A universal SNP and small-indel variant caller using deep neural networks

DeepVariant uses convolutional neural networks to improve the accuracy of variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a d...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 36; no. 10; pp. 983 - 987
Main Authors Poplin, Ryan, Chang, Pi-Chuan, Alexander, David, Schwartz, Scott, Colthurst, Thomas, Ku, Alexander, Newburger, Dan, Dijamco, Jojo, Nguyen, Nam, Afshar, Pegah T, Gross, Sam S, Dorfman, Lizzie, McLean, Cory Y, DePristo, Mark A
Format Journal Article
LanguageEnglish
Published New York Springer New York 01.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1087-0156
1546-1696
1546-1696
DOI10.1038/nbt.4235

Cover

Abstract DeepVariant uses convolutional neural networks to improve the accuracy of variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.
AbstractList DeepVariant uses convolutional neural networks to improve the accuracy of variant calling.Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.
Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.
Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.
DeepVariant uses convolutional neural networks to improve the accuracy of variant calling. Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.
Audience Academic
Author Schwartz, Scott
Newburger, Dan
McLean, Cory Y
Afshar, Pegah T
Dijamco, Jojo
Colthurst, Thomas
Alexander, David
Dorfman, Lizzie
Nguyen, Nam
Chang, Pi-Chuan
DePristo, Mark A
Ku, Alexander
Gross, Sam S
Poplin, Ryan
Author_xml – sequence: 1
  givenname: Ryan
  surname: Poplin
  fullname: Poplin, Ryan
  organization: Verily Life Sciences, Google Inc
– sequence: 2
  givenname: Pi-Chuan
  surname: Chang
  fullname: Chang, Pi-Chuan
  organization: Google Inc
– sequence: 3
  givenname: David
  surname: Alexander
  fullname: Alexander, David
  organization: Google Inc
– sequence: 4
  givenname: Scott
  surname: Schwartz
  fullname: Schwartz, Scott
  organization: Google Inc
– sequence: 5
  givenname: Thomas
  surname: Colthurst
  fullname: Colthurst, Thomas
  organization: Google Inc
– sequence: 6
  givenname: Alexander
  surname: Ku
  fullname: Ku, Alexander
  organization: Google Inc
– sequence: 7
  givenname: Dan
  surname: Newburger
  fullname: Newburger, Dan
  organization: Verily Life Sciences
– sequence: 8
  givenname: Jojo
  surname: Dijamco
  fullname: Dijamco, Jojo
  organization: Verily Life Sciences
– sequence: 9
  givenname: Nam
  surname: Nguyen
  fullname: Nguyen, Nam
  organization: Verily Life Sciences
– sequence: 10
  givenname: Pegah T
  surname: Afshar
  fullname: Afshar, Pegah T
  organization: Verily Life Sciences
– sequence: 11
  givenname: Sam S
  surname: Gross
  fullname: Gross, Sam S
  organization: Verily Life Sciences
– sequence: 12
  givenname: Lizzie
  surname: Dorfman
  fullname: Dorfman, Lizzie
  organization: Verily Life Sciences, Google Inc
– sequence: 13
  givenname: Cory Y
  surname: McLean
  fullname: McLean, Cory Y
  organization: Verily Life Sciences, Google Inc
– sequence: 14
  givenname: Mark A
  surname: DePristo
  fullname: DePristo, Mark A
  email: mdepristo@google.com
  organization: Verily Life Sciences, Google Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30247488$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEUx4NU7E3wE8iALwqdNfeZfVyK2oVixRZfQyZzMqbOZNYkU_Xbm6XbbleLSOAkHH7_k3M7RHt-9IDQC4JnBLP6rW_SjFMmnqADIrgsiZzLvfzGdVViIuQ-OozxGmMsuZTP0D7DlFe8rg_QclFM3t1AiLovLj9-KrRvizjovi-db6EvbnRw2qfCZBeEYorOd0ULsCo8TCGLPKQfY_gWj9FTq_sIzzf3Ebp6_-7q9Kw8v_iwPF2cl0ZwkUpmNdSUcyOsaCzlUGVrKbNGc9JKaBuDJZ4zzIggVhBZN9BwDZbXYFvJjtDr27CrMH6fICY1uGig77WHcYqKEkIqTsicZPTVH-j1OAWfk1OMUsmYkFX9L4oSUUk2x7m191Sne1DO2zEFbdZfq4WoaIU5oVWmZo9Q-bQwOJNnZl327wje7Agyk-Bn6vQUo1pefv5_9uLLLnvygG3WU4OYTXTd1xRvJTv4y00PpmaAVq2CG3T4pe72ZFuYCWOMAawyLunkcgpBu14RrNaLqPIiqvUibsd0L7iL-Qi6qStmxHcQtgP4i_0NGJrl0w
CitedBy_id crossref_primary_10_1016_j_dnarep_2023_103529
crossref_primary_10_3389_fgene_2020_593407
crossref_primary_10_1088_2632_2153_ab7e19
crossref_primary_10_3389_fgene_2022_943972
crossref_primary_10_1038_s41598_024_60545_1
crossref_primary_10_1002_pd_6144
crossref_primary_10_1038_s42255_022_00720_8
crossref_primary_10_1093_bib_bbac221
crossref_primary_10_1016_j_molp_2022_06_009
crossref_primary_10_1186_s12859_021_04311_4
crossref_primary_10_1016_j_csbj_2022_08_019
crossref_primary_10_1016_j_gim_2024_101125
crossref_primary_10_1093_bib_bbaa038
crossref_primary_10_1101_gr_279510_124
crossref_primary_10_3390_jpm12010113
crossref_primary_10_1186_s12859_023_05193_4
crossref_primary_10_1038_s41587_020_0711_0
crossref_primary_10_1101_gr_279227_124
crossref_primary_10_1016_j_fertnstert_2020_09_156
crossref_primary_10_1093_bioinformatics_btac824
crossref_primary_10_1016_j_ygeno_2023_110591
crossref_primary_10_1093_bioinformatics_btac828
crossref_primary_10_1371_journal_pone_0244151
crossref_primary_10_1093_bib_bbaa272
crossref_primary_10_1016_j_agrcom_2024_100039
crossref_primary_10_1038_s41531_022_00342_7
crossref_primary_10_2991_jaims_d_210512_001
crossref_primary_10_1038_s41598_022_10619_9
crossref_primary_10_1093_bib_bbaa148
crossref_primary_10_1093_ve_veab101
crossref_primary_10_1139_gen_2020_0131
crossref_primary_10_1038_s42003_022_03397_7
crossref_primary_10_1186_s13059_022_02636_8
crossref_primary_10_1038_s42003_024_06981_1
crossref_primary_10_1016_j_ymthe_2024_11_025
crossref_primary_10_1093_bioinformatics_btaa1081
crossref_primary_10_1016_j_wneu_2019_09_092
crossref_primary_10_1038_s41467_025_56126_z
crossref_primary_10_1016_j_fmre_2025_03_001
crossref_primary_10_1016_j_mec_2022_e00209
crossref_primary_10_1002_mds_30103
crossref_primary_10_2196_59505
crossref_primary_10_1038_s41592_022_01445_y
crossref_primary_10_1155_2023_3107568
crossref_primary_10_7554_eLife_98300
crossref_primary_10_1186_s12859_023_05434_6
crossref_primary_10_3390_life12020279
crossref_primary_10_1016_j_plantsci_2023_111852
crossref_primary_10_1038_s41592_022_01432_3
crossref_primary_10_3389_fbioe_2025_1537471
crossref_primary_10_1038_s41467_024_52380_9
crossref_primary_10_3389_fimmu_2024_1357217
crossref_primary_10_1038_s41576_021_00431_y
crossref_primary_10_1038_s41467_024_47349_7
crossref_primary_10_1111_eva_13488
crossref_primary_10_3390_s23010062
crossref_primary_10_1186_s12859_021_04499_5
crossref_primary_10_1186_s12915_023_01758_0
crossref_primary_10_1016_j_cgh_2024_09_004
crossref_primary_10_1016_j_ygeno_2020_10_038
crossref_primary_10_1038_s41588_024_01657_2
crossref_primary_10_1038_s41587_020_0503_6
crossref_primary_10_1038_s41587_023_01793_w
crossref_primary_10_1038_s41467_024_44980_2
crossref_primary_10_1371_journal_pbio_3002755
crossref_primary_10_3390_genes14061283
crossref_primary_10_1038_s41576_019_0122_6
crossref_primary_10_1038_s41587_024_02348_3
crossref_primary_10_1080_01677063_2024_2365634
crossref_primary_10_1093_bib_bbad320
crossref_primary_10_1186_s13073_019_0689_8
crossref_primary_10_1038_s43018_021_00243_3
crossref_primary_10_1093_nargab_lqab004
crossref_primary_10_1172_JCI169137
crossref_primary_10_1126_science_abg8871
crossref_primary_10_1093_gigascience_giae084
crossref_primary_10_1038_s41576_021_00367_3
crossref_primary_10_1093_clinchem_hvad073
crossref_primary_10_1016_j_imed_2021_03_005
crossref_primary_10_1038_s41587_022_01435_7
crossref_primary_10_1016_j_parkreldis_2025_107311
crossref_primary_10_3389_fgene_2023_1173676
crossref_primary_10_1186_s13059_023_03116_3
crossref_primary_10_3390_ijms232012437
crossref_primary_10_1002_ajmg_a_64006
crossref_primary_10_1093_bib_bbac301
crossref_primary_10_2147_PGPM_S290781
crossref_primary_10_1007_s13258_023_01439_w
crossref_primary_10_1016_j_tig_2024_07_001
crossref_primary_10_1038_s41467_023_42336_w
crossref_primary_10_1128_mra_00730_24
crossref_primary_10_1038_s41746_025_01471_y
crossref_primary_10_1093_bib_bbad508
crossref_primary_10_1371_journal_pone_0279356
crossref_primary_10_1093_bib_bbaa238
crossref_primary_10_1186_s12859_023_05292_2
crossref_primary_10_1038_s41580_021_00407_0
crossref_primary_10_1038_s41592_023_02069_6
crossref_primary_10_1126_science_ads0215
crossref_primary_10_1186_s13059_024_03297_5
crossref_primary_10_1016_j_pbi_2019_12_005
crossref_primary_10_1038_s41587_019_0217_9
crossref_primary_10_1186_s12864_021_07575_5
crossref_primary_10_1186_s12864_022_09084_5
crossref_primary_10_1186_s13073_023_01183_6
crossref_primary_10_7554_eLife_98300_3
crossref_primary_10_1038_s42003_021_02777_9
crossref_primary_10_1186_s12920_024_01795_w
crossref_primary_10_3390_app14010307
crossref_primary_10_1093_molbev_msad167
crossref_primary_10_3390_metabo12030202
crossref_primary_10_1101_gr_278070_123
crossref_primary_10_2337_dc22_0295
crossref_primary_10_1038_s41467_023_42531_9
crossref_primary_10_1038_s41525_020_0132_5
crossref_primary_10_1038_s41592_022_01609_w
crossref_primary_10_1186_s12864_024_11196_z
crossref_primary_10_3389_fgene_2022_999587
crossref_primary_10_1111_tpj_16979
crossref_primary_10_1002_ctd2_252
crossref_primary_10_1016_j_xgen_2024_100629
crossref_primary_10_1038_s41591_021_01294_w
crossref_primary_10_1101_gr_277031_122
crossref_primary_10_1371_journal_pcbi_1012468
crossref_primary_10_36676_jrps_v15_i3_1484
crossref_primary_10_1155_2020_7231205
crossref_primary_10_1038_s41588_025_02117_1
crossref_primary_10_1016_j_jai_2025_03_004
crossref_primary_10_1016_j_xgen_2023_100484
crossref_primary_10_1093_nar_gkad970
crossref_primary_10_1158_2326_6066_CIR_22_0306
crossref_primary_10_1371_journal_pcbi_1009186
crossref_primary_10_1038_s41586_023_06425_6
crossref_primary_10_1038_s41587_022_01559_w
crossref_primary_10_1021_acs_jproteome_9b00840
crossref_primary_10_3390_ijms26010363
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_3390_ijms241914645
crossref_primary_10_1186_s12859_024_05821_7
crossref_primary_10_1038_s41467_020_19971_8
crossref_primary_10_1098_rstb_2021_0195
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_3390_pathogens12050675
crossref_primary_10_1186_s12859_020_03813_x
crossref_primary_10_1002_ajmg_a_63060
crossref_primary_10_1002_humu_23699
crossref_primary_10_1016_j_heliyon_2023_e13368
crossref_primary_10_1093_bib_bbae613
crossref_primary_10_1097_MPH_0000000000002839
crossref_primary_10_1016_j_cca_2023_117568
crossref_primary_10_1038_s43588_022_00387_x
crossref_primary_10_1101_gr_279982_124
crossref_primary_10_3389_fmolb_2021_647277
crossref_primary_10_1002_humu_24304
crossref_primary_10_1016_j_celrep_2023_111992
crossref_primary_10_3390_genes15060700
crossref_primary_10_1021_acs_biochem_9b00613
crossref_primary_10_1038_s41525_021_00227_3
crossref_primary_10_1038_s41598_021_92993_4
crossref_primary_10_1159_000538930
crossref_primary_10_1093_molbev_msaf002
crossref_primary_10_1371_journal_pone_0291223
crossref_primary_10_2174_0115748936284044240108074937
crossref_primary_10_56294_dm2025857
crossref_primary_10_1002_bimj_202300278
crossref_primary_10_1016_j_jhep_2025_02_007
crossref_primary_10_1038_s41431_023_01303_1
crossref_primary_10_1186_s13059_024_03319_2
crossref_primary_10_1186_s12859_023_05216_0
crossref_primary_10_1093_bib_bbaa370
crossref_primary_10_1101_gr_279066_124
crossref_primary_10_1371_journal_pbio_3002795
crossref_primary_10_3389_fgene_2020_544162
crossref_primary_10_1016_j_pnpbp_2023_110928
crossref_primary_10_1093_nsr_nwae335
crossref_primary_10_3390_cancers14102350
crossref_primary_10_1001_jama_2020_20457
crossref_primary_10_1016_j_lana_2024_100863
crossref_primary_10_1038_s42256_020_0167_4
crossref_primary_10_1093_bib_bbac305
crossref_primary_10_1109_ACCESS_2021_3110269
crossref_primary_10_1038_s41576_021_00389_x
crossref_primary_10_1016_j_xgen_2024_100527
crossref_primary_10_1038_s41592_021_01299_w
crossref_primary_10_3390_biology13020088
crossref_primary_10_1093_molbev_msae163
crossref_primary_10_1186_s13073_023_01194_3
crossref_primary_10_1016_j_xgen_2022_100169
crossref_primary_10_3389_fonc_2023_1215729
crossref_primary_10_1002_cpt_3124
crossref_primary_10_1016_j_xhgg_2023_100227
crossref_primary_10_2139_ssrn_3977260
crossref_primary_10_3390_jpm12060959
crossref_primary_10_1056_AIoa2300138
crossref_primary_10_1093_bioinformatics_btaa116
crossref_primary_10_3389_fimmu_2023_1151224
crossref_primary_10_1016_j_nbd_2023_106208
crossref_primary_10_1038_s41588_024_02022_z
crossref_primary_10_1093_g3journal_jkae129
crossref_primary_10_1080_10408363_2023_2259466
crossref_primary_10_1093_bioinformatics_btaa230
crossref_primary_10_1007_s40484_019_0187_4
crossref_primary_10_1038_s41586_024_07532_8
crossref_primary_10_1016_j_femme_2019_09_001
crossref_primary_10_1016_j_gim_2022_02_007
crossref_primary_10_1038_s41598_022_20113_x
crossref_primary_10_1038_s42003_024_06251_0
crossref_primary_10_1128_jcm_01842_22
crossref_primary_10_1016_j_drudis_2020_10_002
crossref_primary_10_1007_s10462_020_09951_1
crossref_primary_10_1109_TCBB_2021_3066086
crossref_primary_10_1186_s12859_023_05596_3
crossref_primary_10_1038_s41467_024_50079_5
crossref_primary_10_1038_s41477_023_01520_y
crossref_primary_10_1093_nar_gkad1010
crossref_primary_10_1186_s13059_019_1689_0
crossref_primary_10_3390_ijms23094532
crossref_primary_10_1038_s41531_024_00778_z
crossref_primary_10_1093_nar_gkae1294
crossref_primary_10_1101_gr_279292_124
crossref_primary_10_1016_j_gpb_2023_08_001
crossref_primary_10_1146_annurev_genom_021623_081639
crossref_primary_10_1016_j_xhgg_2024_100389
crossref_primary_10_1007_s11596_024_2865_3
crossref_primary_10_1186_s12864_021_07996_2
crossref_primary_10_1371_journal_pone_0289346
crossref_primary_10_3389_fgene_2023_1189775
crossref_primary_10_1038_s41588_023_01469_w
crossref_primary_10_1038_s41467_023_43876_x
crossref_primary_10_3389_fbinf_2024_1384497
crossref_primary_10_1007_s00438_024_02209_3
crossref_primary_10_1038_s41597_020_0508_5
crossref_primary_10_1038_s41698_022_00340_1
crossref_primary_10_1186_s13059_023_03061_1
crossref_primary_10_1093_jamiaopen_ooae052
crossref_primary_10_1371_journal_pcbi_1009269
crossref_primary_10_1126_science_abj6987
crossref_primary_10_1016_j_neubiorev_2022_104559
crossref_primary_10_1016_j_cell_2019_03_003
crossref_primary_10_1016_j_tig_2019_08_006
crossref_primary_10_1093_g3journal_jkad028
crossref_primary_10_1016_j_csbj_2020_06_017
crossref_primary_10_1016_j_genrep_2023_101837
crossref_primary_10_12688_wellcomeopenres_20385_1
crossref_primary_10_1038_s41588_024_02067_0
crossref_primary_10_1152_ajpheart_00149_2024
crossref_primary_10_3389_fpls_2024_1448807
crossref_primary_10_2217_fon_2022_1041
crossref_primary_10_1093_nar_gkad855
crossref_primary_10_1186_s13073_023_01240_0
crossref_primary_10_1016_j_fsigen_2022_102785
crossref_primary_10_1002_elps_202300143
crossref_primary_10_1016_j_neurobiolaging_2023_10_010
crossref_primary_10_3389_fgene_2022_887644
crossref_primary_10_1093_bioinformatics_btab225
crossref_primary_10_1371_journal_pgen_1011116
crossref_primary_10_1038_s41587_024_02382_1
crossref_primary_10_3389_fbinf_2022_914435
crossref_primary_10_1038_s41467_024_44935_7
crossref_primary_10_1038_s41597_024_04064_8
crossref_primary_10_1038_s41598_024_59683_3
crossref_primary_10_1016_j_bbadis_2023_166909
crossref_primary_10_1007_s10048_024_00790_8
crossref_primary_10_1038_s41559_023_02165_y
crossref_primary_10_3390_genes16020196
crossref_primary_10_1038_s41439_024_00284_x
crossref_primary_10_46871_eams_1470170
crossref_primary_10_1016_j_gpb_2022_11_001
crossref_primary_10_1093_bfgp_elaa009
crossref_primary_10_1136_jmedgenet_2020_107016
crossref_primary_10_35713_aic_v3_i3_42
crossref_primary_10_1089_cmb_2018_0172
crossref_primary_10_12688_f1000research_145486_1
crossref_primary_10_1016_j_jare_2024_05_020
crossref_primary_10_1111_1755_0998_13355
crossref_primary_10_1002_cpt_2749
crossref_primary_10_1093_bioinformatics_btad775
crossref_primary_10_1016_j_patter_2021_100328
crossref_primary_10_1515_jib_2023_0043
crossref_primary_10_1038_s41587_019_0074_6
crossref_primary_10_1371_journal_pgen_1011228
crossref_primary_10_1186_s12859_020_03546_x
crossref_primary_10_1186_s12915_023_01656_5
crossref_primary_10_1038_s41598_025_93445_z
crossref_primary_10_1007_s00125_024_06160_1
crossref_primary_10_1186_s12916_022_02535_6
crossref_primary_10_1093_g3journal_jkae134
crossref_primary_10_1038_s41592_022_01440_3
crossref_primary_10_1016_j_ajhg_2022_04_007
crossref_primary_10_2147_IDR_S292743
crossref_primary_10_1038_s41598_022_05833_4
crossref_primary_10_1016_j_ajhg_2024_08_024
crossref_primary_10_1093_bioinformatics_btz218
crossref_primary_10_1371_journal_ppat_1008623
crossref_primary_10_3390_cancers13081751
crossref_primary_10_1007_s12539_024_00653_8
crossref_primary_10_1016_j_patter_2023_100915
crossref_primary_10_1007_s10803_022_05636_6
crossref_primary_10_1016_j_euros_2024_02_006
crossref_primary_10_1128_spectrum_05237_22
crossref_primary_10_1016_j_future_2024_03_050
crossref_primary_10_1186_s13075_023_03172_x
crossref_primary_10_1055_s_0044_1786397
crossref_primary_10_1111_tan_15020
crossref_primary_10_1038_s41467_024_44804_3
crossref_primary_10_1093_jhered_esae059
crossref_primary_10_1126_science_abe1544
crossref_primary_10_3389_fcell_2020_00520
crossref_primary_10_1093_g3journal_jkac020
crossref_primary_10_1038_s41598_021_87226_7
crossref_primary_10_1016_j_yamp_2024_08_001
crossref_primary_10_4103_singaporemedj_SMJ_2021_438
crossref_primary_10_3389_fbinf_2025_1507448
crossref_primary_10_1038_s41467_023_38271_5
crossref_primary_10_7717_peerj_10897
crossref_primary_10_1038_s41598_020_73081_5
crossref_primary_10_1016_j_molcel_2024_01_014
crossref_primary_10_1093_jhered_esae042
crossref_primary_10_3389_fonc_2022_1054231
crossref_primary_10_1161_CIRCGEN_121_003500
crossref_primary_10_1038_s41467_022_35389_w
crossref_primary_10_1177_2050313X241249088
crossref_primary_10_26599_TST_2022_9010032
crossref_primary_10_7717_peerj_cs_1340
crossref_primary_10_1186_s12859_024_05793_8
crossref_primary_10_1371_journal_pone_0277680
crossref_primary_10_1038_s41598_024_78170_3
crossref_primary_10_1038_s41587_019_0140_0
crossref_primary_10_1093_bioinformatics_btae539
crossref_primary_10_1093_nar_gkad539
crossref_primary_10_3390_biomedinformatics4030096
crossref_primary_10_3389_fpls_2023_1143512
crossref_primary_10_3390_s20247116
crossref_primary_10_1038_s10038_024_01275_0
crossref_primary_10_1186_s12864_023_09453_8
crossref_primary_10_1371_journal_pone_0260908
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_1080_15476286_2024_2443876
crossref_primary_10_1089_cmb_2021_0269
crossref_primary_10_1007_s00439_023_02553_1
crossref_primary_10_1063_5_0091135
crossref_primary_10_1016_j_gim_2022_04_025
crossref_primary_10_1093_g3journal_jkad130
crossref_primary_10_1038_s41598_022_26181_3
crossref_primary_10_1371_journal_pone_0316766
crossref_primary_10_1186_s12915_023_01579_1
crossref_primary_10_1038_s41586_022_05325_5
crossref_primary_10_1038_s41598_020_77218_4
crossref_primary_10_1186_s13059_024_03239_1
crossref_primary_10_1089_omi_2024_0200
crossref_primary_10_1038_s41576_024_00709_x
crossref_primary_10_3390_genes15121503
crossref_primary_10_1007_s11427_024_2578_6
crossref_primary_10_7554_eLife_84553_2
crossref_primary_10_3390_diagnostics13030373
crossref_primary_10_1101_gr_277334_122
crossref_primary_10_1093_bioinformatics_btad694
crossref_primary_10_3390_ijms26072850
crossref_primary_10_1038_s41422_023_00849_5
crossref_primary_10_3390_catal13060961
crossref_primary_10_5010_JPB_2024_51_034_344
crossref_primary_10_7554_eLife_98058
crossref_primary_10_1038_s41592_023_01932_w
crossref_primary_10_1038_s41588_024_01719_5
crossref_primary_10_1038_s41592_019_0403_1
crossref_primary_10_1038_s41592_024_02430_3
crossref_primary_10_3390_genes11091060
crossref_primary_10_1002_ctm2_1612
crossref_primary_10_1038_s41467_022_30680_2
crossref_primary_10_3389_fpls_2024_1385768
crossref_primary_10_3390_jcdd7040055
crossref_primary_10_1038_s41541_023_00671_5
crossref_primary_10_3390_biomedicines13010099
crossref_primary_10_1002_humu_24163
crossref_primary_10_1016_j_xpro_2024_103114
crossref_primary_10_7717_peerj_13613
crossref_primary_10_1007_s00521_025_10992_2
crossref_primary_10_1093_bioinformatics_btac373
crossref_primary_10_1172_jci_insight_176985
crossref_primary_10_1186_s13040_021_00258_7
crossref_primary_10_3389_fonc_2024_1486310
crossref_primary_10_1158_2159_8290_CD_21_0090
crossref_primary_10_1038_s41587_020_0719_5
crossref_primary_10_1038_s41431_023_01396_8
crossref_primary_10_1007_s11427_024_2742_y
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_1038_s41586_025_08596_w
crossref_primary_10_1186_s12864_024_10446_4
crossref_primary_10_1126_sciimmunol_abf7473
crossref_primary_10_1016_j_gene_2022_146554
crossref_primary_10_17816_ecogen54703
crossref_primary_10_1038_s41598_024_52386_9
crossref_primary_10_3390_cimb45120608
crossref_primary_10_1038_s41531_025_00896_2
crossref_primary_10_1016_j_biopsych_2020_06_033
crossref_primary_10_1016_j_jmoldx_2021_01_015
crossref_primary_10_3390_biomedicines12102410
crossref_primary_10_1111_pai_13937
crossref_primary_10_1093_bfgp_elac041
crossref_primary_10_1093_bioinformatics_btae565
crossref_primary_10_3389_fphy_2019_00247
crossref_primary_10_1016_j_lfs_2024_123209
crossref_primary_10_1093_g3journal_jkaf044
crossref_primary_10_1093_gbe_evae018
crossref_primary_10_1038_s41467_023_43556_w
crossref_primary_10_1016_j_mocell_2024_100139
crossref_primary_10_1093_bioinformatics_btad480
crossref_primary_10_1038_s10038_020_00862_1
crossref_primary_10_1038_s41431_023_01406_9
crossref_primary_10_1515_jib_2022_0059
crossref_primary_10_1002_1873_3468_14068
crossref_primary_10_1038_s41587_021_00861_3
crossref_primary_10_1093_gigascience_giac125
crossref_primary_10_1186_s12929_024_01110_w
crossref_primary_10_3390_cells11223640
crossref_primary_10_1016_j_ncl_2024_08_003
crossref_primary_10_1038_s41467_024_52376_5
crossref_primary_10_3389_fgene_2020_551220
crossref_primary_10_1093_nar_gkad373
crossref_primary_10_1093_nar_gkac369
crossref_primary_10_2174_1574893618666230224160716
crossref_primary_10_1038_s41439_024_00276_x
crossref_primary_10_1093_nar_gkae789
crossref_primary_10_1111_jbg_12760
crossref_primary_10_1093_bioinformatics_btz275
crossref_primary_10_1038_s41586_023_05896_x
crossref_primary_10_1016_j_ymeth_2022_08_001
crossref_primary_10_1038_s41592_022_01515_1
crossref_primary_10_1038_s41598_021_87445_y
crossref_primary_10_3390_ijms23116272
crossref_primary_10_1002_ajmg_c_32057
crossref_primary_10_1093_gbe_evad008
crossref_primary_10_3390_ijms23137176
crossref_primary_10_1016_j_fsigen_2024_103156
crossref_primary_10_1039_D1NP00014D
crossref_primary_10_1002_ajmg_c_32060
crossref_primary_10_1093_gbe_evae221
crossref_primary_10_1101_gr_276957_122
crossref_primary_10_2147_OTT_S246710
crossref_primary_10_1007_s10142_024_01417_9
crossref_primary_10_3389_fmicb_2023_1214924
crossref_primary_10_1109_ACCESS_2023_3266983
crossref_primary_10_1038_s41592_023_01799_x
crossref_primary_10_1186_s12864_024_10885_z
crossref_primary_10_3390_life12111939
crossref_primary_10_1093_bib_bbaf067
crossref_primary_10_3389_fbinf_2021_746712
crossref_primary_10_1186_s12859_019_3103_z
crossref_primary_10_1186_s13059_021_02282_6
crossref_primary_10_1038_s41392_021_00729_7
crossref_primary_10_3389_fped_2023_1203289
crossref_primary_10_1002_ajmg_a_63522
crossref_primary_10_1016_j_celrep_2021_109665
crossref_primary_10_1038_s41587_021_00993_6
crossref_primary_10_1038_s41598_023_42600_5
crossref_primary_10_1186_s13059_021_02449_1
crossref_primary_10_3390_ijms252312554
crossref_primary_10_1007_s00439_021_02402_z
crossref_primary_10_1016_j_jtha_2024_12_030
crossref_primary_10_3389_fmicb_2024_1474078
crossref_primary_10_1111_2041_210X_13901
crossref_primary_10_1186_s13321_019_0364_5
crossref_primary_10_1002_pld3_344
crossref_primary_10_1016_j_neumar_2024_100034
crossref_primary_10_3389_fpls_2024_1358490
crossref_primary_10_1038_s41467_024_54970_z
crossref_primary_10_1016_j_ajhg_2022_02_014
crossref_primary_10_1038_s41588_024_01717_7
crossref_primary_10_1186_s13059_022_02771_2
crossref_primary_10_61186_iau_34_3_207
crossref_primary_10_1016_j_yamp_2023_01_002
crossref_primary_10_1038_s41525_023_00389_2
crossref_primary_10_1373_clinchem_2019_308296
crossref_primary_10_1038_s41525_024_00429_5
crossref_primary_10_1101_gr_279747_124
crossref_primary_10_1007_s41745_020_00189_y
crossref_primary_10_1016_j_yamp_2019_07_010
crossref_primary_10_1093_nargab_lqad056
crossref_primary_10_1016_j_ijpara_2019_10_004
crossref_primary_10_1002_ajmg_a_62743
crossref_primary_10_1186_s13073_023_01220_4
crossref_primary_10_1093_bioinformatics_btad268
crossref_primary_10_3389_fdgth_2025_1550407
crossref_primary_10_1038_s41598_022_12346_7
crossref_primary_10_1038_s41598_023_35791_4
crossref_primary_10_1186_s13059_023_02923_y
crossref_primary_10_1038_s41598_021_81169_9
crossref_primary_10_1136_jitc_2023_007073
crossref_primary_10_1186_s44342_024_00032_1
crossref_primary_10_1186_s13059_023_02969_y
crossref_primary_10_1093_g3journal_jkae280
crossref_primary_10_1093_nargab_lqae031
crossref_primary_10_3389_fendo_2025_1472754
crossref_primary_10_1186_s13059_019_1709_0
crossref_primary_10_1038_s41467_022_29268_7
crossref_primary_10_1093_gigascience_giae116
crossref_primary_10_1038_s41467_019_12493_y
crossref_primary_10_1007_s42995_024_00252_y
crossref_primary_10_1016_j_xpro_2022_101418
crossref_primary_10_1093_nar_gkac076
crossref_primary_10_1146_annurev_animal_111523_102217
crossref_primary_10_1186_s12859_023_05255_7
crossref_primary_10_1016_j_fsigen_2022_102776
crossref_primary_10_1002_humu_24197
crossref_primary_10_1038_s41592_024_02407_2
crossref_primary_10_32628_CSEIT241051083
crossref_primary_10_1038_s41467_023_36004_2
crossref_primary_10_1093_nargab_lqae013
crossref_primary_10_22625_2072_6732_2024_16_4_68_77
crossref_primary_10_1016_j_drudis_2024_103990
crossref_primary_10_1093_bioinformatics_btad398
crossref_primary_10_1038_s41467_022_31765_8
crossref_primary_10_1016_j_xhgg_2021_100081
crossref_primary_10_1093_bioinformatics_btae129
crossref_primary_10_1186_s40246_022_00396_x
crossref_primary_10_1002_mrc_5304
crossref_primary_10_3389_fendo_2024_1455689
crossref_primary_10_1038_s41431_023_01374_0
crossref_primary_10_3389_fimmu_2023_1166620
crossref_primary_10_1038_s41586_023_06062_z
crossref_primary_10_1186_s12864_023_09506_y
crossref_primary_10_1093_g3journal_jkad188
crossref_primary_10_1084_jem_20220979
crossref_primary_10_1126_sciadv_abm6494
crossref_primary_10_5858_arpa_2024_0037_CP
crossref_primary_10_1111_tan_14562
crossref_primary_10_3389_fonc_2021_666937
crossref_primary_10_1097_IM9_0000000000000134
crossref_primary_10_1038_s41576_023_00590_0
crossref_primary_10_1039_D3DD00218G
crossref_primary_10_1016_j_gim_2025_101385
crossref_primary_10_1186_s12859_019_3226_2
crossref_primary_10_1186_s12915_023_01661_8
crossref_primary_10_1111_1755_0998_13783
crossref_primary_10_1186_s12859_023_05243_x
crossref_primary_10_1371_journal_pone_0252207
crossref_primary_10_1038_s41597_022_01133_8
crossref_primary_10_1186_s44342_025_00040_9
crossref_primary_10_3389_fpls_2025_1508027
crossref_primary_10_3390_genes15121592
crossref_primary_10_1038_s41587_024_02190_7
crossref_primary_10_1111_1751_7915_13936
crossref_primary_10_1186_s12864_024_10961_4
crossref_primary_10_1007_s10462_024_11020_w
crossref_primary_10_3389_fpls_2024_1374648
crossref_primary_10_1038_s41467_023_39714_9
crossref_primary_10_1186_s12864_024_10645_z
crossref_primary_10_1016_j_molcel_2022_08_007
crossref_primary_10_1371_journal_ppat_1012259
crossref_primary_10_1093_gigascience_giab057
crossref_primary_10_3389_fmolb_2019_00044
crossref_primary_10_1093_bfgp_elae003
crossref_primary_10_1038_s41531_023_00595_w
crossref_primary_10_1186_s13256_022_03291_0
crossref_primary_10_1016_j_ympev_2024_108062
crossref_primary_10_3389_fonc_2024_1422811
crossref_primary_10_1016_j_patter_2020_100073
crossref_primary_10_1016_j_patter_2020_100193
crossref_primary_10_1038_s41598_020_71471_3
crossref_primary_10_3390_biomedicines10092074
crossref_primary_10_1371_journal_pone_0310718
crossref_primary_10_1186_s12864_022_08365_3
crossref_primary_10_1099_mgen_0_000979
crossref_primary_10_1099_mgen_0_000615
crossref_primary_10_1038_s41588_024_02029_6
crossref_primary_10_1186_s13148_024_01711_0
crossref_primary_10_1016_j_mec_2020_e00149
crossref_primary_10_1186_s40537_023_00853_x
crossref_primary_10_1161_CIRCGEN_123_004470
crossref_primary_10_1093_gbe_evab135
crossref_primary_10_3390_genes10090652
crossref_primary_10_1038_s41525_025_00483_7
crossref_primary_10_1093_bioinformatics_btae042
crossref_primary_10_1186_s12859_023_05294_0
crossref_primary_10_1016_j_xplc_2024_101000
crossref_primary_10_1371_journal_pone_0226461
crossref_primary_10_1097_MOP_0000000000001260
crossref_primary_10_1038_s41375_021_01469_x
crossref_primary_10_15275_rusomj_2024_0308
crossref_primary_10_1007_s11030_021_10225_3
crossref_primary_10_1111_2041_210X_14001
crossref_primary_10_1186_s13059_020_02017_z
crossref_primary_10_3390_jpm12010072
crossref_primary_10_1038_s41598_020_58821_x
crossref_primary_10_2217_pgs_2023_0029
crossref_primary_10_1016_j_isci_2024_109257
crossref_primary_10_1093_bib_bbae593
crossref_primary_10_1093_bib_bbae473
crossref_primary_10_1002_humu_24311
crossref_primary_10_1038_s41592_018_0209_6
crossref_primary_10_1038_s41598_021_99026_0
crossref_primary_10_1146_annurev_genom_083117_021641
crossref_primary_10_3103_S0146411624700147
crossref_primary_10_1038_s41467_023_44023_2
crossref_primary_10_3389_fonc_2021_637431
crossref_primary_10_1128_JVI_00299_21
crossref_primary_10_1038_s41467_019_09027_x
crossref_primary_10_3390_cells11142244
crossref_primary_10_1021_acs_jcim_3c01726
crossref_primary_10_3390_plants9010034
crossref_primary_10_3390_cancers16172955
crossref_primary_10_1016_j_fsigen_2023_103005
crossref_primary_10_1038_s41588_025_02111_7
crossref_primary_10_1002_humu_24438
crossref_primary_10_1002_tpg2_20135
crossref_primary_10_1186_s13073_021_00891_1
crossref_primary_10_1016_j_ailsci_2021_100017
crossref_primary_10_3390_ijms25126540
crossref_primary_10_1002_humu_24460
crossref_primary_10_1126_science_abf7117
crossref_primary_10_1371_journal_pone_0296785
crossref_primary_10_1093_bib_bbae269
crossref_primary_10_1002_ece3_70968
crossref_primary_10_3390_genes12071098
crossref_primary_10_1039_D4SC01714E
crossref_primary_10_1126_science_abi7489
crossref_primary_10_1093_carcin_bgad030
crossref_primary_10_21638_spbu03_2021_202
crossref_primary_10_1016_j_molcel_2020_06_012
crossref_primary_10_1017_qpb_2021_18
crossref_primary_10_1093_hr_uhae315
crossref_primary_10_1093_hr_uhad103
crossref_primary_10_1186_s12967_025_06213_y
crossref_primary_10_1089_cmb_2024_0483
crossref_primary_10_1038_s41587_021_01049_5
crossref_primary_10_1093_bioadv_vbad062
crossref_primary_10_1002_humu_24455
crossref_primary_10_1093_bib_bbae138
crossref_primary_10_1101_gr_279334_124
crossref_primary_10_1016_j_cub_2020_03_053
crossref_primary_10_1016_j_mrrev_2022_108426
crossref_primary_10_1038_s41588_022_01148_2
crossref_primary_10_1038_s41587_021_01158_1
crossref_primary_10_1016_j_xgen_2022_100128
crossref_primary_10_1371_journal_pgen_1010811
crossref_primary_10_3390_biology12070997
crossref_primary_10_1097_JBR_0000000000000068
crossref_primary_10_1038_s41467_024_45884_x
crossref_primary_10_1093_nutrit_nuac033
crossref_primary_10_1097_ACI_0000000000000691
crossref_primary_10_1101_gr_279396_124
crossref_primary_10_1002_mds_29654
crossref_primary_10_1038_s41592_024_02262_1
crossref_primary_10_1007_s00122_022_04137_5
crossref_primary_10_1101_gr_276917_122
crossref_primary_10_1038_s41586_022_04808_9
crossref_primary_10_1371_journal_pcbi_1008815
crossref_primary_10_3390_jcm9072220
crossref_primary_10_3390_life13081668
crossref_primary_10_3389_fgene_2023_1220750
crossref_primary_10_1101_gr_275579_121
crossref_primary_10_7717_peerj_cs_278
crossref_primary_10_1038_s43018_020_00139_8
crossref_primary_10_7554_eLife_84553
crossref_primary_10_1146_annurev_arplant_080620_114342
crossref_primary_10_1371_journal_pone_0303938
crossref_primary_10_1186_s12951_025_03169_5
crossref_primary_10_1186_s12711_023_00809_y
crossref_primary_10_1038_s41467_023_39867_7
crossref_primary_10_1038_s41597_024_03569_6
crossref_primary_10_3390_biology13080606
crossref_primary_10_1038_s41388_021_01861_y
crossref_primary_10_3389_fneur_2020_00186
crossref_primary_10_1002_fes3_70024
crossref_primary_10_1038_s41375_024_02304_9
crossref_primary_10_1056_NEJMra2204787
crossref_primary_10_1186_s12859_024_05756_z
crossref_primary_10_12688_f1000research_148237_1
crossref_primary_10_2169_naika_110_492
crossref_primary_10_3389_fgene_2024_1520148
crossref_primary_10_1101_gr_278267_123
crossref_primary_10_1186_s13059_020_02244_4
crossref_primary_10_1016_j_gendis_2025_101603
crossref_primary_10_1038_s41467_023_40898_3
crossref_primary_10_1093_molbev_msad207
crossref_primary_10_1007_s44281_024_00032_9
crossref_primary_10_1038_s41467_019_09025_z
crossref_primary_10_1186_s13059_021_02472_2
crossref_primary_10_3390_jcm12082818
crossref_primary_10_1093_bioinformatics_btae093
crossref_primary_10_2478_ebtj_2018_0012
crossref_primary_10_1038_s41587_019_0368_8
crossref_primary_10_1038_s41467_024_55147_4
crossref_primary_10_1038_s42003_023_05285_0
crossref_primary_10_1186_s12915_024_01820_5
crossref_primary_10_3390_jcdd10030104
crossref_primary_10_1016_j_xgen_2022_100101
crossref_primary_10_1016_j_xhgg_2022_100107
crossref_primary_10_1093_bib_bbab070
crossref_primary_10_1093_bioadv_vbad016
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1186_s12888_024_06392_w
crossref_primary_10_1093_nar_gkaa829
crossref_primary_10_1186_s13059_024_03388_3
crossref_primary_10_1038_s41397_021_00259_z
crossref_primary_10_1186_s12864_020_07013_y
crossref_primary_10_1186_s12864_024_10829_7
crossref_primary_10_15857_ksep_2021_30_2_131
crossref_primary_10_1093_bioadv_vbac054
crossref_primary_10_3389_fgene_2024_1429306
crossref_primary_10_1186_s12859_020_3367_3
crossref_primary_10_1038_s41586_023_06457_y
crossref_primary_10_1093_gigascience_giaa007
crossref_primary_10_1093_bioinformatics_btz901
crossref_primary_10_7717_peerj_14675
crossref_primary_10_1038_s41467_021_24815_0
crossref_primary_10_1093_bioadv_vbad149
crossref_primary_10_1016_j_xhgg_2021_100023
crossref_primary_10_1111_pbi_14224
crossref_primary_10_3389_fmolb_2023_1169109
crossref_primary_10_1016_j_jid_2025_02_130
crossref_primary_10_1007_s00122_022_04105_z
crossref_primary_10_1016_j_ajhg_2021_08_011
crossref_primary_10_1128_spectrum_04289_23
crossref_primary_10_3390_biom13091403
crossref_primary_10_3389_fgene_2023_1258083
crossref_primary_10_1016_j_copbio_2019_12_021
crossref_primary_10_3390_ijms22147583
crossref_primary_10_1093_bib_bbae447
crossref_primary_10_1007_s00520_024_08408_3
crossref_primary_10_3389_fcell_2022_854640
crossref_primary_10_1016_j_arabjc_2023_104948
Cites_doi 10.1101/gr.210500.116
10.1101/gr.078212.108
10.1101/192872
10.1101/223297
10.1093/bioinformatics/btr629
10.1093/gigascience/gix089
10.1038/nature16961
10.1101/gr.088013.108
10.1101/097469
10.1038/nature19057
10.1109/CVPR.2016.308
10.1126/science.1254806
10.1038/nrg.2016.49
10.1038/nrg3655
10.1038/nmeth.3547
10.1016/0893-6080(89)90020-8
10.1093/bioinformatics/btp352
10.1038/ng.806
10.1038/nature10413
10.1101/023754
10.1038/nrg2986
10.1038/nature14236
10.1093/bioinformatics/btu356
10.1186/1471-2164-15-516
10.1038/nbt.3300
10.1101/310458
10.1038/nbt.2835
10.1186/s13073-016-0269-0
10.1371/journal.pcbi.1003031
10.1038/nature15393
ContentType Journal Article
Copyright Springer Nature America, Inc. 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Oct 2018
Springer Nature America, Inc. 2018.
Copyright_xml – notice: Springer Nature America, Inc. 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Oct 2018
– notice: Springer Nature America, Inc. 2018.
DBID AAYXX
CITATION
NPM
N95
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
PRINS
7X8
DOI 10.1038/nbt.4235
DatabaseName CrossRef
PubMed
Gale Business: Insights
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central China
MEDLINE - Academic
DatabaseTitleList Research Library Prep
Research Library Prep
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 987
ExternalDocumentID A572704127
30247488
10_1038_nbt_4235
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMFV
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
CITATION
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7XB
88A
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c545t-3fae8244c5f5bf24e7bf2f23fca41d6edbc0609303151f5168beb4aef48efd63
IEDL.DBID 7X7
ISSN 1087-0156
1546-1696
IngestDate Fri Sep 05 13:11:56 EDT 2025
Sat Aug 23 12:55:15 EDT 2025
Fri Jul 25 08:54:25 EDT 2025
Tue Jun 17 21:24:04 EDT 2025
Tue Jun 10 20:41:37 EDT 2025
Fri Jun 27 05:08:33 EDT 2025
Fri Jun 27 03:49:42 EDT 2025
Fri Jun 27 03:06:22 EDT 2025
Mon Jul 21 06:04:34 EDT 2025
Tue Jul 01 04:38:47 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Wed May 21 12:01:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-3fae8244c5f5bf24e7bf2f23fca41d6edbc0609303151f5168beb4aef48efd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30247488
PQID 2157639042
PQPubID 47191
PageCount 5
ParticipantIDs proquest_miscellaneous_2111741191
proquest_journals_3226335678
proquest_journals_2157639042
gale_infotracmisc_A572704127
gale_infotracacademiconefile_A572704127
gale_incontextgauss_ISR_A572704127
gale_incontextgauss_IOV_A572704127
gale_businessinsightsgauss_A572704127
pubmed_primary_30247488
crossref_citationtrail_10_1038_nbt_4235
crossref_primary_10_1038_nbt_4235
springer_journals_10_1038_nbt_4235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2018
Publisher Springer New York
Nature Publishing Group
Publisher_xml – name: Springer New York
– name: Nature Publishing Group
References R Nielsen (BFnbt4235_CR2) 2011; 12
BFnbt4235_CR25
BFnbt4235_CR26
H Li (BFnbt4235_CR23) 2009; 25
H Li (BFnbt4235_CR3) 2014; 30
BFnbt4235_CR22
LM Bragg (BFnbt4235_CR7) 2013; 9
R Li (BFnbt4235_CR20) 2009; 19
HY Xiong (BFnbt4235_CR16) 2015; 347
BFnbt4235_CR28
K Hornik (BFnbt4235_CR21) 1989; 2
BFnbt4235_CR29
H Li (BFnbt4235_CR19) 2008; 18
RL Goldfeder (BFnbt4235_CR4) 2016; 8
MA Eberle (BFnbt4235_CR18) 2017; 27
TM Keane (BFnbt4235_CR27) 2011; 477
M Lek (BFnbt4235_CR30) 2016; 536
J Dean (BFnbt4235_CR36) 2012; 25
J Ding (BFnbt4235_CR6) 2012; 28
V Mnih (BFnbt4235_CR12) 2015; 518
BFnbt4235_CR35
S Min (BFnbt4235_CR13) 2017; 18
BFnbt4235_CR38
BFnbt4235_CR10
BFnbt4235_CR33
BFnbt4235_CR34
A Krizhevsky (BFnbt4235_CR9) 2012; 25
D Silver (BFnbt4235_CR11) 2016; 529
JM Zook (BFnbt4235_CR37) 2014; 32
MA DePristo (BFnbt4235_CR5) 2011; 43
BFnbt4235_CR17
R Luo (BFnbt4235_CR24) 2017; 6
ZX Yeo (BFnbt4235_CR8) 2014; 15
A Auton (BFnbt4235_CR31) 2015; 526
B Alipanahi (BFnbt4235_CR14) 2015; 33
J Zhou (BFnbt4235_CR15) 2015; 12
S Goodwin (BFnbt4235_CR1) 2016; 17
K Robasky (BFnbt4235_CR32) 2014; 15
References_xml – volume: 27
  start-page: 157
  year: 2017
  ident: BFnbt4235_CR18
  publication-title: Genome Res.
  doi: 10.1101/gr.210500.116
– volume: 18
  start-page: 1851
  year: 2008
  ident: BFnbt4235_CR19
  publication-title: Genome Res.
  doi: 10.1101/gr.078212.108
– ident: BFnbt4235_CR25
  doi: 10.1101/192872
– ident: BFnbt4235_CR26
  doi: 10.1101/223297
– volume: 28
  start-page: 167
  year: 2012
  ident: BFnbt4235_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr629
– volume: 6
  start-page: 1
  year: 2017
  ident: BFnbt4235_CR24
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix089
– volume: 529
  start-page: 484
  year: 2016
  ident: BFnbt4235_CR11
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 25
  start-page: 1223
  year: 2012
  ident: BFnbt4235_CR36
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 1124
  year: 2009
  ident: BFnbt4235_CR20
  publication-title: Genome Res.
  doi: 10.1101/gr.088013.108
– ident: BFnbt4235_CR22
– ident: BFnbt4235_CR35
  doi: 10.1101/097469
– volume: 536
  start-page: 285
  year: 2016
  ident: BFnbt4235_CR30
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 25
  start-page: 1097
  year: 2012
  ident: BFnbt4235_CR9
  publication-title: Adv. Neural Inf. Process Syst.
– ident: BFnbt4235_CR17
  doi: 10.1109/CVPR.2016.308
– volume: 347
  start-page: 1254806
  year: 2015
  ident: BFnbt4235_CR16
  publication-title: Science
  doi: 10.1126/science.1254806
– ident: BFnbt4235_CR28
– volume: 17
  start-page: 333
  year: 2016
  ident: BFnbt4235_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.49
– volume: 15
  start-page: 56
  year: 2014
  ident: BFnbt4235_CR32
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3655
– volume: 12
  start-page: 931
  year: 2015
  ident: BFnbt4235_CR15
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– ident: BFnbt4235_CR10
– volume: 2
  start-page: 359
  year: 1989
  ident: BFnbt4235_CR21
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 25
  start-page: 2078
  year: 2009
  ident: BFnbt4235_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 43
  start-page: 491
  year: 2011
  ident: BFnbt4235_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng.806
– ident: BFnbt4235_CR33
– volume: 477
  start-page: 289
  year: 2011
  ident: BFnbt4235_CR27
  publication-title: Nature
  doi: 10.1038/nature10413
– ident: BFnbt4235_CR38
  doi: 10.1101/023754
– volume: 12
  start-page: 443
  year: 2011
  ident: BFnbt4235_CR2
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2986
– volume: 518
  start-page: 529
  year: 2015
  ident: BFnbt4235_CR12
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 30
  start-page: 2843
  year: 2014
  ident: BFnbt4235_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu356
– volume: 15
  start-page: 516
  year: 2014
  ident: BFnbt4235_CR8
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-516
– volume: 33
  start-page: 831
  year: 2015
  ident: BFnbt4235_CR14
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3300
– ident: BFnbt4235_CR34
  doi: 10.1101/310458
– volume: 32
  start-page: 246
  year: 2014
  ident: BFnbt4235_CR37
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2835
– volume: 18
  start-page: 851
  year: 2017
  ident: BFnbt4235_CR13
  publication-title: Brief. Bioinform.
– volume: 8
  start-page: 24
  year: 2016
  ident: BFnbt4235_CR4
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0269-0
– volume: 9
  start-page: e1003031
  year: 2013
  ident: BFnbt4235_CR7
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003031
– ident: BFnbt4235_CR29
– volume: 526
  start-page: 68
  year: 2015
  ident: BFnbt4235_CR31
  publication-title: Nature
  doi: 10.1038/nature15393
SSID ssj0006466
Score 2.7137384
Snippet DeepVariant uses convolutional neural networks to improve the accuracy of variant calling. Despite rapid advances in sequencing technologies, accurately...
Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful...
DeepVariant uses convolutional neural networks to improve the accuracy of variant calling.Despite rapid advances in sequencing technologies, accurately calling...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 983
SubjectTerms 45/23
631/114/1305
631/114/2785
631/61/212
Accuracy
Agriculture
Analysis
Artificial neural networks
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Deep learning
Gene sequencing
Genetic diversity
Genetic variance
Genomes
Genomic structural variations
Genomics
Genotype & phenotype
Genotypes
Ground truth
letter
Life Sciences
Machine learning
Neural networks
Next-generation sequencing
Nucleotide sequence
Single-nucleotide polymorphism
State of the art
Title A universal SNP and small-indel variant caller using deep neural networks
URI https://link.springer.com/article/10.1038/nbt.4235
https://www.ncbi.nlm.nih.gov/pubmed/30247488
https://www.proquest.com/docview/2157639042
https://www.proquest.com/docview/3226335678
https://www.proquest.com/docview/2111741191
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BKxAcEIRXoFQLAvXk1vZ6184JBdTQIjVUbUG5WfvsJTihTpD498zY67SJKsRlLzu7ssez89gZfwPwPtaW68QPIi1TFWU-t5HiGKzkRiqbGWNlAyl0MpZH37OvEzEJF251KKvsdGKjqO3M0B35AQqe5Fygbv04_xVR1yjKroYWGndhO0FPhFo35JNVwIXWtslVJnFB5ZVCduCzvDio9GIfPQmxZo42lfINq7SRJm2sz-gxPApuIxu23_kJ3HFVD-61jST_9ODhDVjBHtw_CQnzp3A8ZMu29AJXn49Pmaosq3-q6TQinMQp-42xMjKXGeqpcsWoDP6SWefmjJAucVHV1onXz-BidHjx-SgK3RMig17RIuJeuQKNtxFeaJ9mLsfRp9wblSVWOqtNLGNkGkej70UiC-10ppzPCuet5M9hq5pV7iUwjBg1ZQelcUkmYqXyNMXAWYnM80HhdB_2Oh6WJiCLU4OLadlkuHlRIrdL4nYf3q4o5y2axi00H-gzlKEJJw41XVPUl2pZ1-VQoMNFGGF5H941dARiUVGVTEtw_O3HfxCdn60R7QUiP8PnNir8mYBvT-BYa5Q7a5R4FM36dCc6ZVAFdYk-FerwASrHW6ev5RqZs5qmjan6rXKzJW2RYOBIUHx9eNFK5Ip9HJ2sHLUwvmknotebb_L21b-f4DU8QH-waH-13IGtxdXSvUGfa6F3m4OFYzH6sgvbnw7Hp2d_ATL0Kqs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVLwOCMIrUGBBVD2Zxq-1c6hQgFYJbULVpqg3a5-9BCfUCag_jv_GjL1Om6hCXHrxZccre3Z2Hjuz3wC8b0sdSt92PMkD4UU20Z4IMVhJFBc6UkrzElJoMOS9k-jraXy6Bn_quzBUVlnrxFJR64miM_JtFDwehjHq1o_Tnx51jaLsat1CQ7jWCnqnhBhzFzv2zcVvDOGKnf4XXO_NINjbHX3uea7LgKfQe5h5oRUmRSOnYhtLG0QmwacNQqtE5GtutFRtjnE_tUPwbezzVBoZCWOj1FjNQ5z2FqxHdH7SgPVPu8PDo4Up4FWy1G-nVN8Z8xr9Nky3czn7gK5MvGQPV63CFbO4kqctzd_eQ3jg_FbWrQTtEayZvAm3q06WF024fwXXsAl3Bi5j_xj6XTavaj_w7ePhIRO5ZsUPMR57BNQ4Zr8wWMfVZYqaupwzqsM_Y9qYKSOoTXwprwrViycwugnGPoVGPsnNc2AYskpKT3Jl_ChuC5EEAUbuIo5s2EmNbMFWzcNMOWhz6rAxzsoUe5hmyO2MuN2CtwvKaQXncQ3NJi1D5rqA4qOgc5LiTMyLIuvG6PERSFnSgnclHaFo5FSmUxH0v33_D6LjoyWiLUdkJ_jdSrirEfj3hM61RLmxRIm6QC0P16KTOV1UZOjUoRHpoHa-dvhyYyFzFsM0MZXf5WYypyl8jFwJC7AFzyqJXLAvRC8vQTOAf1qL6OXkq7x98e8veAN3e6PBQXbQH-6_hHvonKbVvc8NaMzO5-YVOoAz-dptMwbZDW_sv1zZbNk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVlTlgCA8GiiwIKqeTGyvvXYOFQq0UUNpiPpAvVn77CU4oU5A_Yn8K2bsdVpHFeLSiy87Xtmzs_PYmf2GkPe-1EwGtutJHgovson2BINgJVFc6EgpzUtIoaMhPziLvpzH5yvkT30XBssqa51YKmo9UXhG3gHB44zFoFs71pVFjPb6H6c_PewghZnWup2GcG0W9G4JN-YueRyaq98QzhW7gz1Y--0w7O-ffj7wXMcBT4EnMfOYFSYFg6diG0sbRiaBpw2ZVSIKNDdaKp_7XYatEQIbBzyVRkbC2Cg1VnMG094jawkYfYgD1z7tD0fHC7PAq8Rp4KdY6xnzGgmXpZ1czj6AWxM3bOOyhbhhIpdytqUp7D8iD50PS3uV0D0mKyZvkftVV8urFnlwA-OwRdaPXPb-CRn06LyqA4G3T4YjKnJNix9iPPYQtHFMf0HgDitNFTZ4uaRYk39BtTFTirCb8FJeFa0XT8npXTD2GVnNJ7nZJBTCV4mpSq5MEMW-EEkYQhQv4siybmpkm-zUPMyUgznHbhvjrEy3szQDbmfI7TZ5u6CcVtAet9Bs4zJkriMoPAo8MykuxLwosl4M3h8CliVt8q6kQ0SNHGWzIhh8-_4fRCfHDaIdR2Qn8N1KuGsS8PeI1NWg3GpQgl5QzeFadDKnl4oMHDwwKF3Q1LcOX28yYM5iGCfGUrzcTOY4RQBRLOICtsnzSiIX7GPg8SVgEuBPaxG9nnyZty_-_QVvyDps8OzrYHj4kmyAn5pWV0C3yOrscm5egS84k6_dLqMku-N9_Re3znEd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+SNP+and+small-indel+variant+caller+using+deep+neural+networks&rft.jtitle=Nature+biotechnology&rft.au=Poplin%2C+Ryan&rft.au=Chang%2C+Pi-Chuan&rft.au=Alexander%2C+David&rft.au=Schwartz%2C+Scott&rft.date=2018-11-01&rft.pub=Springer+New+York&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=36&rft.issue=10&rft.spage=983&rft.epage=987&rft_id=info:doi/10.1038%2Fnbt.4235&rft.externalDocID=10_1038_nbt_4235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon