A universal SNP and small-indel variant caller using deep neural networks
DeepVariant uses convolutional neural networks to improve the accuracy of variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a d...
Saved in:
Published in | Nature biotechnology Vol. 36; no. 10; pp. 983 - 987 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer New York
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1087-0156 1546-1696 1546-1696 |
DOI | 10.1038/nbt.4235 |
Cover
Abstract | DeepVariant uses convolutional neural networks to improve the accuracy of variant calling.
Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling. |
---|---|
AbstractList | DeepVariant uses convolutional neural networks to improve the accuracy of variant calling.Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling. DeepVariant uses convolutional neural networks to improve the accuracy of variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling. |
Audience | Academic |
Author | Schwartz, Scott Newburger, Dan McLean, Cory Y Afshar, Pegah T Dijamco, Jojo Colthurst, Thomas Alexander, David Dorfman, Lizzie Nguyen, Nam Chang, Pi-Chuan DePristo, Mark A Ku, Alexander Gross, Sam S Poplin, Ryan |
Author_xml | – sequence: 1 givenname: Ryan surname: Poplin fullname: Poplin, Ryan organization: Verily Life Sciences, Google Inc – sequence: 2 givenname: Pi-Chuan surname: Chang fullname: Chang, Pi-Chuan organization: Google Inc – sequence: 3 givenname: David surname: Alexander fullname: Alexander, David organization: Google Inc – sequence: 4 givenname: Scott surname: Schwartz fullname: Schwartz, Scott organization: Google Inc – sequence: 5 givenname: Thomas surname: Colthurst fullname: Colthurst, Thomas organization: Google Inc – sequence: 6 givenname: Alexander surname: Ku fullname: Ku, Alexander organization: Google Inc – sequence: 7 givenname: Dan surname: Newburger fullname: Newburger, Dan organization: Verily Life Sciences – sequence: 8 givenname: Jojo surname: Dijamco fullname: Dijamco, Jojo organization: Verily Life Sciences – sequence: 9 givenname: Nam surname: Nguyen fullname: Nguyen, Nam organization: Verily Life Sciences – sequence: 10 givenname: Pegah T surname: Afshar fullname: Afshar, Pegah T organization: Verily Life Sciences – sequence: 11 givenname: Sam S surname: Gross fullname: Gross, Sam S organization: Verily Life Sciences – sequence: 12 givenname: Lizzie surname: Dorfman fullname: Dorfman, Lizzie organization: Verily Life Sciences, Google Inc – sequence: 13 givenname: Cory Y surname: McLean fullname: McLean, Cory Y organization: Verily Life Sciences, Google Inc – sequence: 14 givenname: Mark A surname: DePristo fullname: DePristo, Mark A email: mdepristo@google.com organization: Verily Life Sciences, Google Inc |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30247488$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFDEUx4NU7E3wE8iALwqdNfeZfVyK2oVixRZfQyZzMqbOZNYkU_Xbm6XbbleLSOAkHH7_k3M7RHt-9IDQC4JnBLP6rW_SjFMmnqADIrgsiZzLvfzGdVViIuQ-OozxGmMsuZTP0D7DlFe8rg_QclFM3t1AiLovLj9-KrRvizjovi-db6EvbnRw2qfCZBeEYorOd0ULsCo8TCGLPKQfY_gWj9FTq_sIzzf3Ebp6_-7q9Kw8v_iwPF2cl0ZwkUpmNdSUcyOsaCzlUGVrKbNGc9JKaBuDJZ4zzIggVhBZN9BwDZbXYFvJjtDr27CrMH6fICY1uGig77WHcYqKEkIqTsicZPTVH-j1OAWfk1OMUsmYkFX9L4oSUUk2x7m191Sne1DO2zEFbdZfq4WoaIU5oVWmZo9Q-bQwOJNnZl327wje7Agyk-Bn6vQUo1pefv5_9uLLLnvygG3WU4OYTXTd1xRvJTv4y00PpmaAVq2CG3T4pe72ZFuYCWOMAawyLunkcgpBu14RrNaLqPIiqvUibsd0L7iL-Qi6qStmxHcQtgP4i_0NGJrl0w |
CitedBy_id | crossref_primary_10_1016_j_dnarep_2023_103529 crossref_primary_10_3389_fgene_2020_593407 crossref_primary_10_1088_2632_2153_ab7e19 crossref_primary_10_3389_fgene_2022_943972 crossref_primary_10_1038_s41598_024_60545_1 crossref_primary_10_1002_pd_6144 crossref_primary_10_1038_s42255_022_00720_8 crossref_primary_10_1093_bib_bbac221 crossref_primary_10_1016_j_molp_2022_06_009 crossref_primary_10_1186_s12859_021_04311_4 crossref_primary_10_1016_j_csbj_2022_08_019 crossref_primary_10_1016_j_gim_2024_101125 crossref_primary_10_1093_bib_bbaa038 crossref_primary_10_1101_gr_279510_124 crossref_primary_10_3390_jpm12010113 crossref_primary_10_1186_s12859_023_05193_4 crossref_primary_10_1038_s41587_020_0711_0 crossref_primary_10_1101_gr_279227_124 crossref_primary_10_1016_j_fertnstert_2020_09_156 crossref_primary_10_1093_bioinformatics_btac824 crossref_primary_10_1016_j_ygeno_2023_110591 crossref_primary_10_1093_bioinformatics_btac828 crossref_primary_10_1371_journal_pone_0244151 crossref_primary_10_1093_bib_bbaa272 crossref_primary_10_1016_j_agrcom_2024_100039 crossref_primary_10_1038_s41531_022_00342_7 crossref_primary_10_2991_jaims_d_210512_001 crossref_primary_10_1038_s41598_022_10619_9 crossref_primary_10_1093_bib_bbaa148 crossref_primary_10_1093_ve_veab101 crossref_primary_10_1139_gen_2020_0131 crossref_primary_10_1038_s42003_022_03397_7 crossref_primary_10_1186_s13059_022_02636_8 crossref_primary_10_1038_s42003_024_06981_1 crossref_primary_10_1016_j_ymthe_2024_11_025 crossref_primary_10_1093_bioinformatics_btaa1081 crossref_primary_10_1016_j_wneu_2019_09_092 crossref_primary_10_1038_s41467_025_56126_z crossref_primary_10_1016_j_fmre_2025_03_001 crossref_primary_10_1016_j_mec_2022_e00209 crossref_primary_10_1002_mds_30103 crossref_primary_10_2196_59505 crossref_primary_10_1038_s41592_022_01445_y crossref_primary_10_1155_2023_3107568 crossref_primary_10_7554_eLife_98300 crossref_primary_10_1186_s12859_023_05434_6 crossref_primary_10_3390_life12020279 crossref_primary_10_1016_j_plantsci_2023_111852 crossref_primary_10_1038_s41592_022_01432_3 crossref_primary_10_3389_fbioe_2025_1537471 crossref_primary_10_1038_s41467_024_52380_9 crossref_primary_10_3389_fimmu_2024_1357217 crossref_primary_10_1038_s41576_021_00431_y crossref_primary_10_1038_s41467_024_47349_7 crossref_primary_10_1111_eva_13488 crossref_primary_10_3390_s23010062 crossref_primary_10_1186_s12859_021_04499_5 crossref_primary_10_1186_s12915_023_01758_0 crossref_primary_10_1016_j_cgh_2024_09_004 crossref_primary_10_1016_j_ygeno_2020_10_038 crossref_primary_10_1038_s41588_024_01657_2 crossref_primary_10_1038_s41587_020_0503_6 crossref_primary_10_1038_s41587_023_01793_w crossref_primary_10_1038_s41467_024_44980_2 crossref_primary_10_1371_journal_pbio_3002755 crossref_primary_10_3390_genes14061283 crossref_primary_10_1038_s41576_019_0122_6 crossref_primary_10_1038_s41587_024_02348_3 crossref_primary_10_1080_01677063_2024_2365634 crossref_primary_10_1093_bib_bbad320 crossref_primary_10_1186_s13073_019_0689_8 crossref_primary_10_1038_s43018_021_00243_3 crossref_primary_10_1093_nargab_lqab004 crossref_primary_10_1172_JCI169137 crossref_primary_10_1126_science_abg8871 crossref_primary_10_1093_gigascience_giae084 crossref_primary_10_1038_s41576_021_00367_3 crossref_primary_10_1093_clinchem_hvad073 crossref_primary_10_1016_j_imed_2021_03_005 crossref_primary_10_1038_s41587_022_01435_7 crossref_primary_10_1016_j_parkreldis_2025_107311 crossref_primary_10_3389_fgene_2023_1173676 crossref_primary_10_1186_s13059_023_03116_3 crossref_primary_10_3390_ijms232012437 crossref_primary_10_1002_ajmg_a_64006 crossref_primary_10_1093_bib_bbac301 crossref_primary_10_2147_PGPM_S290781 crossref_primary_10_1007_s13258_023_01439_w crossref_primary_10_1016_j_tig_2024_07_001 crossref_primary_10_1038_s41467_023_42336_w crossref_primary_10_1128_mra_00730_24 crossref_primary_10_1038_s41746_025_01471_y crossref_primary_10_1093_bib_bbad508 crossref_primary_10_1371_journal_pone_0279356 crossref_primary_10_1093_bib_bbaa238 crossref_primary_10_1186_s12859_023_05292_2 crossref_primary_10_1038_s41580_021_00407_0 crossref_primary_10_1038_s41592_023_02069_6 crossref_primary_10_1126_science_ads0215 crossref_primary_10_1186_s13059_024_03297_5 crossref_primary_10_1016_j_pbi_2019_12_005 crossref_primary_10_1038_s41587_019_0217_9 crossref_primary_10_1186_s12864_021_07575_5 crossref_primary_10_1186_s12864_022_09084_5 crossref_primary_10_1186_s13073_023_01183_6 crossref_primary_10_7554_eLife_98300_3 crossref_primary_10_1038_s42003_021_02777_9 crossref_primary_10_1186_s12920_024_01795_w crossref_primary_10_3390_app14010307 crossref_primary_10_1093_molbev_msad167 crossref_primary_10_3390_metabo12030202 crossref_primary_10_1101_gr_278070_123 crossref_primary_10_2337_dc22_0295 crossref_primary_10_1038_s41467_023_42531_9 crossref_primary_10_1038_s41525_020_0132_5 crossref_primary_10_1038_s41592_022_01609_w crossref_primary_10_1186_s12864_024_11196_z crossref_primary_10_3389_fgene_2022_999587 crossref_primary_10_1111_tpj_16979 crossref_primary_10_1002_ctd2_252 crossref_primary_10_1016_j_xgen_2024_100629 crossref_primary_10_1038_s41591_021_01294_w crossref_primary_10_1101_gr_277031_122 crossref_primary_10_1371_journal_pcbi_1012468 crossref_primary_10_36676_jrps_v15_i3_1484 crossref_primary_10_1155_2020_7231205 crossref_primary_10_1038_s41588_025_02117_1 crossref_primary_10_1016_j_jai_2025_03_004 crossref_primary_10_1016_j_xgen_2023_100484 crossref_primary_10_1093_nar_gkad970 crossref_primary_10_1158_2326_6066_CIR_22_0306 crossref_primary_10_1371_journal_pcbi_1009186 crossref_primary_10_1038_s41586_023_06425_6 crossref_primary_10_1038_s41587_022_01559_w crossref_primary_10_1021_acs_jproteome_9b00840 crossref_primary_10_3390_ijms26010363 crossref_primary_10_1146_annurev_pathmechdis_051222_113147 crossref_primary_10_3390_ijms241914645 crossref_primary_10_1186_s12859_024_05821_7 crossref_primary_10_1038_s41467_020_19971_8 crossref_primary_10_1098_rstb_2021_0195 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_3390_pathogens12050675 crossref_primary_10_1186_s12859_020_03813_x crossref_primary_10_1002_ajmg_a_63060 crossref_primary_10_1002_humu_23699 crossref_primary_10_1016_j_heliyon_2023_e13368 crossref_primary_10_1093_bib_bbae613 crossref_primary_10_1097_MPH_0000000000002839 crossref_primary_10_1016_j_cca_2023_117568 crossref_primary_10_1038_s43588_022_00387_x crossref_primary_10_1101_gr_279982_124 crossref_primary_10_3389_fmolb_2021_647277 crossref_primary_10_1002_humu_24304 crossref_primary_10_1016_j_celrep_2023_111992 crossref_primary_10_3390_genes15060700 crossref_primary_10_1021_acs_biochem_9b00613 crossref_primary_10_1038_s41525_021_00227_3 crossref_primary_10_1038_s41598_021_92993_4 crossref_primary_10_1159_000538930 crossref_primary_10_1093_molbev_msaf002 crossref_primary_10_1371_journal_pone_0291223 crossref_primary_10_2174_0115748936284044240108074937 crossref_primary_10_56294_dm2025857 crossref_primary_10_1002_bimj_202300278 crossref_primary_10_1016_j_jhep_2025_02_007 crossref_primary_10_1038_s41431_023_01303_1 crossref_primary_10_1186_s13059_024_03319_2 crossref_primary_10_1186_s12859_023_05216_0 crossref_primary_10_1093_bib_bbaa370 crossref_primary_10_1101_gr_279066_124 crossref_primary_10_1371_journal_pbio_3002795 crossref_primary_10_3389_fgene_2020_544162 crossref_primary_10_1016_j_pnpbp_2023_110928 crossref_primary_10_1093_nsr_nwae335 crossref_primary_10_3390_cancers14102350 crossref_primary_10_1001_jama_2020_20457 crossref_primary_10_1016_j_lana_2024_100863 crossref_primary_10_1038_s42256_020_0167_4 crossref_primary_10_1093_bib_bbac305 crossref_primary_10_1109_ACCESS_2021_3110269 crossref_primary_10_1038_s41576_021_00389_x crossref_primary_10_1016_j_xgen_2024_100527 crossref_primary_10_1038_s41592_021_01299_w crossref_primary_10_3390_biology13020088 crossref_primary_10_1093_molbev_msae163 crossref_primary_10_1186_s13073_023_01194_3 crossref_primary_10_1016_j_xgen_2022_100169 crossref_primary_10_3389_fonc_2023_1215729 crossref_primary_10_1002_cpt_3124 crossref_primary_10_1016_j_xhgg_2023_100227 crossref_primary_10_2139_ssrn_3977260 crossref_primary_10_3390_jpm12060959 crossref_primary_10_1056_AIoa2300138 crossref_primary_10_1093_bioinformatics_btaa116 crossref_primary_10_3389_fimmu_2023_1151224 crossref_primary_10_1016_j_nbd_2023_106208 crossref_primary_10_1038_s41588_024_02022_z crossref_primary_10_1093_g3journal_jkae129 crossref_primary_10_1080_10408363_2023_2259466 crossref_primary_10_1093_bioinformatics_btaa230 crossref_primary_10_1007_s40484_019_0187_4 crossref_primary_10_1038_s41586_024_07532_8 crossref_primary_10_1016_j_femme_2019_09_001 crossref_primary_10_1016_j_gim_2022_02_007 crossref_primary_10_1038_s41598_022_20113_x crossref_primary_10_1038_s42003_024_06251_0 crossref_primary_10_1128_jcm_01842_22 crossref_primary_10_1016_j_drudis_2020_10_002 crossref_primary_10_1007_s10462_020_09951_1 crossref_primary_10_1109_TCBB_2021_3066086 crossref_primary_10_1186_s12859_023_05596_3 crossref_primary_10_1038_s41467_024_50079_5 crossref_primary_10_1038_s41477_023_01520_y crossref_primary_10_1093_nar_gkad1010 crossref_primary_10_1186_s13059_019_1689_0 crossref_primary_10_3390_ijms23094532 crossref_primary_10_1038_s41531_024_00778_z crossref_primary_10_1093_nar_gkae1294 crossref_primary_10_1101_gr_279292_124 crossref_primary_10_1016_j_gpb_2023_08_001 crossref_primary_10_1146_annurev_genom_021623_081639 crossref_primary_10_1016_j_xhgg_2024_100389 crossref_primary_10_1007_s11596_024_2865_3 crossref_primary_10_1186_s12864_021_07996_2 crossref_primary_10_1371_journal_pone_0289346 crossref_primary_10_3389_fgene_2023_1189775 crossref_primary_10_1038_s41588_023_01469_w crossref_primary_10_1038_s41467_023_43876_x crossref_primary_10_3389_fbinf_2024_1384497 crossref_primary_10_1007_s00438_024_02209_3 crossref_primary_10_1038_s41597_020_0508_5 crossref_primary_10_1038_s41698_022_00340_1 crossref_primary_10_1186_s13059_023_03061_1 crossref_primary_10_1093_jamiaopen_ooae052 crossref_primary_10_1371_journal_pcbi_1009269 crossref_primary_10_1126_science_abj6987 crossref_primary_10_1016_j_neubiorev_2022_104559 crossref_primary_10_1016_j_cell_2019_03_003 crossref_primary_10_1016_j_tig_2019_08_006 crossref_primary_10_1093_g3journal_jkad028 crossref_primary_10_1016_j_csbj_2020_06_017 crossref_primary_10_1016_j_genrep_2023_101837 crossref_primary_10_12688_wellcomeopenres_20385_1 crossref_primary_10_1038_s41588_024_02067_0 crossref_primary_10_1152_ajpheart_00149_2024 crossref_primary_10_3389_fpls_2024_1448807 crossref_primary_10_2217_fon_2022_1041 crossref_primary_10_1093_nar_gkad855 crossref_primary_10_1186_s13073_023_01240_0 crossref_primary_10_1016_j_fsigen_2022_102785 crossref_primary_10_1002_elps_202300143 crossref_primary_10_1016_j_neurobiolaging_2023_10_010 crossref_primary_10_3389_fgene_2022_887644 crossref_primary_10_1093_bioinformatics_btab225 crossref_primary_10_1371_journal_pgen_1011116 crossref_primary_10_1038_s41587_024_02382_1 crossref_primary_10_3389_fbinf_2022_914435 crossref_primary_10_1038_s41467_024_44935_7 crossref_primary_10_1038_s41597_024_04064_8 crossref_primary_10_1038_s41598_024_59683_3 crossref_primary_10_1016_j_bbadis_2023_166909 crossref_primary_10_1007_s10048_024_00790_8 crossref_primary_10_1038_s41559_023_02165_y crossref_primary_10_3390_genes16020196 crossref_primary_10_1038_s41439_024_00284_x crossref_primary_10_46871_eams_1470170 crossref_primary_10_1016_j_gpb_2022_11_001 crossref_primary_10_1093_bfgp_elaa009 crossref_primary_10_1136_jmedgenet_2020_107016 crossref_primary_10_35713_aic_v3_i3_42 crossref_primary_10_1089_cmb_2018_0172 crossref_primary_10_12688_f1000research_145486_1 crossref_primary_10_1016_j_jare_2024_05_020 crossref_primary_10_1111_1755_0998_13355 crossref_primary_10_1002_cpt_2749 crossref_primary_10_1093_bioinformatics_btad775 crossref_primary_10_1016_j_patter_2021_100328 crossref_primary_10_1515_jib_2023_0043 crossref_primary_10_1038_s41587_019_0074_6 crossref_primary_10_1371_journal_pgen_1011228 crossref_primary_10_1186_s12859_020_03546_x crossref_primary_10_1186_s12915_023_01656_5 crossref_primary_10_1038_s41598_025_93445_z crossref_primary_10_1007_s00125_024_06160_1 crossref_primary_10_1186_s12916_022_02535_6 crossref_primary_10_1093_g3journal_jkae134 crossref_primary_10_1038_s41592_022_01440_3 crossref_primary_10_1016_j_ajhg_2022_04_007 crossref_primary_10_2147_IDR_S292743 crossref_primary_10_1038_s41598_022_05833_4 crossref_primary_10_1016_j_ajhg_2024_08_024 crossref_primary_10_1093_bioinformatics_btz218 crossref_primary_10_1371_journal_ppat_1008623 crossref_primary_10_3390_cancers13081751 crossref_primary_10_1007_s12539_024_00653_8 crossref_primary_10_1016_j_patter_2023_100915 crossref_primary_10_1007_s10803_022_05636_6 crossref_primary_10_1016_j_euros_2024_02_006 crossref_primary_10_1128_spectrum_05237_22 crossref_primary_10_1016_j_future_2024_03_050 crossref_primary_10_1186_s13075_023_03172_x crossref_primary_10_1055_s_0044_1786397 crossref_primary_10_1111_tan_15020 crossref_primary_10_1038_s41467_024_44804_3 crossref_primary_10_1093_jhered_esae059 crossref_primary_10_1126_science_abe1544 crossref_primary_10_3389_fcell_2020_00520 crossref_primary_10_1093_g3journal_jkac020 crossref_primary_10_1038_s41598_021_87226_7 crossref_primary_10_1016_j_yamp_2024_08_001 crossref_primary_10_4103_singaporemedj_SMJ_2021_438 crossref_primary_10_3389_fbinf_2025_1507448 crossref_primary_10_1038_s41467_023_38271_5 crossref_primary_10_7717_peerj_10897 crossref_primary_10_1038_s41598_020_73081_5 crossref_primary_10_1016_j_molcel_2024_01_014 crossref_primary_10_1093_jhered_esae042 crossref_primary_10_3389_fonc_2022_1054231 crossref_primary_10_1161_CIRCGEN_121_003500 crossref_primary_10_1038_s41467_022_35389_w crossref_primary_10_1177_2050313X241249088 crossref_primary_10_26599_TST_2022_9010032 crossref_primary_10_7717_peerj_cs_1340 crossref_primary_10_1186_s12859_024_05793_8 crossref_primary_10_1371_journal_pone_0277680 crossref_primary_10_1038_s41598_024_78170_3 crossref_primary_10_1038_s41587_019_0140_0 crossref_primary_10_1093_bioinformatics_btae539 crossref_primary_10_1093_nar_gkad539 crossref_primary_10_3390_biomedinformatics4030096 crossref_primary_10_3389_fpls_2023_1143512 crossref_primary_10_3390_s20247116 crossref_primary_10_1038_s10038_024_01275_0 crossref_primary_10_1186_s12864_023_09453_8 crossref_primary_10_1371_journal_pone_0260908 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_1080_15476286_2024_2443876 crossref_primary_10_1089_cmb_2021_0269 crossref_primary_10_1007_s00439_023_02553_1 crossref_primary_10_1063_5_0091135 crossref_primary_10_1016_j_gim_2022_04_025 crossref_primary_10_1093_g3journal_jkad130 crossref_primary_10_1038_s41598_022_26181_3 crossref_primary_10_1371_journal_pone_0316766 crossref_primary_10_1186_s12915_023_01579_1 crossref_primary_10_1038_s41586_022_05325_5 crossref_primary_10_1038_s41598_020_77218_4 crossref_primary_10_1186_s13059_024_03239_1 crossref_primary_10_1089_omi_2024_0200 crossref_primary_10_1038_s41576_024_00709_x crossref_primary_10_3390_genes15121503 crossref_primary_10_1007_s11427_024_2578_6 crossref_primary_10_7554_eLife_84553_2 crossref_primary_10_3390_diagnostics13030373 crossref_primary_10_1101_gr_277334_122 crossref_primary_10_1093_bioinformatics_btad694 crossref_primary_10_3390_ijms26072850 crossref_primary_10_1038_s41422_023_00849_5 crossref_primary_10_3390_catal13060961 crossref_primary_10_5010_JPB_2024_51_034_344 crossref_primary_10_7554_eLife_98058 crossref_primary_10_1038_s41592_023_01932_w crossref_primary_10_1038_s41588_024_01719_5 crossref_primary_10_1038_s41592_019_0403_1 crossref_primary_10_1038_s41592_024_02430_3 crossref_primary_10_3390_genes11091060 crossref_primary_10_1002_ctm2_1612 crossref_primary_10_1038_s41467_022_30680_2 crossref_primary_10_3389_fpls_2024_1385768 crossref_primary_10_3390_jcdd7040055 crossref_primary_10_1038_s41541_023_00671_5 crossref_primary_10_3390_biomedicines13010099 crossref_primary_10_1002_humu_24163 crossref_primary_10_1016_j_xpro_2024_103114 crossref_primary_10_7717_peerj_13613 crossref_primary_10_1007_s00521_025_10992_2 crossref_primary_10_1093_bioinformatics_btac373 crossref_primary_10_1172_jci_insight_176985 crossref_primary_10_1186_s13040_021_00258_7 crossref_primary_10_3389_fonc_2024_1486310 crossref_primary_10_1158_2159_8290_CD_21_0090 crossref_primary_10_1038_s41587_020_0719_5 crossref_primary_10_1038_s41431_023_01396_8 crossref_primary_10_1007_s11427_024_2742_y crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1038_s41586_025_08596_w crossref_primary_10_1186_s12864_024_10446_4 crossref_primary_10_1126_sciimmunol_abf7473 crossref_primary_10_1016_j_gene_2022_146554 crossref_primary_10_17816_ecogen54703 crossref_primary_10_1038_s41598_024_52386_9 crossref_primary_10_3390_cimb45120608 crossref_primary_10_1038_s41531_025_00896_2 crossref_primary_10_1016_j_biopsych_2020_06_033 crossref_primary_10_1016_j_jmoldx_2021_01_015 crossref_primary_10_3390_biomedicines12102410 crossref_primary_10_1111_pai_13937 crossref_primary_10_1093_bfgp_elac041 crossref_primary_10_1093_bioinformatics_btae565 crossref_primary_10_3389_fphy_2019_00247 crossref_primary_10_1016_j_lfs_2024_123209 crossref_primary_10_1093_g3journal_jkaf044 crossref_primary_10_1093_gbe_evae018 crossref_primary_10_1038_s41467_023_43556_w crossref_primary_10_1016_j_mocell_2024_100139 crossref_primary_10_1093_bioinformatics_btad480 crossref_primary_10_1038_s10038_020_00862_1 crossref_primary_10_1038_s41431_023_01406_9 crossref_primary_10_1515_jib_2022_0059 crossref_primary_10_1002_1873_3468_14068 crossref_primary_10_1038_s41587_021_00861_3 crossref_primary_10_1093_gigascience_giac125 crossref_primary_10_1186_s12929_024_01110_w crossref_primary_10_3390_cells11223640 crossref_primary_10_1016_j_ncl_2024_08_003 crossref_primary_10_1038_s41467_024_52376_5 crossref_primary_10_3389_fgene_2020_551220 crossref_primary_10_1093_nar_gkad373 crossref_primary_10_1093_nar_gkac369 crossref_primary_10_2174_1574893618666230224160716 crossref_primary_10_1038_s41439_024_00276_x crossref_primary_10_1093_nar_gkae789 crossref_primary_10_1111_jbg_12760 crossref_primary_10_1093_bioinformatics_btz275 crossref_primary_10_1038_s41586_023_05896_x crossref_primary_10_1016_j_ymeth_2022_08_001 crossref_primary_10_1038_s41592_022_01515_1 crossref_primary_10_1038_s41598_021_87445_y crossref_primary_10_3390_ijms23116272 crossref_primary_10_1002_ajmg_c_32057 crossref_primary_10_1093_gbe_evad008 crossref_primary_10_3390_ijms23137176 crossref_primary_10_1016_j_fsigen_2024_103156 crossref_primary_10_1039_D1NP00014D crossref_primary_10_1002_ajmg_c_32060 crossref_primary_10_1093_gbe_evae221 crossref_primary_10_1101_gr_276957_122 crossref_primary_10_2147_OTT_S246710 crossref_primary_10_1007_s10142_024_01417_9 crossref_primary_10_3389_fmicb_2023_1214924 crossref_primary_10_1109_ACCESS_2023_3266983 crossref_primary_10_1038_s41592_023_01799_x crossref_primary_10_1186_s12864_024_10885_z crossref_primary_10_3390_life12111939 crossref_primary_10_1093_bib_bbaf067 crossref_primary_10_3389_fbinf_2021_746712 crossref_primary_10_1186_s12859_019_3103_z crossref_primary_10_1186_s13059_021_02282_6 crossref_primary_10_1038_s41392_021_00729_7 crossref_primary_10_3389_fped_2023_1203289 crossref_primary_10_1002_ajmg_a_63522 crossref_primary_10_1016_j_celrep_2021_109665 crossref_primary_10_1038_s41587_021_00993_6 crossref_primary_10_1038_s41598_023_42600_5 crossref_primary_10_1186_s13059_021_02449_1 crossref_primary_10_3390_ijms252312554 crossref_primary_10_1007_s00439_021_02402_z crossref_primary_10_1016_j_jtha_2024_12_030 crossref_primary_10_3389_fmicb_2024_1474078 crossref_primary_10_1111_2041_210X_13901 crossref_primary_10_1186_s13321_019_0364_5 crossref_primary_10_1002_pld3_344 crossref_primary_10_1016_j_neumar_2024_100034 crossref_primary_10_3389_fpls_2024_1358490 crossref_primary_10_1038_s41467_024_54970_z crossref_primary_10_1016_j_ajhg_2022_02_014 crossref_primary_10_1038_s41588_024_01717_7 crossref_primary_10_1186_s13059_022_02771_2 crossref_primary_10_61186_iau_34_3_207 crossref_primary_10_1016_j_yamp_2023_01_002 crossref_primary_10_1038_s41525_023_00389_2 crossref_primary_10_1373_clinchem_2019_308296 crossref_primary_10_1038_s41525_024_00429_5 crossref_primary_10_1101_gr_279747_124 crossref_primary_10_1007_s41745_020_00189_y crossref_primary_10_1016_j_yamp_2019_07_010 crossref_primary_10_1093_nargab_lqad056 crossref_primary_10_1016_j_ijpara_2019_10_004 crossref_primary_10_1002_ajmg_a_62743 crossref_primary_10_1186_s13073_023_01220_4 crossref_primary_10_1093_bioinformatics_btad268 crossref_primary_10_3389_fdgth_2025_1550407 crossref_primary_10_1038_s41598_022_12346_7 crossref_primary_10_1038_s41598_023_35791_4 crossref_primary_10_1186_s13059_023_02923_y crossref_primary_10_1038_s41598_021_81169_9 crossref_primary_10_1136_jitc_2023_007073 crossref_primary_10_1186_s44342_024_00032_1 crossref_primary_10_1186_s13059_023_02969_y crossref_primary_10_1093_g3journal_jkae280 crossref_primary_10_1093_nargab_lqae031 crossref_primary_10_3389_fendo_2025_1472754 crossref_primary_10_1186_s13059_019_1709_0 crossref_primary_10_1038_s41467_022_29268_7 crossref_primary_10_1093_gigascience_giae116 crossref_primary_10_1038_s41467_019_12493_y crossref_primary_10_1007_s42995_024_00252_y crossref_primary_10_1016_j_xpro_2022_101418 crossref_primary_10_1093_nar_gkac076 crossref_primary_10_1146_annurev_animal_111523_102217 crossref_primary_10_1186_s12859_023_05255_7 crossref_primary_10_1016_j_fsigen_2022_102776 crossref_primary_10_1002_humu_24197 crossref_primary_10_1038_s41592_024_02407_2 crossref_primary_10_32628_CSEIT241051083 crossref_primary_10_1038_s41467_023_36004_2 crossref_primary_10_1093_nargab_lqae013 crossref_primary_10_22625_2072_6732_2024_16_4_68_77 crossref_primary_10_1016_j_drudis_2024_103990 crossref_primary_10_1093_bioinformatics_btad398 crossref_primary_10_1038_s41467_022_31765_8 crossref_primary_10_1016_j_xhgg_2021_100081 crossref_primary_10_1093_bioinformatics_btae129 crossref_primary_10_1186_s40246_022_00396_x crossref_primary_10_1002_mrc_5304 crossref_primary_10_3389_fendo_2024_1455689 crossref_primary_10_1038_s41431_023_01374_0 crossref_primary_10_3389_fimmu_2023_1166620 crossref_primary_10_1038_s41586_023_06062_z crossref_primary_10_1186_s12864_023_09506_y crossref_primary_10_1093_g3journal_jkad188 crossref_primary_10_1084_jem_20220979 crossref_primary_10_1126_sciadv_abm6494 crossref_primary_10_5858_arpa_2024_0037_CP crossref_primary_10_1111_tan_14562 crossref_primary_10_3389_fonc_2021_666937 crossref_primary_10_1097_IM9_0000000000000134 crossref_primary_10_1038_s41576_023_00590_0 crossref_primary_10_1039_D3DD00218G crossref_primary_10_1016_j_gim_2025_101385 crossref_primary_10_1186_s12859_019_3226_2 crossref_primary_10_1186_s12915_023_01661_8 crossref_primary_10_1111_1755_0998_13783 crossref_primary_10_1186_s12859_023_05243_x crossref_primary_10_1371_journal_pone_0252207 crossref_primary_10_1038_s41597_022_01133_8 crossref_primary_10_1186_s44342_025_00040_9 crossref_primary_10_3389_fpls_2025_1508027 crossref_primary_10_3390_genes15121592 crossref_primary_10_1038_s41587_024_02190_7 crossref_primary_10_1111_1751_7915_13936 crossref_primary_10_1186_s12864_024_10961_4 crossref_primary_10_1007_s10462_024_11020_w crossref_primary_10_3389_fpls_2024_1374648 crossref_primary_10_1038_s41467_023_39714_9 crossref_primary_10_1186_s12864_024_10645_z crossref_primary_10_1016_j_molcel_2022_08_007 crossref_primary_10_1371_journal_ppat_1012259 crossref_primary_10_1093_gigascience_giab057 crossref_primary_10_3389_fmolb_2019_00044 crossref_primary_10_1093_bfgp_elae003 crossref_primary_10_1038_s41531_023_00595_w crossref_primary_10_1186_s13256_022_03291_0 crossref_primary_10_1016_j_ympev_2024_108062 crossref_primary_10_3389_fonc_2024_1422811 crossref_primary_10_1016_j_patter_2020_100073 crossref_primary_10_1016_j_patter_2020_100193 crossref_primary_10_1038_s41598_020_71471_3 crossref_primary_10_3390_biomedicines10092074 crossref_primary_10_1371_journal_pone_0310718 crossref_primary_10_1186_s12864_022_08365_3 crossref_primary_10_1099_mgen_0_000979 crossref_primary_10_1099_mgen_0_000615 crossref_primary_10_1038_s41588_024_02029_6 crossref_primary_10_1186_s13148_024_01711_0 crossref_primary_10_1016_j_mec_2020_e00149 crossref_primary_10_1186_s40537_023_00853_x crossref_primary_10_1161_CIRCGEN_123_004470 crossref_primary_10_1093_gbe_evab135 crossref_primary_10_3390_genes10090652 crossref_primary_10_1038_s41525_025_00483_7 crossref_primary_10_1093_bioinformatics_btae042 crossref_primary_10_1186_s12859_023_05294_0 crossref_primary_10_1016_j_xplc_2024_101000 crossref_primary_10_1371_journal_pone_0226461 crossref_primary_10_1097_MOP_0000000000001260 crossref_primary_10_1038_s41375_021_01469_x crossref_primary_10_15275_rusomj_2024_0308 crossref_primary_10_1007_s11030_021_10225_3 crossref_primary_10_1111_2041_210X_14001 crossref_primary_10_1186_s13059_020_02017_z crossref_primary_10_3390_jpm12010072 crossref_primary_10_1038_s41598_020_58821_x crossref_primary_10_2217_pgs_2023_0029 crossref_primary_10_1016_j_isci_2024_109257 crossref_primary_10_1093_bib_bbae593 crossref_primary_10_1093_bib_bbae473 crossref_primary_10_1002_humu_24311 crossref_primary_10_1038_s41592_018_0209_6 crossref_primary_10_1038_s41598_021_99026_0 crossref_primary_10_1146_annurev_genom_083117_021641 crossref_primary_10_3103_S0146411624700147 crossref_primary_10_1038_s41467_023_44023_2 crossref_primary_10_3389_fonc_2021_637431 crossref_primary_10_1128_JVI_00299_21 crossref_primary_10_1038_s41467_019_09027_x crossref_primary_10_3390_cells11142244 crossref_primary_10_1021_acs_jcim_3c01726 crossref_primary_10_3390_plants9010034 crossref_primary_10_3390_cancers16172955 crossref_primary_10_1016_j_fsigen_2023_103005 crossref_primary_10_1038_s41588_025_02111_7 crossref_primary_10_1002_humu_24438 crossref_primary_10_1002_tpg2_20135 crossref_primary_10_1186_s13073_021_00891_1 crossref_primary_10_1016_j_ailsci_2021_100017 crossref_primary_10_3390_ijms25126540 crossref_primary_10_1002_humu_24460 crossref_primary_10_1126_science_abf7117 crossref_primary_10_1371_journal_pone_0296785 crossref_primary_10_1093_bib_bbae269 crossref_primary_10_1002_ece3_70968 crossref_primary_10_3390_genes12071098 crossref_primary_10_1039_D4SC01714E crossref_primary_10_1126_science_abi7489 crossref_primary_10_1093_carcin_bgad030 crossref_primary_10_21638_spbu03_2021_202 crossref_primary_10_1016_j_molcel_2020_06_012 crossref_primary_10_1017_qpb_2021_18 crossref_primary_10_1093_hr_uhae315 crossref_primary_10_1093_hr_uhad103 crossref_primary_10_1186_s12967_025_06213_y crossref_primary_10_1089_cmb_2024_0483 crossref_primary_10_1038_s41587_021_01049_5 crossref_primary_10_1093_bioadv_vbad062 crossref_primary_10_1002_humu_24455 crossref_primary_10_1093_bib_bbae138 crossref_primary_10_1101_gr_279334_124 crossref_primary_10_1016_j_cub_2020_03_053 crossref_primary_10_1016_j_mrrev_2022_108426 crossref_primary_10_1038_s41588_022_01148_2 crossref_primary_10_1038_s41587_021_01158_1 crossref_primary_10_1016_j_xgen_2022_100128 crossref_primary_10_1371_journal_pgen_1010811 crossref_primary_10_3390_biology12070997 crossref_primary_10_1097_JBR_0000000000000068 crossref_primary_10_1038_s41467_024_45884_x crossref_primary_10_1093_nutrit_nuac033 crossref_primary_10_1097_ACI_0000000000000691 crossref_primary_10_1101_gr_279396_124 crossref_primary_10_1002_mds_29654 crossref_primary_10_1038_s41592_024_02262_1 crossref_primary_10_1007_s00122_022_04137_5 crossref_primary_10_1101_gr_276917_122 crossref_primary_10_1038_s41586_022_04808_9 crossref_primary_10_1371_journal_pcbi_1008815 crossref_primary_10_3390_jcm9072220 crossref_primary_10_3390_life13081668 crossref_primary_10_3389_fgene_2023_1220750 crossref_primary_10_1101_gr_275579_121 crossref_primary_10_7717_peerj_cs_278 crossref_primary_10_1038_s43018_020_00139_8 crossref_primary_10_7554_eLife_84553 crossref_primary_10_1146_annurev_arplant_080620_114342 crossref_primary_10_1371_journal_pone_0303938 crossref_primary_10_1186_s12951_025_03169_5 crossref_primary_10_1186_s12711_023_00809_y crossref_primary_10_1038_s41467_023_39867_7 crossref_primary_10_1038_s41597_024_03569_6 crossref_primary_10_3390_biology13080606 crossref_primary_10_1038_s41388_021_01861_y crossref_primary_10_3389_fneur_2020_00186 crossref_primary_10_1002_fes3_70024 crossref_primary_10_1038_s41375_024_02304_9 crossref_primary_10_1056_NEJMra2204787 crossref_primary_10_1186_s12859_024_05756_z crossref_primary_10_12688_f1000research_148237_1 crossref_primary_10_2169_naika_110_492 crossref_primary_10_3389_fgene_2024_1520148 crossref_primary_10_1101_gr_278267_123 crossref_primary_10_1186_s13059_020_02244_4 crossref_primary_10_1016_j_gendis_2025_101603 crossref_primary_10_1038_s41467_023_40898_3 crossref_primary_10_1093_molbev_msad207 crossref_primary_10_1007_s44281_024_00032_9 crossref_primary_10_1038_s41467_019_09025_z crossref_primary_10_1186_s13059_021_02472_2 crossref_primary_10_3390_jcm12082818 crossref_primary_10_1093_bioinformatics_btae093 crossref_primary_10_2478_ebtj_2018_0012 crossref_primary_10_1038_s41587_019_0368_8 crossref_primary_10_1038_s41467_024_55147_4 crossref_primary_10_1038_s42003_023_05285_0 crossref_primary_10_1186_s12915_024_01820_5 crossref_primary_10_3390_jcdd10030104 crossref_primary_10_1016_j_xgen_2022_100101 crossref_primary_10_1016_j_xhgg_2022_100107 crossref_primary_10_1093_bib_bbab070 crossref_primary_10_1093_bioadv_vbad016 crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_1186_s12888_024_06392_w crossref_primary_10_1093_nar_gkaa829 crossref_primary_10_1186_s13059_024_03388_3 crossref_primary_10_1038_s41397_021_00259_z crossref_primary_10_1186_s12864_020_07013_y crossref_primary_10_1186_s12864_024_10829_7 crossref_primary_10_15857_ksep_2021_30_2_131 crossref_primary_10_1093_bioadv_vbac054 crossref_primary_10_3389_fgene_2024_1429306 crossref_primary_10_1186_s12859_020_3367_3 crossref_primary_10_1038_s41586_023_06457_y crossref_primary_10_1093_gigascience_giaa007 crossref_primary_10_1093_bioinformatics_btz901 crossref_primary_10_7717_peerj_14675 crossref_primary_10_1038_s41467_021_24815_0 crossref_primary_10_1093_bioadv_vbad149 crossref_primary_10_1016_j_xhgg_2021_100023 crossref_primary_10_1111_pbi_14224 crossref_primary_10_3389_fmolb_2023_1169109 crossref_primary_10_1016_j_jid_2025_02_130 crossref_primary_10_1007_s00122_022_04105_z crossref_primary_10_1016_j_ajhg_2021_08_011 crossref_primary_10_1128_spectrum_04289_23 crossref_primary_10_3390_biom13091403 crossref_primary_10_3389_fgene_2023_1258083 crossref_primary_10_1016_j_copbio_2019_12_021 crossref_primary_10_3390_ijms22147583 crossref_primary_10_1093_bib_bbae447 crossref_primary_10_1007_s00520_024_08408_3 crossref_primary_10_3389_fcell_2022_854640 crossref_primary_10_1016_j_arabjc_2023_104948 |
Cites_doi | 10.1101/gr.210500.116 10.1101/gr.078212.108 10.1101/192872 10.1101/223297 10.1093/bioinformatics/btr629 10.1093/gigascience/gix089 10.1038/nature16961 10.1101/gr.088013.108 10.1101/097469 10.1038/nature19057 10.1109/CVPR.2016.308 10.1126/science.1254806 10.1038/nrg.2016.49 10.1038/nrg3655 10.1038/nmeth.3547 10.1016/0893-6080(89)90020-8 10.1093/bioinformatics/btp352 10.1038/ng.806 10.1038/nature10413 10.1101/023754 10.1038/nrg2986 10.1038/nature14236 10.1093/bioinformatics/btu356 10.1186/1471-2164-15-516 10.1038/nbt.3300 10.1101/310458 10.1038/nbt.2835 10.1186/s13073-016-0269-0 10.1371/journal.pcbi.1003031 10.1038/nature15393 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Oct 2018 Springer Nature America, Inc. 2018. |
Copyright_xml | – notice: Springer Nature America, Inc. 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Oct 2018 – notice: Springer Nature America, Inc. 2018. |
DBID | AAYXX CITATION NPM N95 IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 PRINS 7X8 |
DOI | 10.1038/nbt.4235 |
DatabaseName | CrossRef PubMed Gale Business: Insights Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central China MEDLINE - Academic |
DatabaseTitleList | Research Library Prep Research Library Prep PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 987 |
ExternalDocumentID | A572704127 30247488 10_1038_nbt_4235 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAHBH AAIKC AAMNW AARCD AAYOK AAYZH ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMFV ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NFIDA NNMJJ NXXTH O9- ODYON P2P PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX CITATION ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP NPM PJZUB PPXIY PQGLB PMFND 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7XB 88A 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c545t-3fae8244c5f5bf24e7bf2f23fca41d6edbc0609303151f5168beb4aef48efd63 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Fri Sep 05 13:11:56 EDT 2025 Sat Aug 23 12:55:15 EDT 2025 Fri Jul 25 08:54:25 EDT 2025 Tue Jun 17 21:24:04 EDT 2025 Tue Jun 10 20:41:37 EDT 2025 Fri Jun 27 05:08:33 EDT 2025 Fri Jun 27 03:49:42 EDT 2025 Fri Jun 27 03:06:22 EDT 2025 Mon Jul 21 06:04:34 EDT 2025 Tue Jul 01 04:38:47 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 Wed May 21 12:01:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-3fae8244c5f5bf24e7bf2f23fca41d6edbc0609303151f5168beb4aef48efd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30247488 |
PQID | 2157639042 |
PQPubID | 47191 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2111741191 proquest_journals_3226335678 proquest_journals_2157639042 gale_infotracmisc_A572704127 gale_infotracacademiconefile_A572704127 gale_incontextgauss_ISR_A572704127 gale_incontextgauss_IOV_A572704127 gale_businessinsightsgauss_A572704127 pubmed_primary_30247488 crossref_citationtrail_10_1038_nbt_4235 crossref_primary_10_1038_nbt_4235 springer_journals_10_1038_nbt_4235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2018 |
Publisher | Springer New York Nature Publishing Group |
Publisher_xml | – name: Springer New York – name: Nature Publishing Group |
References | R Nielsen (BFnbt4235_CR2) 2011; 12 BFnbt4235_CR25 BFnbt4235_CR26 H Li (BFnbt4235_CR23) 2009; 25 H Li (BFnbt4235_CR3) 2014; 30 BFnbt4235_CR22 LM Bragg (BFnbt4235_CR7) 2013; 9 R Li (BFnbt4235_CR20) 2009; 19 HY Xiong (BFnbt4235_CR16) 2015; 347 BFnbt4235_CR28 K Hornik (BFnbt4235_CR21) 1989; 2 BFnbt4235_CR29 H Li (BFnbt4235_CR19) 2008; 18 RL Goldfeder (BFnbt4235_CR4) 2016; 8 MA Eberle (BFnbt4235_CR18) 2017; 27 TM Keane (BFnbt4235_CR27) 2011; 477 M Lek (BFnbt4235_CR30) 2016; 536 J Dean (BFnbt4235_CR36) 2012; 25 J Ding (BFnbt4235_CR6) 2012; 28 V Mnih (BFnbt4235_CR12) 2015; 518 BFnbt4235_CR35 S Min (BFnbt4235_CR13) 2017; 18 BFnbt4235_CR38 BFnbt4235_CR10 BFnbt4235_CR33 BFnbt4235_CR34 A Krizhevsky (BFnbt4235_CR9) 2012; 25 D Silver (BFnbt4235_CR11) 2016; 529 JM Zook (BFnbt4235_CR37) 2014; 32 MA DePristo (BFnbt4235_CR5) 2011; 43 BFnbt4235_CR17 R Luo (BFnbt4235_CR24) 2017; 6 ZX Yeo (BFnbt4235_CR8) 2014; 15 A Auton (BFnbt4235_CR31) 2015; 526 B Alipanahi (BFnbt4235_CR14) 2015; 33 J Zhou (BFnbt4235_CR15) 2015; 12 S Goodwin (BFnbt4235_CR1) 2016; 17 K Robasky (BFnbt4235_CR32) 2014; 15 |
References_xml | – volume: 27 start-page: 157 year: 2017 ident: BFnbt4235_CR18 publication-title: Genome Res. doi: 10.1101/gr.210500.116 – volume: 18 start-page: 1851 year: 2008 ident: BFnbt4235_CR19 publication-title: Genome Res. doi: 10.1101/gr.078212.108 – ident: BFnbt4235_CR25 doi: 10.1101/192872 – ident: BFnbt4235_CR26 doi: 10.1101/223297 – volume: 28 start-page: 167 year: 2012 ident: BFnbt4235_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr629 – volume: 6 start-page: 1 year: 2017 ident: BFnbt4235_CR24 publication-title: Gigascience doi: 10.1093/gigascience/gix089 – volume: 529 start-page: 484 year: 2016 ident: BFnbt4235_CR11 publication-title: Nature doi: 10.1038/nature16961 – volume: 25 start-page: 1223 year: 2012 ident: BFnbt4235_CR36 publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 1124 year: 2009 ident: BFnbt4235_CR20 publication-title: Genome Res. doi: 10.1101/gr.088013.108 – ident: BFnbt4235_CR22 – ident: BFnbt4235_CR35 doi: 10.1101/097469 – volume: 536 start-page: 285 year: 2016 ident: BFnbt4235_CR30 publication-title: Nature doi: 10.1038/nature19057 – volume: 25 start-page: 1097 year: 2012 ident: BFnbt4235_CR9 publication-title: Adv. Neural Inf. Process Syst. – ident: BFnbt4235_CR17 doi: 10.1109/CVPR.2016.308 – volume: 347 start-page: 1254806 year: 2015 ident: BFnbt4235_CR16 publication-title: Science doi: 10.1126/science.1254806 – ident: BFnbt4235_CR28 – volume: 17 start-page: 333 year: 2016 ident: BFnbt4235_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.49 – volume: 15 start-page: 56 year: 2014 ident: BFnbt4235_CR32 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3655 – volume: 12 start-page: 931 year: 2015 ident: BFnbt4235_CR15 publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – ident: BFnbt4235_CR10 – volume: 2 start-page: 359 year: 1989 ident: BFnbt4235_CR21 publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 25 start-page: 2078 year: 2009 ident: BFnbt4235_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 43 start-page: 491 year: 2011 ident: BFnbt4235_CR5 publication-title: Nat. Genet. doi: 10.1038/ng.806 – ident: BFnbt4235_CR33 – volume: 477 start-page: 289 year: 2011 ident: BFnbt4235_CR27 publication-title: Nature doi: 10.1038/nature10413 – ident: BFnbt4235_CR38 doi: 10.1101/023754 – volume: 12 start-page: 443 year: 2011 ident: BFnbt4235_CR2 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2986 – volume: 518 start-page: 529 year: 2015 ident: BFnbt4235_CR12 publication-title: Nature doi: 10.1038/nature14236 – volume: 30 start-page: 2843 year: 2014 ident: BFnbt4235_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu356 – volume: 15 start-page: 516 year: 2014 ident: BFnbt4235_CR8 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-516 – volume: 33 start-page: 831 year: 2015 ident: BFnbt4235_CR14 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3300 – ident: BFnbt4235_CR34 doi: 10.1101/310458 – volume: 32 start-page: 246 year: 2014 ident: BFnbt4235_CR37 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2835 – volume: 18 start-page: 851 year: 2017 ident: BFnbt4235_CR13 publication-title: Brief. Bioinform. – volume: 8 start-page: 24 year: 2016 ident: BFnbt4235_CR4 publication-title: Genome Med. doi: 10.1186/s13073-016-0269-0 – volume: 9 start-page: e1003031 year: 2013 ident: BFnbt4235_CR7 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003031 – ident: BFnbt4235_CR29 – volume: 526 start-page: 68 year: 2015 ident: BFnbt4235_CR31 publication-title: Nature doi: 10.1038/nature15393 |
SSID | ssj0006466 |
Score | 2.7137384 |
Snippet | DeepVariant uses convolutional neural networks to improve the accuracy of variant calling.
Despite rapid advances in sequencing technologies, accurately... Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful... DeepVariant uses convolutional neural networks to improve the accuracy of variant calling.Despite rapid advances in sequencing technologies, accurately calling... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 983 |
SubjectTerms | 45/23 631/114/1305 631/114/2785 631/61/212 Accuracy Agriculture Analysis Artificial neural networks Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Deep learning Gene sequencing Genetic diversity Genetic variance Genomes Genomic structural variations Genomics Genotype & phenotype Genotypes Ground truth letter Life Sciences Machine learning Neural networks Next-generation sequencing Nucleotide sequence Single-nucleotide polymorphism State of the art |
Title | A universal SNP and small-indel variant caller using deep neural networks |
URI | https://link.springer.com/article/10.1038/nbt.4235 https://www.ncbi.nlm.nih.gov/pubmed/30247488 https://www.proquest.com/docview/2157639042 https://www.proquest.com/docview/3226335678 https://www.proquest.com/docview/2111741191 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BKxAcEIRXoFQLAvXk1vZ6184JBdTQIjVUbUG5WfvsJTihTpD498zY67SJKsRlLzu7ssez89gZfwPwPtaW68QPIi1TFWU-t5HiGKzkRiqbGWNlAyl0MpZH37OvEzEJF251KKvsdGKjqO3M0B35AQqe5Fygbv04_xVR1yjKroYWGndhO0FPhFo35JNVwIXWtslVJnFB5ZVCduCzvDio9GIfPQmxZo42lfINq7SRJm2sz-gxPApuIxu23_kJ3HFVD-61jST_9ODhDVjBHtw_CQnzp3A8ZMu29AJXn49Pmaosq3-q6TQinMQp-42xMjKXGeqpcsWoDP6SWefmjJAucVHV1onXz-BidHjx-SgK3RMig17RIuJeuQKNtxFeaJ9mLsfRp9wblSVWOqtNLGNkGkej70UiC-10ppzPCuet5M9hq5pV7iUwjBg1ZQelcUkmYqXyNMXAWYnM80HhdB_2Oh6WJiCLU4OLadlkuHlRIrdL4nYf3q4o5y2axi00H-gzlKEJJw41XVPUl2pZ1-VQoMNFGGF5H941dARiUVGVTEtw_O3HfxCdn60R7QUiP8PnNir8mYBvT-BYa5Q7a5R4FM36dCc6ZVAFdYk-FerwASrHW6ev5RqZs5qmjan6rXKzJW2RYOBIUHx9eNFK5Ip9HJ2sHLUwvmknotebb_L21b-f4DU8QH-waH-13IGtxdXSvUGfa6F3m4OFYzH6sgvbnw7Hp2d_ATL0Kqs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVLwOCMIrUGBBVD2Zxq-1c6hQgFYJbULVpqg3a5-9BCfUCag_jv_GjL1Om6hCXHrxZccre3Z2Hjuz3wC8b0sdSt92PMkD4UU20Z4IMVhJFBc6UkrzElJoMOS9k-jraXy6Bn_quzBUVlnrxFJR64miM_JtFDwehjHq1o_Tnx51jaLsat1CQ7jWCnqnhBhzFzv2zcVvDOGKnf4XXO_NINjbHX3uea7LgKfQe5h5oRUmRSOnYhtLG0QmwacNQqtE5GtutFRtjnE_tUPwbezzVBoZCWOj1FjNQ5z2FqxHdH7SgPVPu8PDo4Up4FWy1G-nVN8Z8xr9Nky3czn7gK5MvGQPV63CFbO4kqctzd_eQ3jg_FbWrQTtEayZvAm3q06WF024fwXXsAl3Bi5j_xj6XTavaj_w7ePhIRO5ZsUPMR57BNQ4Zr8wWMfVZYqaupwzqsM_Y9qYKSOoTXwprwrViycwugnGPoVGPsnNc2AYskpKT3Jl_ChuC5EEAUbuIo5s2EmNbMFWzcNMOWhz6rAxzsoUe5hmyO2MuN2CtwvKaQXncQ3NJi1D5rqA4qOgc5LiTMyLIuvG6PERSFnSgnclHaFo5FSmUxH0v33_D6LjoyWiLUdkJ_jdSrirEfj3hM61RLmxRIm6QC0P16KTOV1UZOjUoRHpoHa-dvhyYyFzFsM0MZXf5WYypyl8jFwJC7AFzyqJXLAvRC8vQTOAf1qL6OXkq7x98e8veAN3e6PBQXbQH-6_hHvonKbVvc8NaMzO5-YVOoAz-dptMwbZDW_sv1zZbNk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVlTlgCA8GiiwIKqeTGyvvXYOFQq0UUNpiPpAvVn77CU4oU5A_Yn8K2bsdVpHFeLSiy87Xtmzs_PYmf2GkPe-1EwGtutJHgovson2BINgJVFc6EgpzUtIoaMhPziLvpzH5yvkT30XBssqa51YKmo9UXhG3gHB44zFoFs71pVFjPb6H6c_PewghZnWup2GcG0W9G4JN-YueRyaq98QzhW7gz1Y--0w7O-ffj7wXMcBT4EnMfOYFSYFg6diG0sbRiaBpw2ZVSIKNDdaKp_7XYatEQIbBzyVRkbC2Cg1VnMG094jawkYfYgD1z7tD0fHC7PAq8Rp4KdY6xnzGgmXpZ1czj6AWxM3bOOyhbhhIpdytqUp7D8iD50PS3uV0D0mKyZvkftVV8urFnlwA-OwRdaPXPb-CRn06LyqA4G3T4YjKnJNix9iPPYQtHFMf0HgDitNFTZ4uaRYk39BtTFTirCb8FJeFa0XT8npXTD2GVnNJ7nZJBTCV4mpSq5MEMW-EEkYQhQv4siybmpkm-zUPMyUgznHbhvjrEy3szQDbmfI7TZ5u6CcVtAet9Bs4zJkriMoPAo8MykuxLwosl4M3h8CliVt8q6kQ0SNHGWzIhh8-_4fRCfHDaIdR2Qn8N1KuGsS8PeI1NWg3GpQgl5QzeFadDKnl4oMHDwwKF3Q1LcOX28yYM5iGCfGUrzcTOY4RQBRLOICtsnzSiIX7GPg8SVgEuBPaxG9nnyZty_-_QVvyDps8OzrYHj4kmyAn5pWV0C3yOrscm5egS84k6_dLqMku-N9_Re3znEd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+SNP+and+small-indel+variant+caller+using+deep+neural+networks&rft.jtitle=Nature+biotechnology&rft.au=Poplin%2C+Ryan&rft.au=Chang%2C+Pi-Chuan&rft.au=Alexander%2C+David&rft.au=Schwartz%2C+Scott&rft.date=2018-11-01&rft.pub=Springer+New+York&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=36&rft.issue=10&rft.spage=983&rft.epage=987&rft_id=info:doi/10.1038%2Fnbt.4235&rft.externalDocID=10_1038_nbt_4235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |