Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor

Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domai...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 39; pp. E9201 - E9210
Main Authors Nelson, Christopher A., Wilen, Craig B., Dai, Ya-Nan, Orchard, Robert C., Kim, Arthur S., Stegeman, Roderick A., Hsieh, Leon L., Smith, Thomas J., Virgin, Herbert W., Fremont, Daved H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.09.2018
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1805797115

Cover

Abstract Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf–P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM–derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
AbstractList Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
SignificanceThe mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are not understood. We recently identified CD300lf as a cell surface receptor for murine norovirus (MNoV) and observed that a small molecule cofactor was critical for efficient binding of virus to CD300lf. Herein we identify the bile acid GCDCA as a cofactor enhancing MNoV infection and provide a biophysical characterization of the capsid–receptor and capsid–cofactor interactions, thereby providing a structure-based understanding of how noroviruses initiate cellular infection. This work has important implications for the design of norovirus therapeutics. Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf–P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM–derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
The mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are not understood. We recently identified CD300lf as a cell surface receptor for murine norovirus (MNoV) and observed that a small molecule cofactor was critical for efficient binding of virus to CD300lf. Herein we identify the bile acid GCDCA as a cofactor enhancing MNoV infection and provide a biophysical characterization of the capsid–receptor and capsid–cofactor interactions, thereby providing a structure-based understanding of how noroviruses initiate cellular infection. This work has important implications for the design of norovirus therapeutics. Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf–P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM–derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
Author Hsieh, Leon L.
Orchard, Robert C.
Stegeman, Roderick A.
Kim, Arthur S.
Wilen, Craig B.
Nelson, Christopher A.
Fremont, Daved H.
Dai, Ya-Nan
Smith, Thomas J.
Virgin, Herbert W.
Author_xml – sequence: 1
  givenname: Christopher A.
  surname: Nelson
  fullname: Nelson, Christopher A.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 2
  givenname: Craig B.
  surname: Wilen
  fullname: Wilen, Craig B.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 3
  givenname: Ya-Nan
  surname: Dai
  fullname: Dai, Ya-Nan
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 4
  givenname: Robert C.
  surname: Orchard
  fullname: Orchard, Robert C.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 5
  givenname: Arthur S.
  surname: Kim
  fullname: Kim, Arthur S.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 6
  givenname: Roderick A.
  surname: Stegeman
  fullname: Stegeman, Roderick A.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 7
  givenname: Leon L.
  surname: Hsieh
  fullname: Hsieh, Leon L.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 8
  givenname: Thomas J.
  surname: Smith
  fullname: Smith, Thomas J.
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
– sequence: 9
  givenname: Herbert W.
  surname: Virgin
  fullname: Virgin, Herbert W.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 10
  givenname: Daved H.
  surname: Fremont
  fullname: Fremont, Daved H.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30194229$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLeFMyeQJS5IKO3Y-fQFCS2fUiUOgDhGE2e89SqxFzsp6n-Po10W6AE4-TC_9zzvzRk7cd4RY48FXAio88udw3ghGihrVQtR3mMrAUpkVaHghK0AZJ01hSxO2VmMWwBQZQMP2GkOQhVSqhX7-mkKs57mgAPvMNrIjQ98nIN1xJ0P_saGOXJyG9zQSG7i3vDODsRR2z5ydD2fromvX-cAg-GBNO0mHx6y-waHSI8O7zn78vbN5_X77Orjuw_rV1eZLotyyjrR94DUmU6IAoqiVDmhMZir3NQGuxprYRTKXvcoyQCpnrquUFrLSqBq8nMGe9_Z7fD2Ow5Duwt2xHDbCmiXjtqlo_ZXR0nyci_Zzd1IvU6hUvqjzKNt_5w4e91u_E1biapqRJUMnh8Mgv82U5za0UZNw4CO_BxbKUDISkkpEvrsDrr1c3CpkUQlO1nVsIR4-vtGx1V-nikBl3tABx9jIPMfIcs7Cm0nnKxfItnhL7oXh1WWwb9_ebKntzHd_IjLqsxFrWT-A7tLz0g
CitedBy_id crossref_primary_10_3390_v13112162
crossref_primary_10_1002_eji_201847951
crossref_primary_10_1021_acs_est_4c12583
crossref_primary_10_1371_journal_ppat_1010620
crossref_primary_10_1371_journal_pbio_3000649
crossref_primary_10_1371_journal_ppat_1010783
crossref_primary_10_3390_v13060998
crossref_primary_10_1007_s12104_022_10066_7
crossref_primary_10_1038_s41385_019_0199_4
crossref_primary_10_1126_sciadv_adi2562
crossref_primary_10_3390_v11060495
crossref_primary_10_3389_fmicb_2021_721004
crossref_primary_10_3390_v11030235
crossref_primary_10_1073_pnas_1903562116
crossref_primary_10_1021_acsomega_4c10220
crossref_primary_10_1186_s44149_021_00003_x
crossref_primary_10_3390_v16121835
crossref_primary_10_1007_s12104_020_09932_z
crossref_primary_10_1016_j_coi_2021_07_014
crossref_primary_10_1016_j_vetmic_2021_109097
crossref_primary_10_1021_acs_jafc_3c09460
crossref_primary_10_3390_biom14010119
crossref_primary_10_1186_s40168_024_01799_9
crossref_primary_10_1128_JVI_00837_20
crossref_primary_10_1007_s00253_025_13410_8
crossref_primary_10_1007_s00705_019_04256_3
crossref_primary_10_1038_s42003_022_03497_4
crossref_primary_10_1371_journal_ppat_1008619
crossref_primary_10_3390_v12090989
crossref_primary_10_1016_j_coviro_2021_05_006
crossref_primary_10_1128_JVI_00176_21
crossref_primary_10_3390_v13122399
crossref_primary_10_3390_v13081541
crossref_primary_10_1371_journal_ppat_1008242
crossref_primary_10_3390_gastroent12010005
crossref_primary_10_1007_s12560_020_09430_4
crossref_primary_10_3390_v12040439
crossref_primary_10_1128_jvi_01735_23
crossref_primary_10_1016_j_virol_2020_10_005
crossref_primary_10_1038_s41579_024_01144_9
crossref_primary_10_1002_cbic_201900572
crossref_primary_10_3390_pathogens13080702
crossref_primary_10_1073_pnas_2022464118
crossref_primary_10_3390_v11080760
crossref_primary_10_1016_j_chom_2024_08_003
crossref_primary_10_3389_fmicb_2022_848439
crossref_primary_10_1016_j_jcmgh_2020_03_006
crossref_primary_10_3389_fmicb_2023_1212582
crossref_primary_10_1016_j_cell_2019_04_006
crossref_primary_10_1016_j_coviro_2020_08_005
crossref_primary_10_1128_JVI_01652_20
crossref_primary_10_1021_acs_est_4c13695
crossref_primary_10_1016_j_chom_2024_08_001
crossref_primary_10_1016_j_coviro_2019_04_001
crossref_primary_10_1073_pnas_1910138117
crossref_primary_10_1111_imm_13278
crossref_primary_10_1016_j_meegid_2021_105091
crossref_primary_10_1128_jvi_00420_22
crossref_primary_10_1128_msphere_00046_22
crossref_primary_10_1371_journal_ppat_1009402
crossref_primary_10_1128_jvi_01719_23
crossref_primary_10_3389_fimmu_2022_1043746
crossref_primary_10_1007_s10068_021_00958_0
crossref_primary_10_1128_JVI_00660_20
crossref_primary_10_3389_fmicb_2024_1372641
crossref_primary_10_1016_j_jviromet_2023_114787
crossref_primary_10_1128_JVI_00970_19
crossref_primary_10_1038_s41564_023_01383_1
crossref_primary_10_3390_v11050432
crossref_primary_10_3390_v11060547
crossref_primary_10_3390_v12060618
crossref_primary_10_1016_j_fm_2024_104591
crossref_primary_10_3390_cells9051112
crossref_primary_10_1007_s00018_024_05202_6
crossref_primary_10_3390_v13030416
crossref_primary_10_1016_j_virusres_2024_199486
crossref_primary_10_1128_JVI_01471_21
Cites_doi 10.1128/JVI.00316-10
10.1128/JVI.78.12.6233-6242.2004
10.1107/S0907444904019158
10.1016/j.str.2005.04.011
10.1128/JVI.00783-07
10.1126/science.aaf5211
10.1182/blood-2012-09-435057
10.1128/JVI.00848-11
10.1128/JVI.02200-07
10.1073/pnas.1605575113
10.1099/0022-1317-78-2-303
10.1128/JVI.77.23.12562-12571.2003
10.1128/JCM.38.4.1656-1660.2000
10.1128/mSphere.00334-17
10.1016/j.chom.2017.08.021
10.1016/j.cca.2017.06.012
10.1038/nm.2105
10.1126/science.286.5438.287
10.1007/s00251-011-0562-4
10.1128/JVI.00413-18
10.1126/science.aar3799
10.1128/JVI.01376-13
10.1093/nar/gkn840
10.1128/JVI.01254-07
10.1016/j.jmb.2007.05.022
10.1074/jbc.M115.643361
10.1128/JVI.00314-10
10.1371/journal.pbio.0020432
10.1126/science.aaf1220
10.1128/JVI.06200-11
10.4049/jimmunol.1101549
10.1016/j.jsb.2006.05.009
10.1128/JVI.03685-13
10.1038/nprot.2013.172
10.1128/JVI.02346-05
10.1136/gutjnl-2014-308900
10.1128/jvi.68.8.5117-5125.1994
10.1016/j.physbeh.2007.03.027
10.1099/vir.0.81134-0
10.1128/JVI.80.9.4482-4490.2006
10.1073/pnas.97.1.79
10.1107/S0907444909052925
10.1107/S0907444909042073
10.1007/s12551-009-0026-3
10.1016/j.immuni.2012.08.018
10.1038/nrmicro2296
10.1093/emboj/18.22.6249
10.1128/JVI.05621-11
10.1016/j.immuni.2007.11.008
10.1007/978-1-4939-0354-2_11
10.1128/mSphere.00049-16
10.1107/S0907444909047337
10.1128/mBio.00031-17
10.1038/31405
10.1016/j.femsle.2005.08.031
10.1107/S0021889807021206
10.1006/viro.1996.0112
10.1126/science.1077905
10.1126/science.1258025
10.1128/JVI.77.24.13117-13124.2003
10.1016/j.taap.2014.03.009
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Sep 25, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Sep 25, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.1805797115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E9210
ExternalDocumentID oai:digitalcommons.wustl.edu:open_access_pubs-8150
PMC6166816
30194229
10_1073_pnas_1805797115
10.1073/pnas.1805797115
26531792
Genre Research Article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI109725
– fundername: NIDDK NIH HHS
  grantid: R00 DK116666
– fundername: NIAID NIH HHS
  grantid: HHSN272201700060C
– fundername: NIGMS NIH HHS
  grantid: R01 GM030498
– fundername: NIAID NIH HHS
  grantid: R01 AI127552
– fundername: NIAID NIH HHS
  grantid: K08 AI128043
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI127552
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM030498
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: U19 AI109725
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: K08AI128043
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: HHSN272201700060C
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADTOC
ADXHL
AFHIN
AFQQW
AS~
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
UNPAY
VOH
WHG
ZCG
ID FETCH-LOGICAL-c545t-b1dd0aebfb114044593eaffa393f7fab7a71f9a2dcda2ef0e9debb49cc261a983
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 03:47:29 EDT 2025
Tue Sep 30 16:23:50 EDT 2025
Thu Sep 04 18:54:11 EDT 2025
Mon Jun 30 08:44:14 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Wed Oct 01 04:00:24 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Thu Oct 09 22:07:27 EDT 2025
Fri May 30 11:18:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
IssueTitle PNAS Plus
Keywords crystallography
virus receptor
norovirus
bile acid
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-b1dd0aebfb114044593eaffa393f7fab7a71f9a2dcda2ef0e9debb49cc261a983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
1C.A.N., C.B.W., and Y.-N.D. contributed equally to this work.
2Present addresses: Department of Laboratory Medicine, Yale University, New Haven, CT 06520; and Department of Immunobiology, Yale University, New Haven, CT 06520.
3Present address: Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390.
Contributed by Herbert W. Virgin, July 31, 2018 (sent for review April 11, 2018; reviewed by Theodore S. Jardetzky and Colin R. Parrish)
Author contributions: C.A.N., C.B.W., Y.-N.D., H.W.V., and D.H.F. designed research; C.A.N., C.B.W., Y.-N.D., A.S.K., R.A.S., L.L.H., T.J.S., and D.H.F. performed research; C.A.N., C.B.W., Y.-N.D., R.C.O., A.S.K., R.A.S., L.L.H., and T.J.S. contributed new reagents/analytic tools; C.A.N., C.B.W., Y.-N.D., R.C.O., H.W.V., and D.H.F. analyzed data; and C.A.N., C.B.W., Y.-N.D., H.W.V., and D.H.F. wrote the paper.
Reviewers: T.S.J., Stanford University; and C.R.P., Baker Institute for Animal Health.
4Present address: Vir Biotechnology, San Francisco, CA 94158.
ORCID 0000-0003-4101-6642
0000-0001-8580-7628
OpenAccessLink https://proxy.k.utb.cz/login?url=https://digitalcommons.wustl.edu/open_access_pubs/7145
PMID 30194229
PQID 2116626708
PQPubID 42026
PageCount 10
ParticipantIDs unpaywall_primary_10_1073_pnas_1805797115
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6166816
proquest_miscellaneous_2101269221
proquest_journals_2116626708
pubmed_primary_30194229
crossref_primary_10_1073_pnas_1805797115
crossref_citationtrail_10_1073_pnas_1805797115
pnas_primary_10_1073_pnas_1805797115
jstor_primary_26531792
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-25
PublicationDateYYYYMMDD 2018-09-25
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAbbrev Proc Natl Acad Sci USA
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Katpally 2010; 84
Wriggers 2010; 2
Niizuma, Tahara-Hanaoka, Noguchi, Shibuya 2015; 290
Johnson 1998; Vol 2
Karst, Wobus, Lay, Davidson, Virgin 2003; 299
Emsley, Cowtan 2004; 60
Thackray 2007; 81
Haga 2016; 113
Prasad 1999; 286
Akahata 2010; 16
Tohya, Yokoyama, Maeda, Kawaguchi, Mikami 1997; 78
Makino 2006; 80
Shanker 2011; 85
Lochridge, Hardy 2007; 81
Zheng 2014; 9
Sosnovtsev 2017; 8
Taube 2010; 84
Zhang, Limaye, Renaud, Klaassen 2014; 277
He 2000; 97
Adams 2010; 66
Matsukawa 2016; 65
Green, Knipe, Howley 2013; Vol 1
Chen 2013; 87
Katpally, Wobus, Dryden, Virgin, Smith 2008; 82
McCoy 2007; 40
Tang 2007; 157
Kolawole 2014; 88
Lee 2017; 22
Ettayebi 2016; 353
Santiago 2007; 27
Singh, Leuthold, Hansman 2016; 1
Baldridge 2015; 347
Orchard 2016; 353
Krissinel, Henrick 2007; 372
Wobus, Thackray, Virgin 2006; 80
Khan 2017; 471
Borrego 2013; 121
Kabsch 2010; 66
Hardy 1996; 217
Hale 2000; 38
Lindesmith 2012; 86
Lochridge, Jutila, Graff, Hardy 2005; 86
Kolatkar 1999; 18
Tan, Hegde, Jiang 2004; 78
Wobus 2004; 2
Wilen 2018; 360
Tordoff, Bachmanov, Reed 2007; 91
Chen 2010; 66
Izawa 2012; 37
Donaldson, Lindesmith, Lobue, Baric 2010; 8
Cannon, O’Driscoll, Litman 2012; 64
Xiao 2005; 13
Tan 2003; 77
Kwong 1998; 393
Kilic, Koromyslova, Malak, Hansman 2018; 92
Carrillo-Tripp 2009; 37
Prasad, Rothnagel, Jiang, Estes 1994; 68
Hubbard, Thornton 1993
Choi 2011; 187
Nelson, Lee, Fremont 2014; 1140
Hardy 2005; 253
Kolawole 2017; 2
2015
Nilsson 2003; 77
Bhella, Goodfellow 2011; 85
Kwong PD (e_1_3_4_42_2) 1998; 393
Khan M (e_1_3_4_47_2) 2017; 471
Wobus CE (e_1_3_4_1_2) 2006; 80
Kilic T (e_1_3_4_32_2) 2018; 92
Taube S (e_1_3_4_26_2) 2010; 84
Akahata W (e_1_3_4_61_2) 2010; 16
Ettayebi K (e_1_3_4_30_2) 2016; 353
Adams PD (e_1_3_4_55_2) 2010; 66
Cannon JP (e_1_3_4_10_2) 2012; 64
Sosnovtsev SV (e_1_3_4_37_2) 2017; 8
He Y (e_1_3_4_45_2) 2000; 97
Hardy ME (e_1_3_4_35_2) 2005; 253
Chen VB (e_1_3_4_57_2) 2010; 66
Wilen CB (e_1_3_4_7_2) 2018; 360
Kolawole AO (e_1_3_4_21_2) 2017; 2
Kabsch W (e_1_3_4_53_2) 2010; 66
Lochridge VP (e_1_3_4_22_2) 2005; 86
Emsley P (e_1_3_4_56_2) 2004; 60
Tang G (e_1_3_4_64_2) 2007; 157
Donaldson EF (e_1_3_4_18_2) 2010; 8
McCoy AJ (e_1_3_4_54_2) 2007; 40
Hale AD (e_1_3_4_19_2) 2000; 38
Kolawole AO (e_1_3_4_34_2) 2014; 88
Singh BK (e_1_3_4_40_2) 2016; 1
Matsukawa T (e_1_3_4_13_2) 2016; 65
Wobus CE (e_1_3_4_2_2) 2004; 2
Lochridge VP (e_1_3_4_41_2) 2007; 81
Prasad BV (e_1_3_4_15_2) 1999; 286
Chen Z (e_1_3_4_27_2) 2013; 87
Lindesmith LC (e_1_3_4_28_2) 2012; 86
Haga K (e_1_3_4_6_2) 2016; 113
Niizuma K (e_1_3_4_9_2) 2015; 290
Shanker S (e_1_3_4_39_2) 2011; 85
Nelson CA (e_1_3_4_52_2) 2014; 1140
Krissinel E (e_1_3_4_59_2) 2007; 372
Nilsson M (e_1_3_4_23_2) 2003; 77
Borrego F (e_1_3_4_8_2) 2013; 121
e_1_3_4_60_2
Baldridge MT (e_1_3_4_50_2) 2015; 347
Green KY (e_1_3_4_14_2) 2013
Wriggers W (e_1_3_4_63_2) 2010; 2
Zhang Y (e_1_3_4_51_2) 2014; 277
Zheng H (e_1_3_4_33_2) 2014; 9
Prasad BV (e_1_3_4_16_2) 1994; 68
Johnson LR (e_1_3_4_31_2) 1998
Santiago C (e_1_3_4_46_2) 2007; 27
Kolatkar PR (e_1_3_4_43_2) 1999; 18
Tan M (e_1_3_4_25_2) 2003; 77
Hardy ME (e_1_3_4_20_2) 1996; 217
Thackray LB (e_1_3_4_4_2) 2007; 81
Katpally U (e_1_3_4_62_2) 2008; 82
Lee S (e_1_3_4_49_2) 2017; 22
Choi SC (e_1_3_4_11_2) 2011; 187
Tan M (e_1_3_4_24_2) 2004; 78
Orchard RC (e_1_3_4_5_2) 2016; 353
Tordoff MG (e_1_3_4_48_2) 2007; 91
e_1_3_4_58_2
Carrillo-Tripp M (e_1_3_4_65_2) 2009; 37
Makino A (e_1_3_4_36_2) 2006; 80
Izawa K (e_1_3_4_12_2) 2012; 37
Tohya Y (e_1_3_4_29_2) 1997; 78
Katpally U (e_1_3_4_17_2) 2010; 84
Bhella D (e_1_3_4_38_2) 2011; 85
Karst SM (e_1_3_4_3_2) 2003; 299
Xiao C (e_1_3_4_44_2) 2005; 13
References_xml – volume: 37
  start-page: 827
  year: 2012
  end-page: 839
  article-title: The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide
  publication-title: Immunity
– volume: 38
  start-page: 1656
  year: 2000
  end-page: 1660
  article-title: Identification of an epitope common to genogroup 1 “Norwalk-like viruses”
  publication-title: J Clin Microbiol
– volume: 16
  start-page: 334
  year: 2010
  end-page: 338
  article-title: A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection
  publication-title: Nat Med
– volume: 121
  start-page: 1951
  year: 2013
  end-page: 1960
  article-title: The CD300 molecules: An emerging family of regulators of the immune system
  publication-title: Blood
– volume: 18
  start-page: 6249
  year: 1999
  end-page: 6259
  article-title: Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor
  publication-title: EMBO J
– volume: 86
  start-page: 873
  year: 2012
  end-page: 883
  article-title: Monoclonal antibody-based antigenic mapping of norovirus GII.4-2002
  publication-title: J Virol
– volume: 347
  start-page: 266
  year: 2015
  end-page: 269
  article-title: Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection
  publication-title: Science
– volume: 2
  start-page: 21
  year: 2010
  end-page: 27
  article-title: Using Situs for the integration of multi-resolution structures
  publication-title: Biophys Rev
– volume: 78
  start-page: 303
  year: 1997
  end-page: 305
  article-title: Mapping of antigenic sites involved in neutralization on the capsid protein of feline calicivirus
  publication-title: J Gen Virol
– volume: 64
  start-page: 39
  year: 2012
  end-page: 47
  article-title: Specific lipid recognition is a general feature of CD300 and TREM molecules
  publication-title: Immunogenetics
– volume: 65
  start-page: 777
  year: 2016
  end-page: 787
  article-title: Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation
  publication-title: Gut
– volume: 81
  start-page: 12316
  year: 2007
  end-page: 12322
  article-title: A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization
  publication-title: J Virol
– volume: 393
  start-page: 648
  year: 1998
  end-page: 659
  article-title: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody
  publication-title: Nature
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 290
  start-page: 22298
  year: 2015
  end-page: 22308
  article-title: Identification and characterization of CD300H, a new member of the human CD300 immunoreceptor family
  publication-title: J Biol Chem
– volume: 8
  start-page: 231
  year: 2010
  end-page: 241
  article-title: Viral shape-shifting: Norovirus evasion of the human immune system
  publication-title: Nat Rev Microbiol
– volume: 91
  start-page: 632
  year: 2007
  end-page: 643
  article-title: Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content
  publication-title: Physiol Behav
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  article-title: MolProbity: All-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 68
  start-page: 5117
  year: 1994
  end-page: 5125
  article-title: Three-dimensional structure of baculovirus-expressed Norwalk virus capsids
  publication-title: J Virol
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  article-title: Xds
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 13
  start-page: 1019
  year: 2005
  end-page: 1033
  article-title: The crystal structure of coxsackievirus A21 and its interaction with ICAM-1
  publication-title: Structure
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  article-title: Phaser crystallographic software
  publication-title: J Appl Cryst
– volume: 92
  start-page: e00413-18
  year: 2018
  article-title: Atomic structure of the murine norovirus protruding domain and soluble CD300lf receptor complex
  publication-title: J Virol
– volume: 286
  start-page: 287
  year: 1999
  end-page: 290
  article-title: X-ray crystallographic structure of the Norwalk virus capsid
  publication-title: Science
– volume: 84
  start-page: 5695
  year: 2010
  end-page: 5705
  article-title: High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain
  publication-title: J Virol
– volume: Vol 1
  start-page: 582
  year: 2013
  end-page: 608
  article-title: Caliciviridae: The noroviruses
  publication-title: Fields Virology
– volume: 353
  start-page: 933
  year: 2016
  end-page: 936
  article-title: Discovery of a proteinaceous cellular receptor for a norovirus
  publication-title: Science
– volume: 37
  start-page: D436
  year: 2009
  end-page: D442
  article-title: VIPERdb2: An enhanced and web API enabled relational database for structural virology
  publication-title: Nucleic Acids Res
– year: 2015
– volume: 113
  start-page: E6248
  year: 2016
  end-page: E6255
  article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells
  publication-title: Proc Natl Acad Sci USA
– volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J Mol Biol
– volume: 217
  start-page: 252
  year: 1996
  end-page: 261
  article-title: Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies
  publication-title: Virology
– volume: 27
  start-page: 941
  year: 2007
  end-page: 951
  article-title: Structures of T cell immunoglobulin mucin protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds
  publication-title: Immunity
– volume: 77
  start-page: 13117
  year: 2003
  end-page: 13124
  article-title: Evolution of human calicivirus RNA in vivo: Accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype
  publication-title: J Virol
– volume: 353
  start-page: 1387
  year: 2016
  end-page: 1393
  article-title: Replication of human noroviruses in stem cell-derived human enteroids
  publication-title: Science
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  article-title: Coot: Model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 88
  start-page: 4543
  year: 2014
  end-page: 4557
  article-title: Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization
  publication-title: J Virol
– volume: 2
  start-page: e432
  year: 2004
  article-title: Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages
  publication-title: PLoS Biol
– volume: 77
  start-page: 12562
  year: 2003
  end-page: 12571
  article-title: Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: Evidence for a binding pocket
  publication-title: J Virol
– volume: 9
  start-page: 156
  year: 2014
  end-page: 170
  article-title: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server
  publication-title: Nat Protoc
– volume: 299
  start-page: 1575
  year: 2003
  end-page: 1578
  article-title: STAT1-dependent innate immunity to a Norwalk-like virus
  publication-title: Science
– volume: 471
  start-page: 254
  year: 2017
  end-page: 262
  article-title: Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study
  publication-title: Clin Chim Acta
– volume: 85
  start-page: 11381
  year: 2011
  end-page: 11390
  article-title: The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1
  publication-title: J Virol
– volume: 22
  start-page: 449
  year: 2017
  end-page: 459.e4
  article-title: Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine
  publication-title: Cell Host Microbe
– volume: 1140
  start-page: 145
  year: 2014
  end-page: 157
  article-title: Oxidative refolding from inclusion bodies
  publication-title: Methods Mol Biol
– volume: 84
  start-page: 5836
  year: 2010
  end-page: 5841
  article-title: High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains
  publication-title: J Virol
– volume: 81
  start-page: 10460
  year: 2007
  end-page: 10473
  article-title: Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence
  publication-title: J Virol
– volume: 80
  start-page: 4482
  year: 2006
  end-page: 4490
  article-title: Junctional adhesion molecule 1 is a functional receptor for feline calicivirus
  publication-title: J Virol
– volume: 2
  start-page: e00334-17
  year: 2017
  article-title: Norovirus escape from broadly neutralizing antibodies is limited to allostery-like mechanisms
  publication-title: MSphere
– volume: 85
  start-page: 8635
  year: 2011
  end-page: 8645
  article-title: Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: Implications for epochal evolution
  publication-title: J Virol
– year: 1993
– volume: 82
  start-page: 2079
  year: 2008
  end-page: 2088
  article-title: Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles
  publication-title: J Virol
– volume: 187
  start-page: 3483
  year: 2011
  end-page: 3487
  article-title: Cutting edge: Mouse CD300f (CMRF-35-like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis
  publication-title: J Immunol
– volume: 277
  start-page: 138
  year: 2014
  end-page: 145
  article-title: Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice
  publication-title: Toxicol Appl Pharmacol
– volume: Vol 2
  start-page: 445
  year: 1998
  end-page: 472
  publication-title: Essential Medical Pysiology
– volume: 8
  start-page: e00031-17
  year: 2017
  article-title: Identification of human junctional adhesion molecule 1 as a functional receptor for the Hom-1 calicivirus on human cells
  publication-title: MBio
– volume: 253
  start-page: 1
  year: 2005
  end-page: 8
  article-title: Norovirus protein structure and function
  publication-title: FEMS Microbiol Lett
– volume: 360
  start-page: 204
  year: 2018
  end-page: 208
  article-title: Tropism for tuft cells determines immune promotion of norovirus pathogenesis
  publication-title: Science
– volume: 78
  start-page: 6233
  year: 2004
  end-page: 6242
  article-title: The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors
  publication-title: J Virol
– volume: 97
  start-page: 79
  year: 2000
  end-page: 84
  article-title: Interaction of the poliovirus receptor with poliovirus
  publication-title: Proc Natl Acad Sci USA
– volume: 157
  start-page: 38
  year: 2007
  end-page: 46
  article-title: EMAN2: An extensible image processing suite for electron microscopy
  publication-title: J Struct Biol
– volume: 80
  start-page: 5104
  year: 2006
  end-page: 5112
  article-title: Murine norovirus: A model system to study norovirus biology and pathogenesis
  publication-title: J Virol
– volume: 86
  start-page: 2799
  year: 2005
  end-page: 2806
  article-title: Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions
  publication-title: J Gen Virol
– volume: 1
  start-page: e00049-16
  year: 2016
  article-title: Structural constraints on human norovirus binding to histo-blood group antigens
  publication-title: MSphere
– volume: 87
  start-page: 9547
  year: 2013
  end-page: 9557
  article-title: Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis
  publication-title: J Virol
– volume: 84
  start-page: 5695
  year: 2010
  ident: e_1_3_4_26_2
  article-title: High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain
  publication-title: J Virol
  doi: 10.1128/JVI.00316-10
– volume: 78
  start-page: 6233
  year: 2004
  ident: e_1_3_4_24_2
  article-title: The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors
  publication-title: J Virol
  doi: 10.1128/JVI.78.12.6233-6242.2004
– volume: 60
  start-page: 2126
  year: 2004
  ident: e_1_3_4_56_2
  article-title: Coot: Model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 13
  start-page: 1019
  year: 2005
  ident: e_1_3_4_44_2
  article-title: The crystal structure of coxsackievirus A21 and its interaction with ICAM-1
  publication-title: Structure
  doi: 10.1016/j.str.2005.04.011
– volume: 81
  start-page: 10460
  year: 2007
  ident: e_1_3_4_4_2
  article-title: Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence
  publication-title: J Virol
  doi: 10.1128/JVI.00783-07
– volume: 353
  start-page: 1387
  year: 2016
  ident: e_1_3_4_30_2
  article-title: Replication of human noroviruses in stem cell-derived human enteroids
  publication-title: Science
  doi: 10.1126/science.aaf5211
– volume: 121
  start-page: 1951
  year: 2013
  ident: e_1_3_4_8_2
  article-title: The CD300 molecules: An emerging family of regulators of the immune system
  publication-title: Blood
  doi: 10.1182/blood-2012-09-435057
– ident: e_1_3_4_60_2
– volume: 85
  start-page: 8635
  year: 2011
  ident: e_1_3_4_39_2
  article-title: Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: Implications for epochal evolution
  publication-title: J Virol
  doi: 10.1128/JVI.00848-11
– start-page: 445
  volume-title: Essential Medical Pysiology
  year: 1998
  ident: e_1_3_4_31_2
– volume: 82
  start-page: 2079
  year: 2008
  ident: e_1_3_4_62_2
  article-title: Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles
  publication-title: J Virol
  doi: 10.1128/JVI.02200-07
– volume: 113
  start-page: E6248
  year: 2016
  ident: e_1_3_4_6_2
  article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1605575113
– volume: 78
  start-page: 303
  year: 1997
  ident: e_1_3_4_29_2
  article-title: Mapping of antigenic sites involved in neutralization on the capsid protein of feline calicivirus
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-78-2-303
– volume: 77
  start-page: 12562
  year: 2003
  ident: e_1_3_4_25_2
  article-title: Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: Evidence for a binding pocket
  publication-title: J Virol
  doi: 10.1128/JVI.77.23.12562-12571.2003
– volume: 38
  start-page: 1656
  year: 2000
  ident: e_1_3_4_19_2
  article-title: Identification of an epitope common to genogroup 1 “Norwalk-like viruses”
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.38.4.1656-1660.2000
– volume: 2
  start-page: e00334-17
  year: 2017
  ident: e_1_3_4_21_2
  article-title: Norovirus escape from broadly neutralizing antibodies is limited to allostery-like mechanisms
  publication-title: MSphere
  doi: 10.1128/mSphere.00334-17
– volume: 22
  start-page: 449
  year: 2017
  ident: e_1_3_4_49_2
  article-title: Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.08.021
– volume: 471
  start-page: 254
  year: 2017
  ident: e_1_3_4_47_2
  article-title: Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2017.06.012
– volume: 16
  start-page: 334
  year: 2010
  ident: e_1_3_4_61_2
  article-title: A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection
  publication-title: Nat Med
  doi: 10.1038/nm.2105
– volume: 286
  start-page: 287
  year: 1999
  ident: e_1_3_4_15_2
  article-title: X-ray crystallographic structure of the Norwalk virus capsid
  publication-title: Science
  doi: 10.1126/science.286.5438.287
– volume: 64
  start-page: 39
  year: 2012
  ident: e_1_3_4_10_2
  article-title: Specific lipid recognition is a general feature of CD300 and TREM molecules
  publication-title: Immunogenetics
  doi: 10.1007/s00251-011-0562-4
– ident: e_1_3_4_58_2
– volume: 92
  start-page: e00413-18
  year: 2018
  ident: e_1_3_4_32_2
  article-title: Atomic structure of the murine norovirus protruding domain and soluble CD300lf receptor complex
  publication-title: J Virol
  doi: 10.1128/JVI.00413-18
– volume: 360
  start-page: 204
  year: 2018
  ident: e_1_3_4_7_2
  article-title: Tropism for tuft cells determines immune promotion of norovirus pathogenesis
  publication-title: Science
  doi: 10.1126/science.aar3799
– volume: 87
  start-page: 9547
  year: 2013
  ident: e_1_3_4_27_2
  article-title: Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis
  publication-title: J Virol
  doi: 10.1128/JVI.01376-13
– volume: 37
  start-page: D436
  year: 2009
  ident: e_1_3_4_65_2
  article-title: VIPERdb2: An enhanced and web API enabled relational database for structural virology
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn840
– volume: 81
  start-page: 12316
  year: 2007
  ident: e_1_3_4_41_2
  article-title: A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization
  publication-title: J Virol
  doi: 10.1128/JVI.01254-07
– volume: 372
  start-page: 774
  year: 2007
  ident: e_1_3_4_59_2
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.05.022
– volume: 290
  start-page: 22298
  year: 2015
  ident: e_1_3_4_9_2
  article-title: Identification and characterization of CD300H, a new member of the human CD300 immunoreceptor family
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.643361
– volume: 84
  start-page: 5836
  year: 2010
  ident: e_1_3_4_17_2
  article-title: High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains
  publication-title: J Virol
  doi: 10.1128/JVI.00314-10
– volume: 2
  start-page: e432
  year: 2004
  ident: e_1_3_4_2_2
  article-title: Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020432
– volume: 353
  start-page: 933
  year: 2016
  ident: e_1_3_4_5_2
  article-title: Discovery of a proteinaceous cellular receptor for a norovirus
  publication-title: Science
  doi: 10.1126/science.aaf1220
– volume: 86
  start-page: 873
  year: 2012
  ident: e_1_3_4_28_2
  article-title: Monoclonal antibody-based antigenic mapping of norovirus GII.4-2002
  publication-title: J Virol
  doi: 10.1128/JVI.06200-11
– volume: 187
  start-page: 3483
  year: 2011
  ident: e_1_3_4_11_2
  article-title: Cutting edge: Mouse CD300f (CMRF-35-like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1101549
– volume: 157
  start-page: 38
  year: 2007
  ident: e_1_3_4_64_2
  article-title: EMAN2: An extensible image processing suite for electron microscopy
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2006.05.009
– volume: 88
  start-page: 4543
  year: 2014
  ident: e_1_3_4_34_2
  article-title: Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization
  publication-title: J Virol
  doi: 10.1128/JVI.03685-13
– volume: 9
  start-page: 156
  year: 2014
  ident: e_1_3_4_33_2
  article-title: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.172
– start-page: 582
  volume-title: Fields Virology
  year: 2013
  ident: e_1_3_4_14_2
– volume: 80
  start-page: 5104
  year: 2006
  ident: e_1_3_4_1_2
  article-title: Murine norovirus: A model system to study norovirus biology and pathogenesis
  publication-title: J Virol
  doi: 10.1128/JVI.02346-05
– volume: 65
  start-page: 777
  year: 2016
  ident: e_1_3_4_13_2
  article-title: Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-308900
– volume: 68
  start-page: 5117
  year: 1994
  ident: e_1_3_4_16_2
  article-title: Three-dimensional structure of baculovirus-expressed Norwalk virus capsids
  publication-title: J Virol
  doi: 10.1128/jvi.68.8.5117-5125.1994
– volume: 91
  start-page: 632
  year: 2007
  ident: e_1_3_4_48_2
  article-title: Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2007.03.027
– volume: 86
  start-page: 2799
  year: 2005
  ident: e_1_3_4_22_2
  article-title: Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.81134-0
– volume: 80
  start-page: 4482
  year: 2006
  ident: e_1_3_4_36_2
  article-title: Junctional adhesion molecule 1 is a functional receptor for feline calicivirus
  publication-title: J Virol
  doi: 10.1128/JVI.80.9.4482-4490.2006
– volume: 97
  start-page: 79
  year: 2000
  ident: e_1_3_4_45_2
  article-title: Interaction of the poliovirus receptor with poliovirus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.1.79
– volume: 66
  start-page: 213
  year: 2010
  ident: e_1_3_4_55_2
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 66
  start-page: 12
  year: 2010
  ident: e_1_3_4_57_2
  article-title: MolProbity: All-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909042073
– volume: 2
  start-page: 21
  year: 2010
  ident: e_1_3_4_63_2
  article-title: Using Situs for the integration of multi-resolution structures
  publication-title: Biophys Rev
  doi: 10.1007/s12551-009-0026-3
– volume: 37
  start-page: 827
  year: 2012
  ident: e_1_3_4_12_2
  article-title: The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.08.018
– volume: 8
  start-page: 231
  year: 2010
  ident: e_1_3_4_18_2
  article-title: Viral shape-shifting: Norovirus evasion of the human immune system
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2296
– volume: 18
  start-page: 6249
  year: 1999
  ident: e_1_3_4_43_2
  article-title: Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor
  publication-title: EMBO J
  doi: 10.1093/emboj/18.22.6249
– volume: 85
  start-page: 11381
  year: 2011
  ident: e_1_3_4_38_2
  article-title: The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1
  publication-title: J Virol
  doi: 10.1128/JVI.05621-11
– volume: 27
  start-page: 941
  year: 2007
  ident: e_1_3_4_46_2
  article-title: Structures of T cell immunoglobulin mucin protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.11.008
– volume: 1140
  start-page: 145
  year: 2014
  ident: e_1_3_4_52_2
  article-title: Oxidative refolding from inclusion bodies
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-0354-2_11
– volume: 1
  start-page: e00049-16
  year: 2016
  ident: e_1_3_4_40_2
  article-title: Structural constraints on human norovirus binding to histo-blood group antigens
  publication-title: MSphere
  doi: 10.1128/mSphere.00049-16
– volume: 66
  start-page: 125
  year: 2010
  ident: e_1_3_4_53_2
  article-title: Xds
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909047337
– volume: 8
  start-page: e00031-17
  year: 2017
  ident: e_1_3_4_37_2
  article-title: Identification of human junctional adhesion molecule 1 as a functional receptor for the Hom-1 calicivirus on human cells
  publication-title: MBio
  doi: 10.1128/mBio.00031-17
– volume: 393
  start-page: 648
  year: 1998
  ident: e_1_3_4_42_2
  article-title: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody
  publication-title: Nature
  doi: 10.1038/31405
– volume: 253
  start-page: 1
  year: 2005
  ident: e_1_3_4_35_2
  article-title: Norovirus protein structure and function
  publication-title: FEMS Microbiol Lett
  doi: 10.1016/j.femsle.2005.08.031
– volume: 40
  start-page: 658
  year: 2007
  ident: e_1_3_4_54_2
  article-title: Phaser crystallographic software
  publication-title: J Appl Cryst
  doi: 10.1107/S0021889807021206
– volume: 217
  start-page: 252
  year: 1996
  ident: e_1_3_4_20_2
  article-title: Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies
  publication-title: Virology
  doi: 10.1006/viro.1996.0112
– volume: 299
  start-page: 1575
  year: 2003
  ident: e_1_3_4_3_2
  article-title: STAT1-dependent innate immunity to a Norwalk-like virus
  publication-title: Science
  doi: 10.1126/science.1077905
– volume: 347
  start-page: 266
  year: 2015
  ident: e_1_3_4_50_2
  article-title: Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection
  publication-title: Science
  doi: 10.1126/science.1258025
– volume: 77
  start-page: 13117
  year: 2003
  ident: e_1_3_4_23_2
  article-title: Evolution of human calicivirus RNA in vivo: Accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype
  publication-title: J Virol
  doi: 10.1128/JVI.77.24.13117-13124.2003
– volume: 277
  start-page: 138
  year: 2014
  ident: e_1_3_4_51_2
  article-title: Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2014.03.009
SSID ssj0009580
Score 2.5647886
Snippet Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the...
SignificanceThe mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are...
The mechanisms of norovirus capsid interactions with host receptors and the mechanisms by which soluble cofactors augment norovirus infection are not...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E9201
SubjectTerms Acids
Animals
Antibodies
Avidity
Bile acids
Bile Acids and Salts - chemistry
Bile Acids and Salts - metabolism
Binding sites
Biological Sciences
Biophysics and Computational Biology
Caliciviridae Infections
Cell Line
Cell surface
Cofactors
Cryoelectron Microscopy
Crystal structure
Crystallography
Dimers
Docking
Epitopes
Gastroenteritis
Infectivity
Mice
Microbiology
Mimicry
Modulators
Molecular Docking Simulation
Mutation
Norovirus - chemistry
Norovirus - genetics
Norovirus - metabolism
Phosphocholine
Physical Sciences
PNAS Plus
Protein Domains
Protein Structure, Quaternary
Protein Structure, Secondary
Receptors, Immunologic - chemistry
Receptors, Immunologic - genetics
Receptors, Immunologic - metabolism
Stoichiometry
Virion - chemistry
Virion - genetics
Virion - metabolism
Virions
Viruses
VP1 protein
Title Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor
URI https://www.jstor.org/stable/26531792
https://www.pnas.org/doi/10.1073/pnas.1805797115
https://www.ncbi.nlm.nih.gov/pubmed/30194229
https://www.proquest.com/docview/2116626708
https://www.proquest.com/docview/2101269221
https://pubmed.ncbi.nlm.nih.gov/PMC6166816
https://digitalcommons.wustl.edu/open_access_pubs/7145
UnpaywallVersion submittedVersion
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB612wNcCgUKgVIZqYf2kG3sJHZ8rAqlQqJCglWXU2THTlmRelfNrir49YzzouWhqmdP5Ngez3xjj78B2KPodYRIWSiLKPak2lEoWcbDEqF5HGlLqfFvhz-e8dNJ8mGaTteA929hzOzCF8vA2b70s36NAX_VVvvC6D5XTRHBHP-0PhQ0Sddhg6eIwUewMTn7dPS1zedAs5u01WzRGYY8kVHP6SPiw4VT9Zhm_g2moL4Y7g131GYkeppTFPoX5Pw7c_LByi3Uj2tVVTfc0skjOO8H1GajfB-vlnpc_PyD6_H-I34Mmx1SJUetam3BmnVPYKuzBTXZ7wirD57C-eeGhNYTeBD0irOaIBIml_4c3xI394cWV6uaWHfRZdqQeUk0miOiipmpiXKGIA4lx2_jKKpKgkbYLnCKnsHk5N2X49OwK9gQFgjElqGmxkTK6lJTz9qTpDK2qixVLONSlEoLJWgpFTOFUcyWkZXGap3IosA4Tsks3oaRmzv7AghGmb5uJ8bKOk4KXORMI1QzSupUWWZEAON-3fKiYzP3RTWqvLlVF3Hu1zD_vdAB7A8fLFoij_-LbjeKMMgxjpZKSBbAXiN65_c7vebknUWocwy0OQaPIsoCeDM04172FzTK2fnKyyBc4JIxGsDzVtGGvtAQy4QxGYC4pYKDgOcJv93iZt8avnCOPWeUB3AwKOtdQ3h5D9lX8BBRZJNEw9IdGKHK2deI1JZ6F9bfT-lutzl_Aec9Peo
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7QEuQIFCoCAj9dAeso2dxI6PVaGqkKiQYNVyiuzYblek3lWzq6r8esZJNrR8qOrZEzm2xzNv7PEbgG2KXkeInMWyStJAqp3EkhU8dgjN00RbSk14O_z5mB9Nsk-n-eka8NVbGDM9C8UycLYvwqxfYcBfd9W-MLovVVtEsMQ_bfYEzfIHsM5zxOAjWJ8cf9n_3uVzoNnNumq26Axjnslkxekj0r25V82YFuENpqChGO4Nd9RlJAaaUxT6F-T8O3Py4dLP1fWVqusbbunwCZysBtRlo_wYLxd6XP38g-vx_iN-Co97pEr2O9XagDXrn8FGbwsastMTVu8-h5OvLQltIPAg6BWnDUEkTC7COb4lfhYOLS6XDbH-rM-0ITNHNJojoqqpaYjyhiAOJQcf0iSpHUEjbOc4RS9gcvjx28FR3BdsiCsEYotYU2MSZbXTNLD2ZLlMrXJOpTJ1wiktlKBOKmYqo5h1iZXGap3JqsI4Tski3YSRn3n7CghGmaFuJ8bKOs0qXORCI1QzSupcWWZEBOPVupVVz2YeimrUZXurLtIyrGH5e6Ej2Bk-mHdEHv8X3WwVYZBjHC2VkCyC7Vb0zu-3VppT9hahKTHQ5hg8iqSI4P3QjHs5XNAob2fLIINwgUvGaAQvO0Ub-kJDLDPGZATilgoOAoEn_HaLn563fOEcey4oj2B3UNa7hvD6HrJv4BGiyDaJhuVbMEKVs28RqS30u35b_gJ5ejz5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+murine+norovirus+engagement+of+bile+acids+and+the+CD300lf+receptor&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nelson%2C+Christopher+A&rft.au=Wilen%2C+Craig+B&rft.au=Dai%2C+Ya-Nan&rft.au=Orchard%2C+Robert+C&rft.date=2018-09-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=39&rft.spage=E9201&rft_id=info:doi/10.1073%2Fpnas.1805797115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon