Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle
Human Performance Laboratory, Ball State University, Muncie, Indiana Submitted 26 June 2007 ; accepted in final form 28 August 2007 The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, cal...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 103; no. 5; pp. 1744 - 1751 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Am Physiological Soc
01.11.2007
American Physiological Society |
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 |
DOI | 10.1152/japplphysiol.00679.2007 |
Cover
Abstract | Human Performance Laboratory, Ball State University, Muncie, Indiana
Submitted 26 June 2007
; accepted in final form 28 August 2007
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF- ) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF- mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF- , followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.
muscle ring finger-1; atrogin-1; myostatin; interleukin-6; interleukin-8
Address for reprint requests and other correspondence: S. Trappe, Human Performance Laboratory, Ball State Univ., Muncie, IN 47306 (e-mail: strappe{at}bsu.edu ) |
---|---|
AbstractList | The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF- alpha ) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 plus or minus 4 yr, 74 plus or minus 14 kg, 1.71 plus or minus 0.11 m) and RUN (25 plus or minus 4 yr, 72 plus or minus 5 kg, 1.81 plus or minus 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF- alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF- alpha , followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-α) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-α mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF-α, followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-α) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-α mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-α, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. [PUBLICATION ABSTRACT] Human Performance Laboratory, Ball State University, Muncie, Indiana Submitted 26 June 2007 ; accepted in final form 28 August 2007 The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF- ) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF- mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF- , followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. muscle ring finger-1; atrogin-1; myostatin; interleukin-6; interleukin-8 Address for reprint requests and other correspondence: S. Trappe, Human Performance Laboratory, Ball State Univ., Muncie, IN 47306 (e-mail: strappe{at}bsu.edu ) The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. |
Author | Louis, Emily Raue, Ulrika Yang, Yifan Trappe, Scott Jemiolo, Bozena |
Author_xml | – sequence: 1 fullname: Louis, Emily – sequence: 2 fullname: Raue, Ulrika – sequence: 3 fullname: Yang, Yifan – sequence: 4 fullname: Jemiolo, Bozena – sequence: 5 fullname: Trappe, Scott |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19214070$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17823296$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFvFCEUhSemxm6rf0GJiSYm3RUYhhkefDCNVZMmvqzPhGHu7LJlYApM2v33Mu5qTRPTJwJ858I5OWfFifMOiuINwStCKvpxp8bRjtt9NN6uMOa1WFGM62fFIt_SJeGYnBSLpq7wsq6a-rQ4i3GHMWGsIi-KU1I3tKSCL4rbtRkAaT-FCMj3aAw-gbf7ZPQF0vvkb4yDC6Rch4a9j0kl49AGHCC4HwPE_AGHVJ8gIKWnNB9D0CYPy9x2GpRD8QYsJGXRMEVt4WXxvFc2wqvjel78vPqyvvy2vP7x9fvl5-ulrliVlrxmqtddB5rihglegaBU064UrG061rWiFDUvs5-2I1pgkjdNy3lLgTUtZuV58f4wN1u6nSAmOZiowVrlwE9R8oYxxpv6SZAIkZ_mVQbfPgJ3OTeXTUhKKRGEYp6h10doagfo5BjMoMJe_ok8A--OgIpa2T4ol_N64AQlDNc4c58OnA4-xgC91GaO37sUlLGSYDlXQf5bBfm7CnKuQtbXj_R_n3hS-eGg3JrN9s4EkEfIb_azKA8oZZUdsTnl6v_s1WTtGu7TLHrQyLHry19kdd91 |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1113_expphysiol_2011_063727 crossref_primary_10_1007_s00421_013_2626_7 crossref_primary_10_1152_japplphysiol_00909_2013 crossref_primary_10_1155_2017_7083049 crossref_primary_10_1007_s10974_020_09589_0 crossref_primary_10_1249_MSS_0b013e3181b18fb8 crossref_primary_10_1093_gerona_glr091 crossref_primary_10_1248_jhs_57_367 crossref_primary_10_1007_s00394_013_0530_x crossref_primary_10_1113_JP275072 crossref_primary_10_3390_nu14214485 crossref_primary_10_1186_s40798_015_0032_x crossref_primary_10_1249_MSS_0b013e3181a518f0 crossref_primary_10_3945_ajcn_2008_25970 crossref_primary_10_1016_j_jsams_2018_07_019 crossref_primary_10_1152_japplphysiol_00343_2021 crossref_primary_10_1007_s10103_018_2439_3 crossref_primary_10_14814_phy2_13723 crossref_primary_10_2337_db08_0943 crossref_primary_10_1113_EP085704 crossref_primary_10_1152_japplphysiol_00174_2018 crossref_primary_10_23736_S0022_4707_19_09740_8 crossref_primary_10_1097_JES_0b013e3181877e13 crossref_primary_10_26685_urncst_226 crossref_primary_10_1093_gerona_glr088 crossref_primary_10_1152_ajpcell_00457_2023 crossref_primary_10_1177_0260106012467243 crossref_primary_10_12965_jer_1835166_583 crossref_primary_10_33549_physiolres_932312 crossref_primary_10_1007_s00424_014_1587_y crossref_primary_10_1111_j_1440_1681_2009_05265_x crossref_primary_10_1152_japplphysiol_01007_2009 crossref_primary_10_3389_fphys_2018_01376 crossref_primary_10_1016_j_nbd_2025_106834 crossref_primary_10_3390_nu12082421 crossref_primary_10_1111_raq_12717 crossref_primary_10_1016_j_metabol_2010_01_010 crossref_primary_10_1159_000539489 crossref_primary_10_1007_s00424_018_2217_x crossref_primary_10_1177_1534735420949678 crossref_primary_10_3390_ijerph19148806 crossref_primary_10_1101_cshperspect_a029777 crossref_primary_10_1152_japplphysiol_01267_2011 crossref_primary_10_1007_s00421_017_3721_y crossref_primary_10_1002_mus_23317 crossref_primary_10_3390_life14091198 crossref_primary_10_1007_s11033_017_4126_z crossref_primary_10_1016_j_cyto_2018_03_012 crossref_primary_10_1186_s13102_023_00627_1 crossref_primary_10_1016_j_meatsci_2017_11_020 crossref_primary_10_1134_S0006350910060205 crossref_primary_10_1016_j_jevs_2018_10_005 crossref_primary_10_1111_apha_12948 crossref_primary_10_1152_japplphysiol_00102_2024 crossref_primary_10_1152_japplphysiol_00444_2023 crossref_primary_10_1186_1550_2783_11_38 crossref_primary_10_1111_sms_14241 crossref_primary_10_1152_ajpendo_00378_2021 crossref_primary_10_1096_fj_14_263699 crossref_primary_10_1152_japplphysiol_00959_2011 crossref_primary_10_1016_j_cyto_2023_156484 crossref_primary_10_1152_japplphysiol_00054_2014 crossref_primary_10_3389_fphys_2024_1268380 crossref_primary_10_1186_2044_5040_1_11 crossref_primary_10_1139_apnm_2013_0433 crossref_primary_10_1007_s00421_009_1145_z crossref_primary_10_1016_j_biosystems_2021_104355 crossref_primary_10_1016_j_exger_2017_03_018 crossref_primary_10_1186_s11556_022_00294_0 crossref_primary_10_1111_apha_12042 crossref_primary_10_1152_japplphysiol_00615_2020 crossref_primary_10_1007_s00394_012_0349_x crossref_primary_10_1016_j_cmet_2023_12_025 crossref_primary_10_1002_stem_1927 crossref_primary_10_3389_fphys_2020_00018 crossref_primary_10_1007_s00421_021_04758_6 crossref_primary_10_1038_s41585_021_00476_y crossref_primary_10_1152_japplphysiol_00442_2023 crossref_primary_10_3389_fimmu_2023_1288537 crossref_primary_10_1038_s41598_021_85733_1 crossref_primary_10_1152_japplphysiol_00061_2013 crossref_primary_10_1152_japplphysiol_00136_2013 crossref_primary_10_3389_fphys_2019_00614 crossref_primary_10_1113_JP272270 crossref_primary_10_1152_ajpregu_00147_2019 crossref_primary_10_1016_j_exger_2011_07_010 crossref_primary_10_1007_s00204_011_0740_z crossref_primary_10_1152_japplphysiol_00404_2009 crossref_primary_10_1111_apha_12174 crossref_primary_10_1016_j_cmet_2012_12_012 crossref_primary_10_1152_japplphysiol_00395_2012 crossref_primary_10_1007_s00421_024_05644_7 crossref_primary_10_1113_EP087436 crossref_primary_10_1152_ajpregu_00336_2011 crossref_primary_10_3390_diabetology3030032 crossref_primary_10_1113_JP271188 crossref_primary_10_1016_j_semcdb_2021_10_009 crossref_primary_10_1152_ajpendo_00590_2013 crossref_primary_10_1152_physiolgenomics_00066_2024 crossref_primary_10_3390_cells10030533 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1371_journal_pone_0108547 crossref_primary_10_1152_ajpregu_00348_2010 crossref_primary_10_1080_02640414_2021_1882725 crossref_primary_10_1007_s00726_009_0432_7 crossref_primary_10_1007_s00421_011_1942_z crossref_primary_10_1096_fj_202301619R crossref_primary_10_3390_ijerph20064708 crossref_primary_10_1152_japplphysiol_00397_2018 crossref_primary_10_1152_ajpregu_90906_2008 crossref_primary_10_3389_fphys_2024_1338507 crossref_primary_10_1007_s13577_024_01036_3 crossref_primary_10_1016_j_lfs_2016_11_016 crossref_primary_10_7717_peerj_7743 crossref_primary_10_1007_s00421_010_1545_0 crossref_primary_10_1152_ajpregu_00077_2010 crossref_primary_10_1093_gerona_glq109 crossref_primary_10_3389_fphys_2018_01735 crossref_primary_10_1016_j_mad_2025_112039 crossref_primary_10_1016_j_arr_2015_08_007 crossref_primary_10_23949_kjpe_2023_11_62_6_19 crossref_primary_10_1152_japplphysiol_91221_2008 crossref_primary_10_1186_1471_2164_10_638 crossref_primary_10_1152_japplphysiol_90660_2008 crossref_primary_10_1142_S0218957710002569 crossref_primary_10_14814_phy2_13518 crossref_primary_10_1016_j_jff_2019_04_032 crossref_primary_10_1152_japplphysiol_00495_2019 crossref_primary_10_1249_MSS_0000000000002579 crossref_primary_10_1016_j_bone_2015_02_008 crossref_primary_10_1155_2013_984523 crossref_primary_10_1519_JSC_0b013e318212db21 crossref_primary_10_1249_MSS_0b013e3181e0b9a8 crossref_primary_10_3389_fphys_2019_00527 crossref_primary_10_3389_fphys_2017_00541 crossref_primary_10_1515_hmbci_2018_0008 crossref_primary_10_1016_j_cmet_2015_05_011 crossref_primary_10_1134_S0362119722030033 crossref_primary_10_1179_2045772314Y_0000000236 crossref_primary_10_1186_s13395_016_0086_6 crossref_primary_10_1371_journal_pone_0068743 crossref_primary_10_1113_jphysiol_2013_255695 crossref_primary_10_1249_MSS_0b013e318160ff84 crossref_primary_10_1139_apnm_2013_0076 crossref_primary_10_1111_apha_12631 crossref_primary_10_1519_JSC_0000000000000421 crossref_primary_10_1152_japplphysiol_00805_2010 crossref_primary_10_1152_ajpregu_00351_2009 crossref_primary_10_1016_j_physbeh_2011_09_024 crossref_primary_10_1152_japplphysiol_00381_2020 crossref_primary_10_3390_genes16020153 crossref_primary_10_1113_JP278454 crossref_primary_10_1242_jeb_057620 crossref_primary_10_1519_JSC_0b013e3181c8664f crossref_primary_10_1371_journal_pone_0149082 crossref_primary_10_3389_fspor_2021_660291 crossref_primary_10_1007_s12020_013_9969_z crossref_primary_10_1038_s41598_017_02294_y crossref_primary_10_1101_cshperspect_a029793 crossref_primary_10_1152_japplphysiol_90842_2008 crossref_primary_10_1152_physiolgenomics_00068_2015 crossref_primary_10_1038_s41598_017_02754_5 crossref_primary_10_1152_japplphysiol_00711_2020 crossref_primary_10_1113_JP282954 crossref_primary_10_1016_j_cca_2014_03_021 crossref_primary_10_1093_gerona_glq005 crossref_primary_10_1002_mus_21875 crossref_primary_10_1152_japplphysiol_00170_2012 crossref_primary_10_1016_j_bbadis_2024_167094 crossref_primary_10_1002_jcp_28923 crossref_primary_10_1007_s00421_009_1033_6 crossref_primary_10_1016_j_domaniend_2009_01_002 crossref_primary_10_1177_1099800408317345 crossref_primary_10_1016_j_cell_2020_06_004 crossref_primary_10_1152_japplphysiol_00426_2013 crossref_primary_10_1152_japplphysiol_00491_2023 crossref_primary_10_1016_j_plefa_2013_02_004 crossref_primary_10_1007_s12192_018_0914_1 crossref_primary_10_1152_ajpendo_00179_2009 crossref_primary_10_7717_peerj_10500 crossref_primary_10_1007_s00421_017_3746_2 crossref_primary_10_1134_S1607672924600817 crossref_primary_10_1111_jcmm_70136 crossref_primary_10_1152_ajpendo_00204_2014 crossref_primary_10_3810_psm_2013_11_2040 crossref_primary_10_1007_s00018_013_1513_z crossref_primary_10_1016_j_bbadis_2008_10_011 crossref_primary_10_1007_s12018_014_9156_7 crossref_primary_10_1016_j_mad_2016_05_007 crossref_primary_10_3389_fphys_2016_00144 crossref_primary_10_1152_ajpregu_00356_2016 crossref_primary_10_1177_1099800408324431 crossref_primary_10_1007_s10529_014_1464_y crossref_primary_10_1152_japplphysiol_00590_2009 crossref_primary_10_1152_japplphysiol_00641_2019 crossref_primary_10_1016_j_fct_2013_01_026 crossref_primary_10_1007_s40618_015_0373_9 crossref_primary_10_1113_JP281244 crossref_primary_10_3109_10253891003743432 crossref_primary_10_1038_s41366_024_01630_3 crossref_primary_10_1113_JP278073 crossref_primary_10_1007_s40279_017_0845_5 crossref_primary_10_1152_japplphysiol_00014_2018 crossref_primary_10_1155_2018_8260742 crossref_primary_10_3390_analytics2020024 crossref_primary_10_1096_fj_202401420RR crossref_primary_10_1249_MSS_0b013e3182178bb4 crossref_primary_10_1371_journal_pone_0088384 crossref_primary_10_1093_gerona_gls209 crossref_primary_10_1111_j_1600_0838_2011_01305_x crossref_primary_10_1371_journal_pone_0037236 crossref_primary_10_1016_j_cbpa_2024_111680 crossref_primary_10_15171_jcvtr_2016_33 crossref_primary_10_1186_1471_2164_11_659 crossref_primary_10_3390_biom13121777 crossref_primary_10_1111_j_1582_4934_2009_00864_x crossref_primary_10_1152_ajpregu_00245_2012 crossref_primary_10_3389_fnins_2019_00165 crossref_primary_10_3390_molecules26020407 crossref_primary_10_1210_er_2010_0018 crossref_primary_10_1016_j_ejphar_2010_11_013 crossref_primary_10_1186_1471_2466_14_106 crossref_primary_10_1249_MSS_0b013e3181da8a29 crossref_primary_10_1519_JSC_0000000000004550 crossref_primary_10_1371_journal_pone_0258635 crossref_primary_10_1016_j_devcel_2020_06_030 crossref_primary_10_1111_apha_13766 crossref_primary_10_1186_s13395_018_0151_4 crossref_primary_10_1152_japplphysiol_00952_2011 crossref_primary_10_1152_japplphysiol_01013_2012 crossref_primary_10_1002_mus_23860 crossref_primary_10_1152_ajpendo_00353_2011 crossref_primary_10_3389_fphys_2023_1273342 crossref_primary_10_1016_j_arr_2022_101780 crossref_primary_10_1096_fj_202000075R crossref_primary_10_3390_nu15153485 crossref_primary_10_3390_nu8120775 crossref_primary_10_1017_S0954422423000197 crossref_primary_10_1002_cbf_4106 crossref_primary_10_1007_s11154_022_09758_1 crossref_primary_10_1089_rej_2014_1623 crossref_primary_10_1519_JSC_0000000000001171 crossref_primary_10_1152_physiol_00019_2013 crossref_primary_10_3389_fphys_2019_00691 crossref_primary_10_1111_j_1469_8986_2010_01165_x crossref_primary_10_1249_MSS_0b013e3182364162 crossref_primary_10_1152_japplphysiol_00045_2010 crossref_primary_10_14814_phy2_12364 crossref_primary_10_1016_j_cbpa_2023_111487 crossref_primary_10_5352_JLS_2011_21_9_1259 crossref_primary_10_14814_phy2_13457 crossref_primary_10_2215_CJN_02650409 crossref_primary_10_3390_cancers12113466 crossref_primary_10_3389_fphys_2024_1473241 crossref_primary_10_1016_j_fct_2013_04_029 crossref_primary_10_1249_MSS_0b013e318256fbe8 crossref_primary_10_1111_j_1748_1716_2010_02172_x crossref_primary_10_1007_s11357_020_00215_y crossref_primary_10_5812_gct_119242 crossref_primary_10_7554_eLife_82016 crossref_primary_10_1371_journal_pone_0140673 crossref_primary_10_1007_s00424_010_0919_9 crossref_primary_10_1134_S0362119717030070 crossref_primary_10_1007_s00223_020_00782_4 crossref_primary_10_1007_s11357_021_00322_4 crossref_primary_10_1152_japplphysiol_00278_2009 crossref_primary_10_1166_jbt_2021_2667 crossref_primary_10_3390_biology11040537 crossref_primary_10_1089_jir_2009_0079 crossref_primary_10_1111_j_1601_183X_2010_00677_x crossref_primary_10_1152_japplphysiol_01091_2007 crossref_primary_10_1186_s13054_022_04101_1 crossref_primary_10_1002_mus_24616 crossref_primary_10_1016_j_csm_2011_09_009 crossref_primary_10_3389_fphys_2021_709039 crossref_primary_10_1016_j_bbi_2012_07_010 crossref_primary_10_1016_j_mce_2013_05_008 crossref_primary_10_1249_MSS_0b013e318223b037 crossref_primary_10_1155_2013_320724 crossref_primary_10_1249_MSS_0000000000002628 crossref_primary_10_1139_H09_067 crossref_primary_10_1152_physrev_00039_2022 crossref_primary_10_1152_ajpregu_00266_2023 crossref_primary_10_1249_MSS_0000000000001899 crossref_primary_10_1152_japplphysiol_90668_2008 crossref_primary_10_1152_ajpendo_00157_2020 crossref_primary_10_1152_physiolgenomics_00144_2022 crossref_primary_10_1016_j_diabet_2019_02_006 crossref_primary_10_1016_j_bbi_2014_01_006 crossref_primary_10_1111_j_2042_3306_2010_00206_x crossref_primary_10_1152_japplphysiol_00435_2011 crossref_primary_10_14814_phy2_13364 crossref_primary_10_1186_s12263_017_0556_4 crossref_primary_10_1152_japplphysiol_00019_2013 crossref_primary_10_3389_fphys_2018_01336 crossref_primary_10_1152_physiolgenomics_00010_2024 crossref_primary_10_1590_1678_4685_GMB_2015_0075 crossref_primary_10_1016_j_bbih_2019_100011 crossref_primary_10_1007_s00360_015_0887_7 crossref_primary_10_1152_japplphysiol_00504_2010 crossref_primary_10_1093_gerona_gly109 crossref_primary_10_52547_sjimu_30_4_86 crossref_primary_10_1002_iub_1291 crossref_primary_10_1519_JSC_0b013e318251083f crossref_primary_10_1080_07435800_2023_2253452 crossref_primary_10_1111_j_1600_0838_2010_01170_x crossref_primary_10_1519_JSC_0b013e3181bab493 crossref_primary_10_1016_j_cyto_2021_155553 crossref_primary_10_1038_s44319_024_00299_z crossref_primary_10_1080_07315724_2016_1183532 crossref_primary_10_1111_j_1475_097X_2012_01126_x crossref_primary_10_1152_japplphysiol_00655_2020 crossref_primary_10_1152_ajpendo_00339_2024 crossref_primary_10_1139_H08_126 crossref_primary_10_1016_j_freeradbiomed_2015_12_031 crossref_primary_10_3389_fphys_2018_00834 crossref_primary_10_1519_JSC_0b013e3181fc5a68 crossref_primary_10_1016_j_cmet_2017_02_009 crossref_primary_10_1152_japplphysiol_00759_2014 crossref_primary_10_1152_physiolgenomics_00027_2011 crossref_primary_10_1371_journal_pone_0180429 crossref_primary_10_1371_journal_pone_0195203 crossref_primary_10_3389_fphys_2020_00737 crossref_primary_10_1113_EP091712 crossref_primary_10_4081_uij_2022_290 crossref_primary_10_1007_s00421_011_1923_2 crossref_primary_10_1007_s00424_008_0574_6 crossref_primary_10_1002_mus_23667 crossref_primary_10_14814_phy2_12973 crossref_primary_10_1111_sms_13865 crossref_primary_10_3389_fphys_2022_934714 crossref_primary_10_1007_s00421_014_2997_4 crossref_primary_10_1007_s00424_018_2210_4 crossref_primary_10_1152_japplphysiol_00115_2020 crossref_primary_10_14348_molcells_2015_2138 crossref_primary_10_1007_s10974_021_09613_x crossref_primary_10_1155_2013_935671 crossref_primary_10_1007_s00421_014_2936_4 crossref_primary_10_1002_jcsm_12428 crossref_primary_10_1152_ajpendo_00582_2007 crossref_primary_10_3389_fphys_2017_00035 crossref_primary_10_3389_fphys_2018_00028 crossref_primary_10_3390_nu16172857 crossref_primary_10_1152_japplphysiol_00110_2009 crossref_primary_10_1152_japplphysiol_00037_2015 crossref_primary_10_1152_japplphysiol_00346_2011 crossref_primary_10_3839_jabc_2011_057 crossref_primary_10_1002_mus_21110 crossref_primary_10_1080_02640414_2019_1617503 |
Cites_doi | 10.1016/j.biocel.2005.04.018 10.1007/BF02388334 10.1152/ajpregu.00454.2004 10.1152/japplphysiol.01185.2004 10.3109/00365516209075148 10.1152/ajpregu.00545.2004 10.1152/ajpregu.00030.2004 10.1113/jphysiol.2002.023796 10.1152/jappl.1988.64.3.1038 10.1152/japplphysiol.01595.2005 10.1006/meth.2001.1262 10.1152/japplphysiol.00080.2007 10.1113/jphysiol.2004.077610 10.1152/japplphysiol.00438.2006 10.1152/japplphysiol.01130.2002 10.1096/fj.03-1259fje 10.1113/expphysiol.2006.033571 10.1073/pnas.95.21.12100 10.1152/ajpendo.1997.273.1.E99 10.1016/j.ab.2006.01.051 10.3181/00379727-205-43695 10.1152/ajpendo.00464.2004 10.1096/fj.01-0876rev 10.1111/j.1365-201X.2005.01406.x 10.1126/science.1111443 10.1007/s00424-005-1497-0 10.1113/jphysiol.2002.018689 10.1152/ajpheart.1977.232.6.H705 10.1016/S1065-6995(03)00172-0 10.1046/j.1365-201x.2001.00824.x 10.1016/j.febslet.2004.05.066 10.1152/japplphysiol.01616.2005 10.1249/01.MSS.0000069756.17841.9E 10.1016/S1097-2765(04)00211-4 10.1210/jc.2002-021687 10.1113/jphysiol.2003.044966 10.1152/japplphysiol.01064.2003 10.1111/j.1469-7793.2001.00633.x 10.1152/ajpendo.1991.260.5.E727 10.1016/S0092-8674(04)00400-3 10.1152/ajpendo.00299.2005 10.1074/jbc.M208231200 10.1189/jlb.0505247 10.1113/expphysiol.2006.034769 10.1096/fj.03-1228fje 10.1152/japplphysiol.00895.2004 10.1152/jappl.2000.88.2.627 10.1074/jbc.M004356200 10.1152/physrev.00027.2001 10.1152/ajpendo.00206.2004 10.1016/j.bbrc.2004.05.223 10.1152/ajpendo.00255.2002 10.1016/0003-2697(83)90551-1 10.1007/s00421-005-0022-7 10.1152/ajpendo.00397.2004 10.1096/fj.04-2364com 10.1038/387083a0 10.1152/japplphysiol.00491.2004 10.1152/japplphysiol.00164.2004 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright American Physiological Society Nov 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright American Physiological Society Nov 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1152/japplphysiol.00679.2007 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts CrossRef Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1751 |
ExternalDocumentID | 1380100051 17823296 19214070 10_1152_japplphysiol_00679_2007 jap_103_5_1744 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG18409 |
GroupedDBID | - 02 2WC 39C 4.4 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 H~9 KQ8 L7B MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT WH7 WOQ X X7M YCJ --- -~X .55 .GJ 18M 1CY 29J 3O- 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ACKIV ACYGS ADFNX ADXHL AETEA AFOSN AGNAY AI. AIDAL AJUXI BKKCC BTFSW C2- CITATION EMOBN ITBOX J5H MVM P6G RPRKH TR2 VH1 W8F XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c545t-674afcddec2084965e922c2d394b8d4db939763451bd1c9017638b66b2e48b043 |
ISSN | 8750-7587 |
IngestDate | Fri Sep 05 04:21:10 EDT 2025 Fri Sep 05 03:06:16 EDT 2025 Mon Jun 30 08:32:40 EDT 2025 Mon Jul 21 06:05:19 EDT 2025 Mon Jul 21 09:13:21 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Tue Jul 01 01:13:22 EDT 2025 Mon May 06 11:53:24 EDT 2019 Tue Jan 05 17:53:18 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Physical exercise Human atrogin-1 Acute Cytokine Finger Gene expression Striated muscle interleukin-8 interleukin-6 myostatin Interleukin 6 muscle ring finger-1 Vertebrata Mammalia Interleukin 8 |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c545t-674afcddec2084965e922c2d394b8d4db939763451bd1c9017638b66b2e48b043 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 17823296 |
PQID | 222191206 |
PQPubID | 40905 |
PageCount | 8 |
ParticipantIDs | highwire_physiology_jap_103_5_1744 pubmed_primary_17823296 proquest_miscellaneous_19992265 proquest_journals_222191206 pascalfrancis_primary_19214070 crossref_citationtrail_10_1152_japplphysiol_00679_2007 proquest_miscellaneous_68444687 crossref_primary_10_1152_japplphysiol_00679_2007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-01 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2007 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | R61 R60 R63 R62 R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
References_xml | – ident: R18 doi: 10.1016/j.biocel.2005.04.018 – ident: R35 doi: 10.1007/BF02388334 – ident: R54 doi: 10.1152/ajpregu.00454.2004 – ident: R62 doi: 10.1152/japplphysiol.01185.2004 – ident: R2 doi: 10.3109/00365516209075148 – ident: R59 – ident: R44 doi: 10.1152/ajpregu.00545.2004 – ident: R8 doi: 10.1152/ajpregu.00030.2004 – ident: R42 – ident: R57 doi: 10.1113/jphysiol.2002.023796 – ident: R14 doi: 10.1152/jappl.1988.64.3.1038 – ident: R56 doi: 10.1152/japplphysiol.01595.2005 – ident: R29 doi: 10.1006/meth.2001.1262 – ident: R39 doi: 10.1152/japplphysiol.00080.2007 – ident: R1 doi: 10.1113/jphysiol.2004.077610 – ident: R63 doi: 10.1152/japplphysiol.00438.2006 – ident: R37 doi: 10.1152/japplphysiol.01130.2002 – ident: R23 doi: 10.1096/fj.03-1259fje – ident: R31 doi: 10.1113/expphysiol.2006.033571 – ident: R24 doi: 10.1073/pnas.95.21.12100 – ident: R41 doi: 10.1152/ajpendo.1997.273.1.E99 – ident: R38 doi: 10.1016/j.ab.2006.01.051 – ident: R20 doi: 10.3181/00379727-205-43695 – ident: R27 doi: 10.1152/ajpendo.00464.2004 – ident: R11 doi: 10.1096/fj.01-0876rev – ident: R32 doi: 10.1111/j.1365-201X.2005.01406.x – ident: R34 doi: 10.1126/science.1111443 – ident: R48 doi: 10.1007/s00424-005-1497-0 – ident: R10 doi: 10.1113/jphysiol.2002.018689 – ident: R4 doi: 10.1152/ajpheart.1977.232.6.H705 – ident: R16 doi: 10.1016/S1065-6995(03)00172-0 – ident: R45 doi: 10.1046/j.1365-201x.2001.00824.x – ident: R12 doi: 10.1016/j.febslet.2004.05.066 – ident: R43 doi: 10.1152/japplphysiol.01616.2005 – ident: R49 doi: 10.1249/01.MSS.0000069756.17841.9E – ident: R52 doi: 10.1016/S1097-2765(04)00211-4 – ident: R6 – ident: R58 doi: 10.1210/jc.2002-021687 – ident: R55 doi: 10.1113/jphysiol.2003.044966 – ident: R36 doi: 10.1152/japplphysiol.01064.2003 – ident: R50 doi: 10.1111/j.1469-7793.2001.00633.x – ident: R21 doi: 10.1152/ajpendo.1991.260.5.E727 – ident: R47 doi: 10.1016/S0092-8674(04)00400-3 – ident: R9 doi: 10.1152/ajpendo.00299.2005 – ident: R7 – ident: R22 doi: 10.1074/jbc.M208231200 – ident: R5 doi: 10.1189/jlb.0505247 – ident: R15 doi: 10.1113/expphysiol.2006.034769 – ident: R26 doi: 10.1096/fj.03-1228fje – ident: R3 doi: 10.1152/japplphysiol.00895.2004 – ident: R60 doi: 10.1152/jappl.2000.88.2.627 – ident: R53 doi: 10.1074/jbc.M004356200 – ident: R19 doi: 10.1152/physrev.00027.2001 – ident: R13 doi: 10.1152/ajpendo.00206.2004 – ident: R25 doi: 10.1016/j.bbrc.2004.05.223 – ident: R51 doi: 10.1152/ajpendo.00255.2002 – ident: R17 doi: 10.1016/0003-2697(83)90551-1 – ident: R30 doi: 10.1007/s00421-005-0022-7 – ident: R61 doi: 10.1152/ajpendo.00397.2004 – ident: R28 doi: 10.1096/fj.04-2364com – ident: R33 doi: 10.1038/387083a0 – ident: R46 doi: 10.1152/japplphysiol.00491.2004 – ident: R40 doi: 10.1152/japplphysiol.00164.2004 |
SSID | ssj0014451 |
Score | 2.433417 |
Snippet | Human Performance Laboratory, Ball State University, Muncie, Indiana
Submitted 26 June 2007
; accepted in final form 28 August 2007
The aim of this study was... The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A),... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1744 |
SubjectTerms | Adult Biological and medical sciences Calpain - metabolism Cytokines Cytokines - genetics Cytokines - metabolism Exercise Exercise - physiology Female Forkhead Box Protein O3 Forkhead Transcription Factors - metabolism Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Profiling Gene Expression Regulation Gene Expression Regulation, Enzymologic Humans Interleukins - metabolism Male Muscle Proteins - metabolism Muscle, Skeletal - enzymology Muscle, Skeletal - metabolism Musculoskeletal system Myostatin Peptide Hydrolases - genetics Peptide Hydrolases - metabolism Proteomics Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - metabolism Running SKP Cullin F-Box Protein Ligases - metabolism Studies Time Factors Transcriptional Activation Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism Tripartite Motif Proteins Tumor Necrosis Factor-alpha - metabolism Ubiquitin-Protein Ligases - metabolism |
Title | Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle |
URI | http://jap.physiology.org/cgi/content/abstract/103/5/1744 https://www.ncbi.nlm.nih.gov/pubmed/17823296 https://www.proquest.com/docview/222191206 https://www.proquest.com/docview/19992265 https://www.proquest.com/docview/68444687 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXBBuwMBgWQpyWkTjO13FCncboBodW2k5WnDpS1TYZa3Lo_hD-Xt6z8zXRasAlahM7dvx-9vvw83uEfAyBJ3iJI23gVlObKxbaSew5dqSCJAGGrZSOU3BxGZxN-PmVfzUY_Op5LVWlPE7vNp4r-R-qwj2gK56S_QfKti-FG_Ab6AtXoDBc_47GsyU6m6MfhvZcxpgLxWIN5XDk0nVZzGfGYonm8eW6wONDsxzTJiuM7W98YJtE4UmKPgNNDiY0hJgEfqs5sCY8M7msVk0H_hRnk1qc1aYSE9gJY0DFkd8zNoyKysQ0GKJZpdtjqnQnJ4vb2bxlE9e1Jft6lnUIPjfZbDUqiztlUn-3VouwPr7XLm6gJjk26CqG2ap68QXF2A3qYs3q7Hg9GPq9tRZ0Kd7j2yAHuZt5gs90LgIYhnoI0Jkv1KeUwo4NNlv_l9_F6WQ0EuPh1fgRecxCkMlQ2P76rd2dwqBuxm5svqH2G4SGPm9p5r7U00SiRkfcZAVzMTNJVLZrOVraGT8nz2q60hODuRdkoPJdsneSJ2WxXNNP9EdL5V3y5KL2z9gjPxGR1CCSFhntIfKINng8ooBG2qKRIhpph0aq0Ug1GmmDRgrlNBppg0Zq0PiSTE6H4y9ndp3Uw05BWC_tIORJlgJTTZkTYbICFTOWsqkXcxlN-VTGKCF7MMJy6qYgrcKfSAaBZIpH0uHeK7KTF7naJzQFadNLpMycDFYaeMpSGXhZ7KPVQ0lukaAZdJHWEe8x8cpCaM3XZ6JPLaGphWlZQ4s4bcUbE_Tl4SrHDVVFN9EE2pHGAC-sBkgWvkDUiptpZpEPmypAOdEVtMjhPYB0vYmZy4FbW-SgQYyoF6aVAJHfjV3mBBZ53z4FroFbgUmuimolMPgIKF7-9hJBxDkPIviw1waIXdugVHgsDt48-PYD8rSb-2_JTnlbqXcgw5fyUE-o3ye8-I4 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+course+of+proteolytic%2C+cytokine%2C+and+myostatin+gene+expression+after+acute+exercise+in+human+skeletal+muscle&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Louis%2C+Emily&rft.au=Raue%2C+Ulrika&rft.au=Yang%2C+Yifan&rft.au=Jemiolo%2C+Bozena&rft.date=2007-11-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=103&rft.issue=5&rft.spage=1744&rft.epage=1751&rft_id=info:doi/10.1152%2Fjapplphysiol.00679.2007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |