Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor
Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domai...
        Saved in:
      
    
          | Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 39; pp. E9201 - E9210 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          National Academy of Sciences
    
        25.09.2018
     | 
| Series | PNAS Plus | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0027-8424 1091-6490 1091-6490  | 
| DOI | 10.1073/pnas.1805797115 | 
Cover
| Abstract | Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf–P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM–derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor. | 
    
|---|---|
| AbstractList | Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor. Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor. SignificanceThe mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are not understood. We recently identified CD300lf as a cell surface receptor for murine norovirus (MNoV) and observed that a small molecule cofactor was critical for efficient binding of virus to CD300lf. Herein we identify the bile acid GCDCA as a cofactor enhancing MNoV infection and provide a biophysical characterization of the capsid–receptor and capsid–cofactor interactions, thereby providing a structure-based understanding of how noroviruses initiate cellular infection. This work has important implications for the design of norovirus therapeutics. Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf–P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM–derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor. The mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are not understood. We recently identified CD300lf as a cell surface receptor for murine norovirus (MNoV) and observed that a small molecule cofactor was critical for efficient binding of virus to CD300lf. Herein we identify the bile acid GCDCA as a cofactor enhancing MNoV infection and provide a biophysical characterization of the capsid–receptor and capsid–cofactor interactions, thereby providing a structure-based understanding of how noroviruses initiate cellular infection. This work has important implications for the design of norovirus therapeutics. Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf–P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM–derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.  | 
    
| Author | Hsieh, Leon L. Orchard, Robert C. Stegeman, Roderick A. Kim, Arthur S. Wilen, Craig B. Nelson, Christopher A. Fremont, Daved H. Dai, Ya-Nan Smith, Thomas J. Virgin, Herbert W.  | 
    
| Author_xml | – sequence: 1 givenname: Christopher A. surname: Nelson fullname: Nelson, Christopher A. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 2 givenname: Craig B. surname: Wilen fullname: Wilen, Craig B. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 3 givenname: Ya-Nan surname: Dai fullname: Dai, Ya-Nan organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 4 givenname: Robert C. surname: Orchard fullname: Orchard, Robert C. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 5 givenname: Arthur S. surname: Kim fullname: Kim, Arthur S. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 6 givenname: Roderick A. surname: Stegeman fullname: Stegeman, Roderick A. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 7 givenname: Leon L. surname: Hsieh fullname: Hsieh, Leon L. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 8 givenname: Thomas J. surname: Smith fullname: Smith, Thomas J. organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 – sequence: 9 givenname: Herbert W. surname: Virgin fullname: Virgin, Herbert W. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 10 givenname: Daved H. surname: Fremont fullname: Fremont, Daved H. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30194229$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1v1DAQxS1URLeFMyeQJS5IKO3Y-fQFCS2fUiUOgDhGE2e89SqxFzsp6n-Po10W6AE4-TC_9zzvzRk7cd4RY48FXAio88udw3ghGihrVQtR3mMrAUpkVaHghK0AZJ01hSxO2VmMWwBQZQMP2GkOQhVSqhX7-mkKs57mgAPvMNrIjQ98nIN1xJ0P_saGOXJyG9zQSG7i3vDODsRR2z5ydD2fromvX-cAg-GBNO0mHx6y-waHSI8O7zn78vbN5_X77Orjuw_rV1eZLotyyjrR94DUmU6IAoqiVDmhMZir3NQGuxprYRTKXvcoyQCpnrquUFrLSqBq8nMGe9_Z7fD2Ow5Duwt2xHDbCmiXjtqlo_ZXR0nyci_Zzd1IvU6hUvqjzKNt_5w4e91u_E1biapqRJUMnh8Mgv82U5za0UZNw4CO_BxbKUDISkkpEvrsDrr1c3CpkUQlO1nVsIR4-vtGx1V-nikBl3tABx9jIPMfIcs7Cm0nnKxfItnhL7oXh1WWwb9_ebKntzHd_IjLqsxFrWT-A7tLz0g | 
    
| CitedBy_id | crossref_primary_10_3390_v13112162 crossref_primary_10_1002_eji_201847951 crossref_primary_10_1021_acs_est_4c12583 crossref_primary_10_1371_journal_ppat_1010620 crossref_primary_10_1371_journal_pbio_3000649 crossref_primary_10_1371_journal_ppat_1010783 crossref_primary_10_3390_v13060998 crossref_primary_10_1007_s12104_022_10066_7 crossref_primary_10_1038_s41385_019_0199_4 crossref_primary_10_1126_sciadv_adi2562 crossref_primary_10_3390_v11060495 crossref_primary_10_3389_fmicb_2021_721004 crossref_primary_10_3390_v11030235 crossref_primary_10_1073_pnas_1903562116 crossref_primary_10_1021_acsomega_4c10220 crossref_primary_10_1186_s44149_021_00003_x crossref_primary_10_3390_v16121835 crossref_primary_10_1007_s12104_020_09932_z crossref_primary_10_1016_j_coi_2021_07_014 crossref_primary_10_1016_j_vetmic_2021_109097 crossref_primary_10_1021_acs_jafc_3c09460 crossref_primary_10_3390_biom14010119 crossref_primary_10_1186_s40168_024_01799_9 crossref_primary_10_1128_JVI_00837_20 crossref_primary_10_1007_s00253_025_13410_8 crossref_primary_10_1007_s00705_019_04256_3 crossref_primary_10_1038_s42003_022_03497_4 crossref_primary_10_1371_journal_ppat_1008619 crossref_primary_10_3390_v12090989 crossref_primary_10_1016_j_coviro_2021_05_006 crossref_primary_10_1128_JVI_00176_21 crossref_primary_10_3390_v13122399 crossref_primary_10_3390_v13081541 crossref_primary_10_1371_journal_ppat_1008242 crossref_primary_10_3390_gastroent12010005 crossref_primary_10_1007_s12560_020_09430_4 crossref_primary_10_3390_v12040439 crossref_primary_10_1128_jvi_01735_23 crossref_primary_10_1016_j_virol_2020_10_005 crossref_primary_10_1038_s41579_024_01144_9 crossref_primary_10_1002_cbic_201900572 crossref_primary_10_3390_pathogens13080702 crossref_primary_10_1073_pnas_2022464118 crossref_primary_10_3390_v11080760 crossref_primary_10_1016_j_chom_2024_08_003 crossref_primary_10_3389_fmicb_2022_848439 crossref_primary_10_1016_j_jcmgh_2020_03_006 crossref_primary_10_3389_fmicb_2023_1212582 crossref_primary_10_1016_j_cell_2019_04_006 crossref_primary_10_1016_j_coviro_2020_08_005 crossref_primary_10_1128_JVI_01652_20 crossref_primary_10_1021_acs_est_4c13695 crossref_primary_10_1016_j_chom_2024_08_001 crossref_primary_10_1016_j_coviro_2019_04_001 crossref_primary_10_1073_pnas_1910138117 crossref_primary_10_1111_imm_13278 crossref_primary_10_1016_j_meegid_2021_105091 crossref_primary_10_1128_jvi_00420_22 crossref_primary_10_1128_msphere_00046_22 crossref_primary_10_1371_journal_ppat_1009402 crossref_primary_10_1128_jvi_01719_23 crossref_primary_10_3389_fimmu_2022_1043746 crossref_primary_10_1007_s10068_021_00958_0 crossref_primary_10_1128_JVI_00660_20 crossref_primary_10_3389_fmicb_2024_1372641 crossref_primary_10_1016_j_jviromet_2023_114787 crossref_primary_10_1128_JVI_00970_19 crossref_primary_10_1038_s41564_023_01383_1 crossref_primary_10_3390_v11050432 crossref_primary_10_3390_v11060547 crossref_primary_10_3390_v12060618 crossref_primary_10_1016_j_fm_2024_104591 crossref_primary_10_3390_cells9051112 crossref_primary_10_1007_s00018_024_05202_6 crossref_primary_10_3390_v13030416 crossref_primary_10_1016_j_virusres_2024_199486 crossref_primary_10_1128_JVI_01471_21  | 
    
| Cites_doi | 10.1128/JVI.00316-10 10.1128/JVI.78.12.6233-6242.2004 10.1107/S0907444904019158 10.1016/j.str.2005.04.011 10.1128/JVI.00783-07 10.1126/science.aaf5211 10.1182/blood-2012-09-435057 10.1128/JVI.00848-11 10.1128/JVI.02200-07 10.1073/pnas.1605575113 10.1099/0022-1317-78-2-303 10.1128/JVI.77.23.12562-12571.2003 10.1128/JCM.38.4.1656-1660.2000 10.1128/mSphere.00334-17 10.1016/j.chom.2017.08.021 10.1016/j.cca.2017.06.012 10.1038/nm.2105 10.1126/science.286.5438.287 10.1007/s00251-011-0562-4 10.1128/JVI.00413-18 10.1126/science.aar3799 10.1128/JVI.01376-13 10.1093/nar/gkn840 10.1128/JVI.01254-07 10.1016/j.jmb.2007.05.022 10.1074/jbc.M115.643361 10.1128/JVI.00314-10 10.1371/journal.pbio.0020432 10.1126/science.aaf1220 10.1128/JVI.06200-11 10.4049/jimmunol.1101549 10.1016/j.jsb.2006.05.009 10.1128/JVI.03685-13 10.1038/nprot.2013.172 10.1128/JVI.02346-05 10.1136/gutjnl-2014-308900 10.1128/jvi.68.8.5117-5125.1994 10.1016/j.physbeh.2007.03.027 10.1099/vir.0.81134-0 10.1128/JVI.80.9.4482-4490.2006 10.1073/pnas.97.1.79 10.1107/S0907444909052925 10.1107/S0907444909042073 10.1007/s12551-009-0026-3 10.1016/j.immuni.2012.08.018 10.1038/nrmicro2296 10.1093/emboj/18.22.6249 10.1128/JVI.05621-11 10.1016/j.immuni.2007.11.008 10.1007/978-1-4939-0354-2_11 10.1128/mSphere.00049-16 10.1107/S0907444909047337 10.1128/mBio.00031-17 10.1038/31405 10.1016/j.femsle.2005.08.031 10.1107/S0021889807021206 10.1006/viro.1996.0112 10.1126/science.1077905 10.1126/science.1258025 10.1128/JVI.77.24.13117-13124.2003 10.1016/j.taap.2014.03.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2018 the Author(s). Published by PNAS. Copyright National Academy of Sciences Sep 25, 2018 Copyright © 2018 the Author(s). Published by PNAS. 2018  | 
    
| Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2018 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Sep 25, 2018 – notice: Copyright © 2018 the Author(s). Published by PNAS. 2018  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1073/pnas.1805797115 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 1091-6490 | 
    
| EndPage | E9210 | 
    
| ExternalDocumentID | oai:digitalcommons.wustl.edu:open_access_pubs-8150 PMC6166816 30194229 10_1073_pnas_1805797115 10.1073/pnas.1805797115 26531792  | 
    
| Genre | Research Article Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI109725 – fundername: NIDDK NIH HHS grantid: R00 DK116666 – fundername: NIAID NIH HHS grantid: HHSN272201700060C – fundername: NIGMS NIH HHS grantid: R01 GM030498 – fundername: NIAID NIH HHS grantid: R01 AI127552 – fundername: NIAID NIH HHS grantid: K08 AI128043 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: AI127552 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM030498 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: U19 AI109725 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: K08AI128043 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: HHSN272201700060C  | 
    
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTOC ADXHL AFHIN AFQQW AS~ HGD HQ3 HTVGU MVM NEJ NHB P-O UNPAY VOH WHG ZCG  | 
    
| ID | FETCH-LOGICAL-c545t-b1dd0aebfb114044593eaffa393f7fab7a71f9a2dcda2ef0e9debb49cc261a983 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0027-8424 1091-6490  | 
    
| IngestDate | Sun Oct 26 03:47:29 EDT 2025 Tue Sep 30 16:23:50 EDT 2025 Thu Sep 04 18:54:11 EDT 2025 Mon Jun 30 08:44:14 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Wed Oct 01 04:00:24 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Thu Oct 09 22:07:27 EDT 2025 Fri May 30 11:18:44 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 39 | 
    
| IssueTitle | PNAS Plus | 
    
| Keywords | crystallography virus receptor norovirus bile acid  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c545t-b1dd0aebfb114044593eaffa393f7fab7a71f9a2dcda2ef0e9debb49cc261a983 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 1C.A.N., C.B.W., and Y.-N.D. contributed equally to this work. 2Present addresses: Department of Laboratory Medicine, Yale University, New Haven, CT 06520; and Department of Immunobiology, Yale University, New Haven, CT 06520. 3Present address: Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390. Contributed by Herbert W. Virgin, July 31, 2018 (sent for review April 11, 2018; reviewed by Theodore S. Jardetzky and Colin R. Parrish) Author contributions: C.A.N., C.B.W., Y.-N.D., H.W.V., and D.H.F. designed research; C.A.N., C.B.W., Y.-N.D., A.S.K., R.A.S., L.L.H., T.J.S., and D.H.F. performed research; C.A.N., C.B.W., Y.-N.D., R.C.O., A.S.K., R.A.S., L.L.H., and T.J.S. contributed new reagents/analytic tools; C.A.N., C.B.W., Y.-N.D., R.C.O., H.W.V., and D.H.F. analyzed data; and C.A.N., C.B.W., Y.-N.D., H.W.V., and D.H.F. wrote the paper. Reviewers: T.S.J., Stanford University; and C.R.P., Baker Institute for Animal Health. 4Present address: Vir Biotechnology, San Francisco, CA 94158.  | 
    
| ORCID | 0000-0003-4101-6642 0000-0001-8580-7628  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://digitalcommons.wustl.edu/open_access_pubs/7145 | 
    
| PMID | 30194229 | 
    
| PQID | 2116626708 | 
    
| PQPubID | 42026 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1073_pnas_1805797115 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6166816 proquest_miscellaneous_2101269221 proquest_journals_2116626708 pubmed_primary_30194229 crossref_primary_10_1073_pnas_1805797115 crossref_citationtrail_10_1073_pnas_1805797115 pnas_primary_10_1073_pnas_1805797115 jstor_primary_26531792  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-09-25 | 
    
| PublicationDateYYYYMMDD | 2018-09-25 | 
    
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-25 day: 25  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationSeriesTitle | PNAS Plus | 
    
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS | 
    
| PublicationTitleAbbrev | Proc Natl Acad Sci USA | 
    
| PublicationTitleAlternate | Proc Natl Acad Sci U S A | 
    
| PublicationYear | 2018 | 
    
| Publisher | National Academy of Sciences | 
    
| Publisher_xml | – name: National Academy of Sciences | 
    
| References | Katpally 2010; 84 Wriggers 2010; 2 Niizuma, Tahara-Hanaoka, Noguchi, Shibuya 2015; 290 Johnson 1998; Vol 2 Karst, Wobus, Lay, Davidson, Virgin 2003; 299 Emsley, Cowtan 2004; 60 Thackray 2007; 81 Haga 2016; 113 Prasad 1999; 286 Akahata 2010; 16 Tohya, Yokoyama, Maeda, Kawaguchi, Mikami 1997; 78 Makino 2006; 80 Shanker 2011; 85 Lochridge, Hardy 2007; 81 Zheng 2014; 9 Sosnovtsev 2017; 8 Taube 2010; 84 Zhang, Limaye, Renaud, Klaassen 2014; 277 He 2000; 97 Adams 2010; 66 Matsukawa 2016; 65 Green, Knipe, Howley 2013; Vol 1 Chen 2013; 87 Katpally, Wobus, Dryden, Virgin, Smith 2008; 82 McCoy 2007; 40 Tang 2007; 157 Kolawole 2014; 88 Lee 2017; 22 Ettayebi 2016; 353 Santiago 2007; 27 Singh, Leuthold, Hansman 2016; 1 Baldridge 2015; 347 Orchard 2016; 353 Krissinel, Henrick 2007; 372 Wobus, Thackray, Virgin 2006; 80 Khan 2017; 471 Borrego 2013; 121 Kabsch 2010; 66 Hardy 1996; 217 Hale 2000; 38 Lindesmith 2012; 86 Lochridge, Jutila, Graff, Hardy 2005; 86 Kolatkar 1999; 18 Tan, Hegde, Jiang 2004; 78 Wobus 2004; 2 Wilen 2018; 360 Tordoff, Bachmanov, Reed 2007; 91 Chen 2010; 66 Izawa 2012; 37 Donaldson, Lindesmith, Lobue, Baric 2010; 8 Cannon, O’Driscoll, Litman 2012; 64 Xiao 2005; 13 Tan 2003; 77 Kwong 1998; 393 Kilic, Koromyslova, Malak, Hansman 2018; 92 Carrillo-Tripp 2009; 37 Prasad, Rothnagel, Jiang, Estes 1994; 68 Hubbard, Thornton 1993 Choi 2011; 187 Nelson, Lee, Fremont 2014; 1140 Hardy 2005; 253 Kolawole 2017; 2 2015 Nilsson 2003; 77 Bhella, Goodfellow 2011; 85 Kwong PD (e_1_3_4_42_2) 1998; 393 Khan M (e_1_3_4_47_2) 2017; 471 Wobus CE (e_1_3_4_1_2) 2006; 80 Kilic T (e_1_3_4_32_2) 2018; 92 Taube S (e_1_3_4_26_2) 2010; 84 Akahata W (e_1_3_4_61_2) 2010; 16 Ettayebi K (e_1_3_4_30_2) 2016; 353 Adams PD (e_1_3_4_55_2) 2010; 66 Cannon JP (e_1_3_4_10_2) 2012; 64 Sosnovtsev SV (e_1_3_4_37_2) 2017; 8 He Y (e_1_3_4_45_2) 2000; 97 Hardy ME (e_1_3_4_35_2) 2005; 253 Chen VB (e_1_3_4_57_2) 2010; 66 Wilen CB (e_1_3_4_7_2) 2018; 360 Kolawole AO (e_1_3_4_21_2) 2017; 2 Kabsch W (e_1_3_4_53_2) 2010; 66 Lochridge VP (e_1_3_4_22_2) 2005; 86 Emsley P (e_1_3_4_56_2) 2004; 60 Tang G (e_1_3_4_64_2) 2007; 157 Donaldson EF (e_1_3_4_18_2) 2010; 8 McCoy AJ (e_1_3_4_54_2) 2007; 40 Hale AD (e_1_3_4_19_2) 2000; 38 Kolawole AO (e_1_3_4_34_2) 2014; 88 Singh BK (e_1_3_4_40_2) 2016; 1 Matsukawa T (e_1_3_4_13_2) 2016; 65 Wobus CE (e_1_3_4_2_2) 2004; 2 Lochridge VP (e_1_3_4_41_2) 2007; 81 Prasad BV (e_1_3_4_15_2) 1999; 286 Chen Z (e_1_3_4_27_2) 2013; 87 Lindesmith LC (e_1_3_4_28_2) 2012; 86 Haga K (e_1_3_4_6_2) 2016; 113 Niizuma K (e_1_3_4_9_2) 2015; 290 Shanker S (e_1_3_4_39_2) 2011; 85 Nelson CA (e_1_3_4_52_2) 2014; 1140 Krissinel E (e_1_3_4_59_2) 2007; 372 Nilsson M (e_1_3_4_23_2) 2003; 77 Borrego F (e_1_3_4_8_2) 2013; 121 e_1_3_4_60_2 Baldridge MT (e_1_3_4_50_2) 2015; 347 Green KY (e_1_3_4_14_2) 2013 Wriggers W (e_1_3_4_63_2) 2010; 2 Zhang Y (e_1_3_4_51_2) 2014; 277 Zheng H (e_1_3_4_33_2) 2014; 9 Prasad BV (e_1_3_4_16_2) 1994; 68 Johnson LR (e_1_3_4_31_2) 1998 Santiago C (e_1_3_4_46_2) 2007; 27 Kolatkar PR (e_1_3_4_43_2) 1999; 18 Tan M (e_1_3_4_25_2) 2003; 77 Hardy ME (e_1_3_4_20_2) 1996; 217 Thackray LB (e_1_3_4_4_2) 2007; 81 Katpally U (e_1_3_4_62_2) 2008; 82 Lee S (e_1_3_4_49_2) 2017; 22 Choi SC (e_1_3_4_11_2) 2011; 187 Tan M (e_1_3_4_24_2) 2004; 78 Orchard RC (e_1_3_4_5_2) 2016; 353 Tordoff MG (e_1_3_4_48_2) 2007; 91 e_1_3_4_58_2 Carrillo-Tripp M (e_1_3_4_65_2) 2009; 37 Makino A (e_1_3_4_36_2) 2006; 80 Izawa K (e_1_3_4_12_2) 2012; 37 Tohya Y (e_1_3_4_29_2) 1997; 78 Katpally U (e_1_3_4_17_2) 2010; 84 Bhella D (e_1_3_4_38_2) 2011; 85 Karst SM (e_1_3_4_3_2) 2003; 299 Xiao C (e_1_3_4_44_2) 2005; 13  | 
    
| References_xml | – volume: 37 start-page: 827 year: 2012 end-page: 839 article-title: The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide publication-title: Immunity – volume: 38 start-page: 1656 year: 2000 end-page: 1660 article-title: Identification of an epitope common to genogroup 1 “Norwalk-like viruses” publication-title: J Clin Microbiol – volume: 16 start-page: 334 year: 2010 end-page: 338 article-title: A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection publication-title: Nat Med – volume: 121 start-page: 1951 year: 2013 end-page: 1960 article-title: The CD300 molecules: An emerging family of regulators of the immune system publication-title: Blood – volume: 18 start-page: 6249 year: 1999 end-page: 6259 article-title: Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor publication-title: EMBO J – volume: 86 start-page: 873 year: 2012 end-page: 883 article-title: Monoclonal antibody-based antigenic mapping of norovirus GII.4-2002 publication-title: J Virol – volume: 347 start-page: 266 year: 2015 end-page: 269 article-title: Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection publication-title: Science – volume: 2 start-page: 21 year: 2010 end-page: 27 article-title: Using Situs for the integration of multi-resolution structures publication-title: Biophys Rev – volume: 78 start-page: 303 year: 1997 end-page: 305 article-title: Mapping of antigenic sites involved in neutralization on the capsid protein of feline calicivirus publication-title: J Gen Virol – volume: 64 start-page: 39 year: 2012 end-page: 47 article-title: Specific lipid recognition is a general feature of CD300 and TREM molecules publication-title: Immunogenetics – volume: 65 start-page: 777 year: 2016 end-page: 787 article-title: Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation publication-title: Gut – volume: 81 start-page: 12316 year: 2007 end-page: 12322 article-title: A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization publication-title: J Virol – volume: 393 start-page: 648 year: 1998 end-page: 659 article-title: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody publication-title: Nature – volume: 66 start-page: 213 year: 2010 end-page: 221 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr – volume: 290 start-page: 22298 year: 2015 end-page: 22308 article-title: Identification and characterization of CD300H, a new member of the human CD300 immunoreceptor family publication-title: J Biol Chem – volume: 8 start-page: 231 year: 2010 end-page: 241 article-title: Viral shape-shifting: Norovirus evasion of the human immune system publication-title: Nat Rev Microbiol – volume: 91 start-page: 632 year: 2007 end-page: 643 article-title: Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content publication-title: Physiol Behav – volume: 66 start-page: 12 year: 2010 end-page: 21 article-title: MolProbity: All-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr D Biol Crystallogr – volume: 68 start-page: 5117 year: 1994 end-page: 5125 article-title: Three-dimensional structure of baculovirus-expressed Norwalk virus capsids publication-title: J Virol – volume: 66 start-page: 125 year: 2010 end-page: 132 article-title: Xds publication-title: Acta Crystallogr D Biol Crystallogr – volume: 13 start-page: 1019 year: 2005 end-page: 1033 article-title: The crystal structure of coxsackievirus A21 and its interaction with ICAM-1 publication-title: Structure – volume: 40 start-page: 658 year: 2007 end-page: 674 article-title: Phaser crystallographic software publication-title: J Appl Cryst – volume: 92 start-page: e00413-18 year: 2018 article-title: Atomic structure of the murine norovirus protruding domain and soluble CD300lf receptor complex publication-title: J Virol – volume: 286 start-page: 287 year: 1999 end-page: 290 article-title: X-ray crystallographic structure of the Norwalk virus capsid publication-title: Science – volume: 84 start-page: 5695 year: 2010 end-page: 5705 article-title: High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain publication-title: J Virol – volume: Vol 1 start-page: 582 year: 2013 end-page: 608 article-title: Caliciviridae: The noroviruses publication-title: Fields Virology – volume: 353 start-page: 933 year: 2016 end-page: 936 article-title: Discovery of a proteinaceous cellular receptor for a norovirus publication-title: Science – volume: 37 start-page: D436 year: 2009 end-page: D442 article-title: VIPERdb2: An enhanced and web API enabled relational database for structural virology publication-title: Nucleic Acids Res – year: 2015 – volume: 113 start-page: E6248 year: 2016 end-page: E6255 article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells publication-title: Proc Natl Acad Sci USA – volume: 372 start-page: 774 year: 2007 end-page: 797 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J Mol Biol – volume: 217 start-page: 252 year: 1996 end-page: 261 article-title: Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies publication-title: Virology – volume: 27 start-page: 941 year: 2007 end-page: 951 article-title: Structures of T cell immunoglobulin mucin protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds publication-title: Immunity – volume: 77 start-page: 13117 year: 2003 end-page: 13124 article-title: Evolution of human calicivirus RNA in vivo: Accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype publication-title: J Virol – volume: 353 start-page: 1387 year: 2016 end-page: 1393 article-title: Replication of human noroviruses in stem cell-derived human enteroids publication-title: Science – volume: 60 start-page: 2126 year: 2004 end-page: 2132 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr – volume: 88 start-page: 4543 year: 2014 end-page: 4557 article-title: Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization publication-title: J Virol – volume: 2 start-page: e432 year: 2004 article-title: Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages publication-title: PLoS Biol – volume: 77 start-page: 12562 year: 2003 end-page: 12571 article-title: Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: Evidence for a binding pocket publication-title: J Virol – volume: 9 start-page: 156 year: 2014 end-page: 170 article-title: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server publication-title: Nat Protoc – volume: 299 start-page: 1575 year: 2003 end-page: 1578 article-title: STAT1-dependent innate immunity to a Norwalk-like virus publication-title: Science – volume: 471 start-page: 254 year: 2017 end-page: 262 article-title: Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study publication-title: Clin Chim Acta – volume: 85 start-page: 11381 year: 2011 end-page: 11390 article-title: The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1 publication-title: J Virol – volume: 22 start-page: 449 year: 2017 end-page: 459.e4 article-title: Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine publication-title: Cell Host Microbe – volume: 1140 start-page: 145 year: 2014 end-page: 157 article-title: Oxidative refolding from inclusion bodies publication-title: Methods Mol Biol – volume: 84 start-page: 5836 year: 2010 end-page: 5841 article-title: High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains publication-title: J Virol – volume: 81 start-page: 10460 year: 2007 end-page: 10473 article-title: Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence publication-title: J Virol – volume: 80 start-page: 4482 year: 2006 end-page: 4490 article-title: Junctional adhesion molecule 1 is a functional receptor for feline calicivirus publication-title: J Virol – volume: 2 start-page: e00334-17 year: 2017 article-title: Norovirus escape from broadly neutralizing antibodies is limited to allostery-like mechanisms publication-title: MSphere – volume: 85 start-page: 8635 year: 2011 end-page: 8645 article-title: Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: Implications for epochal evolution publication-title: J Virol – year: 1993 – volume: 82 start-page: 2079 year: 2008 end-page: 2088 article-title: Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles publication-title: J Virol – volume: 187 start-page: 3483 year: 2011 end-page: 3487 article-title: Cutting edge: Mouse CD300f (CMRF-35-like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis publication-title: J Immunol – volume: 277 start-page: 138 year: 2014 end-page: 145 article-title: Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice publication-title: Toxicol Appl Pharmacol – volume: Vol 2 start-page: 445 year: 1998 end-page: 472 publication-title: Essential Medical Pysiology – volume: 8 start-page: e00031-17 year: 2017 article-title: Identification of human junctional adhesion molecule 1 as a functional receptor for the Hom-1 calicivirus on human cells publication-title: MBio – volume: 253 start-page: 1 year: 2005 end-page: 8 article-title: Norovirus protein structure and function publication-title: FEMS Microbiol Lett – volume: 360 start-page: 204 year: 2018 end-page: 208 article-title: Tropism for tuft cells determines immune promotion of norovirus pathogenesis publication-title: Science – volume: 78 start-page: 6233 year: 2004 end-page: 6242 article-title: The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors publication-title: J Virol – volume: 97 start-page: 79 year: 2000 end-page: 84 article-title: Interaction of the poliovirus receptor with poliovirus publication-title: Proc Natl Acad Sci USA – volume: 157 start-page: 38 year: 2007 end-page: 46 article-title: EMAN2: An extensible image processing suite for electron microscopy publication-title: J Struct Biol – volume: 80 start-page: 5104 year: 2006 end-page: 5112 article-title: Murine norovirus: A model system to study norovirus biology and pathogenesis publication-title: J Virol – volume: 86 start-page: 2799 year: 2005 end-page: 2806 article-title: Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions publication-title: J Gen Virol – volume: 1 start-page: e00049-16 year: 2016 article-title: Structural constraints on human norovirus binding to histo-blood group antigens publication-title: MSphere – volume: 87 start-page: 9547 year: 2013 end-page: 9557 article-title: Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis publication-title: J Virol – volume: 84 start-page: 5695 year: 2010 ident: e_1_3_4_26_2 article-title: High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain publication-title: J Virol doi: 10.1128/JVI.00316-10 – volume: 78 start-page: 6233 year: 2004 ident: e_1_3_4_24_2 article-title: The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors publication-title: J Virol doi: 10.1128/JVI.78.12.6233-6242.2004 – volume: 60 start-page: 2126 year: 2004 ident: e_1_3_4_56_2 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 – volume: 13 start-page: 1019 year: 2005 ident: e_1_3_4_44_2 article-title: The crystal structure of coxsackievirus A21 and its interaction with ICAM-1 publication-title: Structure doi: 10.1016/j.str.2005.04.011 – volume: 81 start-page: 10460 year: 2007 ident: e_1_3_4_4_2 article-title: Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence publication-title: J Virol doi: 10.1128/JVI.00783-07 – volume: 353 start-page: 1387 year: 2016 ident: e_1_3_4_30_2 article-title: Replication of human noroviruses in stem cell-derived human enteroids publication-title: Science doi: 10.1126/science.aaf5211 – volume: 121 start-page: 1951 year: 2013 ident: e_1_3_4_8_2 article-title: The CD300 molecules: An emerging family of regulators of the immune system publication-title: Blood doi: 10.1182/blood-2012-09-435057 – ident: e_1_3_4_60_2 – volume: 85 start-page: 8635 year: 2011 ident: e_1_3_4_39_2 article-title: Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: Implications for epochal evolution publication-title: J Virol doi: 10.1128/JVI.00848-11 – start-page: 445 volume-title: Essential Medical Pysiology year: 1998 ident: e_1_3_4_31_2 – volume: 82 start-page: 2079 year: 2008 ident: e_1_3_4_62_2 article-title: Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles publication-title: J Virol doi: 10.1128/JVI.02200-07 – volume: 113 start-page: E6248 year: 2016 ident: e_1_3_4_6_2 article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1605575113 – volume: 78 start-page: 303 year: 1997 ident: e_1_3_4_29_2 article-title: Mapping of antigenic sites involved in neutralization on the capsid protein of feline calicivirus publication-title: J Gen Virol doi: 10.1099/0022-1317-78-2-303 – volume: 77 start-page: 12562 year: 2003 ident: e_1_3_4_25_2 article-title: Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: Evidence for a binding pocket publication-title: J Virol doi: 10.1128/JVI.77.23.12562-12571.2003 – volume: 38 start-page: 1656 year: 2000 ident: e_1_3_4_19_2 article-title: Identification of an epitope common to genogroup 1 “Norwalk-like viruses” publication-title: J Clin Microbiol doi: 10.1128/JCM.38.4.1656-1660.2000 – volume: 2 start-page: e00334-17 year: 2017 ident: e_1_3_4_21_2 article-title: Norovirus escape from broadly neutralizing antibodies is limited to allostery-like mechanisms publication-title: MSphere doi: 10.1128/mSphere.00334-17 – volume: 22 start-page: 449 year: 2017 ident: e_1_3_4_49_2 article-title: Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.08.021 – volume: 471 start-page: 254 year: 2017 ident: e_1_3_4_47_2 article-title: Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study publication-title: Clin Chim Acta doi: 10.1016/j.cca.2017.06.012 – volume: 16 start-page: 334 year: 2010 ident: e_1_3_4_61_2 article-title: A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection publication-title: Nat Med doi: 10.1038/nm.2105 – volume: 286 start-page: 287 year: 1999 ident: e_1_3_4_15_2 article-title: X-ray crystallographic structure of the Norwalk virus capsid publication-title: Science doi: 10.1126/science.286.5438.287 – volume: 64 start-page: 39 year: 2012 ident: e_1_3_4_10_2 article-title: Specific lipid recognition is a general feature of CD300 and TREM molecules publication-title: Immunogenetics doi: 10.1007/s00251-011-0562-4 – ident: e_1_3_4_58_2 – volume: 92 start-page: e00413-18 year: 2018 ident: e_1_3_4_32_2 article-title: Atomic structure of the murine norovirus protruding domain and soluble CD300lf receptor complex publication-title: J Virol doi: 10.1128/JVI.00413-18 – volume: 360 start-page: 204 year: 2018 ident: e_1_3_4_7_2 article-title: Tropism for tuft cells determines immune promotion of norovirus pathogenesis publication-title: Science doi: 10.1126/science.aar3799 – volume: 87 start-page: 9547 year: 2013 ident: e_1_3_4_27_2 article-title: Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis publication-title: J Virol doi: 10.1128/JVI.01376-13 – volume: 37 start-page: D436 year: 2009 ident: e_1_3_4_65_2 article-title: VIPERdb2: An enhanced and web API enabled relational database for structural virology publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn840 – volume: 81 start-page: 12316 year: 2007 ident: e_1_3_4_41_2 article-title: A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization publication-title: J Virol doi: 10.1128/JVI.01254-07 – volume: 372 start-page: 774 year: 2007 ident: e_1_3_4_59_2 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.05.022 – volume: 290 start-page: 22298 year: 2015 ident: e_1_3_4_9_2 article-title: Identification and characterization of CD300H, a new member of the human CD300 immunoreceptor family publication-title: J Biol Chem doi: 10.1074/jbc.M115.643361 – volume: 84 start-page: 5836 year: 2010 ident: e_1_3_4_17_2 article-title: High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains publication-title: J Virol doi: 10.1128/JVI.00314-10 – volume: 2 start-page: e432 year: 2004 ident: e_1_3_4_2_2 article-title: Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020432 – volume: 353 start-page: 933 year: 2016 ident: e_1_3_4_5_2 article-title: Discovery of a proteinaceous cellular receptor for a norovirus publication-title: Science doi: 10.1126/science.aaf1220 – volume: 86 start-page: 873 year: 2012 ident: e_1_3_4_28_2 article-title: Monoclonal antibody-based antigenic mapping of norovirus GII.4-2002 publication-title: J Virol doi: 10.1128/JVI.06200-11 – volume: 187 start-page: 3483 year: 2011 ident: e_1_3_4_11_2 article-title: Cutting edge: Mouse CD300f (CMRF-35-like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis publication-title: J Immunol doi: 10.4049/jimmunol.1101549 – volume: 157 start-page: 38 year: 2007 ident: e_1_3_4_64_2 article-title: EMAN2: An extensible image processing suite for electron microscopy publication-title: J Struct Biol doi: 10.1016/j.jsb.2006.05.009 – volume: 88 start-page: 4543 year: 2014 ident: e_1_3_4_34_2 article-title: Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization publication-title: J Virol doi: 10.1128/JVI.03685-13 – volume: 9 start-page: 156 year: 2014 ident: e_1_3_4_33_2 article-title: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server publication-title: Nat Protoc doi: 10.1038/nprot.2013.172 – start-page: 582 volume-title: Fields Virology year: 2013 ident: e_1_3_4_14_2 – volume: 80 start-page: 5104 year: 2006 ident: e_1_3_4_1_2 article-title: Murine norovirus: A model system to study norovirus biology and pathogenesis publication-title: J Virol doi: 10.1128/JVI.02346-05 – volume: 65 start-page: 777 year: 2016 ident: e_1_3_4_13_2 article-title: Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation publication-title: Gut doi: 10.1136/gutjnl-2014-308900 – volume: 68 start-page: 5117 year: 1994 ident: e_1_3_4_16_2 article-title: Three-dimensional structure of baculovirus-expressed Norwalk virus capsids publication-title: J Virol doi: 10.1128/jvi.68.8.5117-5125.1994 – volume: 91 start-page: 632 year: 2007 ident: e_1_3_4_48_2 article-title: Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content publication-title: Physiol Behav doi: 10.1016/j.physbeh.2007.03.027 – volume: 86 start-page: 2799 year: 2005 ident: e_1_3_4_22_2 article-title: Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions publication-title: J Gen Virol doi: 10.1099/vir.0.81134-0 – volume: 80 start-page: 4482 year: 2006 ident: e_1_3_4_36_2 article-title: Junctional adhesion molecule 1 is a functional receptor for feline calicivirus publication-title: J Virol doi: 10.1128/JVI.80.9.4482-4490.2006 – volume: 97 start-page: 79 year: 2000 ident: e_1_3_4_45_2 article-title: Interaction of the poliovirus receptor with poliovirus publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.1.79 – volume: 66 start-page: 213 year: 2010 ident: e_1_3_4_55_2 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 66 start-page: 12 year: 2010 ident: e_1_3_4_57_2 article-title: MolProbity: All-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909042073 – volume: 2 start-page: 21 year: 2010 ident: e_1_3_4_63_2 article-title: Using Situs for the integration of multi-resolution structures publication-title: Biophys Rev doi: 10.1007/s12551-009-0026-3 – volume: 37 start-page: 827 year: 2012 ident: e_1_3_4_12_2 article-title: The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide publication-title: Immunity doi: 10.1016/j.immuni.2012.08.018 – volume: 8 start-page: 231 year: 2010 ident: e_1_3_4_18_2 article-title: Viral shape-shifting: Norovirus evasion of the human immune system publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2296 – volume: 18 start-page: 6249 year: 1999 ident: e_1_3_4_43_2 article-title: Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor publication-title: EMBO J doi: 10.1093/emboj/18.22.6249 – volume: 85 start-page: 11381 year: 2011 ident: e_1_3_4_38_2 article-title: The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1 publication-title: J Virol doi: 10.1128/JVI.05621-11 – volume: 27 start-page: 941 year: 2007 ident: e_1_3_4_46_2 article-title: Structures of T cell immunoglobulin mucin protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds publication-title: Immunity doi: 10.1016/j.immuni.2007.11.008 – volume: 1140 start-page: 145 year: 2014 ident: e_1_3_4_52_2 article-title: Oxidative refolding from inclusion bodies publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-0354-2_11 – volume: 1 start-page: e00049-16 year: 2016 ident: e_1_3_4_40_2 article-title: Structural constraints on human norovirus binding to histo-blood group antigens publication-title: MSphere doi: 10.1128/mSphere.00049-16 – volume: 66 start-page: 125 year: 2010 ident: e_1_3_4_53_2 article-title: Xds publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909047337 – volume: 8 start-page: e00031-17 year: 2017 ident: e_1_3_4_37_2 article-title: Identification of human junctional adhesion molecule 1 as a functional receptor for the Hom-1 calicivirus on human cells publication-title: MBio doi: 10.1128/mBio.00031-17 – volume: 393 start-page: 648 year: 1998 ident: e_1_3_4_42_2 article-title: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody publication-title: Nature doi: 10.1038/31405 – volume: 253 start-page: 1 year: 2005 ident: e_1_3_4_35_2 article-title: Norovirus protein structure and function publication-title: FEMS Microbiol Lett doi: 10.1016/j.femsle.2005.08.031 – volume: 40 start-page: 658 year: 2007 ident: e_1_3_4_54_2 article-title: Phaser crystallographic software publication-title: J Appl Cryst doi: 10.1107/S0021889807021206 – volume: 217 start-page: 252 year: 1996 ident: e_1_3_4_20_2 article-title: Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies publication-title: Virology doi: 10.1006/viro.1996.0112 – volume: 299 start-page: 1575 year: 2003 ident: e_1_3_4_3_2 article-title: STAT1-dependent innate immunity to a Norwalk-like virus publication-title: Science doi: 10.1126/science.1077905 – volume: 347 start-page: 266 year: 2015 ident: e_1_3_4_50_2 article-title: Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection publication-title: Science doi: 10.1126/science.1258025 – volume: 77 start-page: 13117 year: 2003 ident: e_1_3_4_23_2 article-title: Evolution of human calicivirus RNA in vivo: Accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype publication-title: J Virol doi: 10.1128/JVI.77.24.13117-13124.2003 – volume: 277 start-page: 138 year: 2014 ident: e_1_3_4_51_2 article-title: Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2014.03.009  | 
    
| SSID | ssj0009580 | 
    
| Score | 2.5647886 | 
    
| Snippet | Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the... SignificanceThe mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are... The mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are not...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | E9201 | 
    
| SubjectTerms | Acids Animals Antibodies Avidity Bile acids Bile Acids and Salts - chemistry Bile Acids and Salts - metabolism Binding sites Biological Sciences Biophysics and Computational Biology Caliciviridae Infections Cell Line Cell surface Cofactors Cryoelectron Microscopy Crystal structure Crystallography Dimers Docking Epitopes Gastroenteritis Infectivity Mice Microbiology Mimicry Modulators Molecular Docking Simulation Mutation Norovirus - chemistry Norovirus - genetics Norovirus - metabolism Phosphocholine Physical Sciences PNAS Plus Protein Domains Protein Structure, Quaternary Protein Structure, Secondary Receptors, Immunologic - chemistry Receptors, Immunologic - genetics Receptors, Immunologic - metabolism Stoichiometry Virion - chemistry Virion - genetics Virion - metabolism Virions Viruses VP1 protein  | 
    
| Title | Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor | 
    
| URI | https://www.jstor.org/stable/26531792 https://www.pnas.org/doi/10.1073/pnas.1805797115 https://www.ncbi.nlm.nih.gov/pubmed/30194229 https://www.proquest.com/docview/2116626708 https://www.proquest.com/docview/2101269221 https://pubmed.ncbi.nlm.nih.gov/PMC6166816 https://digitalcommons.wustl.edu/open_access_pubs/7145  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 115 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB612wNcCgUKgVIZqYf2kG3sJHZ8rAqlQqJCglWXU2THTlmRelfNrir49YzzouWhqmdP5Ngez3xjj78B2KPodYRIWSiLKPak2lEoWcbDEqF5HGlLqfFvhz-e8dNJ8mGaTteA929hzOzCF8vA2b70s36NAX_VVvvC6D5XTRHBHP-0PhQ0Sddhg6eIwUewMTn7dPS1zedAs5u01WzRGYY8kVHP6SPiw4VT9Zhm_g2moL4Y7g131GYkeppTFPoX5Pw7c_LByi3Uj2tVVTfc0skjOO8H1GajfB-vlnpc_PyD6_H-I34Mmx1SJUetam3BmnVPYKuzBTXZ7wirD57C-eeGhNYTeBD0irOaIBIml_4c3xI394cWV6uaWHfRZdqQeUk0miOiipmpiXKGIA4lx2_jKKpKgkbYLnCKnsHk5N2X49OwK9gQFgjElqGmxkTK6lJTz9qTpDK2qixVLONSlEoLJWgpFTOFUcyWkZXGap3IosA4Tsks3oaRmzv7AghGmb5uJ8bKOk4KXORMI1QzSupUWWZEAON-3fKiYzP3RTWqvLlVF3Hu1zD_vdAB7A8fLFoij_-LbjeKMMgxjpZKSBbAXiN65_c7vebknUWocwy0OQaPIsoCeDM04172FzTK2fnKyyBc4JIxGsDzVtGGvtAQy4QxGYC4pYKDgOcJv93iZt8avnCOPWeUB3AwKOtdQ3h5D9lX8BBRZJNEw9IdGKHK2deI1JZ6F9bfT-lutzl_Aec9Peo | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7QEuQIFCoCAj9dAeso2dxI6PVaGqkKiQYNVyiuzYblek3lWzq6r8esZJNrR8qOrZEzm2xzNv7PEbgG2KXkeInMWyStJAqp3EkhU8dgjN00RbSk14O_z5mB9Nsk-n-eka8NVbGDM9C8UycLYvwqxfYcBfd9W-MLovVVtEsMQ_bfYEzfIHsM5zxOAjWJ8cf9n_3uVzoNnNumq26Axjnslkxekj0r25V82YFuENpqChGO4Nd9RlJAaaUxT6F-T8O3Py4dLP1fWVqusbbunwCZysBtRlo_wYLxd6XP38g-vx_iN-Co97pEr2O9XagDXrn8FGbwsastMTVu8-h5OvLQltIPAg6BWnDUEkTC7COb4lfhYOLS6XDbH-rM-0ITNHNJojoqqpaYjyhiAOJQcf0iSpHUEjbOc4RS9gcvjx28FR3BdsiCsEYotYU2MSZbXTNLD2ZLlMrXJOpTJ1wiktlKBOKmYqo5h1iZXGap3JqsI4Tski3YSRn3n7CghGmaFuJ8bKOs0qXORCI1QzSupcWWZEBOPVupVVz2YeimrUZXurLtIyrGH5e6Ej2Bk-mHdEHv8X3WwVYZBjHC2VkCyC7Vb0zu-3VppT9hahKTHQ5hg8iqSI4P3QjHs5XNAob2fLIINwgUvGaAQvO0Ub-kJDLDPGZATilgoOAoEn_HaLn563fOEcey4oj2B3UNa7hvD6HrJv4BGiyDaJhuVbMEKVs28RqS30u35b_gJ5ejz5 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+murine+norovirus+engagement+of+bile+acids+and+the+CD300lf+receptor&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nelson%2C+Christopher+A&rft.au=Wilen%2C+Craig+B&rft.au=Dai%2C+Ya-Nan&rft.au=Orchard%2C+Robert+C&rft.date=2018-09-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=39&rft.spage=E9201&rft_id=info:doi/10.1073%2Fpnas.1805797115&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |