Is the magnitude of the Peccei–Quinn scale set by the landscape?

The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 79; no. 11; pp. 1 - 16
Main Authors Baer, Howard, Barger, Vernon, Sengupta, Dibyashree, Serce, Hasan, Sinha, Kuver, Deal, Robert Wiley
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1434-6044
1434-6052
1434-6052
DOI10.1140/epjc/s10052-019-7408-x

Cover

Abstract The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from m weak ∼ 100 GeV. Such a picture leads to the prediction that m h ≃ 125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale f a is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe Z 24 R symmetry and where the SUSY μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle θ i because WIMPs are also overproduced at large f a . Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale m 3 / 2 ∼ 10 –100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where f a ∼ 10 11 – 10 12 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on θ i but leading to the measured dark matter abundance: this approach leads to a preference for f a ∼ 10 12 GeV.
AbstractList The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from m weak ∼ 100 GeV. Such a picture leads to the prediction that m h ≃ 125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale f a is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe Z 24 R symmetry and where the SUSY μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle θ i because WIMPs are also overproduced at large f a . Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale m 3 / 2 ∼ 10 –100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where f a ∼ 10 11 – 10 12 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on θ i but leading to the measured dark matter abundance: this approach leads to a preference for f a ∼ 10 12 GeV.
The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from \[m_{weak}\sim 100\] GeV. Such a picture leads to the prediction that \[m_h\simeq 125\] GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale \[f_a\] is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe \[\mathbb {Z}_{24}^R\] symmetry and where the SUSY \[\mu \] parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle \[\theta _i\] because WIMPs are also overproduced at large \[f_a\]. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale \[m_{3/2}\sim 10\]–100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where \[f_a\sim 10^{11}\]–\[10^{12}\] GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on \[\theta _i\] but leading to the measured dark matter abundance: this approach leads to a preference for \[f_a\sim 10^{12}\] GeV.
Abstract The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from $$m_{weak}\sim 100$$ mweak∼100 GeV. Such a picture leads to the prediction that $$m_h\simeq 125$$ mh≃125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale $$f_a$$ fa is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe $$\mathbb {Z}_{24}^R$$ Z24R symmetry and where the SUSY $$\mu $$ μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle $$\theta _i$$ θi because WIMPs are also overproduced at large $$f_a$$ fa . Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale $$m_{3/2}\sim 10$$ m3/2∼10 –100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where $$f_a\sim 10^{11}$$ fa∼1011 –$$10^{12}$$ 1012 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on $$\theta _i$$ θi but leading to the measured dark matter abundance: this approach leads to a preference for $$f_a\sim 10^{12}$$ fa∼1012 GeV.
Rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from mweak~ 100 GeV. Such a picture leads to the prediction that mh~ 125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei-Quinn (PQ) scale fa is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe Z$R\atop{24}$$ symmetry and where the SUSY mu parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle θi because WIMPs are also overproduced at large fa. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale m3/2~ 10-100 TeV places the mixed axion-neutralino dark matter abundance into the intermediate scale sweet zone where fa~ 1011-1012 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on theta_i but leading to the measured dark matter abundance: this approach leads to a preference for fa~ 1012 GeV.
The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from $$m_{weak}\sim 100$$ m weak ∼ 100 GeV. Such a picture leads to the prediction that $$m_h\simeq 125$$ m h ≃ 125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale $$f_a$$ f a is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe $$\mathbb {Z}_{24}^R$$ Z 24 R symmetry and where the SUSY $$\mu $$ μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle $$\theta _i$$ θ i because WIMPs are also overproduced at large $$f_a$$ f a . Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale $$m_{3/2}\sim 10$$ m 3 / 2 ∼ 10 –100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where $$f_a\sim 10^{11}$$ f a ∼ 10 11 – $$10^{12}$$ 10 12 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on $$\theta _i$$ θ i but leading to the measured dark matter abundance: this approach leads to a preference for $$f_a\sim 10^{12}$$ f a ∼ 10 12 GeV.
The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from [Formula omitted] GeV. Such a picture leads to the prediction that [Formula omitted] GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei-Quinn (PQ) scale [Formula omitted] is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe [Formula omitted] symmetry and where the SUSY [Formula omitted] parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle [Formula omitted] because WIMPs are also overproduced at large [Formula omitted]. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale [Formula omitted]-100 TeV places the mixed axion-neutralino dark matter abundance into the intermediate scale sweet zone where [Formula omitted]- [Formula omitted] GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on [Formula omitted] but leading to the measured dark matter abundance: this approach leads to a preference for [Formula omitted] GeV.
ArticleNumber 897
Audience Academic
Author Baer, Howard
Barger, Vernon
Sinha, Kuver
Sengupta, Dibyashree
Deal, Robert Wiley
Serce, Hasan
Author_xml – sequence: 1
  givenname: Howard
  surname: Baer
  fullname: Baer, Howard
  email: baer@ou.edu
  organization: Department of Physics and Astronomy, University of Oklahoma
– sequence: 2
  givenname: Vernon
  surname: Barger
  fullname: Barger, Vernon
  organization: Department of Physics, University of Wisconsin
– sequence: 3
  givenname: Dibyashree
  surname: Sengupta
  fullname: Sengupta, Dibyashree
  organization: Department of Physics and Astronomy, University of Oklahoma
– sequence: 4
  givenname: Hasan
  surname: Serce
  fullname: Serce, Hasan
  organization: Department of Physics, University of Wisconsin
– sequence: 5
  givenname: Kuver
  surname: Sinha
  fullname: Sinha, Kuver
  organization: Department of Physics and Astronomy, University of Oklahoma
– sequence: 6
  givenname: Robert Wiley
  surname: Deal
  fullname: Deal, Robert Wiley
  organization: Department of Physics and Astronomy, University of Oklahoma
BackLink https://www.osti.gov/servlets/purl/1600540$$D View this record in Osti.gov
BookMark eNqNkc1u1DAUhSNUJNrCK6AIVizS-iaOnUhIqFT8jFSJ_7XlONepRxk72I6Y2fEOvCFPgmdSFZVNkRexTr5zbu7JSXZkncUsewrkDICSc5zW6jwAIXVZEGgLTklTbB9kx0ArWrAkH93eKX2UnYSwJoSUCTvOXq9CHq8x38jBmjj3mDt9ED6iUmh-__z1aTbW5kHJEfOAMe92h_ejtH0SJ3z1OHuo5Rjwyc3zNPv29s3Xy_fF1Yd3q8uLq0LVtI5FrxuqaVmi1AgVYFt3JTSq0URp1nHFVM0kMKihYqSS0BFgrEeArmd91fTVabZacnsn12LyZiP9TjhpxEFwfhDSR6NGFApJp3TbkKbsKOdMtsih5byRTMm2q1MWX7JmO8ndDzmOt4FAxL5Wsa9VLLWKVKvY1yq2yflscboQjQjKRFTXylmLKgpgCackQc8XaPLu-4whirWbvU3tiLKCklekYW2izhZqSN0KY7WLXqp0etyYFInaJP0i_UHgJSf7r35xx5CYiNs4yDkEsfry-S7LFlZ5F4JH_f8LvvzHmHaU0aRZXprxfvtNsyHNswP6v6vf4_wDJGPbWQ
CitedBy_id crossref_primary_10_1103_PhysRevD_104_055014
crossref_primary_10_1103_PhysRevD_104_015037
crossref_primary_10_1016_j_jheap_2022_03_005
crossref_primary_10_1140_epjst_e2020_000020_x
crossref_primary_10_1103_PhysRevD_109_095045
crossref_primary_10_1103_PhysRevResearch_2_013346
Cites_doi 10.1088/1742-6596/485/1/012064
10.1103/PhysRevD.54.6944
10.1016/j.physletb.2015.07.073
10.1103/PhysRevLett.37.8
10.1088/1126-6708/2005/06/073
10.1103/PhysRevD.87.115028
10.1103/PhysRevLett.80.1822
10.1016/j.crhy.2004.09.008
10.1016/S0370-2693(97)00465-6
10.1088/1751-8113/40/25/S25
10.1103/PhysRevD.88.095013
10.1007/JHEP11(2014)108
10.1088/1126-6708/2008/08/098
10.1016/j.physletb.2019.01.007
10.1103/PhysRevLett.120.151301
10.1143/PTP.85.1
10.1103/PhysRevD.88.075022
10.1007/JHEP10(2012)146
10.1088/1126-6708/2006/06/051
10.1007/JHEP12(2013)013
10.1103/PhysRevD.11.3583
10.1088/1126-6708/2000/06/006
10.1016/0370-2693(83)90639-1
10.1103/PhysRevD.78.065011
10.1016/0370-2693(83)90637-8
10.1016/0370-1573(84)90008-5
10.1103/PhysRevLett.40.223
10.1103/PhysRevD.72.123520
10.1007/JHEP12(2010)056
10.1103/PhysRevLett.113.111801
10.1016/0370-2693(82)90720-1
10.1103/PhysRevD.24.1681
10.1103/PhysRevD.33.889
10.1016/0370-2693(84)91890-2
10.1103/PhysRevLett.40.279
10.1103/PhysRevLett.106.101301
10.1103/PhysRevD.91.015003
10.1088/1126-6708/2006/08/052
10.1103/RevModPhys.61.1
10.1103/PhysRevD.80.063510
10.1016/0370-2693(91)91641-8
10.1143/PTP.68.927
10.1007/s12648-014-0504-8
10.1103/PhysRevD.74.103509
10.1016/j.crhy.2007.02.004
10.1038/scientificamerican0904-78
10.1016/0370-2693(92)90491-L
10.1088/1126-6708/2004/05/072
10.1016/0370-2693(82)90453-1
10.1103/PhysRevD.61.035004
10.1016/0550-3213(81)90522-8
10.1103/PhysRevD.98.075010
10.1103/PhysRevD.94.115019
10.1016/0370-2693(83)90460-4
10.1017/CBO9780511617270
10.1103/PhysRevLett.109.161802
10.1016/j.nuclphysb.2011.04.009
10.1016/0370-2693(83)90638-X
10.1016/0370-2693(95)00881-K
10.1016/0550-3213(81)90006-7
10.1016/0370-2693(83)90593-2
10.1016/0550-3213(96)00194-0
10.1007/JHEP04(2019)043
10.1103/PhysRevD.57.5480
10.1016/j.nuclphysb.2006.07.031
10.1016/0550-3213(94)00487-Y
10.1103/PhysRevD.96.115008
10.1016/j.physletb.2010.10.038
10.1103/PhysRevD.73.023505
10.1016/0370-2693(82)91239-4
10.1007/JHEP02(2013)126
10.1103/PhysRevD.62.095008
10.1088/1475-7516/2004/08/008
10.1088/1126-6708/2004/01/060
10.1103/PhysRevD.81.123530
10.1088/1126-6708/2002/03/042
10.1142/S0217732315300086
10.1016/0370-2693(91)90980-5
10.1103/PhysRevD.89.115019
10.1016/0550-3213(83)90591-6
10.1103/PhysRevD.80.035024
10.1103/PhysRevLett.38.1440
10.1103/PhysRevD.94.035025
10.1007/JHEP03(2018)002
10.1103/PhysRevD.93.035016
10.1088/1126-6708/2003/05/046
10.1103/PhysRevD.90.115007
10.1103/PhysRevD.75.023509
10.1016/0370-2693(88)90597-7
10.1103/PhysRevD.16.1791
10.1007/JHEP01(2012)082
10.1103/PhysRevD.44.817
10.1103/PhysRevD.89.075007
10.1103/PhysRevD.54.2340
10.1143/PTP.71.413
10.1088/1126-6708/2005/07/065
10.1016/j.nuclphysb.2012.06.018
10.1007/JHEP11(2011)031
10.1088/1475-7516/2016/02/039
10.1103/PhysRevD.88.063503
10.1103/PhysRevLett.66.1815
10.1103/PhysRevD.52.912
10.1103/PhysRevD.55.5826
10.1103/PhysRevLett.59.2607
10.1088/1126-6708/2006/05/078
10.1016/S0370-2693(02)02071-3
10.1016/0370-2693(83)91283-2
10.1007/JHEP04(2015)132
10.1016/0370-2693(94)01571-S
10.1088/1475-7516/2012/01/036
10.1016/0370-2693(92)90492-M
10.1103/PhysRevD.92.075003
10.1016/0370-2693(91)90863-L
10.1103/PhysRevD.56.2820
10.1088/1475-7516/2010/03/021
10.1016/j.physletb.2016.05.010
10.1016/S0550-3213(02)01144-6
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 Springer
The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 Springer
– notice: The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of Oklahoma, Norman, OK (United States)
CorporateAuthor_xml – name: Univ. of Oklahoma, Norman, OK (United States)
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ADTOC
UNPAY
DOA
DOI 10.1140/epjc/s10052-019-7408-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 16
ExternalDocumentID oai_doaj_org_article_ce0bcf98082b4776a9e719778a6ca9b5
10.1140/epjc/s10052-019-7408-x
1600540
A605172705
10_1140_epjc_s10052_019_7408_x
GrantInformation_xml – fundername: US Department of Energy
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAYZJ
AHBXF
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c545t-df84f422eafe131e95b218c8f0cf6b7c6c56a161513603a1b0166de11bd6d38d3
IEDL.DBID UNPAY
ISSN 1434-6044
1434-6052
IngestDate Tue Oct 14 19:07:02 EDT 2025
Sun Oct 26 04:09:51 EDT 2025
Tue Nov 05 04:35:47 EST 2024
Sat Oct 18 23:48:13 EDT 2025
Mon Oct 20 16:24:35 EDT 2025
Thu Oct 16 15:08:36 EDT 2025
Wed Oct 01 02:22:59 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Fri Feb 21 02:34:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-df84f422eafe131e95b218c8f0cf6b7c6c56a161513603a1b0166de11bd6d38d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0009956
arXiv:1905.00443
USDOE Office of Science (SC), High Energy Physics (HEP)
ORCID 0000000207332644
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-7408-x.pdf
PQID 2312730869
PQPubID 2034659
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_ce0bcf98082b4776a9e719778a6ca9b5
unpaywall_primary_10_1140_epjc_s10052_019_7408_x
osti_scitechconnect_1600540
proquest_journals_2312730869
gale_infotracacademiconefile_A605172705
gale_incontextgauss_ISR_A605172705
crossref_primary_10_1140_epjc_s10052_019_7408_x
crossref_citationtrail_10_1140_epjc_s10052_019_7408_x
springer_journals_10_1140_epjc_s10052_019_7408_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References ArvanitakiACraigNDimopoulosSVilladoroGJHEP201313021262013JHEP...02..126A
BrandenburgASteffenFDJCAP200404080082004JCAP...08..008B
HaberHEHempflingRPhys. Rev. Lett.19916618151991PhRvL..66.1815H
CicoliMJ. Phys. Conf. Ser.2014485012064
PradlerJSteffenFDPhys. Rev. D2007750235092007PhRvD..75b3509P
PecceiRDAdv. Ser. Direct. High Energy Phys.198935031989ASDHE...3..501P
BobkovKBraunVKumarPRabySJHEP201010120562010JHEP...12..056B
BoussoRHallLPhys. Rev. D2013880635032013PhRvD..88f3503B
N. Arkani-Hamed, S. Dimopoulos, S. Kachru, arXiv:hep-th/0501082
BaerHBargerVMickelsonDPhys. Rev. D20138890950132013PhRvD..88i5013B
N. Du et al. [ADMX Collaboration], Phys. Rev. Lett. 120(15), 151301 (2018)
EllisJFalkTOliveKSantosoYNucl. Phys. B20036522592003NuPhB.652..259E
MatalliotakisDNillesHPNucl. Phys. B19954351151995NuPhB.435..115M
IbanezLERossGGPhys. Lett. B19821102151982PhLB..110..215I
SoniSKWeldonHAPhys. Lett.1983126B2151983PhLB..126..215S
BaerHBargerVGainerJSSenguptaDSerceHTataXPhys. Rev. D20189870750102018PhRvD..98g5010B
EllisJRKelleySNanopoulosDVPhys. Lett. B19912601311991PhLB..260..131E
M. Dine, E. Gorbatov, S.D. Thomas, JHEP 0808, 098 (2008) (for reviews, see M. Dine, arXiv:hep-th/0410201)
BaeKJHuhJHKimJEJCAP200808090052008JCAP...09..005B
M. Cicoli, arXiv:1309.6988 [hep-th]
ChunEJLukasAPhys. Lett. B1995357431995PhLB..357...43C
BaerHBargerVSenguptaDPhys. Lett. B2019790582019PhLB..790...58B
HarigayaKIbeMSchmitzKYanagidaTTPhys. Lett. B20157492982015PhLB..749..298H
BaerHBalazsCBelyaevAJHEP200202030422002JHEP...03..042B
BaerHBargerVHuangPMustafayevATataXPhys. Rev. Lett.20121091618022012PhRvL.109p1802B
MustafayevATataXIndian J. Phys.2014889912014InJPh..88..991M
BoussoRFreivogelBLeichenauerSRosenhausVPhys. Rev. Lett.20111061013012011PhRvL.106j1301B
LeeHMRabySRatzMRossGGSchierenRSchmidt-HobergKVaudrevangePKSPhys. Lett. B20116944912011PhLB..694..491L
TurnerMSPhys. Rev. D1986338891986PhRvD..33..889T
BaerHBargerVSalamSSerceHSinhaKJHEP201919040432019JHEP...04..043B
PecceiRDQuinnHRPhys. Rev. D19771617911977PhRvD..16.1791P
BaerHBargerVMickelsonDPadeffke-KirklandMPhys. Rev. D201489111150192014PhRvD..89k5019B
H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, K. Schmidt-Hoberg, P.K. S. Vaudrevange, Nucl. Phys. B 850, 1 (2011) (see also K. S. Babu, I. Gogoladze and K. Wang, Nucl. Phys. B 660, 322 (2003))
BaerHMustafayevATataXPhys. Rev. D201490111150072014PhRvD..90k5007B
BaerHBargerVGainerJSSerceHTataXPhys. Rev. D201796111150082017PhRvD..96k5008B
NomuraYShiraiSPhys. Rev. Lett.2014113111118012014PhRvL.113k1801N
BaerHBargerVHuangPJHEP201111110312011JHEP...11..031B
M. Kamionkowski, J. March-Russell, Phys. Lett. B 282 (1992) 137 (see also S. M. Barr and D. Seckel, Phys. Rev. D 46, 539 (1992))
DimopoulosSRabySWilczekFPhys. Rev. D19812416811981PhRvD..24.1681D
GiudiceGFRattazziRNucl. Phys. B2006757192006NuPhB.757...19G
CasasJALleydaAMunozCNucl. Phys. B199647131996NuPhB.471....3C
PecceiRDQuinnHRPhys. Rev. Lett.19773814401977PhRvL..38.1440P
BaeKJBaerHSerceHPhys. Rev. D20159110150032015PhRvD..91a5003B
DineMFischlerWPhys. Lett. B19831201371983PhLB..120..137D
HolmanRHsuSDHKephartTWKolbEWWatkinsRWidrowLMPhys. Lett. B19922821321992PhLB..282..132H
NillesHPPhys. Rep.198411011984PhR...110....1N
NillesHPVaudrevangePKSMod. Phys. Lett. A2015301015300082015MPLA...3030008N
HanCKimDMunirSParkMJHEP201515041322015JHEP...04..132H
FreivogelBJCAP201010030212010JCAP...03..021F
ConlonJPJHEP200606050782006JHEP...05..078C
B.A. Ovrut, S. Raby, Phys. Lett. B 130, 277 (1983) (for a review, see L.E. Ibanez and G.G. Ross, Comptes Rendus Physique 8, 1013 (2007))
KimJENillesHPPhys. Lett. B19841381501984PhLB..138..150K
KawasakiMKohriKMoroiTYotsuyanagiAPhys. Rev. D2008780650112008PhRvD..78f5011K
A.M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 782, 440 (2018)
AshokSDouglasMRJHEP200404010602004JHEP...01..060A
F. Wilczek, In *Carr, Bernard (ed.): Universe or multiverse* 151–162. arXiv:hep-ph/0408167 (see also F. Wilczek, Class. Quant. Grav. 30, 193001 (2013))
t HooftGPhys. Rev. Lett.19763781976PhRvL..37....8T
HanZKribsGDMartinAMenonAPhys. Rev. D20148970750072014PhRvD..89g5007H
LykkenJSpiropuluMSci. Am.2014310N536
DouglasMRComptes Rendus Physique200459652004CRPhy...5..965D2121681[hep-th/0409207]
InoueKProg. Theor. Phys.1984714131984PThPh..71..413I
DouglasMRJHEP200303050462003JHEP...05..046D
VisinelliLGondoloPPhys. Rev. D2009800350242009PhRvD..80c5024V
HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20159270750032015PhRvD..92g5003H
H. Baer, V. Barger, S. Salam, arXiv:1906.07741 [hep-ph]
LangackerPLuoM xPhys. Rev. D1991448171991PhRvD..44..817L
BaerHLessaASreethawongWJCAP201212010362012JCAP...01..036B
BaeKJBaerHSerceHJCAP20171706060242017JCAP...06..024B
MartinSPPhys. Rev. D19965423401996PhRvD..54.2340M
AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. D19985754801998PhRvD..57.5480A
M.R. Douglas, arXiv:hep-th/0405279
BaerHBrhlikMCastanoDPhys. Rev. D19965469441996PhRvD..54.6944B
ArvanitakiADimopoulosSDubovskySKaloperNMarch-RussellJPhys. Rev. D2010811235302010PhRvD..81l3530A
BaerHTataXWeak Scale Supersymmetry: From Superfields to Scattering Events2006CambridgeCambridge University Press5371243.81012
ConlonJPKrippendorfSJHEP201616040852016JHEP...04..085C
SvrcekPWittenEJHEP200606060512006JHEP...06..051S
EllisJRRidolfiGZwirnerFPhys. Lett. B1991257831991PhLB..257...83E
BaeKJBaerHSerceHZhangYFJCAP201616010122016JCAP...01..012B
BaerHBargerVSavoyMPhys. Rev. D20169330350162016PhRvD..93c5016B
MartinSPPhys. Rev. D2000620950082000PhRvD..62i5008M
JedamzikKPhys. Rev. D2006741035092006PhRvD..74j3509J
BoussoRPolchinskiJSci. Am.200429160
DimopoulosSGeorgiHPhys. Lett.1982117B2871982PhLB..117..287D
BaeKJChoiKImSHJHEP201111080652011JHEP...08..065B
L. Susskind, In *Carr, Bernard (ed.): Universe or multiverse?* 247–266. arXiv:hep-th/0302219
NillesHPSrednickiMWylerDPhys. Lett. B19831203461983PhLB..120..346N
TegmarkMAguirreAReesMWilczekFPhys. Rev. D2006730235052006PhRvD..73b3505T
DenefFDouglasMRJHEP200404050722004JHEP...05..072D
BoussoRHallLJNomuraYPhys. Rev. D2009800635102009PhRvD..80f3510B2607654
BaerHMustafayevAProfumoSBelyaevATataXJHEP200505070652005JHEP...07..065B
BoussoRPolchinskiJJHEP200000060062000JHEP...06..006B
L. Susskind, In *Shifman, M. (ed.) et al.: From fields to strings, vol. 3* 1745–1749. arXiv:hep-th/0405189
InoueKProg. Theor. Phys.1982689271982PThPh..68..927I
F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, arXiv:hep-ph/0312045
HallLJNomuraYJHEP201212010822012JHEP...01..082H
BaerHBargerVHuangPMickelsonDMustafayevATataXPhys. Rev. D2013871150282013PhRvD..87k5028B
BaeKJBaerHChunEJJCAP201313120282013JCAP...12..028B
Alvarez-GauméLPolchinskiJWiseMNucl. Phys. B19832214951983NuPhB.221..495A
NathPArnowittRLPhys. Rev. D19975628201997PhRvD..56.2820N
HeinemeyerSHollikWStockingerDWeberAMWeigleinGJHEP200606080522006JHEP...08..052H
M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98(3), 030001 (2018)
AbbottLFSikiviePPhys. Lett. B19831201331983PhLB..120..133A
KimJESeoMSNucl. Phys. B20128642962012NuPhB.864..296K
BaeKJChunEJImSHJCAP201212030132012JCAP...03..013B
HellermanSWalcherJPhys. Rev. D2005721235202005PhRvD..72l3520H
WilczekFPhys. Rev. Lett.1978402791978PhRvL..40..279W
LindeADPhys. Lett. B19882014371988PhLB..201..437L
CicoliMGoodsellMRingwaldAJHEP201212101462012JHEP...10..146C
AmaldiUde BoerWFurstenauHPhys. Lett. B19912604471991PhLB..260..447A
DobrescuBAPhys. Rev. D19975558261997PhRvD..55.5826D
BaerHBargerVSerceHSinhaKJHEP201818030022018JHEP...03..002B
ChoiKChunEJKimJEPhys. Lett. B19974032091997PhLB..403..209C
BaerHBargerVSerceHPhys. Rev. D201694111150192016PhRvD..94k5019B
WeinbergSPhys. Rev. Lett.1978402231978PhRvL..40..223W
WeinbergSPhys. Rev. Lett.19875926071987PhRvL..59.2607W
PreskillJWiseMBWilczekFPhys. Lett. B19831201271983PhLB..120..127P
BaerHBargerVSavoyMSerceHPhys. Lett. B20167581132016PhLB..758..113B
KalloshRLindeADLindeDASusskindLPhys. Rev. D1995529121995PhRvD..52..912K1344160
WittenENucl. Phys. B19811885131981NuPhB.188..513W
K.J. Bae, H. Baer, V. Barger, D. Sengupta, arXiv:1902.10748 [hep-ph]
D’EramoFHallLJPappadopuloDJHEP201414111082014JHEP...11..108D
WeinbergSPhys. Rev. D19751135831975PhRvD..11.3583W
OkadaYasuhiroYamaguchiMasahiroYanagidaTsutomuUpper Bound of the Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard ModelProgress of Theoretical Physics1991851151991PThPh..85....1O
M.L. Ahnen et al., [MAGIC and Fermi-LAT Collaborations], JCAP 1602(02), 039 (2016)
EllisJOliveKSantosoYPhys. Lett. B20025391072002PhLB..539..107E
DimopoulosSGeorgiHNucl. Phys. B19811931501981NuPhB.193..150D
HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20138870750222013PhRvD..88g5022H
EllisJHagelinJNanopoulosDTamvakisMPhys. Lett. B19831252751983PhLB..125..275E
BaerHBargerVHuangPMickelsonDMustafayevASreethawongWTataXJHEP201313120132013JHEP...12..013B
BaerHBargerVSavoyMTataXPhys. Rev. D20169430350252016PhRvD..94c5025B
GuthAHJ. Phys. A20074068112007JPhA...40.6811G2344486
KaulRKPhys. Lett.1982109B191982PhLB..109...19K
OlechowskiMPokorskiSPhys. Lett. B19953442011995PhLB..344..201O
AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. Lett.19988018221998PhRvL..80.1822A
WeinbergSRev. Mod. Phys.19896111989RvMP...61....1W
BaeKJBaerHLessaASerceHJCAP20141410100822014JCAP...10..082B
MartinSPPhys. Rev. D2000610350042000PhRvD..61c5004M
Arkani-HamedNDimopoulosSJHEP200505060732005JHEP...06..073A
Yasuhiro Okada (7408_CR23) 1991; 85
7408_CR42
K Harigaya (7408_CR95) 2013; 88
H Baer (7408_CR33) 2014; 89
7408_CR41
U Amaldi (7408_CR11) 1991; 260
E Witten (7408_CR1) 1981; 188
J Pradler (7408_CR120) 2007; 75
H Baer (7408_CR29) 2017; 96
JR Ellis (7408_CR12) 1991; 260
S Dimopoulos (7408_CR8) 1982; 117B
LF Abbott (7408_CR53) 1983; 120
7408_CR50
H Baer (7408_CR9) 2006
A Arvanitaki (7408_CR64) 2010; 81
R Bousso (7408_CR43) 2004; 291
7408_CR59
KJ Bae (7408_CR57) 2008; 0809
M Cicoli (7408_CR68) 2014; 485
SP Martin (7408_CR77) 2000; 62
KJ Bae (7408_CR117) 2011; 1108
H Baer (7408_CR35) 2013; 1312
F Wilczek (7408_CR52) 1978; 40
AD Linde (7408_CR78) 1988; 201
7408_CR105
MR Douglas (7408_CR80) 2004; 5
H Baer (7408_CR84) 2016; 758
H Baer (7408_CR112) 2002; 0203
K Inoue (7408_CR15) 1982; 68
SP Martin (7408_CR76) 2000; 61
7408_CR60
V Agrawal (7408_CR83) 1998; 57
M Kawasaki (7408_CR115) 2008; 78
S Dimopoulos (7408_CR7) 1981; 193
H Baer (7408_CR104) 2005; 0507
KJ Bae (7408_CR118) 2012; 1203
7408_CR67
J Ellis (7408_CR18) 1983; 125
7408_CR130
H Baer (7408_CR73) 2019; 790
7408_CR132
R Bousso (7408_CR93) 2013; 88
H Baer (7408_CR30) 2018; 98
MR Douglas (7408_CR46) 2003; 0305
M Dine (7408_CR55) 1983; 120
K Harigaya (7408_CR97) 2015; 92
M Cicoli (7408_CR66) 2012; 1210
K Jedamzik (7408_CR116) 2006; 74
7408_CR72
F D’Eramo (7408_CR94) 2014; 1411
AH Guth (7408_CR98) 2007; 40
JE Kim (7408_CR126) 1984; 138
Z Han (7408_CR38) 2014; 89
K Inoue (7408_CR16) 1984; 71
BA Dobrescu (7408_CR63) 1997; 55
M Tegmark (7408_CR89) 2006; 73
M Olechowski (7408_CR100) 1995; 344
HE Haber (7408_CR21) 1991; 66
J Lykken (7408_CR25) 2014; 310N5
7408_CR79
P Langacker (7408_CR13) 1991; 44
7408_CR121
K Bobkov (7408_CR81) 2010; 1012
J Ellis (7408_CR103) 2003; 652
KJ Bae (7408_CR110) 2014; 1410
HP Nilles (7408_CR122) 2015; 30
G ’t Hooft (7408_CR6) 1976; 37
7408_CR123
7408_CR125
B Freivogel (7408_CR90) 2010; 1003
D Matalliotakis (7408_CR99) 1995; 435
H Baer (7408_CR86) 2019; 1904
S Weinberg (7408_CR45) 1987; 59
R Holman (7408_CR61) 1992; 282
S Heinemeyer (7408_CR24) 2006; 0608
7408_CR88
LJ Hall (7408_CR133) 2012; 1201
L Visinelli (7408_CR58) 2009; 80
F Denef (7408_CR129) 2004; 0405
HM Lee (7408_CR71) 2011; 694
SP Martin (7408_CR75) 1996; 54
H Baer (7408_CR36) 2016; 94
JP Conlon (7408_CR65) 2006; 0605
RD Peccei (7408_CR49) 1977; 16
L Alvarez-Gaumé (7408_CR19) 1983; 221
H Baer (7408_CR111) 2012; 1201
JP Conlon (7408_CR70) 2016; 1604
P Svrcek (7408_CR69) 2006; 0606
JA Casas (7408_CR136) 1996; 471
R Bousso (7408_CR44) 2000; 0006
H Baer (7408_CR85) 2018; 1803
KJ Bae (7408_CR124) 2017; 1706
H Baer (7408_CR28) 2016; 93
Y Nomura (7408_CR134) 2014; 113
A Arvanitaki (7408_CR135) 2013; 1302
H Baer (7408_CR26) 2012; 109
RK Kaul (7408_CR2) 1982; 109B
RD Peccei (7408_CR4) 1989; 3
S Weinberg (7408_CR3) 1989; 61
C Han (7408_CR40) 2015; 1504
H Baer (7408_CR137) 1996; 54
LE Ibanez (7408_CR14) 1982; 110
KJ Bae (7408_CR109) 2013; 1312
SK Soni (7408_CR114) 1983; 126B
A Mustafayev (7408_CR32) 2014; 88
V Agrawal (7408_CR82) 1998; 80
7408_CR20
H Baer (7408_CR39) 2014; 90
KJ Bae (7408_CR113) 2016; 1601
P Nath (7408_CR101) 1997; 56
J Preskill (7408_CR54) 1983; 120
S Hellerman (7408_CR87) 2005; 72
EJ Chun (7408_CR107) 1995; 357
HP Nilles (7408_CR17) 1983; 120
J Ellis (7408_CR102) 2002; 539
H Baer (7408_CR27) 2013; 87
S Ashok (7408_CR47) 2004; 0401
H Baer (7408_CR31) 2013; 88
S Weinberg (7408_CR5) 1975; 11
KJ Bae (7408_CR106) 2015; 91
HP Nilles (7408_CR128) 1984; 110
MS Turner (7408_CR56) 1986; 33
JE Kim (7408_CR108) 2012; 864
K Harigaya (7408_CR96) 2015; 749
RD Peccei (7408_CR48) 1977; 38
S Weinberg (7408_CR51) 1978; 40
GF Giudice (7408_CR138) 2006; 757
A Brandenburg (7408_CR119) 2004; 0408
7408_CR34
R Kallosh (7408_CR62) 1995; 52
R Bousso (7408_CR91) 2009; 80
R Bousso (7408_CR92) 2011; 106
H Baer (7408_CR127) 2016; 94
N Arkani-Hamed (7408_CR131) 2005; 0506
JR Ellis (7408_CR22) 1991; 257
K Choi (7408_CR74) 1997; 403
H Baer (7408_CR37) 2011; 1111
S Dimopoulos (7408_CR10) 1981; 24
References_xml – reference: HaberHEHempflingRPhys. Rev. Lett.19916618151991PhRvL..66.1815H
– reference: IbanezLERossGGPhys. Lett. B19821102151982PhLB..110..215I
– reference: MartinSPPhys. Rev. D19965423401996PhRvD..54.2340M
– reference: KalloshRLindeADLindeDASusskindLPhys. Rev. D1995529121995PhRvD..52..912K1344160
– reference: BaeKJBaerHSerceHZhangYFJCAP201616010122016JCAP...01..012B
– reference: BaerHBargerVSavoyMSerceHPhys. Lett. B20167581132016PhLB..758..113B
– reference: BaerHBargerVSerceHSinhaKJHEP201818030022018JHEP...03..002B
– reference: Arkani-HamedNDimopoulosSJHEP200505060732005JHEP...06..073A
– reference: MartinSPPhys. Rev. D2000620950082000PhRvD..62i5008M
– reference: BaerHBargerVGainerJSSenguptaDSerceHTataXPhys. Rev. D20189870750102018PhRvD..98g5010B
– reference: BaerHBargerVMickelsonDPadeffke-KirklandMPhys. Rev. D201489111150192014PhRvD..89k5019B
– reference: GiudiceGFRattazziRNucl. Phys. B2006757192006NuPhB.757...19G
– reference: HeinemeyerSHollikWStockingerDWeberAMWeigleinGJHEP200606080522006JHEP...08..052H
– reference: PecceiRDQuinnHRPhys. Rev. Lett.19773814401977PhRvL..38.1440P
– reference: BaeKJBaerHChunEJJCAP201313120282013JCAP...12..028B
– reference: InoueKProg. Theor. Phys.1984714131984PThPh..71..413I
– reference: AshokSDouglasMRJHEP200404010602004JHEP...01..060A
– reference: BaerHBargerVSavoyMPhys. Rev. D20169330350162016PhRvD..93c5016B
– reference: MatalliotakisDNillesHPNucl. Phys. B19954351151995NuPhB.435..115M
– reference: BaerHBargerVSenguptaDPhys. Lett. B2019790582019PhLB..790...58B
– reference: D’EramoFHallLJPappadopuloDJHEP201414111082014JHEP...11..108D
– reference: A.M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 782, 440 (2018)
– reference: AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. Lett.19988018221998PhRvL..80.1822A
– reference: LangackerPLuoM xPhys. Rev. D1991448171991PhRvD..44..817L
– reference: H. Baer, V. Barger, S. Salam, arXiv:1906.07741 [hep-ph]
– reference: EllisJOliveKSantosoYPhys. Lett. B20025391072002PhLB..539..107E
– reference: InoueKProg. Theor. Phys.1982689271982PThPh..68..927I
– reference: LeeHMRabySRatzMRossGGSchierenRSchmidt-HobergKVaudrevangePKSPhys. Lett. B20116944912011PhLB..694..491L
– reference: F. Wilczek, In *Carr, Bernard (ed.): Universe or multiverse* 151–162. arXiv:hep-ph/0408167 (see also F. Wilczek, Class. Quant. Grav. 30, 193001 (2013))
– reference: BaerHBrhlikMCastanoDPhys. Rev. D19965469441996PhRvD..54.6944B
– reference: BaerHBargerVHuangPMickelsonDMustafayevASreethawongWTataXJHEP201313120132013JHEP...12..013B
– reference: KawasakiMKohriKMoroiTYotsuyanagiAPhys. Rev. D2008780650112008PhRvD..78f5011K
– reference: K.J. Bae, H. Baer, V. Barger, D. Sengupta, arXiv:1902.10748 [hep-ph]
– reference: DouglasMRJHEP200303050462003JHEP...05..046D
– reference: LindeADPhys. Lett. B19882014371988PhLB..201..437L
– reference: BaeKJBaerHSerceHJCAP20171706060242017JCAP...06..024B
– reference: DimopoulosSGeorgiHNucl. Phys. B19811931501981NuPhB.193..150D
– reference: ConlonJPJHEP200606050782006JHEP...05..078C
– reference: HallLJNomuraYJHEP201212010822012JHEP...01..082H
– reference: NomuraYShiraiSPhys. Rev. Lett.2014113111118012014PhRvL.113k1801N
– reference: BaerHBargerVMickelsonDPhys. Rev. D20138890950132013PhRvD..88i5013B
– reference: M. Cicoli, arXiv:1309.6988 [hep-th]
– reference: L. Susskind, In *Carr, Bernard (ed.): Universe or multiverse?* 247–266. arXiv:hep-th/0302219
– reference: EllisJFalkTOliveKSantosoYNucl. Phys. B20036522592003NuPhB.652..259E
– reference: DineMFischlerWPhys. Lett. B19831201371983PhLB..120..137D
– reference: DenefFDouglasMRJHEP200404050722004JHEP...05..072D
– reference: BaerHBargerVHuangPJHEP201111110312011JHEP...11..031B
– reference: BaerHLessaASreethawongWJCAP201212010362012JCAP...01..036B
– reference: CasasJALleydaAMunozCNucl. Phys. B199647131996NuPhB.471....3C
– reference: BaerHBargerVGainerJSSerceHTataXPhys. Rev. D201796111150082017PhRvD..96k5008B
– reference: CicoliMJ. Phys. Conf. Ser.2014485012064
– reference: MartinSPPhys. Rev. D2000610350042000PhRvD..61c5004M
– reference: B.A. Ovrut, S. Raby, Phys. Lett. B 130, 277 (1983) (for a review, see L.E. Ibanez and G.G. Ross, Comptes Rendus Physique 8, 1013 (2007))
– reference: N. Du et al. [ADMX Collaboration], Phys. Rev. Lett. 120(15), 151301 (2018)
– reference: FreivogelBJCAP201010030212010JCAP...03..021F
– reference: BaerHBargerVHuangPMickelsonDMustafayevATataXPhys. Rev. D2013871150282013PhRvD..87k5028B
– reference: ChoiKChunEJKimJEPhys. Lett. B19974032091997PhLB..403..209C
– reference: BaerHMustafayevATataXPhys. Rev. D201490111150072014PhRvD..90k5007B
– reference: WilczekFPhys. Rev. Lett.1978402791978PhRvL..40..279W
– reference: BaerHBargerVSalamSSerceHSinhaKJHEP201919040432019JHEP...04..043B
– reference: BoussoRFreivogelBLeichenauerSRosenhausVPhys. Rev. Lett.20111061013012011PhRvL.106j1301B
– reference: WeinbergSPhys. Rev. Lett.19875926071987PhRvL..59.2607W
– reference: AbbottLFSikiviePPhys. Lett. B19831201331983PhLB..120..133A
– reference: EllisJHagelinJNanopoulosDTamvakisMPhys. Lett. B19831252751983PhLB..125..275E
– reference: OkadaYasuhiroYamaguchiMasahiroYanagidaTsutomuUpper Bound of the Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard ModelProgress of Theoretical Physics1991851151991PThPh..85....1O
– reference: BaerHBargerVHuangPMustafayevATataXPhys. Rev. Lett.20121091618022012PhRvL.109p1802B
– reference: NathPArnowittRLPhys. Rev. D19975628201997PhRvD..56.2820N
– reference: LykkenJSpiropuluMSci. Am.2014310N536
– reference: PreskillJWiseMBWilczekFPhys. Lett. B19831201271983PhLB..120..127P
– reference: HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20159270750032015PhRvD..92g5003H
– reference: BaerHBargerVSerceHPhys. Rev. D201694111150192016PhRvD..94k5019B
– reference: DobrescuBAPhys. Rev. D19975558261997PhRvD..55.5826D
– reference: PradlerJSteffenFDPhys. Rev. D2007750235092007PhRvD..75b3509P
– reference: ChunEJLukasAPhys. Lett. B1995357431995PhLB..357...43C
– reference: NillesHPSrednickiMWylerDPhys. Lett. B19831203461983PhLB..120..346N
– reference: N. Arkani-Hamed, S. Dimopoulos, S. Kachru, arXiv:hep-th/0501082
– reference: WeinbergSRev. Mod. Phys.19896111989RvMP...61....1W
– reference: M.L. Ahnen et al., [MAGIC and Fermi-LAT Collaborations], JCAP 1602(02), 039 (2016)
– reference: BoussoRHallLJNomuraYPhys. Rev. D2009800635102009PhRvD..80f3510B2607654
– reference: SvrcekPWittenEJHEP200606060512006JHEP...06..051S
– reference: PecceiRDAdv. Ser. Direct. High Energy Phys.198935031989ASDHE...3..501P
– reference: ArvanitakiACraigNDimopoulosSVilladoroGJHEP201313021262013JHEP...02..126A
– reference: BobkovKBraunVKumarPRabySJHEP201010120562010JHEP...12..056B
– reference: BaerHMustafayevAProfumoSBelyaevATataXJHEP200505070652005JHEP...07..065B
– reference: DouglasMRComptes Rendus Physique200459652004CRPhy...5..965D2121681[hep-th/0409207]
– reference: L. Susskind, In *Shifman, M. (ed.) et al.: From fields to strings, vol. 3* 1745–1749. arXiv:hep-th/0405189
– reference: VisinelliLGondoloPPhys. Rev. D2009800350242009PhRvD..80c5024V
– reference: CicoliMGoodsellMRingwaldAJHEP201212101462012JHEP...10..146C
– reference: WittenENucl. Phys. B19811885131981NuPhB.188..513W
– reference: BoussoRPolchinskiJJHEP200000060062000JHEP...06..006B
– reference: PecceiRDQuinnHRPhys. Rev. D19771617911977PhRvD..16.1791P
– reference: M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98(3), 030001 (2018)
– reference: H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, K. Schmidt-Hoberg, P.K. S. Vaudrevange, Nucl. Phys. B 850, 1 (2011) (see also K. S. Babu, I. Gogoladze and K. Wang, Nucl. Phys. B 660, 322 (2003))
– reference: DimopoulosSRabySWilczekFPhys. Rev. D19812416811981PhRvD..24.1681D
– reference: BoussoRPolchinskiJSci. Am.200429160
– reference: M. Kamionkowski, J. March-Russell, Phys. Lett. B 282 (1992) 137 (see also S. M. Barr and D. Seckel, Phys. Rev. D 46, 539 (1992))
– reference: HanCKimDMunirSParkMJHEP201515041322015JHEP...04..132H
– reference: F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, arXiv:hep-ph/0312045
– reference: HanZKribsGDMartinAMenonAPhys. Rev. D20148970750072014PhRvD..89g5007H
– reference: NillesHPVaudrevangePKSMod. Phys. Lett. A2015301015300082015MPLA...3030008N
– reference: TurnerMSPhys. Rev. D1986338891986PhRvD..33..889T
– reference: BoussoRHallLPhys. Rev. D2013880635032013PhRvD..88f3503B
– reference: HarigayaKIbeMSchmitzKYanagidaTTPhys. Rev. D20138870750222013PhRvD..88g5022H
– reference: BaerHTataXWeak Scale Supersymmetry: From Superfields to Scattering Events2006CambridgeCambridge University Press5371243.81012
– reference: M.R. Douglas, arXiv:hep-th/0405279
– reference: TegmarkMAguirreAReesMWilczekFPhys. Rev. D2006730235052006PhRvD..73b3505T
– reference: JedamzikKPhys. Rev. D2006741035092006PhRvD..74j3509J
– reference: KimJENillesHPPhys. Lett. B19841381501984PhLB..138..150K
– reference: ’t HooftGPhys. Rev. Lett.19763781976PhRvL..37....8T
– reference: NillesHPPhys. Rep.198411011984PhR...110....1N
– reference: BaeKJChoiKImSHJHEP201111080652011JHEP...08..065B
– reference: BaerHBargerVSavoyMTataXPhys. Rev. D20169430350252016PhRvD..94c5025B
– reference: HolmanRHsuSDHKephartTWKolbEWWatkinsRWidrowLMPhys. Lett. B19922821321992PhLB..282..132H
– reference: HarigayaKIbeMSchmitzKYanagidaTTPhys. Lett. B20157492982015PhLB..749..298H
– reference: GuthAHJ. Phys. A20074068112007JPhA...40.6811G2344486
– reference: WeinbergSPhys. Rev. Lett.1978402231978PhRvL..40..223W
– reference: EllisJRRidolfiGZwirnerFPhys. Lett. B1991257831991PhLB..257...83E
– reference: M. Dine, E. Gorbatov, S.D. Thomas, JHEP 0808, 098 (2008) (for reviews, see M. Dine, arXiv:hep-th/0410201)
– reference: BaeKJHuhJHKimJEJCAP200808090052008JCAP...09..005B
– reference: SoniSKWeldonHAPhys. Lett.1983126B2151983PhLB..126..215S
– reference: AmaldiUde BoerWFurstenauHPhys. Lett. B19912604471991PhLB..260..447A
– reference: AgrawalVBarrSMDonoghueJFSeckelDPhys. Rev. D19985754801998PhRvD..57.5480A
– reference: BaerHBalazsCBelyaevAJHEP200202030422002JHEP...03..042B
– reference: BaeKJChunEJImSHJCAP201212030132012JCAP...03..013B
– reference: KaulRKPhys. Lett.1982109B191982PhLB..109...19K
– reference: MustafayevATataXIndian J. Phys.2014889912014InJPh..88..991M
– reference: Alvarez-GauméLPolchinskiJWiseMNucl. Phys. B19832214951983NuPhB.221..495A
– reference: EllisJRKelleySNanopoulosDVPhys. Lett. B19912601311991PhLB..260..131E
– reference: ArvanitakiADimopoulosSDubovskySKaloperNMarch-RussellJPhys. Rev. D2010811235302010PhRvD..81l3530A
– reference: ConlonJPKrippendorfSJHEP201616040852016JHEP...04..085C
– reference: WeinbergSPhys. Rev. D19751135831975PhRvD..11.3583W
– reference: DimopoulosSGeorgiHPhys. Lett.1982117B2871982PhLB..117..287D
– reference: OlechowskiMPokorskiSPhys. Lett. B19953442011995PhLB..344..201O
– reference: HellermanSWalcherJPhys. Rev. D2005721235202005PhRvD..72l3520H
– reference: BaeKJBaerHSerceHPhys. Rev. D20159110150032015PhRvD..91a5003B
– reference: BrandenburgASteffenFDJCAP200404080082004JCAP...08..008B
– reference: KimJESeoMSNucl. Phys. B20128642962012NuPhB.864..296K
– reference: BaeKJBaerHLessaASerceHJCAP20141410100822014JCAP...10..082B
– volume: 485
  start-page: 012064
  year: 2014
  ident: 7408_CR68
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/485/1/012064
– volume: 54
  start-page: 6944
  year: 1996
  ident: 7408_CR137
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.54.6944
– ident: 7408_CR88
– volume: 749
  start-page: 298
  year: 2015
  ident: 7408_CR96
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.07.073
– volume: 37
  start-page: 8
  year: 1976
  ident: 7408_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.37.8
– volume: 1312
  start-page: 028
  year: 2013
  ident: 7408_CR109
  publication-title: JCAP
– volume: 0506
  start-page: 073
  year: 2005
  ident: 7408_CR131
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/06/073
– volume: 87
  start-page: 115028
  year: 2013
  ident: 7408_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.115028
– volume: 80
  start-page: 1822
  year: 1998
  ident: 7408_CR82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1822
– volume: 5
  start-page: 965
  year: 2004
  ident: 7408_CR80
  publication-title: Comptes Rendus Physique
  doi: 10.1016/j.crhy.2004.09.008
– volume: 403
  start-page: 209
  year: 1997
  ident: 7408_CR74
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)00465-6
– volume: 40
  start-page: 6811
  year: 2007
  ident: 7408_CR98
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/40/25/S25
– volume: 88
  start-page: 095013
  issue: 9
  year: 2013
  ident: 7408_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.095013
– volume: 1411
  start-page: 108
  year: 2014
  ident: 7408_CR94
  publication-title: JHEP
  doi: 10.1007/JHEP11(2014)108
– ident: 7408_CR42
– ident: 7408_CR132
  doi: 10.1088/1126-6708/2008/08/098
– volume: 790
  start-page: 58
  year: 2019
  ident: 7408_CR73
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.01.007
– ident: 7408_CR59
  doi: 10.1103/PhysRevLett.120.151301
– volume: 85
  start-page: 1
  issue: 1
  year: 1991
  ident: 7408_CR23
  publication-title: Progress of Theoretical Physics
  doi: 10.1143/PTP.85.1
– volume: 88
  start-page: 075022
  issue: 7
  year: 2013
  ident: 7408_CR95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.075022
– volume: 1210
  start-page: 146
  year: 2012
  ident: 7408_CR66
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)146
– volume: 0606
  start-page: 051
  year: 2006
  ident: 7408_CR69
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/06/051
– volume: 1312
  start-page: 013
  year: 2013
  ident: 7408_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)013
– volume: 1410
  start-page: 082
  issue: 10
  year: 2014
  ident: 7408_CR110
  publication-title: JCAP
– volume: 11
  start-page: 3583
  year: 1975
  ident: 7408_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.11.3583
– volume: 310N5
  start-page: 36
  year: 2014
  ident: 7408_CR25
  publication-title: Sci. Am.
– volume: 0006
  start-page: 006
  year: 2000
  ident: 7408_CR44
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/06/006
– volume: 120
  start-page: 137
  year: 1983
  ident: 7408_CR55
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90639-1
– volume: 78
  start-page: 065011
  year: 2008
  ident: 7408_CR115
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.065011
– volume: 120
  start-page: 127
  year: 1983
  ident: 7408_CR54
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90637-8
– volume: 110
  start-page: 1
  year: 1984
  ident: 7408_CR128
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(84)90008-5
– volume: 40
  start-page: 223
  year: 1978
  ident: 7408_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.223
– volume: 72
  start-page: 123520
  year: 2005
  ident: 7408_CR87
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.123520
– volume: 1012
  start-page: 056
  year: 2010
  ident: 7408_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP12(2010)056
– volume: 113
  start-page: 111801
  issue: 11
  year: 2014
  ident: 7408_CR134
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.111801
– volume: 117B
  start-page: 287
  year: 1982
  ident: 7408_CR8
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(82)90720-1
– volume: 24
  start-page: 1681
  year: 1981
  ident: 7408_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.24.1681
– volume: 1601
  start-page: 012
  year: 2016
  ident: 7408_CR113
  publication-title: JCAP
– volume: 33
  start-page: 889
  year: 1986
  ident: 7408_CR56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.33.889
– ident: 7408_CR130
– volume: 138
  start-page: 150
  year: 1984
  ident: 7408_CR126
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(84)91890-2
– ident: 7408_CR34
– volume: 40
  start-page: 279
  year: 1978
  ident: 7408_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.279
– volume: 106
  start-page: 101301
  year: 2011
  ident: 7408_CR92
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.101301
– volume: 91
  start-page: 015003
  issue: 1
  year: 2015
  ident: 7408_CR106
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.015003
– volume: 0608
  start-page: 052
  year: 2006
  ident: 7408_CR24
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/052
– volume: 61
  start-page: 1
  year: 1989
  ident: 7408_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.61.1
– volume: 80
  start-page: 063510
  year: 2009
  ident: 7408_CR91
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.063510
– ident: 7408_CR121
– volume: 260
  start-page: 447
  year: 1991
  ident: 7408_CR11
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)91641-8
– volume: 68
  start-page: 927
  year: 1982
  ident: 7408_CR15
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.68.927
– volume: 88
  start-page: 991
  year: 2014
  ident: 7408_CR32
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-014-0504-8
– volume: 74
  start-page: 103509
  year: 2006
  ident: 7408_CR116
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.103509
– ident: 7408_CR20
  doi: 10.1016/j.crhy.2007.02.004
– volume: 291
  start-page: 60
  year: 2004
  ident: 7408_CR43
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0904-78
– volume: 282
  start-page: 132
  year: 1992
  ident: 7408_CR61
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)90491-L
– volume: 0405
  start-page: 072
  year: 2004
  ident: 7408_CR129
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/05/072
– ident: 7408_CR79
– volume: 109B
  start-page: 19
  year: 1982
  ident: 7408_CR2
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(82)90453-1
– volume: 61
  start-page: 035004
  year: 2000
  ident: 7408_CR76
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.61.035004
– volume: 193
  start-page: 150
  year: 1981
  ident: 7408_CR7
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(81)90522-8
– volume: 98
  start-page: 075010
  issue: 7
  year: 2018
  ident: 7408_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.075010
– volume: 94
  start-page: 115019
  issue: 11
  year: 2016
  ident: 7408_CR127
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.115019
– volume: 120
  start-page: 346
  year: 1983
  ident: 7408_CR17
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90460-4
– start-page: 537
  volume-title: Weak Scale Supersymmetry: From Superfields to Scattering Events
  year: 2006
  ident: 7408_CR9
  doi: 10.1017/CBO9780511617270
– volume: 1604
  start-page: 085
  year: 2016
  ident: 7408_CR70
  publication-title: JHEP
– volume: 1203
  start-page: 013
  year: 2012
  ident: 7408_CR118
  publication-title: JCAP
– volume: 109
  start-page: 161802
  year: 2012
  ident: 7408_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.161802
– ident: 7408_CR72
  doi: 10.1016/j.nuclphysb.2011.04.009
– volume: 120
  start-page: 133
  year: 1983
  ident: 7408_CR53
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90638-X
– volume: 357
  start-page: 43
  year: 1995
  ident: 7408_CR107
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(95)00881-K
– volume: 188
  start-page: 513
  year: 1981
  ident: 7408_CR1
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(81)90006-7
– volume: 126B
  start-page: 215
  year: 1983
  ident: 7408_CR114
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(83)90593-2
– volume: 471
  start-page: 3
  year: 1996
  ident: 7408_CR136
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(96)00194-0
– volume: 1904
  start-page: 043
  year: 2019
  ident: 7408_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)043
– volume: 0809
  start-page: 005
  year: 2008
  ident: 7408_CR57
  publication-title: JCAP
– volume: 57
  start-page: 5480
  year: 1998
  ident: 7408_CR83
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.5480
– volume: 757
  start-page: 19
  year: 2006
  ident: 7408_CR138
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.07.031
– volume: 435
  start-page: 115
  year: 1995
  ident: 7408_CR99
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00487-Y
– volume: 96
  start-page: 115008
  issue: 11
  year: 2017
  ident: 7408_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.115008
– volume: 694
  start-page: 491
  year: 2011
  ident: 7408_CR71
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.10.038
– volume: 73
  start-page: 023505
  year: 2006
  ident: 7408_CR89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.023505
– volume: 110
  start-page: 215
  year: 1982
  ident: 7408_CR14
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)91239-4
– volume: 1302
  start-page: 126
  year: 2013
  ident: 7408_CR135
  publication-title: JHEP
  doi: 10.1007/JHEP02(2013)126
– volume: 62
  start-page: 095008
  year: 2000
  ident: 7408_CR77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.62.095008
– volume: 0408
  start-page: 008
  year: 2004
  ident: 7408_CR119
  publication-title: JCAP
  doi: 10.1088/1475-7516/2004/08/008
– volume: 0401
  start-page: 060
  year: 2004
  ident: 7408_CR47
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/01/060
– volume: 81
  start-page: 123530
  year: 2010
  ident: 7408_CR64
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.123530
– volume: 1108
  start-page: 065
  year: 2011
  ident: 7408_CR117
  publication-title: JHEP
– volume: 0203
  start-page: 042
  year: 2002
  ident: 7408_CR112
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/03/042
– volume: 30
  start-page: 1530008
  issue: 10
  year: 2015
  ident: 7408_CR122
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732315300086
– ident: 7408_CR105
– volume: 260
  start-page: 131
  year: 1991
  ident: 7408_CR12
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)90980-5
– ident: 7408_CR41
– volume: 89
  start-page: 115019
  issue: 11
  year: 2014
  ident: 7408_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.115019
– volume: 3
  start-page: 503
  year: 1989
  ident: 7408_CR4
  publication-title: Adv. Ser. Direct. High Energy Phys.
– volume: 221
  start-page: 495
  year: 1983
  ident: 7408_CR19
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(83)90591-6
– volume: 80
  start-page: 035024
  year: 2009
  ident: 7408_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.035024
– volume: 38
  start-page: 1440
  year: 1977
  ident: 7408_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.1440
– volume: 94
  start-page: 035025
  issue: 3
  year: 2016
  ident: 7408_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.035025
– volume: 1803
  start-page: 002
  year: 2018
  ident: 7408_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)002
– volume: 93
  start-page: 035016
  issue: 3
  year: 2016
  ident: 7408_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.035016
– volume: 0305
  start-page: 046
  year: 2003
  ident: 7408_CR46
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/05/046
– volume: 90
  start-page: 115007
  issue: 11
  year: 2014
  ident: 7408_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.115007
– volume: 75
  start-page: 023509
  year: 2007
  ident: 7408_CR120
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.023509
– volume: 201
  start-page: 437
  year: 1988
  ident: 7408_CR78
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(88)90597-7
– volume: 16
  start-page: 1791
  year: 1977
  ident: 7408_CR49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.16.1791
– volume: 1201
  start-page: 082
  year: 2012
  ident: 7408_CR133
  publication-title: JHEP
  doi: 10.1007/JHEP01(2012)082
– volume: 44
  start-page: 817
  year: 1991
  ident: 7408_CR13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.44.817
– ident: 7408_CR125
– volume: 89
  start-page: 075007
  issue: 7
  year: 2014
  ident: 7408_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.075007
– ident: 7408_CR67
– volume: 54
  start-page: 2340
  year: 1996
  ident: 7408_CR75
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.54.2340
– volume: 71
  start-page: 413
  year: 1984
  ident: 7408_CR16
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.71.413
– volume: 0507
  start-page: 065
  year: 2005
  ident: 7408_CR104
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/07/065
– volume: 864
  start-page: 296
  year: 2012
  ident: 7408_CR108
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.06.018
– volume: 1111
  start-page: 031
  year: 2011
  ident: 7408_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP11(2011)031
– ident: 7408_CR123
  doi: 10.1088/1475-7516/2016/02/039
– volume: 88
  start-page: 063503
  year: 2013
  ident: 7408_CR93
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.063503
– volume: 66
  start-page: 1815
  year: 1991
  ident: 7408_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.1815
– volume: 52
  start-page: 912
  year: 1995
  ident: 7408_CR62
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.912
– volume: 55
  start-page: 5826
  year: 1997
  ident: 7408_CR63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.5826
– volume: 59
  start-page: 2607
  year: 1987
  ident: 7408_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2607
– volume: 0605
  start-page: 078
  year: 2006
  ident: 7408_CR65
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/05/078
– volume: 539
  start-page: 107
  year: 2002
  ident: 7408_CR102
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02071-3
– volume: 1706
  start-page: 024
  issue: 06
  year: 2017
  ident: 7408_CR124
  publication-title: JCAP
– volume: 125
  start-page: 275
  year: 1983
  ident: 7408_CR18
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)91283-2
– volume: 1504
  start-page: 132
  year: 2015
  ident: 7408_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)132
– volume: 344
  start-page: 201
  year: 1995
  ident: 7408_CR100
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(94)01571-S
– volume: 1201
  start-page: 036
  year: 2012
  ident: 7408_CR111
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/01/036
– ident: 7408_CR50
– ident: 7408_CR60
  doi: 10.1016/0370-2693(92)90492-M
– volume: 92
  start-page: 075003
  issue: 7
  year: 2015
  ident: 7408_CR97
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.075003
– volume: 257
  start-page: 83
  year: 1991
  ident: 7408_CR22
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)90863-L
– volume: 56
  start-page: 2820
  year: 1997
  ident: 7408_CR101
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.56.2820
– volume: 1003
  start-page: 021
  year: 2010
  ident: 7408_CR90
  publication-title: JCAP
  doi: 10.1088/1475-7516/2010/03/021
– volume: 758
  start-page: 113
  year: 2016
  ident: 7408_CR84
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.05.010
– volume: 652
  start-page: 259
  year: 2003
  ident: 7408_CR103
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(02)01144-6
SSID ssj0002408
Score 2.3658643
Snippet The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general...
Rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement...
Abstract The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather...
SourceID doaj
unpaywall
osti
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Astronomy
Astrophysics and Cosmology
axions
Broken symmetry
Dark matter
Dark matter (Astronomy)
Elementary Particles
Gravitation
Hadrons
Heavy Ions
Higgs bosons
Large Hadron Collider
Measurement Science and Instrumentation
Mediation
Misalignment
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
String Theory
supersymmetry
Symmetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSgg4IJ4itKAIIXGK1k4cxz6hFlG1HBCvSr1ZfqJWS3ZFNqK98R_4h_wSZpxs6J6WA9d4fPDnsecbZeYzIS-9qyHoslgEXruCK24LVTZ14X0MTSWDLEMqkH0vjk_5u7P67NpTX1gTNsgDD8DNXaDWRSUhVFneNMKo0DAgLdIIZ5RN6qVUqk0yNd7BKNyV-ooqXgjK-dgbDNnEPKwuHHbO0RprElTRgGlxuRWWknr_dEfPlnDYtgjo9M_0DrnVtytz9cMsFtfC0tE9cnfkk_nBsI775EZoH5Cbqa7TdQ_J4UmXA8XLvxmsEup9yJcxffgAoIbz3z9_fezP2zbvYKtC3oV1bq_SeGoBxuKo14_I6dHbL2-Oi_HZhMIBHVoXPkoeeVkGEwOrWFC1hTjuZKQuCts44WphkOixStDKMAusT_jAmPXCV9JXj8msXbbhCclZoELCbKdKzw3npvQm1p6HRirIHH1G6g1q2o2a4vi0xUIP_c5UI9p6QFsD2hrR1pcZmU_zVoOqxs4Zh7gpkzWqYqcP4Ct69BW9y1cy8gK3VKPuRYuFNV9N33X65PMnfSBQrKxsKBi9Go3iEtbizNinAIigVNaW5R66hgaugoK7DiuT3FozkXhwRvY3HqPHe6HTwKaBL0IaqTJCN170d3gXBnTytn-E7en_gG2P3C7xpKQOzH0yW3_vwzOgYmv7PJ26PyZuKrY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVohyQDxFaEERQuJkbR6OkxxQ1UWtWg6rUqjUm-X4URUtybZJRHvjP_AP-SXMeJ2UvVCuyVjKfh7PfNnMfEPIO60ySLqxpYZlirKSVbRM8oxqbU2eFqZIjCuQnfPDU_bpLDvbIPOhFwbLKoeY6AK1bhT-Rz4FHgKZFgh4ubu8pDg1Cr-uDiM0pB-toD84ibF7ZDNBZawJ2Zztz49PxtiMgl6u3yhllEeM-Z5heMuYmuU3hR11UYa1CiXNwZRer6Urp-o_xu5JA4dwjZiO31Ifkgd9vZQ3P-Ri8Ve6OnhMHnmeGe6tHOMJ2TD1U3Lf1Xuq9hmZHbUhUL_wu8TqoV6bsLHuwjGAbS5-__z1ub-o67CFLTRha7qwunH3XWswFk3tPienB_tfPx5SP06BKqBJHdW2YJYliZHWxGlsyqyC_K4KGynLq1xxlXGJBDBOeZTKuAI2yLWJ40pznRY6fUEmdVOblySMTcQLWK3KRDPJmEy0tJlmJi9KeKPUAckG1ITyWuM48mIhVn3QkUC0xQptAWgLRFtcB2Q6rluu1DbuXDHDTRmtUS3bXWiuzoU_fEKZqFK2LIDuVCzPuSxNHgPxLSRXsqyygLzFLRWoh1Fjwc257NtWHH05EXscRcySPAKj997INvBblPT9C4AISmitWW6jawjgMCjEq7BiSXUi5o4fB2Rn8Bjh40Urbr07INHgRbe378IgGr3tP2F79e-H2CZbCZ4B13O5QybdVW9eA_nqqjf-RP0BNMcobw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQIgQcEE-RtqAIIXGy6iS2E59QW1G1HBCvSr1ZfqJWS3ZFEpXe-A_8Q34JM95s6B5Q4RrbifLN2PNZnvlMyEvvBATdItLAhaNccUtVWQvqfQx11YSmDClB9p08OuFvT8XpuFHEWpir5_fA_XfD8txhnRsTmEGgaM1ZQ4Ez3oRAJdPhrDyYVl6U60rVRBWnknE-VgT__T0bwShp9k8r82wBU2yDdk4npXfJ7aFdmssLM59fCUaH98m9kUXmeyuzPyA3QvuQ3ErZnK57RPaPuxyIXf7VYG7Q4EO-iOnBe4AynP368fPDcNa2eQcGCnkX-txepvZU-IspUa8fk5PDN58Pjuh4WQJ1QIJ66mPDIy_LYGIoqiIoYSF6uyYyF6WtnXRCGqR3RSVZZQoLXE_6UBTWS181vnpCZu2iDU9JXgQmGxjtVOm54dyU3kTheagbBftFnxGxRk27UUkcL7SY61WVM9OItl6hrQFtjWjr7xnZncYtV1oa147YR6NMvVELOz0AF9Hj1NIuMOuiaoDMWF7X0qhQF0BrGyOdUVZk5AWaVKPaRYvpNF_M0HX6-NNHvSdRoqysGXR6NXaKC_gXZ8bqBEAEBbI2em6ja2hgKCiz6zAfyfW6kIn9ZmRn7TF6XA06DRwaWCJsHlVG2NqL_jRfhwGbvO0fYdv6_69skzslzotUZblDZv23ITwDutXb52mO_QbcXh6n
  priority: 102
  providerName: Springer Nature
Title Is the magnitude of the Peccei–Quinn scale set by the landscape?
URI https://link.springer.com/article/10.1140/epjc/s10052-019-7408-x
https://www.proquest.com/docview/2312730869
https://www.osti.gov/servlets/purl/1600540
https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-7408-x.pdf
https://doaj.org/article/ce0bcf98082b4776a9e719778a6ca9b5
UnpaywallVersion publishedVersion
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: ADMLS
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: AFBBN
  dateStart: 19980201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: 8FG
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: C6C
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: C24
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLW2Vgh44HOIslFFCImntE5iO8kTaquVjoeqDCqNJ8vxx1QoabUkYuOJ_8A_5Jdw7aSFIqGBxIuVj-tKuTmOT5p7jhF6riSFSTcwviZU-iQlmZ-GMfWVMjqOEp2E2hXITtlkTl6f0bM9NNloYVy1--aTZK1psC5NedlfK9N42-K-Xn-QVv2Gqa0rSP2Y4MS_7EHIPmozCqy8hdrz6Wzw3omLIuIz7NZ1bbZp2IiF__xjO_OUs_PfPrRbKxh9O4x0-xH1NrpZ5Wtx9Vksl7_MU-O7aLG5wro85WOvKrOe_PKb-eP_SME9dKchs96gRt99tKfzB-iGKyqVxUM0PCk84JfeJ2FLlCqlvZVxB2ZwR_Xi-9dvb6pFnnsF4ER7hS697Mqdd_pjW5n18gDNx8fvRhO_WbPBl8DFSl-ZhBgShloYHUSBTmkGJEImBkvDslgySZmwLDOIGI5EkAHlZEoHQaaYihIVPUKtfJXrx8gLNGYJ9JZpqIggRIRKGKqIjpMUXltVB9HNHeKyMTS362oseS22xtzmiNc54pAjbnPELzuov-23ri09ru0xtADYRltLbndgdXHOmxHOpcaZNGkCnCojccxEquMA2HUimBRpRjvomYUPt6Ybua3qORdVUfCTt6d8wKxTWhhjCHrRBJkVXIsUjUgCMmJ9unYiDy0MORAl6_YrbVmULHnAHAnvoKMNOnnzUCo4UHkgq_AOm3YQ3gDs5-nrcoC3yP7LtD359y6H6FZo0ezEnkeoVV5U-imwvjLrov1k_KqL2sPj6ewU9kYhsS0bdd3_KNDOQ2jrYf8DzG5TIA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVqhwQPyKpQUiBOIUbX4cJz5UVRda7dKyKqWVejOO7VRFS7I0u2r3xjvwPjwMT8KM10nZC-XSazKOkvGM53M83wwhr7VKIOiGhW9oonzKae7zKE18rQuTxpnJImMTZEdscEw_nCQnK-RXw4XBtMpmTbQLta4U_iPvAQ6BSAsAnG9NvvvYNQpPV5sWGtK1VtCbtsSYI3bsmfkFbOHqzeF7mO83UbS7c_Ru4LsuA74C9DD1dZHRgkaRkYUJ49DwJIewp7IiUAXLU8VUwiTiojBmQSzDHEAS0yYMc810nOkYnnuLrNKYctj8rfZ3RgeHbSzAAmKW3xRTnwWUOo4y7Gp6ZvJVIYMvSDA3gvspiPqXS-HRdhFoY0WnAqdfAsLt2e1dsjYrJ3J-Icfjv8Lj7n1yz-Fab3thiA_Iiikfkts2v1TVj0h_WHsANb1vErOVZtp4VWEvHMDkmrPfP35-mp2VpVeDyRivNlMvn9v7loqMSVpbj8nxjSj2CemUVWmeEi80ActgtOKRppJSGWlZJJqaNOOwg9VdkjRaE8rVNscWG2Ox4F0HArUtFtoWoG2B2haXXdJrx00W1T2uHdHHSWmlsTq3vVCdnwrn7EKZIFcFzwBe5TRNmeQmDQFoZ5IpyfOkS17hlAqsv1Figs-pnNW1GH4-FNsMi6ZFaQBCb51QUcG3KOn4EqARLNm1JLmOpiEAM2HhX4UZUmoqQmbxeJdsNBYj3PpUiytv6pKgsaKr29fpIGit7T_V9uzfL_GSrA2OPu6L_eFob53cidAfLN9zg3Sm5zPzHIDfNH_hvMsjX27aof8A8eNlZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FQWwHxCqGBLAQiFNrvLTb9gFFCWHIEBSFJVJunXYvUdBgD7FHydz4B_6Gz-FLqGovYS6ES652tWW_rup67a6FkBdaxeB0A0sNixVlGctpFiYx1dqaJEpNGhoXILvLt_fZ-4P4YIX86nJhMKyyWxPdQq1Lhf_IR8BDwNMCAc9Gtg2L2Nsar8--U-wghSetXTuNRkV2zOIUtm_V68kWzPXLMBy__fJmm7YdBqgC5lBTbVNmWRgaaU0QBSaLc3B5KrW-sjxPFFcxl8iJgoj7kQxyIEhcmyDINddRqiN47hVyNcEq7pilPn7XewEsHeYymyJGuc9Ym50M-5mRmX1VmLvnxxgVkdEEROnZkmN0_QN6LzEowdyXKHB_anuL3JgXM7k4ldPpX45xfIfcbhmtt9Go4F2yYop75JqLLFXVfbI5qTwgmd43iXFKc2280roLezCt5vj3j58f58dF4VWgLMarTO3lC3ffJSFjeNb6A7J_KbA-JIOiLMwj4gXG5ymMVlmomWRMhlraWDOTpBnsXfWQxB1qQrVVzbG5xlQ0Gde-QLRFg7YAtAWiLc6GZNSPmzV1PS4csYmT0ktjXW53oTw5Eq2ZC2X8XNksBWKVsyThMjNJABQ7lVzJLI-H5DlOqcDKGwXq8JGcV5WYfP4kNjiWSwsTH4RetUK2hG9Rss2UAESwWNeS5CqqhgC2hCV_FcZGqVoE3DHxIVnrNEa0K1Mlzu1oSPxOi85vX4SB32vbf8L2-N8v8YxcBzMWHya7O6vkZojm4BI918igPpmbJ8D46vypMy2PHF62Lf8BFMtjAQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwGLVGJwQ8cB2ibKAIIfGU1klsJ3lCHWLqeJjGpdJ4snydCiWtlkRsPPEf-If8Ej47TqFIaCDxViWfK-XLcXyinHOM0FOtKCy6iY0NoSomJZFxmeY01tqaPCtMkRovkD1i0xl5dUJPttC098J4tXv_SbLzNLiUpqoZr7QN2bZ4bFYflHO_Yep0BWWcE1zE5yMouYK2GQVWPkDbs6PjyXtvLspIzLDf1zX8pmkwC__5zzbWKR_nv35oD5Yw-zYY6foj6g10ra1W4uKzWCx-WacObqF5f4WdPOXjqG3kSH35Lfzxf7TgNroZyGw06dB3B22Z6i666kWlqr6H9g_rCPhl9Ek4iVKrTbS0_sAx3FEz__712-t2XlVRDTgxUW2aSF74895_7JRZz3fQ7ODluxfTOOzZECvgYk2sbUEsSVMjrEmyxJRUAolQhcXKMpkrpigTjmUmGcOZSCRQTqZNkkjNdFbo7D4aVMvKPEBRYjArYLQqU00EISLVwlJNTF6U8Nqqh4j2d4irEGju9tVY8M5sjbnrEe96xKFH3PWInw_ReD1u1UV6XDpi3wFgXe0iuf2B5dkpDzOcK4OlsmUBnEqSPGeiNHkC7LoQTIlS0iF64uDDXehG5VQ9p6Kta3749g2fMJeUluYYip6FIruEa1EimCSgIy6na6Ny18GQA1Fyab_KyaJUwxPmSfgQ7fXo5OGhVHOg8kBW4R22HCLcA-zn6ct6gNfI_su2Pfz3IbvoeurQ7M2ee2jQnLXmEbC-Rj4OE_oH94dNGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+magnitude+of+the+Peccei%E2%80%93Quinn+scale+set+by+the+landscape%3F&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Baer%2C+Howard&rft.au=Barger%2C+Vernon&rft.au=Sengupta%2C+Dibyashree&rft.au=Serce%2C+Hasan&rft.date=2019-11-01&rft.pub=Springer&rft.issn=1434-6044&rft.volume=79&rft.issue=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-019-7408-x&rft.externalDocID=1600540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon