Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle

Human Performance Laboratory, Ball State University, Muncie, Indiana Submitted 26 June 2007 ; accepted in final form 28 August 2007 The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, cal...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 103; no. 5; pp. 1744 - 1751
Main Authors Louis, Emily, Raue, Ulrika, Yang, Yifan, Jemiolo, Bozena, Trappe, Scott
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.11.2007
American Physiological Society
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
DOI10.1152/japplphysiol.00679.2007

Cover

Abstract Human Performance Laboratory, Ball State University, Muncie, Indiana Submitted 26 June 2007 ; accepted in final form 28 August 2007 The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF- ) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF- mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF- , followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. muscle ring finger-1; atrogin-1; myostatin; interleukin-6; interleukin-8 Address for reprint requests and other correspondence: S. Trappe, Human Performance Laboratory, Ball State Univ., Muncie, IN 47306 (e-mail: strappe{at}bsu.edu )
AbstractList The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF- alpha ) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 plus or minus 4 yr, 74 plus or minus 14 kg, 1.71 plus or minus 0.11 m) and RUN (25 plus or minus 4 yr, 72 plus or minus 5 kg, 1.81 plus or minus 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF- alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF- alpha , followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-α) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-α mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF-α, followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-α) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-α mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-α, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. [PUBLICATION ABSTRACT]
Human Performance Laboratory, Ball State University, Muncie, Indiana Submitted 26 June 2007 ; accepted in final form 28 August 2007 The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF- ) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF- mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF- , followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE. muscle ring finger-1; atrogin-1; myostatin; interleukin-6; interleukin-8 Address for reprint requests and other correspondence: S. Trappe, Human Performance Laboratory, Ball State Univ., Muncie, IN 47306 (e-mail: strappe{at}bsu.edu )
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.
Author Louis, Emily
Raue, Ulrika
Yang, Yifan
Trappe, Scott
Jemiolo, Bozena
Author_xml – sequence: 1
  fullname: Louis, Emily
– sequence: 2
  fullname: Raue, Ulrika
– sequence: 3
  fullname: Yang, Yifan
– sequence: 4
  fullname: Jemiolo, Bozena
– sequence: 5
  fullname: Trappe, Scott
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19214070$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17823296$$D View this record in MEDLINE/PubMed
BookMark eNqFklFvFCEUhSemxm6rf0GJiSYm3RUYhhkefDCNVZMmvqzPhGHu7LJlYApM2v33Mu5qTRPTJwJ858I5OWfFifMOiuINwStCKvpxp8bRjtt9NN6uMOa1WFGM62fFIt_SJeGYnBSLpq7wsq6a-rQ4i3GHMWGsIi-KU1I3tKSCL4rbtRkAaT-FCMj3aAw-gbf7ZPQF0vvkb4yDC6Rch4a9j0kl49AGHCC4HwPE_AGHVJ8gIKWnNB9D0CYPy9x2GpRD8QYsJGXRMEVt4WXxvFc2wqvjel78vPqyvvy2vP7x9fvl5-ulrliVlrxmqtddB5rihglegaBU064UrG061rWiFDUvs5-2I1pgkjdNy3lLgTUtZuV58f4wN1u6nSAmOZiowVrlwE9R8oYxxpv6SZAIkZ_mVQbfPgJ3OTeXTUhKKRGEYp6h10doagfo5BjMoMJe_ok8A--OgIpa2T4ol_N64AQlDNc4c58OnA4-xgC91GaO37sUlLGSYDlXQf5bBfm7CnKuQtbXj_R_n3hS-eGg3JrN9s4EkEfIb_azKA8oZZUdsTnl6v_s1WTtGu7TLHrQyLHry19kdd91
CODEN JAPHEV
CitedBy_id crossref_primary_10_1113_expphysiol_2011_063727
crossref_primary_10_1007_s00421_013_2626_7
crossref_primary_10_1152_japplphysiol_00909_2013
crossref_primary_10_1155_2017_7083049
crossref_primary_10_1007_s10974_020_09589_0
crossref_primary_10_1249_MSS_0b013e3181b18fb8
crossref_primary_10_1093_gerona_glr091
crossref_primary_10_1248_jhs_57_367
crossref_primary_10_1007_s00394_013_0530_x
crossref_primary_10_1113_JP275072
crossref_primary_10_3390_nu14214485
crossref_primary_10_1186_s40798_015_0032_x
crossref_primary_10_1249_MSS_0b013e3181a518f0
crossref_primary_10_3945_ajcn_2008_25970
crossref_primary_10_1016_j_jsams_2018_07_019
crossref_primary_10_1152_japplphysiol_00343_2021
crossref_primary_10_1007_s10103_018_2439_3
crossref_primary_10_14814_phy2_13723
crossref_primary_10_2337_db08_0943
crossref_primary_10_1113_EP085704
crossref_primary_10_1152_japplphysiol_00174_2018
crossref_primary_10_23736_S0022_4707_19_09740_8
crossref_primary_10_1097_JES_0b013e3181877e13
crossref_primary_10_26685_urncst_226
crossref_primary_10_1093_gerona_glr088
crossref_primary_10_1152_ajpcell_00457_2023
crossref_primary_10_1177_0260106012467243
crossref_primary_10_12965_jer_1835166_583
crossref_primary_10_33549_physiolres_932312
crossref_primary_10_1007_s00424_014_1587_y
crossref_primary_10_1111_j_1440_1681_2009_05265_x
crossref_primary_10_1152_japplphysiol_01007_2009
crossref_primary_10_3389_fphys_2018_01376
crossref_primary_10_1016_j_nbd_2025_106834
crossref_primary_10_3390_nu12082421
crossref_primary_10_1111_raq_12717
crossref_primary_10_1016_j_metabol_2010_01_010
crossref_primary_10_1159_000539489
crossref_primary_10_1007_s00424_018_2217_x
crossref_primary_10_1177_1534735420949678
crossref_primary_10_3390_ijerph19148806
crossref_primary_10_1101_cshperspect_a029777
crossref_primary_10_1152_japplphysiol_01267_2011
crossref_primary_10_1007_s00421_017_3721_y
crossref_primary_10_1002_mus_23317
crossref_primary_10_3390_life14091198
crossref_primary_10_1007_s11033_017_4126_z
crossref_primary_10_1016_j_cyto_2018_03_012
crossref_primary_10_1186_s13102_023_00627_1
crossref_primary_10_1016_j_meatsci_2017_11_020
crossref_primary_10_1134_S0006350910060205
crossref_primary_10_1016_j_jevs_2018_10_005
crossref_primary_10_1111_apha_12948
crossref_primary_10_1152_japplphysiol_00102_2024
crossref_primary_10_1152_japplphysiol_00444_2023
crossref_primary_10_1186_1550_2783_11_38
crossref_primary_10_1111_sms_14241
crossref_primary_10_1152_ajpendo_00378_2021
crossref_primary_10_1096_fj_14_263699
crossref_primary_10_1152_japplphysiol_00959_2011
crossref_primary_10_1016_j_cyto_2023_156484
crossref_primary_10_1152_japplphysiol_00054_2014
crossref_primary_10_3389_fphys_2024_1268380
crossref_primary_10_1186_2044_5040_1_11
crossref_primary_10_1139_apnm_2013_0433
crossref_primary_10_1007_s00421_009_1145_z
crossref_primary_10_1016_j_biosystems_2021_104355
crossref_primary_10_1016_j_exger_2017_03_018
crossref_primary_10_1186_s11556_022_00294_0
crossref_primary_10_1111_apha_12042
crossref_primary_10_1152_japplphysiol_00615_2020
crossref_primary_10_1007_s00394_012_0349_x
crossref_primary_10_1016_j_cmet_2023_12_025
crossref_primary_10_1002_stem_1927
crossref_primary_10_3389_fphys_2020_00018
crossref_primary_10_1007_s00421_021_04758_6
crossref_primary_10_1038_s41585_021_00476_y
crossref_primary_10_1152_japplphysiol_00442_2023
crossref_primary_10_3389_fimmu_2023_1288537
crossref_primary_10_1038_s41598_021_85733_1
crossref_primary_10_1152_japplphysiol_00061_2013
crossref_primary_10_1152_japplphysiol_00136_2013
crossref_primary_10_3389_fphys_2019_00614
crossref_primary_10_1113_JP272270
crossref_primary_10_1152_ajpregu_00147_2019
crossref_primary_10_1016_j_exger_2011_07_010
crossref_primary_10_1007_s00204_011_0740_z
crossref_primary_10_1152_japplphysiol_00404_2009
crossref_primary_10_1111_apha_12174
crossref_primary_10_1016_j_cmet_2012_12_012
crossref_primary_10_1152_japplphysiol_00395_2012
crossref_primary_10_1007_s00421_024_05644_7
crossref_primary_10_1113_EP087436
crossref_primary_10_1152_ajpregu_00336_2011
crossref_primary_10_3390_diabetology3030032
crossref_primary_10_1113_JP271188
crossref_primary_10_1016_j_semcdb_2021_10_009
crossref_primary_10_1152_ajpendo_00590_2013
crossref_primary_10_1152_physiolgenomics_00066_2024
crossref_primary_10_3390_cells10030533
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_1371_journal_pone_0108547
crossref_primary_10_1152_ajpregu_00348_2010
crossref_primary_10_1080_02640414_2021_1882725
crossref_primary_10_1007_s00726_009_0432_7
crossref_primary_10_1007_s00421_011_1942_z
crossref_primary_10_1096_fj_202301619R
crossref_primary_10_3390_ijerph20064708
crossref_primary_10_1152_japplphysiol_00397_2018
crossref_primary_10_1152_ajpregu_90906_2008
crossref_primary_10_3389_fphys_2024_1338507
crossref_primary_10_1007_s13577_024_01036_3
crossref_primary_10_1016_j_lfs_2016_11_016
crossref_primary_10_7717_peerj_7743
crossref_primary_10_1007_s00421_010_1545_0
crossref_primary_10_1152_ajpregu_00077_2010
crossref_primary_10_1093_gerona_glq109
crossref_primary_10_3389_fphys_2018_01735
crossref_primary_10_1016_j_mad_2025_112039
crossref_primary_10_1016_j_arr_2015_08_007
crossref_primary_10_23949_kjpe_2023_11_62_6_19
crossref_primary_10_1152_japplphysiol_91221_2008
crossref_primary_10_1186_1471_2164_10_638
crossref_primary_10_1152_japplphysiol_90660_2008
crossref_primary_10_1142_S0218957710002569
crossref_primary_10_14814_phy2_13518
crossref_primary_10_1016_j_jff_2019_04_032
crossref_primary_10_1152_japplphysiol_00495_2019
crossref_primary_10_1249_MSS_0000000000002579
crossref_primary_10_1016_j_bone_2015_02_008
crossref_primary_10_1155_2013_984523
crossref_primary_10_1519_JSC_0b013e318212db21
crossref_primary_10_1249_MSS_0b013e3181e0b9a8
crossref_primary_10_3389_fphys_2019_00527
crossref_primary_10_3389_fphys_2017_00541
crossref_primary_10_1515_hmbci_2018_0008
crossref_primary_10_1016_j_cmet_2015_05_011
crossref_primary_10_1134_S0362119722030033
crossref_primary_10_1179_2045772314Y_0000000236
crossref_primary_10_1186_s13395_016_0086_6
crossref_primary_10_1371_journal_pone_0068743
crossref_primary_10_1113_jphysiol_2013_255695
crossref_primary_10_1249_MSS_0b013e318160ff84
crossref_primary_10_1139_apnm_2013_0076
crossref_primary_10_1111_apha_12631
crossref_primary_10_1519_JSC_0000000000000421
crossref_primary_10_1152_japplphysiol_00805_2010
crossref_primary_10_1152_ajpregu_00351_2009
crossref_primary_10_1016_j_physbeh_2011_09_024
crossref_primary_10_1152_japplphysiol_00381_2020
crossref_primary_10_3390_genes16020153
crossref_primary_10_1113_JP278454
crossref_primary_10_1242_jeb_057620
crossref_primary_10_1519_JSC_0b013e3181c8664f
crossref_primary_10_1371_journal_pone_0149082
crossref_primary_10_3389_fspor_2021_660291
crossref_primary_10_1007_s12020_013_9969_z
crossref_primary_10_1038_s41598_017_02294_y
crossref_primary_10_1101_cshperspect_a029793
crossref_primary_10_1152_japplphysiol_90842_2008
crossref_primary_10_1152_physiolgenomics_00068_2015
crossref_primary_10_1038_s41598_017_02754_5
crossref_primary_10_1152_japplphysiol_00711_2020
crossref_primary_10_1113_JP282954
crossref_primary_10_1016_j_cca_2014_03_021
crossref_primary_10_1093_gerona_glq005
crossref_primary_10_1002_mus_21875
crossref_primary_10_1152_japplphysiol_00170_2012
crossref_primary_10_1016_j_bbadis_2024_167094
crossref_primary_10_1002_jcp_28923
crossref_primary_10_1007_s00421_009_1033_6
crossref_primary_10_1016_j_domaniend_2009_01_002
crossref_primary_10_1177_1099800408317345
crossref_primary_10_1016_j_cell_2020_06_004
crossref_primary_10_1152_japplphysiol_00426_2013
crossref_primary_10_1152_japplphysiol_00491_2023
crossref_primary_10_1016_j_plefa_2013_02_004
crossref_primary_10_1007_s12192_018_0914_1
crossref_primary_10_1152_ajpendo_00179_2009
crossref_primary_10_7717_peerj_10500
crossref_primary_10_1007_s00421_017_3746_2
crossref_primary_10_1134_S1607672924600817
crossref_primary_10_1111_jcmm_70136
crossref_primary_10_1152_ajpendo_00204_2014
crossref_primary_10_3810_psm_2013_11_2040
crossref_primary_10_1007_s00018_013_1513_z
crossref_primary_10_1016_j_bbadis_2008_10_011
crossref_primary_10_1007_s12018_014_9156_7
crossref_primary_10_1016_j_mad_2016_05_007
crossref_primary_10_3389_fphys_2016_00144
crossref_primary_10_1152_ajpregu_00356_2016
crossref_primary_10_1177_1099800408324431
crossref_primary_10_1007_s10529_014_1464_y
crossref_primary_10_1152_japplphysiol_00590_2009
crossref_primary_10_1152_japplphysiol_00641_2019
crossref_primary_10_1016_j_fct_2013_01_026
crossref_primary_10_1007_s40618_015_0373_9
crossref_primary_10_1113_JP281244
crossref_primary_10_3109_10253891003743432
crossref_primary_10_1038_s41366_024_01630_3
crossref_primary_10_1113_JP278073
crossref_primary_10_1007_s40279_017_0845_5
crossref_primary_10_1152_japplphysiol_00014_2018
crossref_primary_10_1155_2018_8260742
crossref_primary_10_3390_analytics2020024
crossref_primary_10_1096_fj_202401420RR
crossref_primary_10_1249_MSS_0b013e3182178bb4
crossref_primary_10_1371_journal_pone_0088384
crossref_primary_10_1093_gerona_gls209
crossref_primary_10_1111_j_1600_0838_2011_01305_x
crossref_primary_10_1371_journal_pone_0037236
crossref_primary_10_1016_j_cbpa_2024_111680
crossref_primary_10_15171_jcvtr_2016_33
crossref_primary_10_1186_1471_2164_11_659
crossref_primary_10_3390_biom13121777
crossref_primary_10_1111_j_1582_4934_2009_00864_x
crossref_primary_10_1152_ajpregu_00245_2012
crossref_primary_10_3389_fnins_2019_00165
crossref_primary_10_3390_molecules26020407
crossref_primary_10_1210_er_2010_0018
crossref_primary_10_1016_j_ejphar_2010_11_013
crossref_primary_10_1186_1471_2466_14_106
crossref_primary_10_1249_MSS_0b013e3181da8a29
crossref_primary_10_1519_JSC_0000000000004550
crossref_primary_10_1371_journal_pone_0258635
crossref_primary_10_1016_j_devcel_2020_06_030
crossref_primary_10_1111_apha_13766
crossref_primary_10_1186_s13395_018_0151_4
crossref_primary_10_1152_japplphysiol_00952_2011
crossref_primary_10_1152_japplphysiol_01013_2012
crossref_primary_10_1002_mus_23860
crossref_primary_10_1152_ajpendo_00353_2011
crossref_primary_10_3389_fphys_2023_1273342
crossref_primary_10_1016_j_arr_2022_101780
crossref_primary_10_1096_fj_202000075R
crossref_primary_10_3390_nu15153485
crossref_primary_10_3390_nu8120775
crossref_primary_10_1017_S0954422423000197
crossref_primary_10_1002_cbf_4106
crossref_primary_10_1007_s11154_022_09758_1
crossref_primary_10_1089_rej_2014_1623
crossref_primary_10_1519_JSC_0000000000001171
crossref_primary_10_1152_physiol_00019_2013
crossref_primary_10_3389_fphys_2019_00691
crossref_primary_10_1111_j_1469_8986_2010_01165_x
crossref_primary_10_1249_MSS_0b013e3182364162
crossref_primary_10_1152_japplphysiol_00045_2010
crossref_primary_10_14814_phy2_12364
crossref_primary_10_1016_j_cbpa_2023_111487
crossref_primary_10_5352_JLS_2011_21_9_1259
crossref_primary_10_14814_phy2_13457
crossref_primary_10_2215_CJN_02650409
crossref_primary_10_3390_cancers12113466
crossref_primary_10_3389_fphys_2024_1473241
crossref_primary_10_1016_j_fct_2013_04_029
crossref_primary_10_1249_MSS_0b013e318256fbe8
crossref_primary_10_1111_j_1748_1716_2010_02172_x
crossref_primary_10_1007_s11357_020_00215_y
crossref_primary_10_5812_gct_119242
crossref_primary_10_7554_eLife_82016
crossref_primary_10_1371_journal_pone_0140673
crossref_primary_10_1007_s00424_010_0919_9
crossref_primary_10_1134_S0362119717030070
crossref_primary_10_1007_s00223_020_00782_4
crossref_primary_10_1007_s11357_021_00322_4
crossref_primary_10_1152_japplphysiol_00278_2009
crossref_primary_10_1166_jbt_2021_2667
crossref_primary_10_3390_biology11040537
crossref_primary_10_1089_jir_2009_0079
crossref_primary_10_1111_j_1601_183X_2010_00677_x
crossref_primary_10_1152_japplphysiol_01091_2007
crossref_primary_10_1186_s13054_022_04101_1
crossref_primary_10_1002_mus_24616
crossref_primary_10_1016_j_csm_2011_09_009
crossref_primary_10_3389_fphys_2021_709039
crossref_primary_10_1016_j_bbi_2012_07_010
crossref_primary_10_1016_j_mce_2013_05_008
crossref_primary_10_1249_MSS_0b013e318223b037
crossref_primary_10_1155_2013_320724
crossref_primary_10_1249_MSS_0000000000002628
crossref_primary_10_1139_H09_067
crossref_primary_10_1152_physrev_00039_2022
crossref_primary_10_1152_ajpregu_00266_2023
crossref_primary_10_1249_MSS_0000000000001899
crossref_primary_10_1152_japplphysiol_90668_2008
crossref_primary_10_1152_ajpendo_00157_2020
crossref_primary_10_1152_physiolgenomics_00144_2022
crossref_primary_10_1016_j_diabet_2019_02_006
crossref_primary_10_1016_j_bbi_2014_01_006
crossref_primary_10_1111_j_2042_3306_2010_00206_x
crossref_primary_10_1152_japplphysiol_00435_2011
crossref_primary_10_14814_phy2_13364
crossref_primary_10_1186_s12263_017_0556_4
crossref_primary_10_1152_japplphysiol_00019_2013
crossref_primary_10_3389_fphys_2018_01336
crossref_primary_10_1152_physiolgenomics_00010_2024
crossref_primary_10_1590_1678_4685_GMB_2015_0075
crossref_primary_10_1016_j_bbih_2019_100011
crossref_primary_10_1007_s00360_015_0887_7
crossref_primary_10_1152_japplphysiol_00504_2010
crossref_primary_10_1093_gerona_gly109
crossref_primary_10_52547_sjimu_30_4_86
crossref_primary_10_1002_iub_1291
crossref_primary_10_1519_JSC_0b013e318251083f
crossref_primary_10_1080_07435800_2023_2253452
crossref_primary_10_1111_j_1600_0838_2010_01170_x
crossref_primary_10_1519_JSC_0b013e3181bab493
crossref_primary_10_1016_j_cyto_2021_155553
crossref_primary_10_1038_s44319_024_00299_z
crossref_primary_10_1080_07315724_2016_1183532
crossref_primary_10_1111_j_1475_097X_2012_01126_x
crossref_primary_10_1152_japplphysiol_00655_2020
crossref_primary_10_1152_ajpendo_00339_2024
crossref_primary_10_1139_H08_126
crossref_primary_10_1016_j_freeradbiomed_2015_12_031
crossref_primary_10_3389_fphys_2018_00834
crossref_primary_10_1519_JSC_0b013e3181fc5a68
crossref_primary_10_1016_j_cmet_2017_02_009
crossref_primary_10_1152_japplphysiol_00759_2014
crossref_primary_10_1152_physiolgenomics_00027_2011
crossref_primary_10_1371_journal_pone_0180429
crossref_primary_10_1371_journal_pone_0195203
crossref_primary_10_3389_fphys_2020_00737
crossref_primary_10_1113_EP091712
crossref_primary_10_4081_uij_2022_290
crossref_primary_10_1007_s00421_011_1923_2
crossref_primary_10_1007_s00424_008_0574_6
crossref_primary_10_1002_mus_23667
crossref_primary_10_14814_phy2_12973
crossref_primary_10_1111_sms_13865
crossref_primary_10_3389_fphys_2022_934714
crossref_primary_10_1007_s00421_014_2997_4
crossref_primary_10_1007_s00424_018_2210_4
crossref_primary_10_1152_japplphysiol_00115_2020
crossref_primary_10_14348_molcells_2015_2138
crossref_primary_10_1007_s10974_021_09613_x
crossref_primary_10_1155_2013_935671
crossref_primary_10_1007_s00421_014_2936_4
crossref_primary_10_1002_jcsm_12428
crossref_primary_10_1152_ajpendo_00582_2007
crossref_primary_10_3389_fphys_2017_00035
crossref_primary_10_3389_fphys_2018_00028
crossref_primary_10_3390_nu16172857
crossref_primary_10_1152_japplphysiol_00110_2009
crossref_primary_10_1152_japplphysiol_00037_2015
crossref_primary_10_1152_japplphysiol_00346_2011
crossref_primary_10_3839_jabc_2011_057
crossref_primary_10_1002_mus_21110
crossref_primary_10_1080_02640414_2019_1617503
Cites_doi 10.1016/j.biocel.2005.04.018
10.1007/BF02388334
10.1152/ajpregu.00454.2004
10.1152/japplphysiol.01185.2004
10.3109/00365516209075148
10.1152/ajpregu.00545.2004
10.1152/ajpregu.00030.2004
10.1113/jphysiol.2002.023796
10.1152/jappl.1988.64.3.1038
10.1152/japplphysiol.01595.2005
10.1006/meth.2001.1262
10.1152/japplphysiol.00080.2007
10.1113/jphysiol.2004.077610
10.1152/japplphysiol.00438.2006
10.1152/japplphysiol.01130.2002
10.1096/fj.03-1259fje
10.1113/expphysiol.2006.033571
10.1073/pnas.95.21.12100
10.1152/ajpendo.1997.273.1.E99
10.1016/j.ab.2006.01.051
10.3181/00379727-205-43695
10.1152/ajpendo.00464.2004
10.1096/fj.01-0876rev
10.1111/j.1365-201X.2005.01406.x
10.1126/science.1111443
10.1007/s00424-005-1497-0
10.1113/jphysiol.2002.018689
10.1152/ajpheart.1977.232.6.H705
10.1016/S1065-6995(03)00172-0
10.1046/j.1365-201x.2001.00824.x
10.1016/j.febslet.2004.05.066
10.1152/japplphysiol.01616.2005
10.1249/01.MSS.0000069756.17841.9E
10.1016/S1097-2765(04)00211-4
10.1210/jc.2002-021687
10.1113/jphysiol.2003.044966
10.1152/japplphysiol.01064.2003
10.1111/j.1469-7793.2001.00633.x
10.1152/ajpendo.1991.260.5.E727
10.1016/S0092-8674(04)00400-3
10.1152/ajpendo.00299.2005
10.1074/jbc.M208231200
10.1189/jlb.0505247
10.1113/expphysiol.2006.034769
10.1096/fj.03-1228fje
10.1152/japplphysiol.00895.2004
10.1152/jappl.2000.88.2.627
10.1074/jbc.M004356200
10.1152/physrev.00027.2001
10.1152/ajpendo.00206.2004
10.1016/j.bbrc.2004.05.223
10.1152/ajpendo.00255.2002
10.1016/0003-2697(83)90551-1
10.1007/s00421-005-0022-7
10.1152/ajpendo.00397.2004
10.1096/fj.04-2364com
10.1038/387083a0
10.1152/japplphysiol.00491.2004
10.1152/japplphysiol.00164.2004
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright American Physiological Society Nov 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright American Physiological Society Nov 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1152/japplphysiol.00679.2007
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
CrossRef
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1751
ExternalDocumentID 1380100051
17823296
19214070
10_1152_japplphysiol_00679_2007
jap_103_5_1744
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG18409
GroupedDBID -
02
2WC
39C
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
H~9
KQ8
L7B
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
18M
1CY
29J
3O-
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
ADXHL
AETEA
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
CITATION
EMOBN
ITBOX
J5H
MVM
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c545t-674afcddec2084965e922c2d394b8d4db939763451bd1c9017638b66b2e48b043
ISSN 8750-7587
IngestDate Fri Sep 05 04:21:10 EDT 2025
Fri Sep 05 03:06:16 EDT 2025
Mon Jun 30 08:32:40 EDT 2025
Mon Jul 21 06:05:19 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Tue Jul 01 01:13:22 EDT 2025
Mon May 06 11:53:24 EDT 2019
Tue Jan 05 17:53:18 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Physical exercise
Human
atrogin-1
Acute
Cytokine
Finger
Gene expression
Striated muscle
interleukin-8
interleukin-6
myostatin
Interleukin 6
muscle ring finger-1
Vertebrata
Mammalia
Interleukin 8
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c545t-674afcddec2084965e922c2d394b8d4db939763451bd1c9017638b66b2e48b043
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 17823296
PQID 222191206
PQPubID 40905
PageCount 8
ParticipantIDs highwire_physiology_jap_103_5_1744
pubmed_primary_17823296
proquest_miscellaneous_19992265
proquest_journals_222191206
pascalfrancis_primary_19214070
crossref_citationtrail_10_1152_japplphysiol_00679_2007
proquest_miscellaneous_68444687
crossref_primary_10_1152_japplphysiol_00679_2007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2007
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R61
R60
R63
R62
R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R18
  doi: 10.1016/j.biocel.2005.04.018
– ident: R35
  doi: 10.1007/BF02388334
– ident: R54
  doi: 10.1152/ajpregu.00454.2004
– ident: R62
  doi: 10.1152/japplphysiol.01185.2004
– ident: R2
  doi: 10.3109/00365516209075148
– ident: R59
– ident: R44
  doi: 10.1152/ajpregu.00545.2004
– ident: R8
  doi: 10.1152/ajpregu.00030.2004
– ident: R42
– ident: R57
  doi: 10.1113/jphysiol.2002.023796
– ident: R14
  doi: 10.1152/jappl.1988.64.3.1038
– ident: R56
  doi: 10.1152/japplphysiol.01595.2005
– ident: R29
  doi: 10.1006/meth.2001.1262
– ident: R39
  doi: 10.1152/japplphysiol.00080.2007
– ident: R1
  doi: 10.1113/jphysiol.2004.077610
– ident: R63
  doi: 10.1152/japplphysiol.00438.2006
– ident: R37
  doi: 10.1152/japplphysiol.01130.2002
– ident: R23
  doi: 10.1096/fj.03-1259fje
– ident: R31
  doi: 10.1113/expphysiol.2006.033571
– ident: R24
  doi: 10.1073/pnas.95.21.12100
– ident: R41
  doi: 10.1152/ajpendo.1997.273.1.E99
– ident: R38
  doi: 10.1016/j.ab.2006.01.051
– ident: R20
  doi: 10.3181/00379727-205-43695
– ident: R27
  doi: 10.1152/ajpendo.00464.2004
– ident: R11
  doi: 10.1096/fj.01-0876rev
– ident: R32
  doi: 10.1111/j.1365-201X.2005.01406.x
– ident: R34
  doi: 10.1126/science.1111443
– ident: R48
  doi: 10.1007/s00424-005-1497-0
– ident: R10
  doi: 10.1113/jphysiol.2002.018689
– ident: R4
  doi: 10.1152/ajpheart.1977.232.6.H705
– ident: R16
  doi: 10.1016/S1065-6995(03)00172-0
– ident: R45
  doi: 10.1046/j.1365-201x.2001.00824.x
– ident: R12
  doi: 10.1016/j.febslet.2004.05.066
– ident: R43
  doi: 10.1152/japplphysiol.01616.2005
– ident: R49
  doi: 10.1249/01.MSS.0000069756.17841.9E
– ident: R52
  doi: 10.1016/S1097-2765(04)00211-4
– ident: R6
– ident: R58
  doi: 10.1210/jc.2002-021687
– ident: R55
  doi: 10.1113/jphysiol.2003.044966
– ident: R36
  doi: 10.1152/japplphysiol.01064.2003
– ident: R50
  doi: 10.1111/j.1469-7793.2001.00633.x
– ident: R21
  doi: 10.1152/ajpendo.1991.260.5.E727
– ident: R47
  doi: 10.1016/S0092-8674(04)00400-3
– ident: R9
  doi: 10.1152/ajpendo.00299.2005
– ident: R7
– ident: R22
  doi: 10.1074/jbc.M208231200
– ident: R5
  doi: 10.1189/jlb.0505247
– ident: R15
  doi: 10.1113/expphysiol.2006.034769
– ident: R26
  doi: 10.1096/fj.03-1228fje
– ident: R3
  doi: 10.1152/japplphysiol.00895.2004
– ident: R60
  doi: 10.1152/jappl.2000.88.2.627
– ident: R53
  doi: 10.1074/jbc.M004356200
– ident: R19
  doi: 10.1152/physrev.00027.2001
– ident: R13
  doi: 10.1152/ajpendo.00206.2004
– ident: R25
  doi: 10.1016/j.bbrc.2004.05.223
– ident: R51
  doi: 10.1152/ajpendo.00255.2002
– ident: R17
  doi: 10.1016/0003-2697(83)90551-1
– ident: R30
  doi: 10.1007/s00421-005-0022-7
– ident: R61
  doi: 10.1152/ajpendo.00397.2004
– ident: R28
  doi: 10.1096/fj.04-2364com
– ident: R33
  doi: 10.1038/387083a0
– ident: R46
  doi: 10.1152/japplphysiol.00491.2004
– ident: R40
  doi: 10.1152/japplphysiol.00164.2004
SSID ssj0014451
Score 2.433417
Snippet Human Performance Laboratory, Ball State University, Muncie, Indiana Submitted 26 June 2007 ; accepted in final form 28 August 2007 The aim of this study was...
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A),...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1744
SubjectTerms Adult
Biological and medical sciences
Calpain - metabolism
Cytokines
Cytokines - genetics
Cytokines - metabolism
Exercise
Exercise - physiology
Female
Forkhead Box Protein O3
Forkhead Transcription Factors - metabolism
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene Expression Regulation, Enzymologic
Humans
Interleukins - metabolism
Male
Muscle Proteins - metabolism
Muscle, Skeletal - enzymology
Muscle, Skeletal - metabolism
Musculoskeletal system
Myostatin
Peptide Hydrolases - genetics
Peptide Hydrolases - metabolism
Proteomics
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - metabolism
Running
SKP Cullin F-Box Protein Ligases - metabolism
Studies
Time Factors
Transcriptional Activation
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - metabolism
Tripartite Motif Proteins
Tumor Necrosis Factor-alpha - metabolism
Ubiquitin-Protein Ligases - metabolism
Title Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle
URI http://jap.physiology.org/cgi/content/abstract/103/5/1744
https://www.ncbi.nlm.nih.gov/pubmed/17823296
https://www.proquest.com/docview/222191206
https://www.proquest.com/docview/19992265
https://www.proquest.com/docview/68444687
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXBBuwMBgWQpyWkTjO13FCncboBodW2k5WnDpS1TYZa3Lo_hD-Xt6z8zXRasAlahM7dvx-9vvw83uEfAyBJ3iJI23gVlObKxbaSew5dqSCJAGGrZSOU3BxGZxN-PmVfzUY_Op5LVWlPE7vNp4r-R-qwj2gK56S_QfKti-FG_Ab6AtXoDBc_47GsyU6m6MfhvZcxpgLxWIN5XDk0nVZzGfGYonm8eW6wONDsxzTJiuM7W98YJtE4UmKPgNNDiY0hJgEfqs5sCY8M7msVk0H_hRnk1qc1aYSE9gJY0DFkd8zNoyKysQ0GKJZpdtjqnQnJ4vb2bxlE9e1Jft6lnUIPjfZbDUqiztlUn-3VouwPr7XLm6gJjk26CqG2ap68QXF2A3qYs3q7Hg9GPq9tRZ0Kd7j2yAHuZt5gs90LgIYhnoI0Jkv1KeUwo4NNlv_l9_F6WQ0EuPh1fgRecxCkMlQ2P76rd2dwqBuxm5svqH2G4SGPm9p5r7U00SiRkfcZAVzMTNJVLZrOVraGT8nz2q60hODuRdkoPJdsneSJ2WxXNNP9EdL5V3y5KL2z9gjPxGR1CCSFhntIfKINng8ooBG2qKRIhpph0aq0Ug1GmmDRgrlNBppg0Zq0PiSTE6H4y9ndp3Uw05BWC_tIORJlgJTTZkTYbICFTOWsqkXcxlN-VTGKCF7MMJy6qYgrcKfSAaBZIpH0uHeK7KTF7naJzQFadNLpMycDFYaeMpSGXhZ7KPVQ0lukaAZdJHWEe8x8cpCaM3XZ6JPLaGphWlZQ4s4bcUbE_Tl4SrHDVVFN9EE2pHGAC-sBkgWvkDUiptpZpEPmypAOdEVtMjhPYB0vYmZy4FbW-SgQYyoF6aVAJHfjV3mBBZ53z4FroFbgUmuimolMPgIKF7-9hJBxDkPIviw1waIXdugVHgsDt48-PYD8rSb-2_JTnlbqXcgw5fyUE-o3ye8-I4
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+course+of+proteolytic%2C+cytokine%2C+and+myostatin+gene+expression+after+acute+exercise+in+human+skeletal+muscle&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Louis%2C+Emily&rft.au=Raue%2C+Ulrika&rft.au=Yang%2C+Yifan&rft.au=Jemiolo%2C+Bozena&rft.date=2007-11-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=103&rft.issue=5&rft.spage=1744&rft.epage=1751&rft_id=info:doi/10.1152%2Fjapplphysiol.00679.2007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon