LJ Hall (7408_CR133) 2012; 1201 L Visinelli (7408_CR58) 2009; 80 F Denef (7408_CR129) 2004; 0405 HM Lee (7408_CR71) 2011; 694 SP Martin (7408_CR75) 1996; 54 H Baer (7408_CR36) 2016; 94 JP Conlon (7408_CR65) 2006; 0605 RD Peccei (7408_CR49) 1977; 16 L Alvarez-Gaumé (7408_CR19) 1983; 221 H Baer (7408_CR111) 2012; 1201 JP Conlon (7408_CR70) 2016; 1604 P Svrcek (7408_CR69) 2006; 0606 JA Casas (7408_CR136) 1996; 471 R Bousso (7408_CR44) 2000; 0006 H Baer (7408_CR85) 2018; 1803 KJ Bae (7408_CR124) 2017; 1706 H Baer (7408_CR28) 2016; 93 Y Nomura (7408_CR134) 2014; 113 A Arvanitaki (7408_CR135) 2013; 1302 H Baer (7408_CR26) 2012; 109 RK Kaul (7408_CR2) 1982; 109B RD Peccei (7408_CR4) 1989; 3 S Weinberg (7408_CR3) 1989; 61 C Han (7408_CR40) 2015; 1504 H Baer (7408_CR137) 1996; 54 LE Ibanez (7408_CR14) 1982; 110 KJ Bae (7408_CR109) 2013; 1312 SK Soni (7408_CR114) 1983; 126B A Mustafayev (7408_CR32) 2014; 88 V Agrawal (7408_CR82) 1998; 80 7408_CR20 H Baer (7408_CR39) 2014; 90 KJ Bae (7408_CR113) 2016; 1601 P Nath (7408_CR101) 1997; 56 J Preskill (7408_CR54) 1983; 120 S Hellerman (7408_CR87) 2005; 72 EJ Chun (7408_CR107) 1995; 357 HP Nilles (7408_CR17) 1983; 120 J Ellis (7408_CR102) 2002; 539 H Baer (7408_CR27) 2013; 87 S Ashok (7408_CR47) 2004; 0401 H Baer (7408_CR31) 2013; 88 S Weinberg (7408_CR5) 1975; 11 KJ Bae (7408_CR106) 2015; 91 HP Nilles (7408_CR128) 1984; 110 MS Turner (7408_CR56) 1986; 33 JE Kim (7408_CR108) 2012; 864 K Harigaya (7408_CR96) 2015; 749 RD Peccei (7408_CR48) 1977; 38 S Weinberg (7408_CR51) 1978; 40 GF Giudice (7408_CR138) 2006; 757 A Brandenburg (7408_CR119) 2004; 0408 7408_CR34 R Kallosh (7408_CR62) 1995; 52 R Bousso (7408_CR91) 2009; 80 R Bousso (7408_CR92) 2011; 106 H Baer (7408_CR127) 2016; 94 N Arkani-Hamed (7408_CR131) 2005; 0506 JR Ellis (7408_CR22) 1991; 257 K Choi (7408_CR74) 1997; 403 H Baer (7408_CR37) 2011; 1111 S Dimopoulos (7408_CR10) 1981; 24 |
| References_xml | – reference: HaberHEHempflingRPhys. Rev. Lett.19916618151991PhRvL..66.1815H – reference: IbanezLERossGGPhys. Lett. B19821102151982PhLB..110..215I – reference: MartinSPPhys. Rev. D19965423401996PhRvD..54.2340M – reference: KalloshRLindeADLindeDASusskindLPhys. Rev. D1995529121995PhRvD..52..912K1344160 – reference: BaeKJBaerHSerceHZhangYFJCAP201616010122016JCAP...01..012B – reference: BaerHBargerVSavoyMSerceHPhys. Lett. B20167581132016PhLB..758..113B – reference: BaerHBargerVSerceHSinhaKJHEP201818030022018JHEP...03..002B – reference: Arkani-HamedNDimopoulosSJHEP200505060732005JHEP...06..073A – reference: MartinSPPhys. Rev. D2000620950082000PhRvD..62i5008M – reference: BaerHBargerVGainerJSSenguptaDSerceHTataXPhys. Rev. D20189870750102018PhRvD..98g5010B – reference: BaerHBargerVMickelsonDPadeffke-KirklandMPhys. Rev. D201489111150192014PhRvD..89k5019B – reference: GiudiceGFRattazziRNucl. Phys. B2006757192006NuPhB.757...19G – reference: HeinemeyerSHollikWStockingerDWeberAMWeigleinGJHEP200606080522006JHEP...08..052H – reference: PecceiRDQuinnHRPhys. Rev. Lett.19773814401977PhRvL..38.1440P – reference: BaeKJBaerHChunEJJCAP201313120282013JCAP...12..028B – reference: InoueKProg. Theor. Phys.1984714131984PThPh..71..413I – reference: AshokSDouglasMRJHEP200404010602004JHEP...01..060A – reference: BaerHBargerVSavoyMPhys. Rev. D20169330350162016PhRvD..93c5016B – reference: MatalliotakisDNillesHPNucl. Phys. B19954351151995NuPhB.435..115M – reference: BaerHBargerVSenguptaDPhys. Lett. B2019790582019PhLB..790...58B – reference: D’EramoFHallLJPappadopuloDJHEP201414111082014JHEP...11..108D – reference: A.M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 782, 440 (2018) – reference: AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. Lett.19988018221998PhRvL..80.1822A – reference: LangackerPLuoM xPhys. Rev. D1991448171991PhRvD..44..817L – reference: H. Baer, V. Barger, S. Salam, arXiv:1906.07741 [hep-ph] – reference: EllisJOliveKSantosoYPhys. Lett. B20025391072002PhLB..539..107E – reference: InoueKProg. Theor. Phys.1982689271982PThPh..68..927I – reference: LeeHMRabySRatzMRossGGSchierenRSchmidt-HobergKVaudrevangePKSPhys. Lett. B20116944912011PhLB..694..491L – reference: F. Wilczek, In *Carr, Bernard (ed.): Universe or multiverse* 151–162. arXiv:hep-ph/0408167 (see also F. Wilczek, Class. Quant. Grav. 30, 193001 (2013)) – reference: BaerHBrhlikMCastanoDPhys. Rev. D19965469441996PhRvD..54.6944B – reference: BaerHBargerVHuangPMickelsonDMustafayevASreethawongWTataXJHEP201313120132013JHEP...12..013B – reference: KawasakiMKohriKMoroiTYotsuyanagiAPhys. Rev. D2008780650112008PhRvD..78f5011K – reference: K.J. Bae, H. Baer, V. Barger, D. Sengupta, arXiv:1902.10748 [hep-ph] – reference: DouglasMRJHEP200303050462003JHEP...05..046D – reference: LindeADPhys. Lett. B19882014371988PhLB..201..437L – reference: BaeKJBaerHSerceHJCAP20171706060242017JCAP...06..024B – reference: DimopoulosSGeorgiHNucl. Phys. B19811931501981NuPhB.193..150D – reference: ConlonJPJHEP200606050782006JHEP...05..078C – reference: HallLJNomuraYJHEP201212010822012JHEP...01..082H – reference: NomuraYShiraiSPhys. Rev. Lett.2014113111118012014PhRvL.113k1801N – reference: BaerHBargerVMickelsonDPhys. Rev. D20138890950132013PhRvD..88i5013B – reference: M. Cicoli, arXiv:1309.6988 [hep-th] – reference: L. Susskind, In *Carr, Bernard (ed.): Universe or multiverse?* 247–266. arXiv:hep-th/0302219 – reference: EllisJFalkTOliveKSantosoYNucl. Phys. B20036522592003NuPhB.652..259E – reference: DineMFischlerWPhys. Lett. B19831201371983PhLB..120..137D – reference: DenefFDouglasMRJHEP200404050722004JHEP...05..072D – reference: BaerHBargerVHuangPJHEP201111110312011JHEP...11..031B – reference: BaerHLessaASreethawongWJCAP201212010362012JCAP...01..036B – reference: CasasJALleydaAMunozCNucl. Phys. B199647131996NuPhB.471....3C – reference: BaerHBargerVGainerJSSerceHTataXPhys. Rev. D201796111150082017PhRvD..96k5008B – reference: CicoliMJ. Phys. Conf. Ser.2014485012064 – reference: MartinSPPhys. Rev. D2000610350042000PhRvD..61c5004M – reference: B.A. Ovrut, S. Raby, Phys. Lett. B 130, 277 (1983) (for a review, see L.E. Ibanez and G.G. Ross, Comptes Rendus Physique 8, 1013 (2007)) – reference: N. Du et al. [ADMX Collaboration], Phys. Rev. Lett. 120(15), 151301 (2018) – reference: FreivogelBJCAP201010030212010JCAP...03..021F – reference: BaerHBargerVHuangPMickelsonDMustafayevATataXPhys. Rev. D2013871150282013PhRvD..87k5028B – reference: ChoiKChunEJKimJEPhys. Lett. B19974032091997PhLB..403..209C – reference: BaerHMustafayevATataXPhys. Rev. D201490111150072014PhRvD..90k5007B – reference: WilczekFPhys. Rev. Lett.1978402791978PhRvL..40..279W – reference: BaerHBargerVSalamSSerceHSinhaKJHEP201919040432019JHEP...04..043B – reference: BoussoRFreivogelBLeichenauerSRosenhausVPhys. Rev. Lett.20111061013012011PhRvL.106j1301B – reference: WeinbergSPhys. Rev. Lett.19875926071987PhRvL..59.2607W – reference: AbbottLFSikiviePPhys. Lett. B19831201331983PhLB..120..133A – reference: EllisJHagelinJNanopoulosDTamvakisMPhys. Lett. B19831252751983PhLB..125..275E – reference: OkadaYasuhiroYamaguchiMasahiroYanagidaTsutomuUpper Bound of the Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard ModelProgress of Theoretical Physics1991851151991PThPh..85....1O – reference: BaerHBargerVHuangPMustafayevATataXPhys. Rev. Lett.20121091618022012PhRvL.109p1802B – reference: NathPArnowittRLPhys. Rev. D19975628201997PhRvD..56.2820N – reference: LykkenJSpiropuluMSci. Am.2014310N536 – reference: PreskillJWiseMBWilczekFPhys. Lett. B19831201271983PhLB..120..127P – reference: HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20159270750032015PhRvD..92g5003H – reference: BaerHBargerVSerceHPhys. Rev. D201694111150192016PhRvD..94k5019B – reference: DobrescuBAPhys. Rev. D19975558261997PhRvD..55.5826D – reference: PradlerJSteffenFDPhys. Rev. D2007750235092007PhRvD..75b3509P – reference: ChunEJLukasAPhys. Lett. B1995357431995PhLB..357...43C – reference: NillesHPSrednickiMWylerDPhys. Lett. B19831203461983PhLB..120..346N – reference: N. Arkani-Hamed, S. Dimopoulos, S. Kachru, arXiv:hep-th/0501082 – reference: WeinbergSRev. Mod. Phys.19896111989RvMP...61....1W – reference: M.L. Ahnen et al., [MAGIC and Fermi-LAT Collaborations], JCAP 1602(02), 039 (2016) – reference: BoussoRHallLJNomuraYPhys. Rev. D2009800635102009PhRvD..80f3510B2607654 – reference: SvrcekPWittenEJHEP200606060512006JHEP...06..051S – reference: PecceiRDAdv. Ser. Direct. High Energy Phys.198935031989ASDHE...3..501P – reference: ArvanitakiACraigNDimopoulosSVilladoroGJHEP201313021262013JHEP...02..126A – reference: BobkovKBraunVKumarPRabySJHEP201010120562010JHEP...12..056B – reference: BaerHMustafayevAProfumoSBelyaevATataXJHEP200505070652005JHEP...07..065B – reference: DouglasMRComptes Rendus Physique200459652004CRPhy...5..965D2121681[hep-th/0409207] – reference: L. Susskind, In *Shifman, M. (ed.) et al.: From fields to strings, vol. 3* 1745–1749. arXiv:hep-th/0405189 – reference: VisinelliLGondoloPPhys. Rev. D2009800350242009PhRvD..80c5024V – reference: CicoliMGoodsellMRingwaldAJHEP201212101462012JHEP...10..146C – reference: WittenENucl. Phys. B19811885131981NuPhB.188..513W – reference: BoussoRPolchinskiJJHEP200000060062000JHEP...06..006B – reference: PecceiRDQuinnHRPhys. Rev. D19771617911977PhRvD..16.1791P – reference: M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98(3), 030001 (2018) – reference: H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, K. Schmidt-Hoberg, P.K. S. Vaudrevange, Nucl. Phys. B 850, 1 (2011) (see also K. S. Babu, I. Gogoladze and K. Wang, Nucl. Phys. B 660, 322 (2003)) – reference: DimopoulosSRabySWilczekFPhys. Rev. D19812416811981PhRvD..24.1681D – reference: BoussoRPolchinskiJSci. Am.200429160 – reference: M. Kamionkowski, J. March-Russell, Phys. Lett. B 282 (1992) 137 (see also S. M. Barr and D. Seckel, Phys. Rev. D 46, 539 (1992)) – reference: HanCKimDMunirSParkMJHEP201515041322015JHEP...04..132H – reference: F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, arXiv:hep-ph/0312045 – reference: HanZKribsGDMartinAMenonAPhys. Rev. D20148970750072014PhRvD..89g5007H – reference: NillesHPVaudrevangePKSMod. Phys. Lett. A2015301015300082015MPLA...3030008N – reference: TurnerMSPhys. Rev. D1986338891986PhRvD..33..889T – reference: BoussoRHallLPhys. Rev. D2013880635032013PhRvD..88f3503B – reference: HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20138870750222013PhRvD..88g5022H – reference: BaerHTataXWeak Scale Supersymmetry: From Superfields to Scattering Events2006CambridgeCambridge University Press5371243.81012 – reference: M.R. Douglas, arXiv:hep-th/0405279 – reference: TegmarkMAguirreAReesMWilczekFPhys. Rev. D2006730235052006PhRvD..73b3505T – reference: JedamzikKPhys. Rev. D2006741035092006PhRvD..74j3509J – reference: KimJENillesHPPhys. Lett. B19841381501984PhLB..138..150K – reference: ’t HooftGPhys. Rev. Lett.19763781976PhRvL..37....8T – reference: NillesHPPhys. Rep.198411011984PhR...110....1N – reference: BaeKJChoiKImSHJHEP201111080652011JHEP...08..065B – reference: BaerHBargerVSavoyMTataXPhys. Rev. D20169430350252016PhRvD..94c5025B – reference: HolmanRHsuSDHKephartTWKolbEWWatkinsRWidrowLMPhys. Lett. B19922821321992PhLB..282..132H – reference: HarigayaKIbeMSchmitzKYanagidaTTPhys. Lett. B20157492982015PhLB..749..298H – reference: GuthAHJ. Phys. A20074068112007JPhA...40.6811G2344486 – reference: WeinbergSPhys. Rev. Lett.1978402231978PhRvL..40..223W – reference: EllisJRRidolfiGZwirnerFPhys. Lett. B1991257831991PhLB..257...83E – reference: M. Dine, E. Gorbatov, S.D. Thomas, JHEP 0808, 098 (2008) (for reviews, see M. Dine, arXiv:hep-th/0410201) – reference: BaeKJHuhJHKimJEJCAP200808090052008JCAP...09..005B – reference: SoniSKWeldonHAPhys. Lett.1983126B2151983PhLB..126..215S – reference: AmaldiUde BoerWFurstenauHPhys. Lett. B19912604471991PhLB..260..447A – reference: AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. D19985754801998PhRvD..57.5480A – reference: BaerHBalazsCBelyaevAJHEP200202030422002JHEP...03..042B – reference: BaeKJChunEJImSHJCAP201212030132012JCAP...03..013B – reference: KaulRKPhys. Lett.1982109B191982PhLB..109...19K – reference: MustafayevATataXIndian J. Phys.2014889912014InJPh..88..991M – reference: Alvarez-GauméLPolchinskiJWiseMNucl. Phys. B19832214951983NuPhB.221..495A – reference: EllisJRKelleySNanopoulosDVPhys. Lett. B19912601311991PhLB..260..131E – reference: ArvanitakiADimopoulosSDubovskySKaloperNMarch-RussellJPhys. Rev. D2010811235302010PhRvD..81l3530A – reference: ConlonJPKrippendorfSJHEP201616040852016JHEP...04..085C – reference: WeinbergSPhys. Rev. D19751135831975PhRvD..11.3583W – reference: DimopoulosSGeorgiHPhys. Lett.1982117B2871982PhLB..117..287D – reference: OlechowskiMPokorskiSPhys. Lett. B19953442011995PhLB..344..201O – reference: HellermanSWalcherJPhys. Rev. D2005721235202005PhRvD..72l3520H – reference: BaeKJBaerHSerceHPhys. Rev. D20159110150032015PhRvD..91a5003B – reference: BrandenburgASteffenFDJCAP200404080082004JCAP...08..008B – reference: KimJESeoMSNucl. Phys. B20128642962012NuPhB.864..296K – reference: BaeKJBaerHLessaASerceHJCAP20141410100822014JCAP...10..082B – volume: 485 start-page: 012064 year: 2014 ident: 7408_CR68 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/485/1/012064 – volume: 54 start-page: 6944 year: 1996 ident: 7408_CR137 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.54.6944 – ident: 7408_CR88 – volume: 749 start-page: 298 year: 2015 ident: 7408_CR96 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.07.073 – volume: 37 start-page: 8 year: 1976 ident: 7408_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.37.8 – volume: 1312 start-page: 028 year: 2013 ident: 7408_CR109 publication-title: JCAP – volume: 0506 start-page: 073 year: 2005 ident: 7408_CR131 publication-title: JHEP doi: 10.1088/1126-6708/2005/06/073 – volume: 87 start-page: 115028 year: 2013 ident: 7408_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.115028 – volume: 80 start-page: 1822 year: 1998 ident: 7408_CR82 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1822 – volume: 5 start-page: 965 year: 2004 ident: 7408_CR80 publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2004.09.008 – volume: 403 start-page: 209 year: 1997 ident: 7408_CR74 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(97)00465-6 – volume: 40 start-page: 6811 year: 2007 ident: 7408_CR98 publication-title: J. Phys. A doi: 10.1088/1751-8113/40/25/S25 – volume: 88 start-page: 095013 issue: 9 year: 2013 ident: 7408_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.095013 – volume: 1411 start-page: 108 year: 2014 ident: 7408_CR94 publication-title: JHEP doi: 10.1007/JHEP11(2014)108 – ident: 7408_CR42 – ident: 7408_CR132 doi: 10.1088/1126-6708/2008/08/098 – volume: 790 start-page: 58 year: 2019 ident: 7408_CR73 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.01.007 – ident: 7408_CR59 doi: 10.1103/PhysRevLett.120.151301 – volume: 85 start-page: 1 issue: 1 year: 1991 ident: 7408_CR23 publication-title: Progress of Theoretical Physics doi: 10.1143/PTP.85.1 – volume: 88 start-page: 075022 issue: 7 year: 2013 ident: 7408_CR95 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.075022 – volume: 1210 start-page: 146 year: 2012 ident: 7408_CR66 publication-title: JHEP doi: 10.1007/JHEP10(2012)146 – volume: 0606 start-page: 051 year: 2006 ident: 7408_CR69 publication-title: JHEP doi: 10.1088/1126-6708/2006/06/051 – volume: 1312 start-page: 013 year: 2013 ident: 7408_CR35 publication-title: JHEP doi: 10.1007/JHEP12(2013)013 – volume: 1410 start-page: 082 issue: 10 year: 2014 ident: 7408_CR110 publication-title: JCAP – volume: 11 start-page: 3583 year: 1975 ident: 7408_CR5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.11.3583 – volume: 310N5 start-page: 36 year: 2014 ident: 7408_CR25 publication-title: Sci. Am. – volume: 0006 start-page: 006 year: 2000 ident: 7408_CR44 publication-title: JHEP doi: 10.1088/1126-6708/2000/06/006 – volume: 120 start-page: 137 year: 1983 ident: 7408_CR55 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)90639-1 – volume: 78 start-page: 065011 year: 2008 ident: 7408_CR115 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.065011 – volume: 120 start-page: 127 year: 1983 ident: 7408_CR54 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)90637-8 – volume: 110 start-page: 1 year: 1984 ident: 7408_CR128 publication-title: Phys. Rep. doi: 10.1016/0370-1573(84)90008-5 – volume: 40 start-page: 223 year: 1978 ident: 7408_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.223 – volume: 72 start-page: 123520 year: 2005 ident: 7408_CR87 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.123520 – volume: 1012 start-page: 056 year: 2010 ident: 7408_CR81 publication-title: JHEP doi: 10.1007/JHEP12(2010)056 – volume: 113 start-page: 111801 issue: 11 year: 2014 ident: 7408_CR134 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.111801 – volume: 117B start-page: 287 year: 1982 ident: 7408_CR8 publication-title: Phys. Lett. doi: 10.1016/0370-2693(82)90720-1 – volume: 24 start-page: 1681 year: 1981 ident: 7408_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.24.1681 – volume: 1601 start-page: 012 year: 2016 ident: 7408_CR113 publication-title: JCAP – volume: 33 start-page: 889 year: 1986 ident: 7408_CR56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.33.889 – ident: 7408_CR130 – volume: 138 start-page: 150 year: 1984 ident: 7408_CR126 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(84)91890-2 – ident: 7408_CR34 – volume: 40 start-page: 279 year: 1978 ident: 7408_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.279 – volume: 106 start-page: 101301 year: 2011 ident: 7408_CR92 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.101301 – volume: 91 start-page: 015003 issue: 1 year: 2015 ident: 7408_CR106 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.015003 – volume: 0608 start-page: 052 year: 2006 ident: 7408_CR24 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/052 – volume: 61 start-page: 1 year: 1989 ident: 7408_CR3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.1 – volume: 80 start-page: 063510 year: 2009 ident: 7408_CR91 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.063510 – ident: 7408_CR121 – volume: 260 start-page: 447 year: 1991 ident: 7408_CR11 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)91641-8 – volume: 68 start-page: 927 year: 1982 ident: 7408_CR15 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.68.927 – volume: 88 start-page: 991 year: 2014 ident: 7408_CR32 publication-title: Indian J. Phys. doi: 10.1007/s12648-014-0504-8 – volume: 74 start-page: 103509 year: 2006 ident: 7408_CR116 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.103509 – ident: 7408_CR20 doi: 10.1016/j.crhy.2007.02.004 – volume: 291 start-page: 60 year: 2004 ident: 7408_CR43 publication-title: Sci. Am. doi: 10.1038/scientificamerican0904-78 – volume: 282 start-page: 132 year: 1992 ident: 7408_CR61 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(92)90491-L – volume: 0405 start-page: 072 year: 2004 ident: 7408_CR129 publication-title: JHEP doi: 10.1088/1126-6708/2004/05/072 – ident: 7408_CR79 – volume: 109B start-page: 19 year: 1982 ident: 7408_CR2 publication-title: Phys. Lett. doi: 10.1016/0370-2693(82)90453-1 – volume: 61 start-page: 035004 year: 2000 ident: 7408_CR76 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.61.035004 – volume: 193 start-page: 150 year: 1981 ident: 7408_CR7 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(81)90522-8 – volume: 98 start-page: 075010 issue: 7 year: 2018 ident: 7408_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.075010 – volume: 94 start-page: 115019 issue: 11 year: 2016 ident: 7408_CR127 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.115019 – volume: 120 start-page: 346 year: 1983 ident: 7408_CR17 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)90460-4 – start-page: 537 volume-title: Weak Scale Supersymmetry: From Superfields to Scattering Events year: 2006 ident: 7408_CR9 doi: 10.1017/CBO9780511617270 – volume: 1604 start-page: 085 year: 2016 ident: 7408_CR70 publication-title: JHEP – volume: 1203 start-page: 013 year: 2012 ident: 7408_CR118 publication-title: JCAP – volume: 109 start-page: 161802 year: 2012 ident: 7408_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.161802 – ident: 7408_CR72 doi: 10.1016/j.nuclphysb.2011.04.009 – volume: 120 start-page: 133 year: 1983 ident: 7408_CR53 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)90638-X – volume: 357 start-page: 43 year: 1995 ident: 7408_CR107 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(95)00881-K – volume: 188 start-page: 513 year: 1981 ident: 7408_CR1 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(81)90006-7 – volume: 126B start-page: 215 year: 1983 ident: 7408_CR114 publication-title: Phys. Lett. doi: 10.1016/0370-2693(83)90593-2 – volume: 471 start-page: 3 year: 1996 ident: 7408_CR136 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(96)00194-0 – volume: 1904 start-page: 043 year: 2019 ident: 7408_CR86 publication-title: JHEP doi: 10.1007/JHEP04(2019)043 – volume: 0809 start-page: 005 year: 2008 ident: 7408_CR57 publication-title: JCAP – volume: 57 start-page: 5480 year: 1998 ident: 7408_CR83 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.57.5480 – volume: 757 start-page: 19 year: 2006 ident: 7408_CR138 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.07.031 – volume: 435 start-page: 115 year: 1995 ident: 7408_CR99 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)00487-Y – volume: 96 start-page: 115008 issue: 11 year: 2017 ident: 7408_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.115008 – volume: 694 start-page: 491 year: 2011 ident: 7408_CR71 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.10.038 – volume: 73 start-page: 023505 year: 2006 ident: 7408_CR89 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.023505 – volume: 110 start-page: 215 year: 1982 ident: 7408_CR14 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)91239-4 – volume: 1302 start-page: 126 year: 2013 ident: 7408_CR135 publication-title: JHEP doi: 10.1007/JHEP02(2013)126 – volume: 62 start-page: 095008 year: 2000 ident: 7408_CR77 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.095008 – volume: 0408 start-page: 008 year: 2004 ident: 7408_CR119 publication-title: JCAP doi: 10.1088/1475-7516/2004/08/008 – volume: 0401 start-page: 060 year: 2004 ident: 7408_CR47 publication-title: JHEP doi: 10.1088/1126-6708/2004/01/060 – volume: 81 start-page: 123530 year: 2010 ident: 7408_CR64 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.123530 – volume: 1108 start-page: 065 year: 2011 ident: 7408_CR117 publication-title: JHEP – volume: 0203 start-page: 042 year: 2002 ident: 7408_CR112 publication-title: JHEP doi: 10.1088/1126-6708/2002/03/042 – volume: 30 start-page: 1530008 issue: 10 year: 2015 ident: 7408_CR122 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732315300086 – ident: 7408_CR105 – volume: 260 start-page: 131 year: 1991 ident: 7408_CR12 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)90980-5 – ident: 7408_CR41 – volume: 89 start-page: 115019 issue: 11 year: 2014 ident: 7408_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.115019 – volume: 3 start-page: 503 year: 1989 ident: 7408_CR4 publication-title: Adv. Ser. Direct. High Energy Phys. – volume: 221 start-page: 495 year: 1983 ident: 7408_CR19 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(83)90591-6 – volume: 80 start-page: 035024 year: 2009 ident: 7408_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.035024 – volume: 38 start-page: 1440 year: 1977 ident: 7408_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.38.1440 – volume: 94 start-page: 035025 issue: 3 year: 2016 ident: 7408_CR36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.035025 – volume: 1803 start-page: 002 year: 2018 ident: 7408_CR85 publication-title: JHEP doi: 10.1007/JHEP03(2018)002 – volume: 93 start-page: 035016 issue: 3 year: 2016 ident: 7408_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.035016 – volume: 0305 start-page: 046 year: 2003 ident: 7408_CR46 publication-title: JHEP doi: 10.1088/1126-6708/2003/05/046 – volume: 90 start-page: 115007 issue: 11 year: 2014 ident: 7408_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.115007 – volume: 75 start-page: 023509 year: 2007 ident: 7408_CR120 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.023509 – volume: 201 start-page: 437 year: 1988 ident: 7408_CR78 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(88)90597-7 – volume: 16 start-page: 1791 year: 1977 ident: 7408_CR49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.16.1791 – volume: 1201 start-page: 082 year: 2012 ident: 7408_CR133 publication-title: JHEP doi: 10.1007/JHEP01(2012)082 – volume: 44 start-page: 817 year: 1991 ident: 7408_CR13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.44.817 – ident: 7408_CR125 – volume: 89 start-page: 075007 issue: 7 year: 2014 ident: 7408_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.075007 – ident: 7408_CR67 – volume: 54 start-page: 2340 year: 1996 ident: 7408_CR75 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.54.2340 – volume: 71 start-page: 413 year: 1984 ident: 7408_CR16 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.71.413 – volume: 0507 start-page: 065 year: 2005 ident: 7408_CR104 publication-title: JHEP doi: 10.1088/1126-6708/2005/07/065 – volume: 864 start-page: 296 year: 2012 ident: 7408_CR108 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.06.018 – volume: 1111 start-page: 031 year: 2011 ident: 7408_CR37 publication-title: JHEP doi: 10.1007/JHEP11(2011)031 – ident: 7408_CR123 doi: 10.1088/1475-7516/2016/02/039 – volume: 88 start-page: 063503 year: 2013 ident: 7408_CR93 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.063503 – volume: 66 start-page: 1815 year: 1991 ident: 7408_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.1815 – volume: 52 start-page: 912 year: 1995 ident: 7408_CR62 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.52.912 – volume: 55 start-page: 5826 year: 1997 ident: 7408_CR63 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.5826 – volume: 59 start-page: 2607 year: 1987 ident: 7408_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2607 – volume: 0605 start-page: 078 year: 2006 ident: 7408_CR65 publication-title: JHEP doi: 10.1088/1126-6708/2006/05/078 – volume: 539 start-page: 107 year: 2002 ident: 7408_CR102 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02071-3 – volume: 1706 start-page: 024 issue: 06 year: 2017 ident: 7408_CR124 publication-title: JCAP – volume: 125 start-page: 275 year: 1983 ident: 7408_CR18 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)91283-2 – volume: 1504 start-page: 132 year: 2015 ident: 7408_CR40 publication-title: JHEP doi: 10.1007/JHEP04(2015)132 – volume: 344 start-page: 201 year: 1995 ident: 7408_CR100 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(94)01571-S – volume: 1201 start-page: 036 year: 2012 ident: 7408_CR111 publication-title: JCAP doi: 10.1088/1475-7516/2012/01/036 – ident: 7408_CR50 – ident: 7408_CR60 doi: 10.1016/0370-2693(92)90492-M – volume: 92 start-page: 075003 issue: 7 year: 2015 ident: 7408_CR97 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.075003 – volume: 257 start-page: 83 year: 1991 ident: 7408_CR22 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)90863-L – volume: 56 start-page: 2820 year: 1997 ident: 7408_CR101 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.56.2820 – volume: 1003 start-page: 021 year: 2010 ident: 7408_CR90 publication-title: JCAP doi: 10.1088/1475-7516/2010/03/021 – volume: 758 start-page: 113 year: 2016 ident: 7408_CR84 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.05.010 – volume: 652 start-page: 259 year: 2003 ident: 7408_CR103 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)01144-6 |
| SSID | ssj0002408 |
| Score | 2.3658643 |
| Snippet | The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general... Rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement... Abstract The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather... |
| SourceID | doaj unpaywall osti proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Astronomy Astrophysics and Cosmology axions Broken symmetry Dark matter Dark matter (Astronomy) Elementary Particles Gravitation Hadrons Heavy Ions Higgs bosons Large Hadron Collider Measurement Science and Instrumentation Mediation Misalignment Nuclear Energy Nuclear Physics Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics String Theory supersymmetry Symmetry |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSgg4IJ4itKAIIXGK1k4cxz6hFlG1HBCvSr1ZfqJWS3ZFNqK98R_4h_wSZpxs6J6WA9d4fPDnsecbZeYzIS-9qyHoslgEXruCK24LVTZ14X0MTSWDLEMqkH0vjk_5u7P67NpTX1gTNsgDD8DNXaDWRSUhVFneNMKo0DAgLdIIZ5RN6qVUqk0yNd7BKNyV-ooqXgjK-dgbDNnEPKwuHHbO0RprElTRgGlxuRWWknr_dEfPlnDYtgjo9M_0DrnVtytz9cMsFtfC0tE9cnfkk_nBsI775EZoH5Cbqa7TdQ_J4UmXA8XLvxmsEup9yJcxffgAoIbz3z9_fezP2zbvYKtC3oV1bq_SeGoBxuKo14_I6dHbL2-Oi_HZhMIBHVoXPkoeeVkGEwOrWFC1hTjuZKQuCts44WphkOixStDKMAusT_jAmPXCV9JXj8msXbbhCclZoELCbKdKzw3npvQm1p6HRirIHH1G6g1q2o2a4vi0xUIP_c5UI9p6QFsD2hrR1pcZmU_zVoOqxs4Zh7gpkzWqYqcP4Ct69BW9y1cy8gK3VKPuRYuFNV9N33X65PMnfSBQrKxsKBi9Go3iEtbizNinAIigVNaW5R66hgaugoK7DiuT3FozkXhwRvY3HqPHe6HTwKaBL0IaqTJCN170d3gXBnTytn-E7en_gG2P3C7xpKQOzH0yW3_vwzOgYmv7PJ26PyZuKrY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVohyQDxFaEERQuJkbR6OkxxQ1UWtWg6rUqjUm-X4URUtybZJRHvjP_AP-SXMeJ2UvVCuyVjKfh7PfNnMfEPIO60ySLqxpYZlirKSVbRM8oxqbU2eFqZIjCuQnfPDU_bpLDvbIPOhFwbLKoeY6AK1bhT-Rz4FHgKZFgh4ubu8pDg1Cr-uDiM0pB-toD84ibF7ZDNBZawJ2Zztz49PxtiMgl6u3yhllEeM-Z5heMuYmuU3hR11UYa1CiXNwZRer6Urp-o_xu5JA4dwjZiO31Ifkgd9vZQ3P-Ri8Ve6OnhMHnmeGe6tHOMJ2TD1U3Lf1Xuq9hmZHbUhUL_wu8TqoV6bsLHuwjGAbS5-__z1ub-o67CFLTRha7qwunH3XWswFk3tPienB_tfPx5SP06BKqBJHdW2YJYliZHWxGlsyqyC_K4KGynLq1xxlXGJBDBOeZTKuAI2yLWJ40pznRY6fUEmdVOblySMTcQLWK3KRDPJmEy0tJlmJi9KeKPUAckG1ITyWuM48mIhVn3QkUC0xQptAWgLRFtcB2Q6rluu1DbuXDHDTRmtUS3bXWiuzoU_fEKZqFK2LIDuVCzPuSxNHgPxLSRXsqyygLzFLRWoh1Fjwc257NtWHH05EXscRcySPAKj997INvBblPT9C4AISmitWW6jawjgMCjEq7BiSXUi5o4fB2Rn8Bjh40Urbr07INHgRbe378IgGr3tP2F79e-H2CZbCZ4B13O5QybdVW9eA_nqqjf-RP0BNMcobw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQIgQcEE-RtqAIIXGy6iS2E59QW1G1HBCvSr1ZfqJWS3ZFEpXe-A_8Q34JM95s6B5Q4RrbifLN2PNZnvlMyEvvBATdItLAhaNccUtVWQvqfQx11YSmDClB9p08OuFvT8XpuFHEWpir5_fA_XfD8txhnRsTmEGgaM1ZQ4Ez3oRAJdPhrDyYVl6U60rVRBWnknE-VgT__T0bwShp9k8r82wBU2yDdk4npXfJ7aFdmssLM59fCUaH98m9kUXmeyuzPyA3QvuQ3ErZnK57RPaPuxyIXf7VYG7Q4EO-iOnBe4AynP368fPDcNa2eQcGCnkX-txepvZU-IspUa8fk5PDN58Pjuh4WQJ1QIJ66mPDIy_LYGIoqiIoYSF6uyYyF6WtnXRCGqR3RSVZZQoLXE_6UBTWS181vnpCZu2iDU9JXgQmGxjtVOm54dyU3kTheagbBftFnxGxRk27UUkcL7SY61WVM9OItl6hrQFtjWjr7xnZncYtV1oa147YR6NMvVELOz0AF9Hj1NIuMOuiaoDMWF7X0qhQF0BrGyOdUVZk5AWaVKPaRYvpNF_M0HX6-NNHvSdRoqysGXR6NXaKC_gXZ8bqBEAEBbI2em6ja2hgKCiz6zAfyfW6kIn9ZmRn7TF6XA06DRwaWCJsHlVG2NqL_jRfhwGbvO0fYdv6_69skzslzotUZblDZv23ITwDutXb52mO_QbcXh6n priority: 102 providerName: Springer Nature |
| Title | Is the magnitude of the Peccei–Quinn scale set by the landscape? |
| URI | https://link.springer.com/article/10.1140/epjc/s10052-019-7408-x https://www.proquest.com/docview/2312730869 https://www.osti.gov/servlets/purl/1600540 https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-7408-x.pdf https://doaj.org/article/ce0bcf98082b4776a9e719778a6ca9b5 |
| UnpaywallVersion | publishedVersion |
| Volume | 79 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: ADMLS dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-6052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: AFBBN dateStart: 19980201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: 8FG dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: C6C dateStart: 19980301 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: C24 dateStart: 19980301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLW2Vgh44HOIslFFCImntE5iO8kTaquVjoeqDCqNJ8vxx1QoabUkYuOJ_8A_5Jdw7aSFIqGBxIuVj-tKuTmOT5p7jhF6riSFSTcwviZU-iQlmZ-GMfWVMjqOEp2E2hXITtlkTl6f0bM9NNloYVy1--aTZK1psC5NedlfK9N42-K-Xn-QVv2Gqa0rSP2Y4MS_7EHIPmozCqy8hdrz6Wzw3omLIuIz7NZ1bbZp2IiF__xjO_OUs_PfPrRbKxh9O4x0-xH1NrpZ5Wtx9Vksl7_MU-O7aLG5wro85WOvKrOe_PKb-eP_SME9dKchs96gRt99tKfzB-iGKyqVxUM0PCk84JfeJ2FLlCqlvZVxB2ZwR_Xi-9dvb6pFnnsF4ER7hS697Mqdd_pjW5n18gDNx8fvRhO_WbPBl8DFSl-ZhBgShloYHUSBTmkGJEImBkvDslgySZmwLDOIGI5EkAHlZEoHQaaYihIVPUKtfJXrx8gLNGYJ9JZpqIggRIRKGKqIjpMUXltVB9HNHeKyMTS362oseS22xtzmiNc54pAjbnPELzuov-23ri09ru0xtADYRltLbndgdXHOmxHOpcaZNGkCnCojccxEquMA2HUimBRpRjvomYUPt6Ybua3qORdVUfCTt6d8wKxTWhhjCHrRBJkVXIsUjUgCMmJ9unYiDy0MORAl6_YrbVmULHnAHAnvoKMNOnnzUCo4UHkgq_AOm3YQ3gDs5-nrcoC3yP7LtD359y6H6FZo0ezEnkeoVV5U-imwvjLrov1k_KqL2sPj6ewU9kYhsS0bdd3_KNDOQ2jrYf8DzG5TIA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVqhwQPyKpQUiBOIUbX4cJz5UVRda7dKyKqWVejOO7VRFS7I0u2r3xjvwPjwMT8KM10nZC-XSazKOkvGM53M83wwhr7VKIOiGhW9oonzKae7zKE18rQuTxpnJImMTZEdscEw_nCQnK-RXw4XBtMpmTbQLta4U_iPvAQ6BSAsAnG9NvvvYNQpPV5sWGtK1VtCbtsSYI3bsmfkFbOHqzeF7mO83UbS7c_Ru4LsuA74C9DD1dZHRgkaRkYUJ49DwJIewp7IiUAXLU8VUwiTiojBmQSzDHEAS0yYMc810nOkYnnuLrNKYctj8rfZ3RgeHbSzAAmKW3xRTnwWUOo4y7Gp6ZvJVIYMvSDA3gvspiPqXS-HRdhFoY0WnAqdfAsLt2e1dsjYrJ3J-Icfjv8Lj7n1yz-Fab3thiA_Iiikfkts2v1TVj0h_WHsANb1vErOVZtp4VWEvHMDkmrPfP35-mp2VpVeDyRivNlMvn9v7loqMSVpbj8nxjSj2CemUVWmeEi80ActgtOKRppJSGWlZJJqaNOOwg9VdkjRaE8rVNscWG2Ox4F0HArUtFtoWoG2B2haXXdJrx00W1T2uHdHHSWmlsTq3vVCdnwrn7EKZIFcFzwBe5TRNmeQmDQFoZ5IpyfOkS17hlAqsv1Figs-pnNW1GH4-FNsMi6ZFaQBCb51QUcG3KOn4EqARLNm1JLmOpiEAM2HhX4UZUmoqQmbxeJdsNBYj3PpUiytv6pKgsaKr29fpIGit7T_V9uzfL_GSrA2OPu6L_eFob53cidAfLN9zg3Sm5zPzHIDfNH_hvMsjX27aof8A8eNlZw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FQWwHxCqGBLAQiFNrvLTb9gFFCWHIEBSFJVJunXYvUdBgD7FHydz4B_6Gz-FLqGovYS6ES652tWW_rup67a6FkBdaxeB0A0sNixVlGctpFiYx1dqaJEpNGhoXILvLt_fZ-4P4YIX86nJhMKyyWxPdQq1Lhf_IR8BDwNMCAc9Gtg2L2Nsar8--U-wghSetXTuNRkV2zOIUtm_V68kWzPXLMBy__fJmm7YdBqgC5lBTbVNmWRgaaU0QBSaLc3B5KrW-sjxPFFcxl8iJgoj7kQxyIEhcmyDINddRqiN47hVyNcEq7pilPn7XewEsHeYymyJGuc9Ym50M-5mRmX1VmLvnxxgVkdEEROnZkmN0_QN6LzEowdyXKHB_anuL3JgXM7k4ldPpX45xfIfcbhmtt9Go4F2yYop75JqLLFXVfbI5qTwgmd43iXFKc2280roLezCt5vj3j58f58dF4VWgLMarTO3lC3ffJSFjeNb6A7J_KbA-JIOiLMwj4gXG5ymMVlmomWRMhlraWDOTpBnsXfWQxB1qQrVVzbG5xlQ0Gde-QLRFg7YAtAWiLc6GZNSPmzV1PS4csYmT0ktjXW53oTw5Eq2ZC2X8XNksBWKVsyThMjNJABQ7lVzJLI-H5DlOqcDKGwXq8JGcV5WYfP4kNjiWSwsTH4RetUK2hG9Rss2UAESwWNeS5CqqhgC2hCV_FcZGqVoE3DHxIVnrNEa0K1Mlzu1oSPxOi85vX4SB32vbf8L2-N8v8YxcBzMWHya7O6vkZojm4BI918igPpmbJ8D46vypMy2PHF62Lf8BFMtjAQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwGLVGJwQ8cB2ibKAIIfGU1klsJ3lCHWLqeJjGpdJ4snydCiWtlkRsPPEf-If8Ej47TqFIaCDxViWfK-XLcXyinHOM0FOtKCy6iY0NoSomJZFxmeY01tqaPCtMkRovkD1i0xl5dUJPttC098J4tXv_SbLzNLiUpqoZr7QN2bZ4bFYflHO_Yep0BWWcE1zE5yMouYK2GQVWPkDbs6PjyXtvLspIzLDf1zX8pmkwC__5zzbWKR_nv35oD5Yw-zYY6foj6g10ra1W4uKzWCx-WacObqF5f4WdPOXjqG3kSH35Lfzxf7TgNroZyGw06dB3B22Z6i666kWlqr6H9g_rCPhl9Ek4iVKrTbS0_sAx3FEz__712-t2XlVRDTgxUW2aSF74895_7JRZz3fQ7ODluxfTOOzZECvgYk2sbUEsSVMjrEmyxJRUAolQhcXKMpkrpigTjmUmGcOZSCRQTqZNkkjNdFbo7D4aVMvKPEBRYjArYLQqU00EISLVwlJNTF6U8Nqqh4j2d4irEGju9tVY8M5sjbnrEe96xKFH3PWInw_ReD1u1UV6XDpi3wFgXe0iuf2B5dkpDzOcK4OlsmUBnEqSPGeiNHkC7LoQTIlS0iF64uDDXehG5VQ9p6Kta3749g2fMJeUluYYip6FIruEa1EimCSgIy6na6Ny18GQA1Fyab_KyaJUwxPmSfgQ7fXo5OGhVHOg8kBW4R22HCLcA-zn6ct6gNfI_su2Pfz3IbvoeurQ7M2ee2jQnLXmEbC-Rj4OE_oH94dNGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+magnitude+of+the+Peccei%E2%80%93Quinn+scale+set+by+the+landscape%3F&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Baer%2C+Howard&rft.au=Barger%2C+Vernon&rft.au=Sengupta%2C+Dibyashree&rft.au=Serce%2C+Hasan&rft.date=2019-11-01&rft.pub=Springer&rft.issn=1434-6044&rft.volume=79&rft.issue=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-019-7408-x&rft.externalDocID=1600540 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |